Smooth functions on C(K)

Petr Hájek

§1. Introduction.

S. Bates has recently investigated separable Banach spaces X satisfying the condition that for every separable Banach space Y there exists a surjective C^{∞} -Fréchet smooth (nonlinear) operator from X onto Y. We will denote the class of all these spaces by \mathcal{B} . Bates has shown that every separable superreflexive space belongs to \mathcal{B} and he also characterized spaces for which his method of proof fails.

Theorem 1 (Bates)

Let $X \notin \mathcal{B}$ be an infinite dimensional Banach space. Then at least one of the following conditions hold:

(i) Every seminormalized weakly null sequence in X^* has a subsequence with a spreading model isomorphic to ℓ_1

(ii) X^* has the Schur property.

Natural examples of spaces satisfying (i) or (ii) are c_0 and the original Tsirelson space, and Bates asked whether indeed $c_0 \notin \mathcal{B}$. The question was settled in [9] (i.e. $c_0 \notin \mathcal{B}$), a paper which was conducted without any knowledge of S. Bates' work, and which was mainly concerned with the behavior of C^2 -smooth real functions on c_0 .

In order to reveal the connection between these matters, let us denote by \mathcal{C} the class of Banach spaces X such that for any real function f defined on an open subset \mathcal{U} of X, with locally uniformly continuous derivative, f' is locally compact. That is to say, for every $x \in \mathcal{U}$ there exists open neighbourhood $\mathcal{V} \subset \mathcal{U}, x \in \mathcal{V}$, such that $f'(\mathcal{V})$ is relatively compact in X^* .

A simple use of the Baire category principle implies that if $T : X \to Y$ is a surjective operator with locally continuous derivative (e.g. C^2 -Fréchet smooth), and $X \in C$, then $Y \in C$. If, on the other hand, $Y \in \mathcal{B}$ then $X \in \mathcal{B}$. Since $\ell_2 \in \mathcal{B}$, $\ell_2 \notin C$ we have the following implication: $X \in C \implies X \notin \mathcal{B}$, and moreover whenever $Y \in \mathcal{B}$, there exists no surjective $Y : X \to Y$ with locally uniformly continuous derivative. A little more can be said under some additional assumptions.

Proposition 2.

Let $X \oplus X \in C$, Y be an infinitely dimensional Banach space with nontrivial type, $T : X \to Y$ be a Fréchet differentiable operator with locally uniformly continuous derivative. Then T is locally compact.

The proof of this statement is identical with that of Corollary 11 of [9], using Lemma 5 below instead of Corollary 10 of [9]. It should be noted that some additional assumptions must be put on Y, because as follows from the Josefson-Nissenzweig theorem, every infinite dimensional Banach space admits a noncompact linear operator into c_0 .

Proposition 2 is particularly useful if $X \oplus X \cong X$, as is the case when X = C(K), K countable, or $X = T^*$ (the original Tsirelson space) (for these results see [4], [5]). Thus in what follows, we will be mainly interested in showing that $X \in \mathcal{C}$ for these spaces.

In section 2 we develop methods from [9] to show that the original Tsirelson space T^* belongs to \mathcal{C} . Also, C(K), K scattered, belong to \mathcal{C} . On the other hand, the Schreier space B ([5,10,11]) yields an example of a polyhedral subspace of $C(\omega^{\omega})$ which belongs to \mathcal{B} . In particular, B is an example of a subspace of $C(\omega^{\omega})$ which is not a quotient of C(K), K scattered.

In section 3 we prove a somewhat finer statement that there exists no surjective operator from c_0 onto T^* or from T^* onto c_0 with locally uniformly continuous derivative. This suggests that there may be many "incomparable elements" with respect to smooth surjections.

Section 4 is devoted to proving certain estimates for homogeneous polynomials on c_0^n , independent of n and the degree of the polynomial, in the spirit of [2].

We are indebted to R. Haydon who first observed that the methods of [9] apply also in case of the Tsirelson space, and who informed us about S. Bates' work.

Our paper is a natural continuation of [9], but for the convenience of the reader we will repeat some important definitions and statements.

Let X, Y be real Banach spaces. We say that an operator $T : X \to Y$ is locally compact if for every $x \in X$ there exists an open neighbourhood $x \in \mathcal{U}$, such that $T(\mathcal{U})$ is norm relatively compact in Y. We say that T is weakly (w)-sequentially continuous on $\mathcal{U} \subset X$ if it maps w-Cauchy sequences from \mathcal{U} into norm convergent ones.

