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Abstract. We study a scale of six classes of Banach spaces, starting from spaces X
admitting a bounded linear operator from a Hilbert space onto a dense set in X (called
Hilbert generated) and ending with spaces having a Hilbert generated overspace. We also
find characterizations of these classes in terms of suitable modifications of the uniform
Gâteaux smoothness. The corresponding dual unit balls then fall into a scale of subclasses
of uniform Eberlein compacts.
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Introduction

There is a close relation between smoothness of norms and the weak compact generating of
spaces. In 1972, J. Lindenstrauss asked whether smoothness of a Banach space X implies
that some superspace of X is weakly compactly generated [L, Problem 9]. A negative
answer to this problem was then given in [JL]. Shortly thereafter, P. Enflo [E] showed that
spaces which have an equivalent uniformly Fréchet smooth norm are exactly the super-
reflexive spaces. G. Pisier then proved that every superreflexive space admits an equivalent
norm with modulus of smoothness of power type [P]. S. Troyanski [T1], [T2] elucidated the
structure of the nonseparable spaces which have an equivalent uniformly Gâteaux smooth
norm (in short, UG smooth norm), when an unconditional basis is available. The research
in this paper was motivated also by the paper [MMOT].
Although spaces which have a Gâteaux (or even C∞) smooth equivalent norm can be far
from being subspaces of weakly compactly generated spaces (see [DGZ, Chap. V, VI],
[Hay]), Lindenstrauss’ problem mentioned above has a positive answer for spaces which
have an equivalent uniformly Gâteaux smooth norm [FGZ]. Indeed, if the norm of X is
UG smooth, then the dual unit ball BX∗ with its weak∗ topology is a uniform Eberlein
compact [FGZ] and thus there is a bounded linear operator from a Hilbert space onto a
dense set in C(BX∗) by [BRW]. If a Hilbert space is mapped by a bounded linear operator
onto a dense set in a Banach space X, then X admits an equivalent UG smooth norm (cf.
e.g. [DGZ, Chap. II]). Hence the spaces with UG smooth norms are exactly subspaces of
Hilbert generated spaces, according to the following notation.

† Supported in part by grants GA ČR 201-98-1449, GA ČR 201-01-1198, and AV 1019003
(Czech Republic)
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Notation 1. We say that the Banach space X is generated by a Banach space Y , or
Y -generated for short if there is a bounded linear operator from Y onto a dense subset of
X. Let P be a property on Banach spaces. We say that X is P-generated if there is a
Banach space Y with the property P such that X is Y -generated.

An example of a space that is not Hilbert generated while it is a subspace of a Hilbert
generated space is Rosenthal’s non weakly compactly generated subspace of L1(µ) with a
probability measure µ [R].
The classical interpolation theorem [DFJP] asserts that a Banach space is weakly com-
pactly generated if and only if it is reflexive generated.
In this paper, we investigate “uniform” versions of this interpolation result. Our work also
blends the Enflo-Pisier renorming theorem with Troyanski’s results on unconditional bases
in nonseparable spaces.
The notion of strong UG smoothness is a weakening of uniform Fréchet smoothness, ob-
tained by replacing the unit ball of the space by some bounded set M which spans a dense
linear subspace (see Notation 2 below). Note that if X is a separable Banach space with
uniformly Gâteaux differentiable norm ‖ · ‖ and (xi) is a sequence dense in the unit sphere
of X, then an elementary calculation that uses the compactness of M := {x1,

1
2x2,

1
3x3, . . .}

and the Lipschitz property of the norm shows that the norm ‖ ·‖ is strongly UG. There are
reflexive (nonseparable) spaces that admit no equivalent UG smooth norm ([KT], cf. e.g.
[DGZ, Chap. VI], or [F∼, Chap. 12]). Every separable Banach space is clearly Hilbert
generated.
We will show that strongly UG smooth spaces are weakly compactly generated, and more-
over that they are superreflexive generated (respectively Hilbert generated) exactly when
the relevant modulus of smoothness is of power type (respectively of power type 2). We
characterize several classes of nonseparable spaces in terms of the existence of certain
equivalent norms (see Theorems 2, 3 and 4). In this way we display a chain of properties
between “Hilbert generated” and “subspace of a Hilbert generated space”. Several exam-
ples show that the relevant implications are strict (see Theorem 1). We will show that the
transfer formulas, which go back to [T2] always suffice for obtaining UG smooth norms
(see Remark 1). A connection is made with the structure of uniform Eberlein compacts
(see [BS], [BRW], [AF], [Fa], cf. e.g. [F∼]). An appendix is devoted to a short proof of
the known result ([H2]) that weakly uniformly rotund spaces are Asplund spaces.
We refer to [DGZ], [F], [F∼], [G], and [Z] for all unexplained terms used in this paper and
for more information in this area.
Some results in this paper are proved only for spaces with density ω1, the first uncountable
cardinal. It is possible that these results hold in full generality. We preferred however to
treat the case of ω1 only, as this case is, in our opinion, the most crucial for understanding
the subject of the paper.

The results

Let (X, ‖ · ‖) be a Banach space. Let BX and SX denote its closed unit ball and unit
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sphere respectively. We say that the norm ‖ · ‖ is UG smooth if for every h ∈ X

sup
{
‖x + th‖ + ‖x − th‖ − 2; x ∈ SX

}
= o(t) when t → 0.

In this equation, the asymptotic behavior of the supremum depends upon h, and this
cannot be avoided unless the space X is superreflexive. However, it may happen that
this quantity is uniform on a bounded linearly dense subset. This motivates the following
notation.

Notation 2. Let M ⊂ X be a bounded set. We will say that the norm ‖ · ‖ is M -UG

smooth if

(0) ρM (t) := sup
{
‖x + th‖ + ‖x − th‖ − 2; x ∈ SX , h ∈ M

}
= o(t) when t → 0.

We will say that the norm ‖ · ‖ is strongly UG smooth if it is M -UG smooth for some
bounded and linearly dense subset M ⊂ X.

It is easy to check that the strong UG smoothness implies UG smoothness. We note that
the BX -UG smoothness means the usual uniform Fréchet smoothness. By [DGZ, Theorem
II.6.8], if X is Y -generated and Y has an equivalent UG smooth norm, then X has such a
norm, and the proof shows that it works as well for strong UG smoothness.
The main result of [FGZ], when combined with [BRW], is that a Banach space X is a
subspace of a Hilbert generated space if (and only if) it admits an equivalent UG smooth
norm. It is also observed in [FGZ] that ”subspace” is actually needed here, although for
any compact space K, the Banach space C(K) is Hilbert generated if (and only if) it
admits an equivalent UG smooth norm. Considering the strong UG-smoothness leads to
a scale of distinct properties between being Hilbert generated and being a subspace of a
Hilbert generated space.

Theorem 1. For a Banach space X consider the assertions:
(i) X is Hilbert generated.
(ii) X is superreflexive generated.
(iii) X is generated by the ℓ2-sum of superreflexive spaces.
(iv) X admits an equivalent strongly UG smooth norm.
(v) X is weakly compactly generated and admits an equivalent UG smooth norm.
(vi) X is a subspace of a Hilbert generated space.
Then (i)⇒(ii)⇒(iii)⇒(iv)⇒(v)⇒(vi).
Moreover, no one of these implications can be reversed in general.

