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351, cours de la libération, 33400, Talence, France

email : deville@math.u-bordeaux.fr

Petr Hájek
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Abstract : We prove that there exists a Lipschitz function from ℓ1 into

IR2 which is Gâteaux-differentiable at every point and such that for every

x, y ∈ ℓ1, the norm of f ′(x) − f ′(y) is bigger than 1. On the other hand,

for every Lipschitz and Gâteaux-differentiable function from an arbitrary

Banach space X into IR and for every ε > 0, there always exists two points

x, y ∈ X such that ‖f ′(x)−f ′(y)‖ is less than ε. We also construct, in every

infinite dimensional separable Banach space, a real valued function f on

X, which is Gâteaux-differentiable at every point, has bounded non-empty

support, and with the properties that f ′ is norm to weak∗ continuous and

f ′(X) has an isolated point a, and that necessarily a 6= 0.
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1) Introduction.

Let f be a mapping from a Banach space X into a Banach space Y which

is Gâteaux-differentiable at every point. Our purpose is the study of the

range of the derivative of f . We denote this range f ′(X). Let us recall that

sufficient conditions on a subset A of a dual Banach space X∗ so that it

is the range of a real valued function on X which is Frechet-differentiable

at each point have been obtained in [BFKL], [BFL], [AFJ] and [G1]. In

this case, it was noticed in [AD] that whenever X is an infinite dimen-

sional Banach space with separable dual, there exists a C1-smooth real

valued function on X with bounded support and such that f ′(X) = X∗.

On the other hand, it follows from [H] that if f is a function on c0 with

locally uniformly continuous derivative, then f ′(c0) is included in a count-

able union of norm compact subsets of ℓ1. The structure of the range of

f ′ whenever f ′ satisfies a Holder condition has been investigated in [G2].

In the case of functions or mappings which are Gâteaux-differentiable at

each point, it was observed in [ADJ] that f ′(X) can coincide with L(X,Y ).

We shall investigate here phenomena which can occur when f is Gâteaux-

differentiable, but not when f is Frechet-differentiable. In particular, for

each infinite dimensional separable Bananach space X, we shall construct

in section 2 a Gâteaux-differentiable function f on X, with bounded sup-

port, and such that for all x 6= 0, ‖f ′(x) − f ′(0)‖ ≥ 1. In section 3, we

shall consider the following question : let X,Y be two Banach spaces. Is it

possible to construct a Lipschitz continuous mapping f : X → Y , Gâteaux-

differentiable at each point, and such that, for all x, y ∈ X, x 6= y, we have

‖f ′(x)−f ′(y)‖ ≥ 1? Clearly, this is not possible whenever L(X,Y ) is sep-

arable. We shall prove that this is not possible either whenever Y = IR,

but such a construction will be carried out whenever (X,Y ) = (ℓ1, IR2)

and whenever (X,Y ) = (ℓp, ℓq) with 1 ≤ p ≤ q < +∞.

2) Isolated points in the range of the derivative of a function.

Let X be a Banach space, and f be a real valued function defined on X. If

f is Frechet-differentiable at every point, then Maly’s Theorem asserts that

the range of f ′, denoted f ′(X), is connected. If f is Gâteaux-differentiable

at every point of X and if f ′ is norm to weak∗ continuous, then f ′(X) is

weak∗ connected. Therefore, if f is not affine, no point of f ′(X) is isolated

in f ′(X) endowed with the weak∗-topology. This result remains true even

if f ′ is not assumed to be norm to weak∗ continuous, as shown by the

following proposition. We shall see later that in this case f ′(X) is not

necessarily norm connected.

Proposition : Let X be an infinite dimensional Banach space, and let

f be a real valued locally Lipschitz and Gâteaux-differentiable function on

X. Then either f is affine, or, for every x ∈ X, f ′(x) lies in the weak∗

closure of f ′(X)\{f ′(x)}.
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Remark : J. Saint Raymond constructed a mapping f from IR2 into IR2,

Frechet-differentiable at each point, and so that
{
det(f ′(x));x ∈ IR2

}
=

{0, 1}. Therefore f ′(IR2) is not connected and for every x ∈ IR2, f ′(x) /∈

f ′(X)\{f ′(x)}. Consequently, there is no analog of Maly’s theorem and

of the above proposition for vector valued mappings.