A modulus of continuity for a given uniformly continuous function f from a metric space (X_1, d_1) into a metric space (X_2, d_2) is an increasing real function $\omega(\delta), \delta \ge 0$, $\lim_{\delta \to 0} \omega(\delta) = 0$, such that

 $d_1(x_1, x_2) \le \delta$ implies $d_2(f(x_1), f(x_2)) \le \omega(\delta)$. 2 The following two statements have been proved in [9], and will be used frequently.

Lemma 3.

Let $\varepsilon > 0$, f be a real function on $B_{c_0^m}$ with uniformly continuous derivative (with modulus of continuity $\omega(\delta)$) and such that $\sup_{B_{c_0^m}} ||f'||_1 \le \omega(2)$. Let $v \in B_{c_0^m}$ and $\{u_i\}_{i=1}^n$ be a block sequence such that $v + u_i \in B_{c_0^m}$. If n is large enough (the estimate depends only on $\omega(\delta)$), then $\min_{1\le i\le n} |f(v+u_i) - f(v)| < \varepsilon$.

Lemma 4.

Let f be a Fréchet differentiable real function with uniformly continuous derivative defined on B_{c_0} . Then f is weakly sequentially continuous on B_{c_0} .

\S **2.** The class C.

Before we state our next lemma, let us remark that if $\ell_1 \hookrightarrow X$, then by classical results in [7], ℓ_2 is a linear quotient of X, so $X \in \mathcal{B}$.

Lemma 5.

Let X be a Banach space, $\ell_1 \nleftrightarrow X$. Let f be a real function with uniformly continuous derivative on B_X . TFAE: (i) f is w-sequentially continuous (ii) $f'(B_X)$ is relatively compact.

PROOF: (ii) \implies (i). Since $K = \overline{f'(B_X)}$ is norm compact, given a weakly Cauchy sequence $\{x_n\}_{n \in \mathbb{N}}$ in B_X we have:

$$\lim_{n,m\to\infty} \langle \phi, x_n - x_m \rangle = 0 \text{ uniformly in } \phi \in K.$$

By the mean value theorem, for some point x in the interval joining x_n and x_m , we have:

$$|f(x_n) - f(x_m)| = \langle f'(x), x_n - x_m \rangle| \le \sup_{\phi \in K} |\langle \phi, x_n - x_m \rangle| \to 0 \text{ as } m, n \to \infty.$$

(i) \implies (ii). Denote $\omega(\delta)$ the modulus of continuity of f' on B_X . Note that f is Lipschitz on B_X . If $f'(B_X)$ is not relatively compact, there exist $\varepsilon > 0$ and (by Rosenthal's theorem) a w-Cauchy sequence $\{x_n\}_{n \in \mathbb{N}}$ in $(1 - \varepsilon)B_X$ such that $f_n = f'(x_n)$ satisfy $\frac{1}{\varepsilon} > ||f_n|| > \varepsilon, ||f_n - f_m|| > \varepsilon.$ If $\lim f(x_n)$ does not exist, we are done. Otherwise, by standard argument, we may in addition assume that $f(x_1) = f(x_n), n \in \mathbb{N}$. By induction, we find a subsequence n_k of \mathbb{N} and a sequence $\{y_k\}_{k \in \mathbb{N}}$ in B_X such that:

$$|(f_{n_k} - f_{n_l})(y_l)| > \frac{\varepsilon}{4} \quad \text{for } k > l \tag{1}$$

$$|(f_{n_{k_1}} - f_{n_{k_2}})(y_l)| < \frac{\varepsilon}{100} \quad \text{for } k_1, k_2 > l.$$
⁽²⁾

This is done as follows: Choose $y_1 \in B_X$ such that $(f_1 - f_2)(y_1) > \frac{\varepsilon}{2}$. There exists an increasing subsequence $\{n_k^1\}_{k \in \mathbb{N}}$ of \mathbb{N} satisfying (2) for l = 1, and satisfying (1) for either $n_1 = 1$ or $n_1 = 2$. Fix the choice of n_1 and assume $n_1 < n_1^1$. Find $y_2 \in B_X$ such that $(f_{n_1^1} - f_{n_2^1})(y_2) > \frac{\varepsilon}{2}$. There exists an increasing subsequence $\{n_k^2\}_{k \in \mathbb{N}}$ of $\{n_k^1\}_{k \in \mathbb{N}}$ satisfying (2) for l = 2 and (1) for either $n_2 = n_1^1$ or $n_2 = n_2^1$. We continue in an obvious manner.