Let 1 < p ≤ 2 and let M ⊂ X be a bounded set. We say that the norm ‖ · ‖ is p-M -UG

smooth if there is c > 0 such that

ρM (t) := sup
{
‖x + th‖ + ‖x − th‖ − 2; x ∈ SX , h ∈ M

}
≤ ctp for all t > 0.

We note that the p-BX -UG smoothness means that the norm has modulus of smoothness
of power type tp. A Baire category argument (similar to that used in [BN]) shows that
if a norm is p-{h}-UG smooth for every h ∈ SX (with a constant c which may depend
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upon h), then the space X is superreflexive. We say that the norm ‖ · ‖ is p-strongly UG

smooth if it is p-M -UG smooth for some linearly dense and bounded set M ⊂ X. Scaling
h, one can use a simple homogeneity argument to observe that a norm is p-strongly UG
smooth if and only if it is p-{h}-UG smooth for every h from a dense subset of SX (with
a constant c which may depend upon h), that is, if and only if the modulus of uniform
Gâteaux smoothness in the direction h is Oh(tp) for a dense set of directions.

Theorem 2. Let X be a Banach space, with dens X = ω1, and 1 < p ≤ 2. Then the
following are equivalent:
(a) X is generated by a Banach space whose norm has modulus of smoothness of power
type tp.
(b) X admits an equivalent p-strongly UG smooth norm.
(c) X is ℓp(Γ)-generated where #Γ = ω1.

Theorem 3. Let X be a Banach space with densX = ω1. Then:
(i) X is Hilbert generated if and only if it satisfies the conditions of Theorem 2 for p = 2.
(ii) X is superreflexive generated if and only if it satisfies the conditions of Theorem 2 for
some 1 < p ≤ 2.
(iii) X is generated by the ℓ2-sum of superreflexive spaces if and only if there are numbers
1 < pn ≤ 2, n ∈ IN, such that X is generated by the ℓ2-sum of ℓpn(Γ), n ∈ IN, where
#Γ = ω1.

Note that Theorems 2 and 3 imply that a space X, with densX = ω1, is superreflexive
generated if and only if it is ℓp(Γ)-generated for some 1 < p ≤ 2.
If X is superreflexive and p-strongly UG smooth, it does not follow that X admits an
equivalent norm with modulus of smoothness of power type tp. Indeed, the (separable)
space ℓ3/2 is Hilbert generated, and hence 2-strongly UG smooth. Yet it does not admit
any equivalent norm whose modulus of smoothness is of power type t2, see the proof of
Lemma 6.

Theorem 4. A Banach space (X, ‖ · ‖), with dens X = ω1, admits an equivalent strongly
UG smooth norm if and only if (BX∗ , w∗) is a “homogeneous” uniform Eberlein compact,
i.e., there exist a set Γ, with #Γ = ω1, and a linear, bounded, injective, and weak∗ to weak
continuous mapping T : X∗ → c0(Γ) such that for every ε > 0 there is i ∈ IN satisfying

#
{
γ ∈ Γ; |Tx∗(γ)| > ε‖x∗‖

}
< i for all x∗ ∈ X∗.

The condition (iv) in Theorem 1 can be understood as follows: a space X has an equivalent
strongly UG smooth norm if and only if it is “ℓ1(Γ)-generated”, in the sense that there
is a weak*-to-weak continuous linear operator T∗ from ℓ1(Γ) into X with dense range,
and moreover there is a weak* uniformly rotund norm on X∗ whose pointwise uniform
rotundity is uniform on M = T∗(Bℓ1(Γ)). The condition (v) in Theorem 4 is identical
except that the uniformity condition on M is dropped; it is also equivalent to the assertion
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that X is generated by a reflexive space R which has an equivalent UG smooth norm (see
[FGZ, Remark 6]).
The condition (vi) in Theorem 1 is equivalent to the statement that (BX∗ , w∗) is a uniform
Eberlein compact [FGZ]. Condition (v) is equivalent to the statement that (BX∗ , w∗) can
be continuously and linearly injected into a uniform Eberlein compact in c0(Γ) equipped
with its weak topology. The word “homogeneous” used in Theorem 4 means that the
Argyros-Farmaki decompositions ([AF, Theorem 1.8]) do not depend upon ε when the
stronger condition (iv) is satisfied. Note that by [T1], a Banach space with a symmetric
basis has an equivalent UG smooth norm if and only if it is not isomorphic to ℓ1(Γ) for
an uncountable set Γ. It follows from [T1, Lemma 2] that the conditions (vi) and (iv) in
Theorem 1 are equivalent for spaces which have a symmetric basis.

The proofs

The following lemma provides homogeneous inequalities that will be needed in this paper.

Lemma 0. Let (X, ‖ · ‖) be a Banach space. Consider a nonempty set M ⊂ BX , and let
1 < p ≤ 2 be given. Then there exists c > 0 such that

‖x + th‖ + ‖x − th‖ − 2 ≤ c|t|p for every x ∈ SX , every h ∈ M and every t ∈ IR

if and only if there exists C > 0 such that

‖x + th‖p + ‖x − th‖p − 2‖x‖p ≤ C|t|p for every x ∈ X, every h ∈ M and every t ∈ IR.

Proof. Necessity. Fix x ∈ X, h ∈ M , and t > 0. Owing to the homogeneity of the
conclusion, we may assume that ‖x‖ = 1. First, assume that t ≥ 1

2 . Then, from the
convexity of the function u 7→ up, u > 0, we have

‖x + th‖p + ‖x − th‖p − 2 ≤ 2(1 + t)p − 2 ≤ 2p(1 + t)p−1t

≤ 2p(3t)p−1t = 2p3p−1tp ≤ 12tp.

Second, let 0 < t < 1
2 . Denote ξ = limτ→0

1
τ (‖x + τh‖ − 1). Then, from the assumptions

‖x ± th‖ − 1 ∓ tξ ≤ ctp,

and from the convexity of the function u 7→ up, u > 0, we have

‖x ± th‖p − 1 ≤
(
1 ± tξ + ctp

)p − 1 ≤ p
(
1 ± tξ + ctp

)p−1
(±tξ + ctp)

< p
(
1 ± tξ + ctp

)p−1
(±tξ) + p(2 + c)p−1ctp.
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Further, using the concavity of the function u 7→ up−1, u > 0, we get
∣∣(1 + tξ + ctp)p−1 − (1 − tξ + ctp)p−1

∣∣

≤(p − 1)
(
1 − t|ξ| + ctp

)p−2
2t|ξ| < (p − 1)

(
1
2

)p−2
2t = (p − 1)23−pt.

Thus

‖x + th‖p + ‖x − th‖p − 2 ≤ p(p − 1)23−pt2 + 2p(2 + c)p−1ctp ≤
[
8 + 4c(2 + c)

]
tp.

Sufficiency. Fix x ∈ X, with ‖x‖ = 1, h ∈ M , and t > 0. Since the function
u 7→ 2p−1(1 + up) − (1 + u)p, 0 ≤ u ≤ 1, is decreasing, we have (a + b)p ≤ 2p−1(ap + bp)
for all a, b ≥ 0, and hence

‖x + th‖ + ‖x − th‖ ≤
[
2p−1‖x + th‖p + ‖x − th‖p)

]1/p

≤
[
2p−1(2 + Ctp)

]1/p
= 2

(
1 + C

2 tp
)1/p

< 2
(
1 + C

2 tp
)

= 2 + Ctp.

