
ODD DEGREE POLYNOMIALS ON REAL BANACH SPACES

RICHARD M. ARON AND PETR HÁJEK

Abstract. A classical result of Birch claims that for given k, n integers, n-
odd there exists some N = N(k, n) such that for arbitrary n-homogeneous

polynomial P on IRN , there exists a linear subspace Y ↪→ IRN of dimension
at least k, where the restriction of P is identically zero (we say that Y is

a null space for P ). Given n > 1 odd, and arbitrary real separable Banach

space X (or more generally a space with w∗-separable dual X∗), we construct
a n-homogeneous polynomial P with the property that for every point 0 6=
x ∈ X there exists some k ∈ IN such that every null space containing x has a

dimension at most k. In particular, P has no infinite dimensional null space. For
a given n odd and a cardinal τ , we obtain a cardinal N = N(τ, n) = expn+1τ

such that every n-homogeneous polynomial on a real Banach space X of density

N has a null space of density τ .

The main result of this note is a construction, in every real separable Banach
space X (or more generally every real Banach space with w∗ separable dual X∗),
of a n-homogeneous polynomial P (n > 1 arbitrary odd integer) which has no in-
finite dimensional null space. In fact, we prove a stronger result, namely for every
0 6= x ∈ X there exists some integer k such that every null space x ∈ Y ↪→ X
has dimension at most k. This answers a question proposed by the first named
author. Let us briefly explain the significance of this result. In the complex case,
Plichko and Zagorodnyuk [8], have shown that a complex polynomial on a complex
infinite dimensional Banach space has an infinite dimensional null space. This re-
sult is shown using a relatively simple inductive argument, building up the desired
subspace from an increasing nested family of finite dimensional null spaces. It is
clear that a real scalar version of the theorem fails, since every separable real space
admits a positive (away from the origin, of course) 2k-homogeneous polynomial for
every k ∈ IN. The remaining case when the degree is odd (and the polynomial is
homogeneous) has been treated in the finite dimensional setting by many authors
working in the field of algebraic geometry (e.g.[3], [9], [10], [11]). In fact, a classical
theorem of Birch implies that for a finite dimensional space of high enough dimen-
sion N(k, n), every n-homogeneous polynomial (n-odd) has a k-dimensional null
space. Recently, [2] obtained a reasonable estimate on the values of N(k, n), using
a topological approach to the problem. Our present result in particular shows that
it is impossible to continue the above constructions inductively, obtaining nested
sequences of null spaces of increasing dimension.

Regarding the infinite dimensional situation, in [6] it is shown that for any given
ε > 0, a homogeneous odd degree polynomial P on a separable real Banach space
X can be restricted to an infinite dimensional subspace Y so that supBY

|P | < ε.
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It is easy to repeat this result inductively to obtain an asymptotically null space
Y with a Schauder basis {ei}∞i=1 where supB[ei:i≥n] |P | = εn → 0 as n → ∞. Our
present result thus in particular shows, that in general one cannot have εn = 0.

We then proceed investigating the nonseparable situation. Using the Erdos-Rado
theorem we prove the natural intuitive conjecture that increasing the density of X
leads to the increase of the density of the null spaces. In general, the dependence
varies for different spaces. The slowest growth happens for the space `1(Γ), which
is a significant space for polynomials also because all polynomials defined formally
using a formula are continuous and their defining formula is convergent.

We present some results and examples related to `p(Γ) spaces.
It is clear, that every continuous polynomial P on `p(Γ), c0(Γ), can be uniquely

coded by its ”formula”, i.e. a formal sum over the appropriate index set of its
coefficients multiplied by the corresponding powers of the coordinates. This for-
mal expression turns into a finite sum, whenever we evaluate at finitely supported
vectors, and in this sense the formula indeed provides the values of P . It is straight-
forward to check that in `1(Γ) the formula converges absolutely for every vector.
In general, however, the convergence of the sum cannot be expected. In the first
part of our note, we will choose coordinates small enough so that the formulas will
be in fact absolutely convergent for all points. In the second part of our note, we
do not assume any convergence, which is fine since we will be working with finitely
supported vectors.

We say that the dual X∗ has w∗ density character w∗ − dens(X∗) = Γ, if there
exists a set S ⊂ X∗ of cardinality Γ, such that S

w∗

= X∗, and moreover Γ is the
minimal cardinal with this property. Recall the following well-known fact.

Fact 1. Let X be a Banach space, then w∗−dens(X∗) ≤ Γ iff there exists a bounded
linear injection T : X → `∞(Γ).