We may assume that $\{y_k\}_{k\in\mathbb{N}}$ is w-Cauchy. Conditions (1) and (2) imply that for every k > 3 we have either $|f_{n_k}(y_{k-2} - y_{k-1})| > \frac{\varepsilon}{8}$ or $|f_{n_{k-1}}(y_{k-2} - y_{k-1})| > \frac{\varepsilon}{8}$. Passing to a suitable subsequence of $\{y_{k-2} - y_{k-1}\}_{k\in\mathbb{N}}$ and $\{f_{n_k}\}_{k\in\mathbb{N}}$, we obtain a w-null sequence $\{z_l\}_{l\in\mathbb{N}}$ such that $f_{n_l}(z_l) > \frac{\varepsilon}{8}$. For $\alpha > 0$ small enough, we have $x_{n_l} + \alpha z_l \in B_X$ and $f(x_{n_l} + \alpha z_l) > f(x_{n_l}) + \frac{1}{2}\alpha \frac{\varepsilon}{8}$. This is a contradiction, since $x_1, x_{n_1} + \alpha z_1, x_2, x_{n_2} + \alpha z_2, \ldots$ is w-Cauchy.

$$\diamond$$

Proposition 6.

Let T^* be the original Tsirelson space, then $T^* \in \mathcal{C}$.

PROOF: Let f be a real function on B_{T^*} with uniformly continuous Fréchet derivative. Since T^* is reflexive, using Lemma 5 it is enough to show that $f(x_n)$ converges to f(0) for every w-null sequence in B_{T^*} . Assume the contrary, i.e. for some $\{x_n\}_{n \in \mathbb{N}}$, which may be choosen to be a *l*-normalized block sequence, and some $\varepsilon > 0$, $|f(x_n) - f(0)| > \varepsilon$. By properties of T^* [5], for every $N \in \mathbb{N}$, $x_N, x_{N+1}, \ldots, x_{2N}$ is 2*l*-equivalent to the canonical basis of c_0^N . This is a contradiction with Lemma 3.

$$\diamond$$

Clearly, the same proof also works for T^*_{θ} , $0 < \theta < 1$ (see [5]), so we have a continuum of mutually totally incomparable reflexive spaces from C.

Theorem 7.

Let K be a scattered compact. Then $C(K) \in C$.

PROOF: Since every separable subspace of C(K), K scattered, is contained in a separable subspace of C(K) isomorphic to $C(K_1)$, where K_1 is countable (e.g. [6]), we may assume that K is countable.

Bessaga and Pelczynski in [4] provided an isomorphic classification of C(K) spaces, K countable, as those isomorphic to $C[0, \alpha]$, where α is a countable ordinal. We will prove by transfinite induction on $\alpha \in [\omega_0, \omega_1)$ that a function $f: B_{C[0,\alpha]} \to \mathbb{R}$ with a uniformly continuous derivative is w-sequentially continuous on $B_{C[0,\alpha]}$.

Case $\alpha = \omega_0$ was proved in [9].

Inductive step.

Assume our claim is true for all $\alpha \in [\omega_0, \beta), \beta \in [\omega_0, \omega_1)$. We may clearly assume that $C[0, \alpha] \not\cong C[0, \beta]$ for $\alpha < \beta$ and β is a limit ordinal. Choose an increasing sequence $\alpha_k \nearrow \beta$ such that $[\alpha_k + 1, \alpha_{k+1}]$ are clopen. We will work in $C_0[0, \beta]$, continuous functions on $[0, \beta]$ which vanish at β , as $C_0[0, \beta] \cong C[0, \beta]$. Define for l < m, $P^{l,m} : C_0[0, \beta] \to C_0[0, \beta]$ as

$$P^{l,m}(\phi)(\alpha) = \begin{cases} 0 & \text{if } \alpha \in [\alpha_l + 1, \alpha_m] \\ \phi(\alpha) & \text{otherwise.} \end{cases}$$

Let $f: B_{c_0} \to \mathbb{R}$ have a uniformly continuous derivative on B_{c_0} , f(0) = 0, f'(0) = 0. Let us assume, by contradiction, that there is a w-Cauchy sequence $\{\phi\}_{n \in \mathbb{N}} \in B_{C_0[0,\beta]}, f(\phi_{2n}) < 0, f(\phi_{2n+1}) > 1$ and each ϕ_n is supported by $[0, \alpha_i]$ for some $i \in \mathbb{N}$. Similarly to Claim 7 of [9], and with the same proof, we obtain that there is $k \in \mathbb{N}$ and some infinite sets M_1 of odd integers and M_2 of even integers satisfying, whenever $k \leq l < m$:

$$f(P^{l,m}(\phi_n)) < \frac{1}{4}$$
 for all but finitely many $n \in M_2$,

$$f(P^{l,m}(\phi_n)) > \frac{3}{4}$$
 for all but finitely many $n \in M_1$.