For a set M ⊂ X, let M
∗

denote its weak∗ closure in the second dual X∗∗. As in [T2] and
[MMOT], for n, p ∈ IN put

Sn,p =
{

h ∈ X;
∥∥x + 1

nh
∥∥ +

∥∥x − 1
nh

∥∥ − 2 ≤ 1

np
whenever x ∈ SX

}
.

The following lemma will be crucial for showing that certain spaces are weakly compactly
generated. Let us mention that this lemma provides a non trivial information in the
separable case as well. In fact, the Milman-Pettis theorem asserting that uniformly smooth
Banach spaces are reflexive follows from it when we take M = BX .

Lemma 1. If the norm ‖ · ‖ on X is UG smooth, then for every σ ∈ ININ the intersection⋂∞
p=1 Sσ(p),p

∗
lies in X. In particular, if the norm ‖ · ‖ is M -UG smooth for some bounded

set M ⊂ X, then the set M is relatively weakly compact in X.

Proof. The first assertion is contained in the proof of Lemma 1 in [FGZ]. Given such a
set M , from the modulus ρM of uniform UG-smoothness on M defined in equation (0),
one obtains a sequence σ ∈ ININ such that M ⊂ ⋂∞

p=1 Sσ(p),p. Thus M is relatively weakly
compact.

A (long) sequence
(
xα; α < ω1

)
in a Banach space (X, ‖ · ‖) is called monotone if

∥∥∥∥
∑

α∈F

aαxα

∥∥∥∥ ≤
∥∥∥∥

∑

α∈F∪H

aαxα

∥∥∥∥

whenever F and H are finite sets in the interval [0, ω1), with maxF < min H, and aα ∈
IR, α ∈ F ∪ H. Given two vectors x, h ∈ X, we write h ⊥ x whenever x, h is a monotone
(two term) sequence.
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Proof of Theorem 2. (a)⇒(b). Let X be generated by some Banach space (Y, ‖ · ‖) whose
modulus of smoothness is of power type tp. Let | · | be the Minkowski functional of the set

cop

(
BX ∪ T (BY )

)
:=

⋃ {
αBX + βT (BY ); α ≥ 0, β ≥ 0, αp + βp ≤ 1

}
.

Note that this set is symmetric, convex, bounded, contains BX , and is also closed since
T (BY ) is weakly compact (Y is reflexive).
By Lemma 0, there is C > 0 such that

‖y + h‖p + ‖y − h‖p − 2‖y‖p ≤ C‖h‖p whenever y ∈ Y and h ∈ Y.

Now, take any z ∈ X, with |z| = 1, any h ∈ BY , and any t > 0. Find then α, β ≥ 0, with
αp + βp ≤ 1, and x ∈ BX , y ∈ BY so that z = αx + βTy. Then αp + βp = 1 and ‖y‖ = 1.
Since

z ± tTh = αx + ‖βy ± th‖T
( βy ± th

‖βy ± th‖
)
,

we have

|z + tTh|p + |z − tTh|p − 2 ≤ αp + ‖βy + th‖p + αp + ‖βy − th‖p − 2

≤‖βy + th‖p + ‖βy − th‖p − 2βp ≤ Ctp.

Thus the set T (BY ) witnesses that | · | is p-strongly UG smooth and so (b) is proved.
(b)⇒(c). Find a bounded set M ⊂ BX that is linearly dense in X and C ≥ 1 such that

‖x + th‖p + ‖x − th‖p − 2‖x‖p ≤ C|t|p for every x ∈ X, every h ∈ M , and every t ∈ IR.

This can be done according to Lemma 0. We claim that

∥∥∥∥
n∑

i=1

aixi

∥∥∥∥
p

≤ C

n∑

i=1

|ai|p

for every n ∈ IN, for every monotone sequence x1, . . . , xn in M , and for every a1, . . . , an ∈
IR. Indeed, if n = 1, there is nothing to prove. Assume that the inequality was verified for
some n ∈ IN. Take any a1, . . . an, an+1 ∈ IR. Then

∥∥∥∥
n+1∑

i=1

aixi

∥∥∥∥
p

=

∥∥∥∥
n∑

i=1

aixi + an+1xn+1

∥∥∥∥
p

≤
∥∥∥∥

n∑

i=1

aixi

∥∥∥∥
p

+ C|an+1|p ≤ C
n+1∑

i=1

|ai|p.

This proves the claim.
We may and do assume that M is convex, symmetric, and weakly compact (Lemma 1).
As (X, ‖ · ‖) is then weakly compactly generated, it has a PRI (Pα; α ≤ ω1). We may
arrange things in such a way that in addition Pα(M) ⊂ M for every α, see, e.g. [F, page
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109]. For every α < ω1, the subspace (Pα+1 − Pα)X is separable. Find a countable set
{xα

n; n ∈ IN} which lies in M and is linearly dense in the space (Pα+1 − Pα)X. For any
element

(
aα

m; α < ω1, m ∈ IN
)

of ℓp

(
[0, ω1) × IN

)
, with finite support, we put

T (aα
m) =

∞∑

m=1

1

m

∑

α<ω1

aα
mxα

m.

This is a linear mapping from a linear dense subset of ℓp

(
[0, ω1)× IN

)
into X. Now, using

the Hölder inequality and the claim, we can estimate

∥∥T (aα
m)

∥∥ ≤
( ∞∑

m=1

1

mq

) 1
q
( ∞∑

m=1

∥∥∥
∑

α<ω1

aα
mxα

m

∥∥∥
p
) 1

p

≤ K

( ∞∑

m=1

C
∑

α<ω1

|aα
m|p

) 1
p

= KC
1
p

∥∥(
aα

m

)∥∥
ℓp

,

where we put q = p
p−1 and K =

( ∑∞
m=1 m−q

) 1
q . We used the fact that the long ”sequence”(

xα
m; α < ω1

)
is monotone for every m ∈ IN. Hence T is a bounded mapping into X,

and so it can be extended to a bounded linear mapping T̃ , from all of ℓp

(
[0, ω1)× IN

)
into

X. As the range of T̃ contains the set
{
xα

m; α < ω1, m ∈ IN
}
, the properties of (Pα)

guarantee that the set
⋃

α<ω1

(
Pα+1 − Pα)M is linearly dense in X. Thus the range of T̃

is dense in X.
(c)⇒(a). It is enough to recall that the canonical norm on ℓp(Γ), with 1 < p ≤ 2, has
modulus of smoothness of power type tp, see e.g. [DGZ, Chap. V] (A direct proof follows
from Lemma 0 and from the inequality |a + b|p + |a − b|p − 2|a|p ≤ cp|b|p valid for all
1 < p ≤ 2, all a, b ∈ IR, and a suitable constant cp > 0 ).