Proof : Let f be a real valued locally Lipschitz and Gâteaux-differentiable

function on X which is not affine. Therefore, Card
(
f ′(X)

)
≥ 2. In order

to get a contradiction, assume moreover that f ′(X) = A∪{y}, where A 6= ∅

and y /∈ A
w∗

. Since y ∈ f ′(X), there exists x ∈ X such that y = f ′(x).

Replacing f by f(x + .), we can assume that x = 0. Fix also x0 ∈ X such

that f ′(x0) ∈ A. Since y /∈ A
w∗

, there exists x1, x2, ..., xn ∈ X and ε > 0

such that, if we denote

ỹ =
(
y(x1), y(x2), ..., y(xn)

)
∈ IRn

and

Ã =
{(

z(x1), z(x2), ..., z(xn)
)
; z ∈ A

}
⊂ IRn

then, for every z̃ ∈ Ã, ‖z̃ − ỹ‖ > ε. If we denote ˜̃y =
(
y(x0), ỹ

)
∈ IRn+1

and
˜̃
A =

(
z(x0), z(x1), z(x2), ..., z(xn)

)
; z ∈ A

}
⊂ IRn+1, then we also

have that, for every ˜̃z ∈
˜̃
A, ‖˜̃z − ˜̃y‖ > ε. Define F : IRn+1 → IR by

F (t0, t1, t2, ..., tn) = f
( n∑

i=0

tixi

)

Since F is Lipschitz continuous and Gâteaux-differentiable on IRn+1, it is

Fréchet-differentiable on IRn+1 and

F ′(t0, t1, t2, ..., tn) =
(
f ′

( n∑

i=0

tixi

)
(xj)

)n

j=0
∈

˜̃
A ∪ {˜̃y}

Moreover F ′(0, 0, ..., 0) = ˜̃y, F ′(1, 0, ..., 0) ∈
˜̃
A. Therefore F ′(IRn+1) is not

connected and this contradicts the Theorem of Maly.

¿From now on, we say that a real valued function on an infinite dimensional

Banach space X is a bump function if it has bounded non empty support.

We shall denote B(r) the set of all x∗ ∈ X∗ such that ‖x∗‖ < r. If E is

a Banach space, x ∈ E and r > 0, we denote BE(x, r) (resp. BE(x, r))

the open ball (resp. closed ball) in E of center x and radius r. If f

is a continuous and Gâteaux-differentiable bump function on X, then,

according to the Ekeland variational principle, the norm closure of f ′(X)

contains a ball B(r) for some r > 0. A natural conjecture would be that

the norm closure of f ′(X) is norm connected, or at least that f ′(X) does



4

not contain an isolated point. This is not so as shown by the following

construction.

Theorem 1 : Let X be an infinite dimensional separable Banach space.

Then, there exists a bump function f on X such that f is Gâteaux-differen-

tiable at every point, f ′ is norm to weak∗ continuous and ‖f ′(0)−f ′(x)‖ ≥ 1

whenever x 6= 0. If X∗ is separable, we can assume moreover that f is C1

on X\{0}.

Remark : According to the above discussion, 0 is not an isolated point

of f ′(X), so necessarily f ′(0) 6= 0.

Proof : We shall use two lemmas.

Lemma 1 : Let X be a Banach space, U be an open connected subset of

X∗ such that 0 ∈ U and x∗ ∈ U . Assume there exists on X a Lipschitz

continuous bump function which is Gâteaux-differentiable (resp. Frechet-

differentiable) at every point. Then there exists a Lipschitz continuous

bump function β on X which is Gâteaux-differentiable (resp. Frechet-

differentiable) at every point, such that β′(X) ⊂ U and β′(x) = x∗ for all

x in a neighbourhood of 0.