Proof. If {fγ}γ∈Γ = S ⊂ X∗ is the w∗-dense set, then T (x) = ( fγ(x)
‖fγ‖ )γ∈Γ is an

injection into `∞(Γ). On the other hand, starting from the injection T : X → `∞(Γ),
it suffices to put

S = {T ∗(f) : f ∈ `1(Γ) is finitely supported and has rational coordinates}.

�

Theorem 2. Let X be an infinite dimensional real Banach space with
w∗ − densX∗ = ω, n > 1 an odd integer. Then there exists a n-homogeneous

polynomial P : X → IR without any infinite dimensional null space. More precisely,
given any 0 6= x ∈ X, P (x) = 0, there exists a N ∈ IN such that every null space
x ∈ Y ↪→ X has dimY ≤ N .

Proof. Suppose that we have already proven the statement of the theorem for X =
c0 and n = 3. Let P : c0 → IR be the polynomial. Given any Banach space X with
w∗ − densX∗ = ω, and n = 3 + 2l, we can construct the desired n-homogeneous
polynomial Q : X → IR as follows. Fix any bounded linear injection T : X → c0

(put for example T (x) = ( fi(x)
i )∞i=1, where {fi}∞i=1 ⊂ BX∗ is a separating set of

functionals), and put Q(x) = P ◦ T (X) · (
∞∑

i=1

1
2i fi(x)2l). It is easy to verify that a

linear subspace of X where Q vanishes translates via T into a linear subspace (of
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the same dimension) of c0 where P vanishes, which concludes the implication. It
remains to produce P on c0. We put

P ((xi)) =
∞∑

k=1

xk

∞∑
i=k+1

αi
kx2

i .

where αi
k > 0, together with the auxiliary system τ j

k,i > 0, are chosen satisfying
conditions (0)-(3) below.

(0)
∞∑

k=1

∞∑
i=k+1

|αi
k| < ∞.

(1) 1
i α

i
k >

∞∑
j=k+1

αi
j .

(2) 1
2iα

i
k ≥

∞∑
j=1

τ j
k,i.

(3) (αr
p)

2 ≤ 1
16τ q

r,pτ
p
r,q whenever r < p < q.

To construct such a system of coefficients αi
k (and auxiliary system τ j

k,i > 0) is
rather straightforward, proceeding inductively by the infinite rows of the matrix
{αi

k}. Indeed, the additional conditions always require that elements of a certain
row are small enough depending on the elements of the previous rows. Note that
our choice guarantees that the formula for P converges absolutely for every x ∈ c0.

Claim 1. Given any 0 6= x ∈ c0, P (x) = 0, there exists N ∈ IN such that for every
null space x ∈ Y ↪→ c0 we have that dimY ≤ N .

We may WLOG assume that ‖x‖∞ ≤ 1. Consider a (nonhomogeneous) 3rd
degree polynomial R(y) = P (x + y).

R((yi)) =
∞∑

k=1

(xk + yk)
∞∑

i=k+1

αi
k(xi + yi)2.

Writing R = R0 +R1 +R2 +R3, where Rm is the m-homogeneous part of R, we
obtain in particular:

R2((yi)) =
∞∑

k=1

xk

∞∑
i=k+1

αi
ky2

i +
∞∑

k=1

yk

∞∑
i=k+1

2αi
kxiyi.

Thus R2((yi)) =
∞∑

s=1

∞∑
l=s

βl
sysyl, where βs

s =
s−1∑
k=1

xkαs
k, βl

s = 2xlα
l
s.

To prove the claim it suffices to find N ∈ IN, such that R2, restricted to Z = [ei :
i > N ] ↪→ c0 (Z has codimension N) is strictly positive outside the origin. Indeed,

if so, then R(λz) =
3∑

m=0
λmRm(z) is a nontrivial 3rd degree polynomial in λ, for

every z ∈ Z, and in particular for every z ∈ Z there exists some λ ∈ IR such that
P (x + λz) = R(λz) 6= 0. Now if x ∈ Y ↪→ c0 is a null space, then Z ∩ Y = {0}, and
so dimY ≤ N , as stated.

Let us WLOG assume that xr > 0, where r = min{i : xi 6= 0}. We choose N > r
large enough, so that the following are satisfied.

(i) βs
s =

s−1∑
j=r

xjα
s
j ≥ 1

2xrα
s
r for every s ≥ N + 1.
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There exists a decomposition βs
s ≥

∞∑
i=N+1

δi
s, δi

s > 0 such that

(ii) (αq
p)

2 ≤ 1
16δq

pδp
q whenever N < p < q.