Proof of Theorem 3. (i) is a consequence of Theorem 2, since the general form of Hilbert
spaces is ℓ2(Γ) for some nonempty set Γ.
(ii) Necessity. Consider T : Y → X where Y is superreflexive, T is linear bounded, and
T (Y ) is dense in X. According to Pisier’s renorming result, see, e.g., [DGZ, Proposition
IV.5.2], Y admits an equivalent norm whose modulus of smoothness is of power type tp

for some 1 < p ≤ 2.
The sufficiency follows immediately from the fact that ℓp(Γ) is superreflexive once 1 <
p < +∞.

(iii) Necessity. Let X be generated by
( ∑

λ∈Λ Yλ

)

ℓ2
where each Yλ is superreflexive.

According to Pisier’s result [DGZ, Proposition IV.5.2], we may assume that for every λ ∈ Λ,
the space Yλ has an equivalent norm ‖ · ‖λ, whose modulus of smoothness is ≤ cλtpλ with
suitable cλ > 0 and 1 < pλ ≤ 2. For n = 2, 3, . . . put Λn =

{
λ ∈ Λ; cλ ≤ n, pλ ≥ 1+1/n

}

and Zn =
( ∑

λ∈Λn
(Yλ, ‖ · ‖λ)

)

ℓ1+1/n

. We will check that the canonical norm of Zn has

modulus of smoothness of power type t1+1/n. We know that

‖yλ + thλ‖λ + ‖yλ + thλ‖λ − 2 ≤ nt1+1/n
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whenever yλ ∈ SYλ
, hλ ∈ BYλ

, and t ∈ IR (if t > 1, then the left hand side above is
≤ 2t ≤ nt1+1/n). By Lemma 0, there is a constant Cn > 0 such that for all yλ, hλ ∈ Yλ

and all t ∈ IR,

‖yλ + thλ‖1+1/n
λ + ‖yλ + thλ‖1+1/n

λ − 2‖yλ‖1+1/n
λ ≤ Cnt1+1/n.

When adding the above inequalities for all λ ∈ Λn, we get

‖y + th‖1+1/n
1+1/n + ‖y − th‖1+1/n

1+1/n − 2‖y‖1+1/n
1+1/n ≤ Cnt1+1/n

for all y = (yλ) ∈ Zn, h = (hλ) ∈ Zn, and all t ∈ IR. Then, Lemma 0 says that this
norm on the space Zn has modulus of smoothness of power type t1+1/n. Clearly, we may
assume that each Zn has density at most ω1 for otherwise we can go to a quotient of
Zn, still keeping the modulus of smoothness of power type t1+1/n. Finally, Theorem 2
says that Zn is ℓ1+1/n(Γ)-generated with #Γ = ω1. Now, it remains to realize that the
ℓ2-sum of Zn, n ∈ IN, embeds onto a dense subset of X, and hence so does the ℓ2-sum of
ℓ1+1/n(Γ), n ∈ IN. This completes the proof of the necessity part.
The sufficiency part follows as in (ii).

In the proof of Theorem 4 we will need some more notation and the following four lemmas.
Following [FHZ], for ε > 0 and for i ∈ IN greater than 2/ε we put

Sε
i =

{
h ∈ SX ; ‖x + th‖ − 1 ≤ 1

2εt whenever x ∈ SX , 0 < t < 2
εi , and h ⊥ x

}
.

Lemma 2. ([FHZ]) If the norm ‖ · ‖ on X is UG smooth, and if x1, . . . , xi ∈ Sε
i is a

monotone sequence, then
‖x1 + · · · + xi‖ < εi.

Let Γ be an infinite set. We recall that Day’s norm on c0(Γ), denoted here by ‖ · ‖D, is
defined by

‖u‖2
D = sup

{ n∑

k=1

4−ku(γj)
2; n ∈ IN, γ1, . . . , γn ∈ Γ, γk 6= γl if k 6= l

}
, u ∈ c0(Γ).

If β ∈ Γ, we define a canonical projection Pβ : c0(Γ) → c0(Γ) by

Pβu(γ) =

{
u(β) if γ = β
0 if γ ∈ Γ\{β}, u ∈ c0(Γ).

Lemma 3. ([T1]) Let u ∈ c0(Γ) and β ∈ Γ be such that u(β) 6= 0. Put

i = #{γ ∈ Γ; |u(γ)| ≥ 2−1/2|u(β)|}.

Then
‖u‖2

D ≥ ‖u − Pβu‖2
D + 2−i−1u(β)2.
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Lemma 4. ([T1, T2]) Let u, v ∈ c0(Γ) and β ∈ Γ be such that u(β) + v(β) 6= 0. Put
i = #{γ ∈ Γ; |u(γ) + v(γ)| ≥ |u(β) + v(β)|}. Then

2‖u‖2
D + 2‖v‖2

D − ‖u + v‖2
D ≥ 2−i−1

(
u(β) − v(β)

)2
.

The following lemma is a strenghtening of [T1, Proposition 1]. Its proof follows Troyanski’s
argument.

Lemma 5. Let Z be a linear subset of c0(Γ), with a norm | · | such that c|z| ≥ ‖z‖∞ for
every z ∈ Z, where c > 0 is a constant. Assume that for every ε > 0 there is i ∈ IN such
that

#
{
γ ∈ Γ; |z(γ)| > ε|z|

}
< i for every z ∈ Z.

If (un), (vn) are two sequences in B(Z,|·|), and

(1) 2‖un‖2
D + 2‖vn‖2

D − ‖un + vn‖2
D → 0 as n → ∞

then ∥∥un − vn

∥∥
∞ → 0 as n → ∞.

Proof. Assume that the lemma is not true. Then we can find s ∈ IN, an infinite set N ⊂ IN,
and γn ∈ Γ for n ∈ N such that

|(un − vn)(γn)| > 3
s for every n ∈ N.

We will first show that

(2) lim sup
n∈N

|un(γn) + vn(γn)| > 0.

Assume that this is not true, that is, that

lim
n∈N

(
un(γn) + vn(γn)

)
= 0.

Then

lim inf
n∈N

2|un(γn)| ≥ lim inf
n∈N

(
|un(γn) − vn(γn)| − |un(γn) + vn(γn)|

)
≥ 3

s ,

and hence

(3) lim inf
n∈N

|un(γn)| >
√

2
s .

Also

(4)

∥∥un + vn‖D −
∥∥(un + vn) − Pγn(un + vn)

∥∥
D

≤
∥∥Pγn(un + vn)

∥∥
D = 1

2

∣∣un(γn) + vn(γn)
∣∣ → 0

10



as n ∈ N and n → ∞. ¿From the assumption, find i ∈ IN such that for every u ∈ Z

#{γ ∈ Γ; |u(γ)| > 1
s |u|

}
< i.

For any sufficiently large n ∈ N we have from (3)

#
{
γ ∈ Γ; |un(γ)| ≥ 2−1/2|un(γn)|

}
≤ #

{
γ ∈ Γ; |un(γ)| > 1

s

}

≤#
{
γ ∈ Γ; |un(γ)| > 1

s |un|
}

< i.