Proof of lemma 1 : Since U is connected, there exists finitely many points

x∗
0, x

∗
1, ..., x

∗
n ∈ U such that x∗

0 = 0, x∗
n = x∗, and the segments [x∗

i , x
∗
i+1]

are included in U . The polygonal line R =
n−1⋃
i=0

[x∗
i , x

∗
i+1] is compact,

therefore there exists ε > 0 such that R + B(ε) ⊂ U . Let b be a Lip-

schitz bump function on X which is Gâteaux-differentiable (resp. Frechet-

differentiable) at every point of X. By translation, we can assume that

b(0) 6= 0. Replacing b(x) by λ1b(λ2x), we can also assume that there exists

0 < δ < 1 such that b(x) ≥ 1 whenever ‖x‖ ≤ δ and that the support of

b is included in the unit ball. Composing b with a suitable C∞-smooth

function from IR into IR, we can assume moreover that b(x) = 1 whenever

‖x‖ ≤ δ, and that 0 ≤ b(x) ≤ 1 for all x ∈ X. By adding if necessary

points on the polygonal line R, we can assume that for all i ∈ {1, 2, ..., n},

‖x∗
i − x∗

i−1‖ < ε/‖b′‖∞. Define

bi(x) = b(x).(x∗
i − x∗

i−1)(x)

We have b′i(x) = (x∗
i−x∗

i−1)(x).b′(x)+b(x).(x∗
i−x∗

i−1), with b(x).(x∗
i −x∗

i−1)

∈ [0, x∗
i − x∗

i−1] and ‖(x∗
i − x∗

i−1)(x).b′(x)‖ < ε for all x ∈ X, therefore

b′i(X) ⊂ [0, xi − xi−1] + B(ε). Finally, set

β(x) =
n∑

i=1

δi−1bi

(
x/δi−1

)
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β is a Lipschitz continuous bump function on X which is Gâteaux-differen-

tiable (resp. Frechet-differentiable) at every point. Let x ∈ X and as-

sume that δi < ‖x‖ ≤ δi−1 for 1 ≤ i ≤ n. If j > i, ‖x/δj−1‖ > 1, so

bj

(
y/δj−1

)
= 0 for all y in a neighbourhood of x and b′j

(
x/δj−1

)
= 0. If

j < i, ‖x/δj−1‖ ≤ δ, so b′j
(
x/δj−1

)
= x∗

j − x∗
j−1. Therefore

β′(x) =

i−1∑

j=1

(x∗
j − x∗

j−1) + b′i
(
x/δi

)
= x∗

i−1 + b′i
(
x/δi

)
∈ [xi−1, xi] + B(ε)

Moreover, if ‖x‖ ≤ δn, then β′(x) = x∗
n = x∗. Thus β′(x) = x∗ for all x in

a neighbourhood of 0 and β′(X) ⊂ R + B(ε) ⊂ U .

Lemma 2 : Let X,Y be two Banach spaces, a ∈ X, V be an open

neighbourhood of a, and f : V → Y be continuous on V and Gâteaux-

differentiable at every point of V \{a}. If f ′(x) has a weak∗ limit ℓ as x

tends to a, then f is Gâteaux-differentiable at a and f ′(a) = ℓ.

Proof of lemma 2 : Fix h ∈ X. The mapping φh defined on the real

line by φh(t) = f(a + th) whenever t 6= 0, φ′
h(t) = f ′(a + th).h tends to

ℓ.h as t tends to 0. Therefore f is differentiable at a in the direction h

and f ′(a).h = ℓ.h. This proves that f is Gâteaux-differentiable at a and

f ′(a) = ℓ.

In order to prove the theorem, let a∈X∗ such that 1 < ‖a‖ < 2. Let (un)

be a dense sequence in X and

Vn =
{
x∗ ∈ X∗; |x∗(ui) − a(ui)| < 1/2n for all i ∈ {1, ..., n}

}

(Vn)n≥0 be a decreasing sequence of weak∗ open subsets contaning a so

that, if yn ∈ Vn and if (yn) is bounded, then (yn) converges to a for the

weak∗-topology. Moreover, Wn = Vn ∩ {x∗ ∈ X∗; 1 < ‖x∗ − a‖ < 2} is

connected for each n. Let (xn) ⊂ X∗ be a sequence such that x1 = 0

and for every n, xn ∈ Wn. For each n, 1 < ‖xn − a‖ < 2 and (xn)

converges to a for the weak∗ topology. Wn − xn = {x − xn;x ∈ Wn} is a

norm open connected subset of X∗ containing 0. Since xn+1 ∈ Wn+1 ⊂

Wn, we also have xn+1 − xn ∈ Wn − xn. Since X is separable (resp.