We may assume k = 1 and using the above claim pass to another subsequence $\{\phi_{p_i}\}_{i \in \mathbb{N}}$, $p_i \in M_2$ for i even, $p_i \in M_1$ for i odd, such that

$$f(\psi_{2k}) < \frac{1}{4}, \ f(\psi_{2k+1}) > \frac{3}{4}, \ \text{where} \ \psi_i = P^{1,i}(\phi_{p_i}).$$

In addition, we may also assume $\operatorname{supp}(\psi_i) \subset [0, \alpha_1] \cup [\alpha_i + 1, \alpha_{i+1}]$. By construction, $\{\psi_i\}_{i \in \mathbb{N}}$ is w-Cauchy. Consider the linear operator $L : C[0, \alpha_1] \cong C[0, \alpha_1] \oplus c_0 \to C_0[0, \beta]$, defined by formulas:

$$L\bigl((\phi,0)\bigr) = \phi,$$

$$L((0,e_i)) = \psi_i \Big|_{[\alpha_i+1,\alpha_{i+1}]}$$

The real function $f \circ L$ has uniformly continuous Fréchet derivative on $B_{C[0,\alpha_1]}$, but $f \circ L((\psi_i \Big|_{[0,\alpha_1]}, e_i))$ is not convergent, a contradiction.

 \diamond

The following suprising example, based on a construction of Schreier [11], was investigated in [10].

Example 8.

There exists a subspace B of $C(\omega^{\omega})$ with unconditional shrinking basis $\{e_n\}$ and a biorthogonal basis $\{e_n^*\}$ such that $e_n^* \xrightarrow{w} 0$ and the spreading model built on $\{e_n^*\}$ is c_0 .

It follows immediately from Theorem 1, that $B \in \mathcal{B}$. Using [10], one can show by standard argument that the canonical injection from B into ℓ_2 is bounded. Yet, the space B as a subspace of a polyhedral space is itself (isomorphically) polyhedral and thus saturated by copies of c_0 . The space B also indicates that the structure of w-Cauchy sequences in general C(K), K scattered, is more complicated than that of c_0 . This is the main obstacle in trying to prove analogous statements to Proposition 11 for C(K) instead of c_0 . On the other hand, leaning on the results from [8], with a little bit of work one can show that every w-Cauchy sequence in the Hagler space JH contains a subsequence equivalent to either the canonical or the summing basis of c_0 . By Lemma 4 and 5 $JH \in \mathcal{C}$.

§3. Operators from c_0 .

The main Proposition 11 of this section implies that a C^2 -smooth operators from c_0 into a space Y with an unconditional basis is locally compact unless $c_0 \hookrightarrow Y$. Together with Proposition 9 this statement implies that there is no surjective C^2 -smooth operator from c_0 onto T^* or vice versa.

Proposition 9.

Let $X \in \mathcal{C}$ be a reflexive space, $T : X \to Y$ be an onto operator with locally uniformly continuous Fréchet derivative. Then $Y \in \mathcal{C}$ is reflexive.

PROOF: The fact that $Y \in \mathcal{C}$ is valid in general without the reflexivity assumption on X. Indeed, it is an easy application of the Baire category principle which implies that for some open $\mathcal{U} \subset X$ such that $T \Big|_{\mathcal{C}}$ has uniformly continuous Fréchet derivative, $\overline{T(\mathcal{U})}$ has nonempty interior. To show that Y is reflexive, note that for every open ball $\mathcal{U} \subset X$ such that $T \Big|_{\mathcal{U}}$ has uniformly continuous derivative, by Lemma 5, T maps weakly convergent sequences from \mathcal{U} into weakly convergent sequences in Y. By the Eberlein-Šmulyan theorem, $T(\mathcal{U})$ is relatively weakly compact. However, for some $\mathcal{U}, \overline{T(\mathcal{U})}$ must have nonempty interior and thus Y is reflexive.

 \diamond

In particular, there is no C^2 operator from T^* onto c_0 .