Hence, according to Lemma 3, (3) and (4), we get

lim inf
n∈N

(
2‖un‖2

D + 2‖vn‖2
D − ‖un + vn‖2

D

)

≥ lim inf
n∈N

(
2‖un − Pγnun‖2

D + 2 · 2−i−1un(γn)2

+2‖vn − Pγnvn‖2
D + 2 · 2−i−1vn(γn)2 − ‖un + vn‖2

D

)

≥ lim inf
n∈N

(
2−iun(γn)2 + 2−ivn(γn)2

−
∥∥un + vn‖2

D +
∥∥(un + vn) − Pγn(un + vn)

∥∥2

D

)

≥2 · 2−i−1
(√

2

s

)2

= 2−i+1s−2 (> 0),

a contradiction with (1). This proves (2).
¿From (2) we find an infinite set N ′ ⊂ IN and r ∈ IN such that

|un(γn) + vn(γn)| > 2
r for every n ∈ N ′.

For every n ∈ N ′ we then have

|un(γn) + vn(γn)| > 2
r ≥ 1

r

(
|un| + |vn|

)
≥ 1

r |un + vn|.

Now, find k ∈ IN so that for every u ∈ Z

#
{
γ ∈ Γ; |u(γ)| > 1

r |u|
}

< k.

Hence for every n ∈ N ′

#
{
γ ∈ Γ; |un(γ) + vn(γ)| ≥ |un(γn) + vn(γn)|

}

≤#
{
γ ∈ Γ; |un(γ) + vn(γ)| > 1

r |un + vn|
}

< k.

Then, by Lemma 4,

2‖un‖2
D + 2‖un‖2

D − ‖(un + vn)‖2
D

≥2−k−1
(
un(γn) − vn(γn)

)2
> 2−k−1 ·

(3

s

)2

(> 0)

11



for every n ∈ N ′. This contradicts (1).

Proof of Theorem 4. Necessity. Assume that the original norm ‖ · ‖ of X is strongly
UG smooth. Let M be the set witnessing this fact. We first observe that nothing happens
if we replace M by the closed convex symmetric hull of it. Assume that we already did so.
Since ‖ · ‖ is M -UG smooth, there is σ ∈ ININ such that

⋂∞
p=1 Sσ(p),p ⊃ M . By Lemma

1, we can then conclude that the set M lies in a weakly compact set in X. And, as M is
linearly dense in X, the space X is weakly compactly generated.
In what follows, we shall use some ideas from [FHZ]. According to a known technique, see,
e.g., [F, page 109], (X, ‖ · ‖) admits a PRI

(
Pα; α ≤ ω1

)
such that Pα(M) ⊂ M for every

α ≤ ω1. (Note that the set M is symmetric, convex, and closed.) For every m ∈ IN and
for every α < ω1 we find a dense set

{
xα

m,j ; j ∈ IN
}

in (Pα+1 − Pα)(mM) ∩ SX . (Note
that each PαX is separable.) Put then

Tx∗(m, j, α) = 1
mj

〈
x∗, xα

m,j

〉
, x∗ ∈ X∗, α < ω1, m, j ∈ IN.

Clearly, T is a linear, bounded, and weak∗ to pointwise continuous mapping from X∗ into
ℓ∞

(
IN2 × [0, ω1)

)
. T is also injective since M is linearly dense in X.

It remains to check the proclaimed property of T . In order to do so, fix any ε > 0. Fix
any (m, j) ∈ IN2. Find im ∈ IN so large that

‖x + th‖ + ‖x − th‖ − 2 ≤ εt
2 whenever x ∈ SX , h ∈ 2mM, and t ∈

(
0, 2

εim

)
.

Take any x∗ ∈ X∗. We claim that

#
{
α ∈ [0, ω1); mj|Tx∗(m, j, α)| > ε‖x∗‖

}
< im.

Assume, by contradiction, that there exist α1 < α2 < · · · < αim < ω1 such that

mj|Tx∗(m, j, αk)| > ε‖x∗‖ for every k = 1, 2, . . . , im.

Then, choosing appropriate δk ∈ {−1, 1}, k = 1, . . . , im, we can estimate

imε‖x∗‖ <

im∑

k=1

mj
∣∣Tx∗(m, j, αk)

∣∣ =
〈
x∗,

im∑

k=1

δkxαk
m,j

〉

≤‖x∗‖
∥∥∥

im∑

k=1

δkxαk
m,j

∥∥∥ ≤ ‖x∗‖εim,

a contradiction. Here, the most right inequality was guaranteed by Lemma 2. Indeed,
in the setting of this lemma, each δkxαk

m,j lies in 2mM ∩ SX ⊂ Sε
im

, and the sequence

xα1

m,j , . . . , x
αim
m,j is monotone owing to the properties of Pα’s. We have thus proved our

claim. Find m0 ∈ IN such that m0 > 1/ε. Then for every x∗ ∈ X∗ we have

|Tx∗(m, j, α)| ≤ 1
mj ‖x

∗‖ ≤ ε‖x∗‖

12



whenever max{m, j} > m0 and α ∈ [0, ω1). Hence, for every x∗ ∈ X∗

#
{
(m, j, α) ∈ IN2 × [0, ω1); |Tx∗(m, j, α)| > ε‖x∗‖

}
≤ m0

2 · max{i1, . . . , im0

}
(< +∞).

Finally, observing that #
(
IN2×[0, ω1)

)
= ω1, we can put Γ = IN2×[0, ω1) and the necessity

is proved.

Sufficiency. Put

(5) |‖x∗‖|2 = ‖x∗‖2 + ‖Tx∗‖2
D, x∗ ∈ X∗,

where ‖ · ‖D is Day’s norm. Clearly, |‖ · ‖| is an equivalent norm on X∗, which is moreover
weak∗ lower semicontinuous. We will use the symbol |‖ · ‖| also for denoting the norm on
X predual to |‖ · ‖|. We will show that the norm |‖ · ‖| on X is strongly UG smooth.
For γ ∈ Γ put

xγ(x∗) = Tx∗(γ), x∗ ∈ X∗.

This is a linear weak∗ continuous functional on X∗. Hence each xγ
m is an element of X

(see e.g. [F∼, Chap. 3]). Put then

M =
{
xγ ; γ ∈ Γ

}
.

This is a bounded set in X. Since T is injective, M is linearly dense in X.
It remains to prove that the norm |‖ · ‖| on X is M -UG smooth, which means, by the
Šmulyan test, that the norm |‖ · ‖| on X∗ is ”M -uniformly rotund” (the proof of this fact
follows the lines of the proof of [DGZ, Theorem II.6.7]). Indeed, assume that (x∗

n) and
(y∗

n) are two bounded sequences in X∗ which satisfy

2|‖x∗
n‖|2 + 2|‖y∗

n‖|2 − |‖x∗
n + y∗

n‖|2 → 0 as n → 0.

We have to show that
sup

〈
x∗

n − y∗
n,M

〉
→ 0 as n → 0,

that is,

(6) sup
{
T (x∗

n − y∗
n)(γ); γ ∈ Γ

}
→ 0 as n → ∞.

¿From the convexity we have

2
∥∥Tx∗

n

∥∥2

D + 2
∥∥Ty∗

n

∥∥2

D − 2
∥∥T (x∗

n + y∗
n)

∥∥2

D → 0 as n → ∞.

Now, putting in Lemma 5, Z := T (X∗), |z| := ‖T−1z‖, z ∈ Z, un := Tx∗
n, and vn := Ty∗

n

we get (6).