X∗ is separable) there exists on X a Lipschitz continuous bump function

which is Gâteaux-differentiable (resp. Frechet-differentiable) at each point.

According to lemma 1, there exists a Lipschitz continuous bump bn which

is Gâteaux-differentiable (resp. Frechet-differentiable) at every point, such

that b′n(X) ⊂ Wn−xn, with support in the unit ball and such that b′n(x) =

xn+1 − xn for all x satisfying ‖x‖ < δn. Denote c1 = 1 and, for n ≥ 2,

cn =
n−1∏
i=1

δn. Define

b(x) =
+∞∑

n=1

cnbn

(
x/cn

)
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b has bounded support since b(x) = 0 whenever ‖x‖ ≥ 1. On X\{0}

this sum is locally finite, so b is Gâteaux-differentiable (resp. Frechet-

differentiable) at each point of X\{0}. If δn ≤ ‖x‖ < δn+1, then we

have b′(x) = xn + b′n(x) ∈ Wn, so ‖b′(x)‖ is uniformly bounded in x,

b′(X\{0}) ⊂ X∗\B(a, 1), and b′(x)
w∗

−→ a as x → 0. Lemma 2 then shows

that b is Gâteaux-differentiable at 0 and that b′(0) = a.

3) Can all the derivatives be far away from each other?

We first notice that, under mild regularity assumptions, the answer to the

above question is negative for functions.

Proposition : Let X be a Banach space and f : X → IR be a Lipschitz

continuous, everywhere Gâteaux-differentiable function. Then, for every

x ∈ X and every ε > 0, there exists y, z ∈ BX(x, ε) such that ‖f ′(y) −

f ′(z)‖ ≤ ε.

Proof : We shall actually show that if f : X → IR is locally uniformly

continuous and everywhere Gâteaux-differentiable, then, for every x ∈ X

and for every ε > 0, there exists δ > 0 such that for every h ∈ X, ‖h‖ ≤ δ,

there exists y ∈ BX(x, ε) such that ‖f ′(y + h) − f ′(y)‖ ≤ ε.

Fix x ∈ X and ε0 > 0 such that f is uniformly continuous on BX(x, 2ε0).

Fix also 0 < ε < ε0. By uniform continuity, there exists δ > 0 such

that |f(z) − f(y)| < ε2/4 whenever y, z ∈ BX(x, 2ε0) and ‖z − y‖ ≤ δ.

Without loss of generality, we can assume that δ < ε/2. Take any h ∈ X

such that ‖h‖ ≤ δ. Define ϕ : X → IR by ϕ(y) = f(y + h) − f(y) if

‖y − x‖ ≤ ε0 and ϕ(y) = +∞ otherwise. The function ϕ is lower semi-

continuous on X and, for all y ∈ BX(x, ε0), −ε2/4 < ϕ(y) < ε2/4. In

particular, ϕ(x) < infy∈X ϕ(y) + ε2/2. The Ekeland variational principle

then tells us the existence of y ∈ X such that ‖y − x‖ ≤ ε/2 and for all

u ∈ X, ϕ(u) ≥ ϕ(y)−ε‖u−y‖. Since ‖y−x‖ ≤ ε/2 < ε0, the function ϕ is

Gâteaux differentiable at y and we obtain ‖ϕ′(y)‖ ≤ ε. Hence, if we denote

z = y + h, ‖f ′(y)− f ′(z)‖ ≤ ε, and we have ‖z − x‖ ≤ ‖h‖+ ‖y − x‖ < ε.

The derivatives of a Frechet differentiable mapping cannot be far away

from each other for mappings which are everywhere Frechet-differentiable.

Proposition : Let X,Y be separable Banach spaces and f : X → Y be

an everywhere Fréchet-differentiable locally uniformly continuous mapping.