Lemma 10.

Let $T : B_{c_0} \to Y$ be an operator with uniformly continuous Fréchet derivative on B_{c_0} . Assume that for every given $u \in B_{c_0}$ and $\{v_n\}_{n \in \mathbb{N}} \subset c_0$ equivalent to the canonical basis of c_0 , such that $u + v_n \in B_{c_0}$, we have:

$$\lim_{n \to \infty} T(u + v_n) = T(u).$$

Then T is w-sequentially continuous on B_{c_0} .

PROOF: Assume, by contradiction, that T is not w-sequentially continuous on B_{c_0} , i.e. there exist $\varepsilon > 0$ and a w-Cauchy sequence $\{x_n\}_{n \in \mathbb{N}} \in B_{c_0}$ such that $T(x_n)$ is not convergent. If $\{T(x_n)\}_{n \in \mathbb{N}}$ is relatively compact, then there exists $y^* \in Y^*$ such that $\{y^* \circ T(x_n)\}_{n \in \mathbb{N}}$ is not convergent, a contradiction with Lemma 4. We therefore assume that $\{T(x_n)\}_{n \in \mathbb{N}}$ is not relatively compact. By passing to a subsequence, changing notation and disregarding quantities that can be made arbitrary small, we can assume that there is a w-Cauchy sequence $\{x_n\}_{n \in \mathbb{N}} \in B_{c_0}$ satisfying:

(i) dist{span{ $T(x_1), \ldots, T(x_n)$ }, $T(x_{n+1})$ } > $\beta > 0$

(ii) $\{x_n\}$ are supported in an increasing sequence of finite intervals $I_n = [1, m_n]$

(iii) all the x_j , for j > n are equal on I_n .

By assumption, for every x_n and every block sequence $\{y_k\}_{k \in \mathbb{N}}$ such that $x_n + y_k \in B_{c_0}$,

$$\lim_{k \to \infty} T(x_n + y_k) = T(x_n).$$

Thus for every $n \in \mathbb{N}$ there exists $l_n \in \mathbb{N}$, $l_n > m_n$ such that $||T(x_n + u) - T(x_n)|| < \frac{\beta}{2}$ for every $u \in c_0$, $x_n + u \in B_{c_0}$, $\operatorname{supp}(u) \subset [l_n, \infty)$. Consequently, for every $N \in \mathbb{N}$ we can choose a finite sequence $x_{n_1}, \ldots, x_{n_{2N}}$ satisfying $l_{n_i} < m_{n_{i+1}}, i = 1, \ldots, 2N - 1$. We obtain the following:

$$||T(x_{n_i} + \chi_{[l_{n_i}, m_{n_N}]} \cdot x_{n_N}) - T(x_{n_i})|| < \frac{\beta}{2} \quad i = 1, \dots, 2N - 1$$

Put $u_{n_i} = x_{n_{2N}} - (x_{n_{2i}} + \chi_{[l_{n_{2i}}, m_{n_N}]} \cdot x_{n_N}), \quad i = 1, \dots, N-1$. Then u_{n_i} is a block 2-sequence, supported by $[m_{n_{2i-1}}, l_{n_{2i}}]$. Using (i), choose $y^* \in B_{Y^*}$ satisfying:

$$y^*(T(x_{n_i})) = 0 \quad i = 1, \dots, 2N - 1,$$

 $y^*(T(x_{n_{2N}})) > \beta.$

Thus we have $|y^* \circ T(x_{n_N} - u_{n_i})| < \frac{\beta}{2}$ $i = 1, ..., N - 1, |y^* \circ T(x_{n_N})| > \beta$. Because N is arbitrary large, it is a contradiction with Lemma 3.

~
2 \
\mathbf{X}
~

Proposition 11.

Let Y be a separable Banach space with an unconditional basis. Suppose $T : c_0 \to Y$ has a locally continuous Fréchet derivative. Then either $c_0 \hookrightarrow Y$ or T is locally compact.