Remark 1. We are now able to claim that UG smooth renormings, when possible, can
always be obtained through the same methods as in Theorem 4. Indeed, the proof of
Theorem 4 shows that if X is strongly UG smoothly renormable, a strongly UG smooth
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norm can always be obtained by the formula (5). If X is any UG renormable Banach
space, then by [FGZ] the dual unit ball (BX∗ , w∗) is a uniform Eberlein compact, hence
the space C

(
(BX∗ , w∗)

)
is Hilbert generated according to [BRW, Theorem 3.2] and a UG

smooth norm on this superspace is obtained through (5) with T taking values in a Hilbert
space equipped with its natural norm. Finally, if X is weakly compactly generated and
UG renormable, according to the Amir-Lindenstrauss theorem (cf. e.g. [DGZ, Chap. VI]
or [F∼, Chap. 11]), there are a set Γ and a linear bounded injective and weak∗ to weak
continuous mapping T from X∗ into c0(Γ). Since by [FHZ]

(
T

(
BX∗

)
, w

)
is a uniform

Eberlein compact, Farmaki’s result [Fa, Theorem 2.9] gives for every ε > 0 a splitting
Γ =

⋃∞
i=1 Γε

i such that

sup
x∗∈X∗

#
{
γ ∈ Γε

i ; |Tx∗(γ)| > ε‖x∗‖
}

< i

for every i ∈ IN. Then we are exactly in the setting of [T2, Proposition 1]. Hence, putting

(7) |‖x∗‖|2 = ‖x∗‖2 +
∞∑

i,k=1

∥∥Tx∗
|Γ1/k

i

∥∥2

D, x∗ ∈ X∗,

where ‖ · ‖D is Day’s norm, we get |Tx∗
n(γ) − Ty∗

n(γ)| → 0 as n → ∞ for every γ ∈ Γ
provided that |‖x∗

n‖| ≤ 1, |‖y∗
n‖| ≤ 1, and

2|‖x∗
n‖|2 + 2|‖y∗

n‖|2 − |‖x∗
n + y∗

n‖|2 → 0.

Then the norm on X, predual to |‖ · ‖|, will be, by Šmulyan’s test [DGZ, Theorem II.6.7],
uniformly Gâteaux smooth with respect to the directions from a dense set. This clearly
implies the UG smoothness. It follows that (7) suffices for constructing UG smooth norms
on any weakly compactly generated space on which such norms exist.

Proof of Theorem 1. (i)⇒(ii)⇒(iii) are trivial.
(iii)⇒(iv) The condition (iii) and the proof of Theorem 3(iii) imply that there exist
uniformly Fréchet smooth spaces Yn, n ∈ IN, and a linear bounded mapping T from( ∑∞

n=1 Yn

)
ℓ2

onto a dense set in X. For simplicity we will assume that each Yn coincides

with the subspace
{
(ym) ∈

( ∑∞
m=1 Ym

)
ℓ2

; ym = 0 if m 6= n
}
. Put

|‖x∗‖|2 = ‖x∗‖2 +

∞∑

n=1

2−n‖T ∗x∗
|Yn

∥∥2
, x∗ ∈ X∗.

Clearly, |‖ · ‖| is an equivalent dual norm on X∗. Put M =
⋃∞

n=1
1
nT

(
BYn

)
. It is clear that

M is linearly dense in X. We will show that the norm |‖ · ‖| is ”M -uniformly rotund”.
Then the corresponding predual norm on X will be M -UG smooth (see the proof of [DGZ,
Theorem II.6.7]). Let (x∗

i ) and (y∗
i ) be bounded sequences in X∗ such that

2|‖x∗
i ‖|2 + 2|‖y∗

i ‖|2 − |‖x∗
i + y∗

i ‖|2 → 0 as i → ∞.
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Then, from the convexity, for every n ∈ IN

2‖T ∗x∗
i |Yn

‖2 + 2‖T ∗y∗
i |Yn

‖2 − ‖T ∗x∗
i |Yn

+ T ∗y∗
i |Yn

‖2 → 0 as i → ∞.

Since the norm on Y ∗
n is uniformly rotund, we get

sup
(〈

x∗
i − y∗

i , T
(
BYn

)〉)
=

∥∥T ∗x∗
i |Yn

− T ∗y∗
i |Yn

∥∥ → 0 as i → ∞.

Thus sup〈x∗
i − y∗

i ,M〉 → 0 as i → ∞. Hence the corresponding norm |‖ · ‖| on X is
M -UG smooth.
(iv)⇒(v) Assume that M ⊂ X is a bounded, linearly dense set in X, and that the norm
‖ · ‖ on X is M -UG smooth. Then by Lemma 1 the set M lies in a weakly compact subset
of X. Therefore X is weakly compactly generated.
(v)⇒(vi) can be found in [FHZ, Theorem 1].

Counterexamples to the converse implications in Theorem 1

(ii) does not imply (i). Indeed, if X is Hilbert generated, then it admits an equivalent 2-
strongly UG smooth by Theorem 3(i). So, considering X = ℓ3/2(Γ), with Γ uncountable,
Lemma 6 below gives a contradiction. Thus ℓ3/2(Γ) is an example of a subspace of a
Hilbert generated space which is not Hilbert generated. Note that if a Banach space X
satisfies (ii) but not (i), then BX∗ embeds homeomorphically into a Hilbert space but the
embedding cannot be affine.

The fact that (iii) does not imply (ii) in general can be demonstrated on the space X =( ∑∞
m=1 ℓpm(Γ)

)
ℓ2

where Γ is uncountable and (pm) is a sequence consisting of all rational

numbers in (1, 2]. Assume that X satisfies (ii). Then, according to Theorem 3(ii), X is
p -strongly UG smooth for some 1 < p ≤ 2. Find m ∈ IN so that pm < p. Then, using a
canonical projection, we can easily check that ℓpm(Γ) is also p -strongly UG smooth. This
contradicts Lemma 6 below. Note that if X satisfies (iii) but not (ii), the modulus ρM (t)
defined in equation (0) is o(t) but cannot be O(tp) for any p > 1.

Lemma 6. Given 2 ≥ q > p > 1, and an uncountable set Γ, then ℓp(Γ) does not admit
any equivalent q-strongly UG smooth norm (and hence ℓp(Γ) is not ℓq(Γ) generated).

Proof. Assume the statement is false. By Lemma 0 there exist an equivalent norm ‖ · ‖ on
ℓp(Γ), a bounded linearly dense set M ⊂ ℓp(Γ), and C > 0 such that

‖x + th‖q + ‖x − th‖q − 2‖x‖q ≤ Ctq whenever x ∈ X, h ∈ M , and t > 0,

Let ‖ · ‖p denote the canonical norm on ℓp(Γ). Apply Stegall’s variational principle [Ph,
Corollary 5.22], [FZ] or [F∼, Chap. 10] to the function x 7→ ‖x‖q − ‖x‖p

p
. Thus we get

x ∈ ℓp(Γ) such that

‖x + h‖q + ‖x − h‖q − 2‖x‖q ≥ ‖x + h‖p
p

+ ‖x − h‖p
p − 2‖x‖p

p

15



for all h ∈ ℓp(Γ) (the linear term gets cancelled). Then we have

Ctq ≥ ‖x + th‖p
p

+ ‖x − th‖p
p − 2‖x‖p

p
whenever h ∈ M , and t > 0.