Then, for every x ∈ X and every ε > 0, there exists y, z ∈ BX(x, ε), y 6= z,

such that ‖f ′(y) − f ′(z)‖ ≤ ε.

Proof : Fix ε > 0 and n0 > 0 such that f is uniformly continuous on

BX(x, ε + 1/n0). For each n ≥ 1, define

An =
{
y ∈ BX(x, ε), ‖f(y+h)−f(y)−f ′(y).h‖ ≤ ε‖h‖ whenever ‖h‖≤1/n

}
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Since BX(x, ε) =
⋃

n≥n0

An, there exists n1 ≥ n0 and u ∈ BX(x, ε) such

that u is an accumulation point of An1
. Pick y, z ∈ An1

such that y 6= z

and ‖y−z‖ < α, where α is chosen so that ‖f(u)−f(v)‖ ≤ ε/n1 whenever

u, v ∈ B(x, ε + 1/n0) and ‖u − v‖ < α. We have

‖f(y+h)−f(y)−f ′(y).h‖ ≤ ε/n1 and ‖f(z+h)−f(z)−f ′(z).h‖ ≤ ε/n1

So, for all h such that ‖h‖ ≤ 1/n1,

∥∥(
f(y + h) − f(z + h)

)
−

(
f(y) − f(z)

)
−

(
f ′(y) − f ′(z)

)
.h

∥∥ ≤ 2ε/n1

Therefore, ∥∥(
f ′(y) − f ′(z)

)
.h

∥∥ ≤ 4ε/n1

Since this is satisfied for for all h such that ‖h‖ ≤ 1/n1, we obtain that

‖f ′(y) − f ′(z)‖ ≤ 4ε.

In view of the above propositions, one could believe that whenever X,Y

are Banach spaces (or vector normed spaces) and f : X → Y is a mapping

Gâteaux-differentiable at each point of X, then for every ε > 0, there

exists y, z ∈ X such that ‖f ′(y)− f ′(z)‖ ≤ ε. Our next result proves that

this is not so.

Theorem 2 : 1) There exists a Lipschitz mapping F : ℓ1 → IR2, Gâteaux-

differentiable at each point of ℓ1, such that for every x, y ∈ ℓ1, x 6= y, then

‖F ′(x) − F ′(y)‖L(ℓ1,IR2) ≥ 1. Moreover, for each h ∈ ℓ1, x → F ′(x).h is

continuous from ℓ1 into IR2.

2) Let us denote D the vector normed space of elements of ℓ1 with fi-

nite support. There exists a Lipschitz function G : ℓ1 → IR, Gâteaux-

differentiable at each point of ℓ1, such that for every x, y ∈ D, x 6= y, then

‖G′(x) − G′(y)‖ℓ∞ ≥ 1.

We shall construct F and G with the properties of theorem 2 using se-

ries. We were inspired by a construction from [DI]. We need an auxiliary

construction.

Lemma 3 : Given ∆ = (a′, a, b, b′) ∈ IR4 such that a′ < a < b < b′ and

ε > 0, there exists a C∞-function ϕ = ϕ∆,ε : IR2 → IR2 such that :

(i) |ϕ(x, y)| ≤ ε for all (x, y) ∈ IR2,

(ii) ϕ(x, y) = 0 whenever x /∈ [a′, b′],

(iii)
∥∥∂ϕ

∂x
(x, y)

∥∥ ≤ ε for all (x, y) ∈ IR2,

(iv)
∥∥∂ϕ

∂y
(x, y)

∥∥ = 1 whenever x ∈ [a, b],

(v)
∥∥∂ϕ

∂y
(x, y)

∥∥ ≤ 1 for all (x, y) ∈ IR2,
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(vi) If we denote ϕ(x, y) =
(
ϕ1(x, y), ϕ2(x, y)

)
, then

∂ϕ1

∂y
(x, 0) = 1

whenever x ∈ [a, b].