PROOF: We proceed by contradiction, assuming that $c_0 \nleftrightarrow Y$ and T is not locally compact. By standard shifting and scaling arguments together with Lemma 10, we may assume that T has uniformly continuous derivative on B_{c_0} , T(0) = 0 and $||T(e_k)|| \ge 2\varepsilon > 0$. Denote by $\{x_k\}_{k \in \mathbb{N}}$ the unconditional normalized basis of Y, $\{x_k^*\}_{k \in \mathbb{N}}$ its dual basis. By Lemma 4, $\{T(e_k)\}_{k \in \mathbb{N}}$ is w-null, so on passing to a subsequence we may assume that there exist a sequence $J_k = [i_k, j_k]$ of consecutive intervals of integers and $f_k \in B_{Y^*}$, $f_k \in \text{span}\{x_{i_k}^*, \ldots, x_{j_k}^*\}$, such that $f_k \circ T(e_k) > \frac{3\varepsilon}{2} > 0$. Put $P^k : Y \to Y$ to be a projection defined as $P^k(\sum_{i=1}^{\infty} \alpha_i x_i) = \sum_{i=i_k}^{j_k} \alpha_i x_i$. Our aim now is to pass to a subsequence $\{k_i\}_{i \in \mathbb{N}}$ of \mathbb{N} such that:

$$f_{k_l} \circ T(\sum_{i=1}^n e_{k_i}) \ge \varepsilon$$
 for every $1 \le l \le n$.

Before we present the construction, let us observe how this implies the statement of Proposition 11. By compactness, we may find an increasing sequence of integers $\{n_p\}_{p \in \mathbb{N}}$ such that for every $l \in \mathbb{N}$

$$\lim_{p \to \infty} P^{k_l} \left(T(\sum_{i=1}^{n_p} e_{k_i}) \right) = u_l$$

exists.

By the unconditionality of $\{x_k\}_{k \in \mathbb{N}}$ and boundedness of T, $\{u_l\}_{l \in \mathbb{N}}$ forms a block basis in Y satisfying

$$C_1 \max\{|\alpha_l|\} \le \|\sum_{l=1}^n \alpha_l u_l\| \le C_2 \max\{|\alpha_l|\} \quad \text{where } C_1, C_2 \ge \varepsilon.$$

In other words, $\{u_l\}_{l \in \mathbb{N}}$ is equivalent to the canonical basis of c_0 .

The sequence $\{k_i\}_{i \in \mathbb{N}}$ is constructed by induction as follows. Given $r \in \mathbb{N}$, put n_r to be a large enough integer (Lemma 3) so that whenever $f \in B_{Y^*}, v \in B_{c_0}, \{u_i\}_{i=1}^{n_r} \in c_0$ are such that $v + u_i \in B_{c_0}$, and u_i are 1-equivalent to the canonical basis of $c_0^{n_r}$, we have

$$|f \circ T(v+u_i) - f \circ T(v)| < \left(\frac{\varepsilon}{2}\right)^{r+1}$$

for some $i \in [1, n_r]$.

Using Lemma 3 again, there exists $Q_1 \in \mathbb{N}$, $Q_1 > n_1$ such that $f_i \circ T(e_i + u) \ge (1 + \frac{1}{4})\varepsilon$ whenever $i \in [1, n_1], u \in B_{c_0}, \operatorname{supp}(u) \subset [Q_1, \infty)$. On the other hand, for every $j > Q_1$ there exists some $i \in [1, n_1]$ such that $f_j \circ T(e_i + e_j) \ge (1 + \frac{1}{4})\varepsilon$. Thus there exists $k_1 \in [1, n_1]$ and an infinite increasing sequence $\{m_1^1, m_2^1, \dots\} = M_1 \subset \mathbb{N}$ such that for every $u \in B_{c_0}$, supp $(u) \subset M_1$ and every $k \in M_1$ we have $k > k_1$ and

$$f_{k_1} \circ T(e_{k_1} + u) \ge (1 + \frac{1}{4})\varepsilon, \ f_k \circ T(e_{k_1} + e_k) \ge (1 + \frac{1}{4})\varepsilon$$

Similarly, there exists $Q_2 > m_{n_2}^1$ such that $f_i \circ T(e_{k_1} + e_i + u) \ge (1 + \frac{1}{8})\varepsilon$ whenever $i \in \{m_1^1, \ldots, m_{n_2}^1\}, u \in B_{c_0}, \operatorname{supp}(u) \subset [Q-2, \infty).$ Also, whenever $j > Q_2$, there exists $i \in \{m_1^1, \ldots, m_{n_2}^1\}$ such that $f_j \circ T(e_{k_1} + e_i + e_j) \ge (1 + \frac{1}{8})\varepsilon$. Thus, there exist $k_2 \in 9$ $\{m_1^1, \ldots, m_{n_2}^1\}$ and an infinite increasing sequence $\{m_1^2, m_2^2, \ldots\} = M_2 \subset M_1$ such that for every $u \in B_{c_0}$, supp $(u) \subset M_2$ and every $k \in M_2$ we have $k > k_2$ and

$$f_{k_2} \circ T(e_{k_1} + e_{k_2} + u) \ge (1 + \frac{1}{8})\varepsilon, \quad f_k \circ T(e_{k_1} + e_{k_2} + e_k) \ge (1 + \frac{1}{8})\varepsilon.$$