Find γ ∈ Γ so that x(γ) = 0. Surely, there exists h ∈ M so that h(γ) 6= 0. Then for all
t > 0,

Ctq ≥ |(x + th)(γ)|p + |(x − th)(γ)|p − 2|x(γ)|p = 2tp|h(γ)|p,

which is impossible. We used here the fact that |a+b|p+|a−b|p ≥ 2|a|p whenever a, b ∈ IR.

That (iv) does not imply (iii) can be shown on the following example. Let X be the Banach
space such that its dual X∗ is a Tsirelson like space T ∗ constructed in [H1, page 43]. We
recall that T ∗ is nonseparable, reflexive, admits a 1-unconditional symmetric Schauder
basis {(eγ , fγ)}γ<ω1

, and has the property that for every nonseparable subspace Y of X∗,
for every 1 < p < +∞ and for every uncountable set Γ there is no linear bounded injection
from Y into ℓp(Γ).
According to Theorem 4, in order to show that this X satisfies (iv), it is enough to prove
that for every ε > 0 there is m ∈ IN such that

#
{
γ ∈ [1, ω1); |fγ(x∗)| > ε‖x∗‖

}
< m for every x∗ ∈ X∗.

Since X is reflexive and has a symmetric basis, this follows immediately from [T1, Lemma
2].
It remains to disprove (iii) for this X. Assume it holds. Then, by Theorem 3(iii), there
are 1 < pn ≤ 2, n ∈ IN, a set Γ, and a linear bounded mapping T :

( ∑∞
n=1 ℓpn(Γ)

)
ℓ2

→ X

with dense range. Putting qn = pn

pn−1 , and denoting by Pn the canonical “projection” from( ∑∞
n=1 ℓqn(Γ)

)
ℓ2

onto ℓqn(Γ) , we get the mappings Pn◦T ∗ : X∗ → ℓqn(Γ) for every n ∈ IN.
Assume for a while that Pn ◦ T ∗ has separable range for every n ∈ IN. Then, as T ∗ is
injective, X∗ linearly and continuously injects into the (separable) space

( ∑∞
n=1 ℓqn

)
ℓ2

,

and, finally,
( ∑∞

n=1 ℓpn

)
ℓ2

is mapped linearly and continuoulsy onto a dense set in X.
Therefore X is separable, which is a contradiction.
Hence, there is n ∈ IN so that Pn ◦ T ∗ : X∗ → ℓqn(Γ) has a nonseparable range. In what
follows we will put q := qn and S := Pn ◦ T ∗. Thus S : X∗ → ℓq(Γ), where S(X∗) is
nonseparable, and we will deduce a contradiction. Let α1 < ω1 be the first ordinal with
Seα1

6= 0. Consider 1 < ξ < ω1 and assume that we already found αβ < ω1 for 1 ≤ β < ξ.
Since S(X∗) is not separable and Γ is uncountable, there is supβ<ξ αβ < αξ < ω1 so
that Seαξ

6= 0 and the support of Seαξ
is disjoint from the support of Seαβ

for every
β < ξ. Thus we can construct αβ for every β < ω1. Denote by Y the closed linear span of{
eαβ

; β < ω1

}
. Clearly, Y is nonseparable. It remains to check that the restriction of S

to Y is injective. Take y ∈ Y so that Sy = 0. Since {(eγ , fγ)}γ<ω1
is a basis for X∗, we

have y =
∑

β<ω1
aβeαβ

for some aβ ∈ IR. Then 0 = Sy =
∑

β<ω1
aβSeαβ

. As the vectors
Seαβ

, β < ω1, have pairwise disjoint supports, we conclude that aβ = 0 for every β < ω1,
and hence y = 0. Therefore S is injective and this contradicts the property of the space
X∗ mentioned at the beginning.
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Note that if the space X satisfies (iv) but not (iii), Day’s norm and the formula (5) are
needed for constructing a strongly UG smooth norm, and we have to leave the superreflex-
ive frame.

That (v)⇒(iv) is false can be seen, assuming the Continuum Hypothesis, as follows. We
construct a uniform Eberlein compact K in

(
c0(IN

IN), w
)
. Using the ideas from [DFJP]

and [AF], we use K to build a reflexive space Y (with an unconditional basis), whose unit
ball is a uniform Eberlein compact. Finally, we show that the dual to Y disproves our
implication. This will be done by using the properties of the compact K and Theorem 4.
For p ∈ IN, let Kp denote the set of all elements of the form 1

pχA where A is any finite

subset of ININ and γ(p) ≥ #A for every γ ∈ A. We claim that Kp is closed in {0, 1
p}ININ

, and

so is a weakly compact set in c0(IN
IN). Indeed, let

(
1
pχAτ

)
τ∈T

be a net in Kp converging to

some 1
pχB ∈

{
0, 1

p

}ININ

. Assume that B contains an infinite sequence γ1, γ2, . . . of elements

of ININ. Put i = γ1(p) + 1. Find τ ∈ T so that γ1, . . . , γi ∈ Aτ . Then γ1(p) ≥ #Aτ ≥ i,
a contradiction. Hence, B is a finite set. Since B ⊂ Aτ for some τ ∈ T , we get that
1
pχB ∈ Kp.

For i, p ∈ IN put Γp
i =

{
γ ∈ ININ; γ(p) = i

}
. Clearly,

⋃∞
i=1 Γp

i = ININ for every p ∈ IN. We
observe that for any ε > 0, any i ∈ IN, and any x = 1

pχA ∈ Kp,

#
{
γ ∈ Γp

i ; x(γ) > ε
}
≤ #Γp

i ∩ A

{
= 0 if #A > i
≤ #A if #A ≤ i.

Define K =
⋃∞

p=1 Kp. It is easy to check that K is weak compact in c0(IN
IN). We will

show that it is a uniform Eberlein compact. So fix ε > 0. Find p ∈ IN so that ε > 1
p . Fix

any i1, . . . , ip ∈ IN. Take any x ∈ K. We observe that if x(γ) > ε for some γ ∈ ININ, then
necessarily x ∈ Kj for some j ∈ {1, . . . , p − 1}. Thus we can estimate

#
{
γ ∈ Γ1

i1 ∩ · · · ∩ Γp
ip

; x(γ) > ε
}
≤ #

{
γ ∈ Γj

ij
; x(γ) > ε

}
≤ ij .

Having this estimate and observing that

⋃ {
Γ1

i1 ∩ · · · ∩ Γp
ip

; i1, . . . , ip ∈ IN, p ∈ IN
}

= ININ,

the easier part of [AF, Theorem 1.7] guarantees that K is a uniform Eberlein compact.
Define

W = {y ∈ c0(IN
IN); there is x ∈ co(K ∪ −K) so that |y(γ)| ≤ |x(γ)| for all γ ∈ ININ}.