Proof of Lemma 3 : Let b : IR → IR be a C∞-smooth function such that

0 ≤ b(x) ≤ 1 for all x, b(x) = 0 whenever x /∈ [a′, b′] and b(x) = 1

whenever x ∈ [a, b]. If n ≥ 1 is large enough, the function defined by

ϕ(x, y) =
b(x)

n

(
sin(ny), cos(ny)

)
satisfies the desired properties.

We shall also use the following criterium of Gâteaux-differentiability of the

sum of a series :

Lemma 4 : Let X and Y be Banach spaces and, for all n, let fn : X → Y

be Gâteaux-differentiable mappings. Assume that
(∑

fn

)
converges point-

wise on X, and that there exists a constant K > 0 so that for all h,

(1)
∑

n≥1

sup
x∈X

∥∥∂fn

∂h
(x)

∥∥ ≤ K‖h‖

Then the mapping f =
∑
n≥1

fn is Gâteaux-differentiable on X, for all x,

f ′(x) =
∑
n≥1

f ′
n(x) (where the convergence of the series is in L(X,Y ) for

the strong operator topology), and f is K-Lipschitz. Moreover, if each f ′
n

is continuous from X endowed with the norm topology into L(X,Y ) with

the strong operator topology, then f ′ shares the same continuity property.

Proof of Lemma 4 : Fix x ∈ X. First observe that condition (1) im-

plies that for all h, the series
(∑ ∂fn

∂h (x)
)

=
(∑

f ′
n(x).h

)
converges in Y .

Therefore, the series
(∑

f ′
n(x)

)
converges in L(X,Y ) for the strong oper-

ator topology, to some operator T ∈ L(X,Y ), and by (1), ‖T‖ ≤ K. For

each h ∈ X, we define gn : IR → Y by gn(t) = fn(x + th). The function

g =
∑
n≥1

gn is well defined. Since

∑

n≥1

‖g′n‖∞ ≤
∑

n≥1

sup
x∈X

∥∥∂fn

∂h
(x)

∥∥ ≤ K‖h‖

the mapping g is differentiable and g′(0) =
∑
n≥1

g′n(0) =
∑
n≥1

∂fn

∂h (x) = T (h).

Thus we have proved that f is differentiable along every direction h and

that ∂f
∂h (x) = T (h). In other words, f is Gâteaux-differentiable at x and

f ′(x) = T . Since for all x, ‖f ′(x)‖ ≤ K, the mean value theorem implies

that f is K-Lipschitz.

Proof of Theorem 2, part 1) : Fix an enumeration ∆k = (a′
k, ak, bk, b′k),

k ∈ N , of all quadruples of dyadic numbers such that a′
k < ak < bk < b′k.
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Select integers mn
k such that for each n, n < mn

k and (mn
k )k is an increasing

sequence, and satisfying

(2) mn
k = mp

ℓ ⇒ n = p and k = ℓ

Fix ε > 0 and let εn
k be positive real numbers such that

∞∑
n=1

∞∑
k=1

εn
k = ε. We

shall notice εk =
∞∑

n=1
εn
k , so that

∞∑
k=1

εk = ε. Put fn,k : ℓ1 → IR2 such that,

if x = (xi) ∈ ℓ1, then fn,k

(
x
)

= ϕ∆k,εn
k

(
xn, xmn

k

)
: fn,k is a C∞ function

on ℓ1. The function F : ℓ1 → IR2 we are looking for is defined by :

F (x) =
∑

n∈IN

∑

k∈IN

fn,k(x)

Claim 1 : F is well-defined. Indeed, according to condition (i) of the

lemma, ‖fn,k‖∞ = ‖ϕ∆k,εn
k
‖∞ = εn

k , so the series defining F converges

uniformly.

Claim 2 : F is Gâteaux-differentiable on ℓ1 and F is (1 + ε)-Lipschitz-

continuous on ℓ1. To see this, we apply Lemma 4 : let h=(h1, ..., hn, ...) ∈

ℓ1. By (iii) and (v), we have for all n, k :

sup
x∈X

∥∥∂fn,k

∂h
(x)

∥∥ ≤ |hmn
k
| + εn

k |hn| ≤ |hmn
k
| + εn

k‖h‖1

So, because of condition (2),

∑

n,k

sup
x∈X

∥∥∂fn,k

∂h
(x)

∥∥ ≤ (1 + ε)‖h‖1

We have proved that condition (1) of Lemma 4 is satisfied with K = 1+ε,

thus F is Gâteaux-differentiable on ℓ1 and F is (1+ε)-Lipschitz-continuous

on ℓ1.