The inductive process continues in an obvious manner, at the r-th step choosing $k_r \in \{m_1^{r-1}, \ldots, m_{n_r}^{r-1}\} \subset M_{r-1}$ and a subset $M_r \subset M_{r-1}$ satisfying

$$f_{k_r} \circ T(\sum_{i=1}^r e_{k_i} + u) \ge (1 + \frac{1}{2^{r+1}})\varepsilon, \ f_k \circ T(\sum_{i=1}^r e_{k_i} + e_k) \ge (1 + \frac{1}{2^{r+1}})\varepsilon,$$

whenever $u \in B_{c_0}$, $\operatorname{supp}(u) \subset M_r$ and $k \in M_r$. This finishes the proof.

As an immediate consequence, there exists no C^2 operator form c_0 onto T^* .

§4. Analytic functions on c_0 .

In the last part of our paper, we will obtain a finer description of the behavior of real analytic functions on c_0 , in the spirit of Lemma 4. A similar statement was obtained in the complex setting by Aron and Globevnik in [1]. In fact, using the standard complexification argument, their result implies our Proposition 13.

Our proof uses ideas from [2], but adds a new ingredient of estimating the second derivative, which yields certain estimates independent of the degree of the polynomial and is of independent interest.

We refer to [2] for most of our notation.

Given a real C^2 -smooth function f on some domain \mathcal{U} in c_0^n , we denote by $D^2 f : \mathcal{U} \to \mathcal{L}(c_0^n, \ell_1^n)$ the usual second derivative of f, which can be represented by a symmetric matrix $(\frac{\partial^2 f}{\partial x_i \partial x_j})_{i,j=1,\dots,n}$. For $T \in \mathcal{L}(c_0^n, \ell_1^n)$, ||T|| stands for the usual operator norm. Let us denote $\overline{\Delta}f = \sum_{i=1}^n |\frac{\partial^2 f}{\partial x_i^2}|$.

Lemma 12. Let $f \in C^2$, $f : B_{c_0^n} \to \mathbb{R}$, $\|D^2 f\| \leq 1$ on $B_{c_0^n}$. Then $\overline{\Delta} f \leq 1$ on $B_{c_0^n}$.

PROOF: Let $x \in B_{c_0^n}$. Put $T = D^2 f(x) = (a_{ij})_{i,j=1,\dots,n}$. Clearly,

 \diamond

$$||T|| = \max\{||T(x)||_1, x = \sum_{i=1}^n \pm e_i\}$$

For any choices of signs $\varepsilon_j = \pm 1, \delta_i = \pm 1, 1 \leq i, j \leq n$, we have

$$||T|| \ge \sum_{i=1}^{n} |\sum_{j=1}^{n} \varepsilon_j a_{ij}| \ge \sum_{i=1}^{n} (\delta_i a_{ii} + \delta_i \sum_{j \ne i} \varepsilon_j a_{ij}).$$

Keeping δ_i fixed and averaging over all choices of ε_j we obtain $||T|| \ge \sum_{i=1}^n \delta_i a_{ii}$, so $||T|| \ge \overline{\Delta} f(x)$.

Lemma 13.

Let p be a homogeneous polynomial of degree k on $B_{c_0^n}$. If $\overline{\Delta}p \leq 1$ on $B_{c_0^n}$, then $\sum_{i=1}^n |p(e_i)| \leq 16$.

PROOF: We may assume that n is odd and p is a symmetric polynomial, and we need to prove our estimate with 8 rather than 16. Indeed, otherwise assuming $p(e_i) \ge 0$ (here is why we need a better estimate, in general we have to pass to a suitable subset of $\{e_i\}_{i=1}^n$, where the signs of f remain constant) we can consider \tilde{p} defined on $B_{c_0^m}$, $m \ge n$, m odd, as

$$\tilde{p}(\sum_{i=1}^{m} a_i e_i) = \frac{1}{m!} \sum_{\pi \in \Pi_m} p(\sum_{i=1}^{n} a_{\pi(i)} e_i),$$