This is a uniform Eberlein compact by [AF, Proposition 1.5 and Lemma 3.6]. Then the
interpolation theorem [DFJP] produces a reflexive Banach space (Y, |‖ · ‖|) such that Y is
a subset of c0(IN

IN) and that W ⊂ B(Y,|‖·‖|) ⊂ Bc0(ININ). [AF, Lemma 3.5] then says that
B(Y,|‖·‖|) is even a uniform Eberlein compact. Then, by [BRW, Theorem 3.2], the space

C
((

B(Y,|‖·‖|), w
))

is Hilbert generated, and hence it is UG smoothly renormable. Therefore
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the space X :=
(
Y, |‖ · ‖|

)∗
, is reflexive and admits an equivalent UG smooth norm, see

Theorem 1 or [DGZ, Theorem II.6.8(ii)]. Note that, according to [DFJP, Lemma 1(x)],
if {eγ ; γ ∈ ININ} is the canonical basis in c0(IN

IN), then it is an unconditional basis for
(Y, |‖ · ‖|)), and hence X also has an unconditional basis.
It remains to show that X does not admit any equivalent strongly UG smooth norm. Here
we assume the Continuum Hypothesis, which allows us to use Theorem 4. If X has a
strongly UG smooth norm, then by Theorem 4, there are a set Λ and a linear bounded
injective mapping T : X∗ = Y → c0(Λ) such that for every ε > 0 there is m ∈ IN such
that #{λ ∈ Λ; |Ty(λ)| > ε|‖y‖|} < m for every y ∈ Y . Note that K ⊂ Y . We claim that
there exists p ∈ IN so that the set

{γ ∈ ININ; γ(p) = n and ‖Teγ‖ > 1
p

}

is infinite for infinitely many n ∈ IN. Assume this is not true. We will construct, by
induction, a sequence n1, n2, . . . in IN and finite subsets M1,M2, . . . of ININ as follows.
Find n1 ∈ IN such that

M1 :=
{
γ ∈ ININ; γ(1) = n1 and ‖Teγ‖ > 1

}

is finite. Let p ∈ IN and assume that we already found np ∈ IN and the finite set Mp. Find
then np+1 ∈ IN so large that np+1 > max

{
γ(p + 1); γ ∈ Mp

}
and that the set

Mp+1 =
{
γ ∈ ININ; γ(p + 1) = np+1 and ‖Teγ‖ > 1

p+1

}

is finite. Performing this for every p ∈ IN, put γ̃ = (n1, n2, . . .). Then γ̃ ∈ Mp for no
p ∈ IN, and hence ‖Teγ̃‖ = 0, a contradiction with the injectivity of the mapping T .
Therefore there exist p ∈ IN, an infinite increasing sequence n1, n2, . . . in IN, and a double
sequence

{
γi

j ; i, j ∈ IN
}

of distinct elements of ININ such that for every i, j ∈ IN

γi
j(p) = ni and

∥∥Teγi
j

∥∥ > 1
p .

Fix i ∈ IN. Then eγi
j
→ 0 weakly as j → ∞, and so Teγi

j
→ 0 weakly as j → ∞. Put

aj = eγi
j
, j ∈ IN. By induction we find integers 1 = j1 < j2 < · · · < jni and different

λ1, λ2, . . . , λni ∈ Λ so that

∣∣Taj1(λ1)
∣∣ >

1

p
, ...,

∣∣Tajni

(
λni

)∣∣ >
1

p

and ∣∣Tajk
(λl)

∣∣ <
1

2pni
whenever 1 ≤ l < k ≤ ni.

Put A =
{
γi

j1
, γi

j2
, . . . , γi

jni

}
and y = 1

pχA. Then y ∈ Kp, T y = 1
p

∑ni

k=1 Tajk
, and so

Ty(λk) >
1

p

(1

p
− ni − 1

2pni

)
>

1

2p2
for every k = 1, 2, . . . , ni.
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Thus

#
{

λ ∈ Λ; |Ty(λ)| >
1

2p2

}
≥ ni.

And, since this can be done for every i ∈ IN, we get

sup
{

#
{
λ ∈ Λ; |Ty(λ)| ≥ 1

2p2

}
; y ∈ Kp

}
≥ sup{ni; i ∈ IN} = +∞,

a contradiction.
We observe that if X satisfies (v) but not (iv), then BX∗ embeds continuously and linearly
into a uniform Eberlein weakly compact subset K of c0(Γ), but the Argyros-Farmaki
decompositions of K depend upon ε (see [AF]). Hence formula (7) of Remark 1 is needed
for constructing a UG smooth norm.

That (vi) does not imply (v) can be shown on Rosenthal’s example R [R]. This is a subspace
of an L1 over a probability space. Thus L1 is Hilbert generated (L2 is dense in L1) and
hence UG smooth. Then R is also UG smooth. Yet R is not weakly compactly generated
[R]. Since any operator from an Asplund space into L1 is weakly compact, this space R
also shows that (vi) (or equivalently, the existence of a UG-smooth equivalent norm) does
not imply that the space is Asplund generated.
Note that if X satisfies (vi) but not (v), then BX∗ is homeomorphic to a weakly compact
subset K of ℓ2(Γ), but BX∗ does not embed continuously and linearly into c0(Γ) equipped
with its weak topology.

Appendix

The purpose of this Appendix is to give a simple proof of Theorem 1 in [H2]. Recall that
a norm ‖ · ‖ of a Banach space X is weakly uniformly rotund if xn − yn → 0 weakly in X
whenever xn, yn ∈ SX and ‖xn +yn‖ → 2. Note that the norm is weakly uniformly rotund
if and only if the dual norm is UG, by the result of Šmulyan (cf. e.g. [DGZ, Theorem
II.6.7] or [F∼, Chap. 8]).

Theorem. [H2] Assume that the norm of a Banach space X is weakly uniformly rotund.
Then X is an Asplund space.

Proof. We assume that X is separable and prove that X∗ is then separable. For n ∈ IN,
put

Vn = {f ∈ BX∗ ; |f(x − y)| ≤ 1/3 if x, y ∈ BX are such that ‖x + y‖ ≥ 2 − 1/n}.

As X is weakly uniformly rotund, we have BX∗ =
⋃

Vn. For n ∈ IN, let Sn be a countable
and weak* dense subset of Vn. We claim that

span‖·‖( ⋃
Sn

)
= X∗.
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If not, take F ∈ SX∗∗ with F (f) = 0 for all f ∈ ∪Sn, and choose f0 ∈ SX∗ with
F (f0) > 8/9. There is n0 ∈ IN such that f0 ∈ Vn0

. Let {xα} be a net in BX which weak*
converges to F . We have

‖xα + xβ‖ ≥ 2 − 1/n0

if α and β are large enough. By definition of Vn0
, it follows that there is α0 such that

|f(xα0
) − f(xβ)| ≤ 1/3

for all β large enough and all f ∈ Vn0
. Since {xα} weak* converges to F it follows that

|f(xα0
) − F (f)| ≤ 1/3

for all f ∈ Vn0
. Hence for f ∈ Sn0

,

|(f − f0)(xα0
)| ≥ |F (f) − F (f0)| − |F (f0) − f0(xα0

)| − |f(xα0
) − F (f)| ≥ 2/9.

Thus f0 does not belong to the weak* closure of Sn0
. This contradiction concludes the

proof.

We note that there are spaces with weakly uniformly rotund norms that are not subspaces
of weakly compactly generated spaces ([JL]). However, the following problem seems to be
open.

Problem. Assume that the norm of a Banach space X is weakly uniformly rotund. Does
there exist a bounded linear injective operator from X into c0(Γ) for some Γ?
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