Claim 3 : If x 6= y ∈ ℓ1, then ‖F ′(x) − F ′(y)‖L(ℓ1,IR2) ≥ 1 − 2ε.

Indeed, let n ∈ IN such that xn 6= yn. Let k such that xn ∈ [ak, bk] and

yn /∈ [a′
k, b′k]. According to (ii) and (iv) of Lemma 3,

∥∥∥
∂fn,k

∂xmn
k

(x)
∥∥∥ = 1 and

∂fn,k

∂xmn
k

(y) = 0

On the other hand, for all r,

∥∥∥
∂fmn

k
,r

∂xmn
k

(x)
∥∥∥ ≤ εr and

∥∥∥
∂fmn

k
,r

∂xmn
k

(y)
∥∥∥ ≤ εr

and, if ℓ 6= mn
k and (ℓ, r) 6= (n, k),

∂fℓ,r

∂xmn
k

(x) = 0 and
∂fℓ,r

∂xmn
k

(y) = 0
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Therefore,

‖F ′(x) − F ′(y)‖L(ℓ1,IR2) ≥
∥∥∥

∂F

∂xmn
k

(x) −
∂F

∂xmn
k

(y)
∥∥∥

≥ 1 −
∑

(ℓ,r)6=(n,k)

∥∥ ∂fℓ,r

∂xmn
k

(x) −
∂fℓ,r

∂xmn
k

(y)
∥∥

≥ 1 − 2ε

Let us now prove part 2) of Theorem 2. Since F : ℓ1 → IR2, we can

write F = (G,H), where G,H : ℓ1 → IR. We shall also denote fn,k =

(gn,k, hn,k). G : ℓ1 → IR is Lipschitz continuous, Gâteaux-differentiable at

each point of ℓ1. Let x = (xi), y = (yi) ∈ D and n such that xn 6= yn. Let

k such that xn ∈ [ak, bk], yn /∈ [a′
k, b′k] and xmn

k
= 0. According to (vi) of

Lemma 3, we have

∥∥∥
∂gn,k

∂xmn
k

(x)
∥∥∥ = 1 and

∂gn,k

∂xmn
k

(y) = 0

We conclude, as in the proof of Claim 3 of part 1), that

‖G′(x) − G′(y)‖ℓ∞ ≥ 1 − 2ε

Remark : 1) If we set Φ =
f

1 − 2ε
, we have obtained for every α > 0, the

construction of a function Φ : ℓ1 → IR2, Gâteaux-differentiable at every

point of ℓ1, satisfying :

(i) for all x, y ∈ ℓ1, ‖Φ(x) − Φ(y)‖ ≤ (1 + α)‖x − y‖1,

(ii) for all x 6= y ∈ ℓ1, ‖Φ′(x) − Φ′(y)‖L(ℓ1,IR2) ≥ 1.

2) Fix h ∈ ℓ1. Since x → F ′(x).h is continuous from ℓ1 into IR2, the set{
F ′(x).h ; x ∈ ℓ1

}
is connected. This is in contrast with the fact that{

F ′(x) ; x ∈ ℓ1
}

is discrete in L(ℓ1, IR2).

3) A carefull look at the above construction shows that f is uniformly

Gâteaux-differentiable.

4) Observe that for cardinality reasons, whenever L(X,Y ) is separable,

then for every Gâteaux-differentiable mapping from X into Y , and for

every ε > 0, there exists y, z ∈ X such that ‖f ′(y)−f ′(z)‖ ≤ ε. Therefore,

it is not possible to replace ℓ1 by ℓp (p > 1) in Theorem 2. However, there

exists a Lipschitz function H : ℓ2 → ℓ2, Gâteaux-differentiable at each

point of ℓ2, such that for every x, y ∈ ℓ2, if x 6= y, then

‖H ′(x) − H ′(y)‖L(ℓ2) ≥ 1

This will follow from the following more general result :
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Theorem 3 : Let Xp = ℓp if 1 ≤ p < +∞ and X∞ = c0. Let us fix

1 ≤ p, q ≤ +∞. The following assertions are equivalent :

(1) There exists a Lipschitz function H : Xp → Xq, Gâteaux-differentiable

at each point of Xp, such that for every x, y ∈ Xp, x 6= y, then

‖H ′(x) − H ′(y)‖L(Xp,Xq) ≥ 1.