where Π_m is the group of permutations of $\{1, \ldots, m\}$. Clearly, \tilde{p} is symmetric, $\overline{\Delta}\tilde{p} \leq 1$ and $\sum_{i=1}^{m} |\tilde{p}(e_i)| = \sum_{i=1}^{n} |p(e_i)|$. Assume $p(x_1, \ldots, x_n) = \sum_{|\alpha|=k} a_{\alpha} x_1^{\alpha_1} \ldots x_n^{\alpha_n}$, denote $\tilde{a_i}$ the coefficient by x_i^k . Clearly, $\sum_{i=1}^{n} |p(e_i)| = \sum_{i=1}^{n} |\tilde{a_i}|$. To estimate $\sum_{i=1}^{n} |\tilde{a_i}|$, consider the polynomial

$$q(x_1,\ldots,x_n) = \sum_{i=1}^n (-1)^i \frac{\partial^2 p}{\partial x_i^2}.$$
11

Then q is a homogeneous polynomial of degree k - 2, $|q| \leq 1$ on $B_{c_0^n}$ and due to the symmetry of p and n being odd, the leading coefficients of q by x_i^{k-2} are $(-1)^i k(k-1)\tilde{a_i}$. By Theorem 1.2 of [2], $k(k-1) \sum_{i=1}^n |\tilde{a_i}| \leq 4k^2$. Thus $\sum_{i=1}^n |\tilde{a_i}| \leq 8$, and the proof is completed.

Unfortunately, uniform estimates of this type, independent of the dimension n and degree of the polynomial are not valid for nonhomogeneous polynomials (consider e.g. $\prod_{i=1}^{n} (1-x_i^4)$ on c_0^n). This is the reason for which no analogue of the following proposition is valid under the weaker assumption of C^2 smoothness rather than analyticity.

Proposition 14.

Let f be a real analytic function on some domain \mathcal{U} in c_0 , $0 \in \mathcal{U}$, f(0) = 0 and f'(0) = 0. Then there exists some $\varepsilon > 0$ such that $\sum_{i=1}^{\infty} |f(\varepsilon e_i)| < \infty$.

PROOF: Let us assume that the Taylor series of $D^2 f$ at 0:

$$D^{2}f(x) = P_{0} + P_{1}(x) + P_{2}(x) + \dots,$$

where $P_k(x)$ is a k-homogeneous polynomial form c_0 into $\mathcal{L}(c_0, \ell_1)$, is uniformly convergent on εB_{c_0} and moreover satisfies

$$\sup_{x \in \varepsilon B_{c_0}} \|P_k(x)\| \le K(1-\varepsilon)^k,$$

where K is some constant. By Lemma 12, 13 and an easy homogeneity argument we obtain $\sum_{i=1}^{\infty} |f(\varepsilon e_i)| \leq 16K\varepsilon^2 \sum_{k=0}^{\infty} (1-\varepsilon)^k = 16K\varepsilon.$

References

- [1] R. Aron and J. Globevnik, Analytic functions on c_0 , Rev. Mat. Univ. Complut. Madrid 2 (1989), 27-33.
- [2] R. Aron, B. Beauzamy and P. Enflo, Polynomials in many variables: real vs complex norms, J. Approximation Theory 74 (1993), 181-198.
- [3] S.M. Bates, On smooth, nonlinear surjections of Banach space, to appear in Israel J. Math..

- [4] C. Bessaga and A. Pelczynski, Spaces of continuous functions (IV), Studia Math. 19 (1960), 53-62.
- [5] P. Casazza and T. Shura, Tsirelson's space, LNM 1363, Berlin-Heidelberg-New York 1989.
- [6] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Monograph Surveys Pure Appl. Maths. 64 (Pitman, 1993).
- [7] J. Hagler, Some more Banach spaces which contain ℓ_1 , Studia Math. 46 (1973), 35-42.
- [8] J. Hagler, A counterexample to several questions about Banach spaces, Studia Math. 60 (1977), 289-308.
- [9] P. Hájek, Smooth functions on c_0 , to appear in Israel J. Math..
- [10] A. Pelczynski and W. Szlenk, An example of a non-shrinking basis, Rev. Roum. Math. Pures et Appl. 10 n.7 (1965), 961-965.
- [11] J. Schreier, Ein Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), 58-62.

Department of Mathematics, University of Alberta, Edmonton, T6G 2G1, Canada, and

Mathematical Institute, Czech Academy of Science, Žitná 26, Prague, Czech Rep. E-mail address: phajek@vega.math.ualberta.ca