(2) p ≤ q.

(3) L(Xp, Xq) is not separable.

Proof of Theorem 3 : According to Remark 4) above, (1) implies (3). If

p > q, then by Pitt’s theorem, all operators from Xp to Xq are compact,

hence L(Xp, Xq) is separable. Therefore (3) implies (2). So it remains to

prove that (2) implies (1). Assume that p ≤ q and let (en) be the usual

basis of Xp. Let Tk ∈ L(IR2, Xq) defined by Tk(x, y) = xe2k + ye2k+1.

Denote aq the common norm of the operators Tk. Let ∆k, εn
k , mn

k and

ϕ∆k,εn
k

defined as in the proof of Theorem 2. Put fn,k : Xp → Xq such that,

if x = (xi) ∈ Xp, then fn,k

(
x
)

= Tmn
k
◦ ϕ∆k,εn

k

(
xn, xmn

k

)
: the functions

fn,k is a C∞ mapping from Xp into Xq. The function H : Xp → Xq we

are looking for is defined by :

H(x) =
∑

n∈IN

∑

k∈IN

fn,k(x)

As in the proof of Theorem 2, H is well-defined. Lemma 4 is no longer

applicable in order to show that H is Gâteaux-differentiable at each point

of Xp. But lemma 4 remains true if the hypothesis (1) from lemma 4 is

replaced by condition (2) below :

(2) for all h,
(∑ ∂fn

∂h
(x)

)
converges uniformly with respect to x

So, fix h=(h1, ..., hn, ...) ∈ Xp. We have

∂fn,k

∂h
(x) = hnuk,n(x) + hmn

k
vk,n(x)

with ‖uk,n(x)‖q ≤εn
kaq, vk,n(x)∈span{e2mn

k
, e2mn

k
+1} and ‖vk,n(x)‖q ≤aq.

We claim that both series
(∑
k,n

hnuk,n(x)
)

and
(∑

n

∑
k

hmn
k
vk,n(x)

)
are uni-

formly converging with respect to x. Indeed, for the first one, this fol-

lows from the fact that for each x, ‖hnuk,m(x)‖q ≤ ‖h‖p.aq.ε
n
k , and that

∞∑
n=1

∞∑
k=1

εn
k < +∞. For the second one,

(∑
k

hmn
k
vk,m(x)

)
converges uni-

formly because it satisfies the uniform Cauchy condition. Indeed, fix δ > 0

and a finite set A ⊂ IN × IN such that
∑
n

∑
(k,n)/∈A

hp
mn

k
< δp. For fixed x,

the vk,n(x) are elements of Xq with disjoint supports, so, for any finite

subset F of (IN × IN)\A,
∥∥ ∑

(n,k)∈F

hmn
k
vk,m(x)

∥∥
Xq

=
( ∑

(n,k)∈F

∥∥hmn
k
vk,m(x)

∥∥q

Xq

)1/q

≤ aq

( ∑

(n,k)∈F

hq
mn

k

)1/q
≤ aq

( ∑

(n,k)∈F

hp
mn

k

)1/p
< aqδ
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Notice that we used in the above chain of inequalities the fact that p ≤ q.

The above estimate is uniform in x, therefore the series
(∑

k

hmn
k
vk,m(x)

)

satisfies the uniform Cauchy condition. Applying the variant of lemma 4

mentioned above, we get that H is Lipschitz continuous and Gâteaux-

differentiable at each point of ℓ2. As in the proof of theorem 2, one sees

that there exists a > 0 such that for every x, y ∈ ℓ2, if x 6= y, then

‖H ′(x) − H ′(y)‖L(ℓp,ℓq) ≥ a.
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