To see that such a choice on N is possible, we estimate using property (1),
whenever s > 3

xr

βs
s ≥ xrα

s
r −

s−1∑
j=r+1

xjα
s
j ≥ xrα

s
r −

s−1∑
j=r+1

αs
j >

1
2
xrα

s
r.

Thus N > 3
xr

guarantees that (i) is satisfied. To see (ii), for N large enough, and
s > N , 1

2xr > 1
2N > 1

2s , so we have βs
s ≥ 1

2sαs
r. So putting δi

s = τ i
r,s suffices using

properties (2) and (3).
The conditions are set up so that R2 restricted to Z = [ei : i > N ] satisfies

R2((yi)) ≥
∞∑

p=N+1

∞∑
q=p+1

(δq
py2

p + δp
qy2

q + 2αq
pxqypyq).

However, condition (ii) implies that

δq
py2

p + δp
qy2

q + 2αq
pxqypyq ≥ δq

py2
p + δp

qy2
q − 2αq

p|ypyq| ≥
3
4
(δq

py2
p + δp

qy2
q ) + (

1
2

√
δq
p|yp| −

1
2

√
δp
q |yq|)2 >

1
2
(δq

py2
p + δp

qy2
q ).

The last expression is clearly a positive quadratic form in variables yp, yq, which
concludes the claim that

R2((yi)) ≥
∞∑

p=N+1

∞∑
q=p+1

(
1
2
δq
py2

p +
1
2
δp
qy2

q ) > 0

for every 0 6= (yi) ∈ Z.
�

The statement of the theorem applies to all separable Banach spaces, `∞, C(K),
where K is separable (not necessarily metrizable). It is inherited by the subspaces,
so since `1(c) ↪→ `∞, it applies also to `1(c). We are going to investigate further the
size of maximal null sets in the nonseparable setting, and the spaces `1(Γ) will play
the main role in this investigation. It is known in set theory, that the cardinality
of continuum c is consistently ”arbitrarily large” cardinal. On the other hand, one
would intuitively expect that increasing the density of the space X should lead to
the (uniform) increase of the null sets. We will prove that this intuition is correct.

Our objective now is to obtain some estimate on the size of card(Γ), such that
every n-homogeneous odd polynomial on `1(Γ) has large null sets. Our approach is
via subsymmetric polynomials ([6],[7]). We then need to produce a subset of S ⊂ Γ,
where the restriction of P to `1(S) behaves subsymmetrically. In this step we are
loosing on the cardinality.

Given and ordinal Γ, we say that a polynomial P : `1(Γ) → IR is subsymmetric

if P (
l∑

i=1

xieγi
) = P (

l∑
i=1

xieβi
) whenever we have γ1 < γ2 < · · · < γl, β1 < · · · < βl,

for arbitrary xi ∈ IR.

Lemma 3. Let P : `1(Γ) → IR be a subsymmetric n-homogeneous polynomial, n
odd. Then P has a null set of density Γ.
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Proof. Consider all polynomials bi, which can be represented using a multiindex

(βi
j)

m
j=1 βi

j ∈ IN,
m∑

j=1

βi
j ≤ n, so that bi(

∑
xαeα) =

∑
α1<···<αm

x
βi
1

α1 · · · · ·x
βi

m
αm . Formally,

we may assume that the index i of bi runs through the finite set of all distinct
multiindexes. We say that m is the length of the multiindex ( or the corresponding
polynomial). We will call these polynomials standard ([7]), and write for simplicity
bi = (βi

j)
m
j=1. Standard polynomials of degree n constitute the vector space basis of

the finite dimensional space of all n-homogeneous and subsymmetric polynomials.
The finite system of equations bi(v) = 0 for all standard polynomials bi of odd degree
not exceeding n has a nonzero and finitely supported solution v, due to the proof
in [3] (or [2]). Note that the homogeneity of bi implies immediately that bi(zv) = 0
for every z ∈ IR. Assume WLOG supp(v) = {1, . . . , d}. Since P is subsymmetric
and homogeneous of odd degree, P =

∑
ξibi and consequently, P (v) = 0. Let us

now consider a linear subspace of `1(Γ) generated by vectors {vα}Γα=1, such that
vα are translates of v with consecutive supports on Γ. It remains to show that
bi(u) = 0 for all standard polynomials of odd degree not exceeding n, and for all

u =
m∑

j=1

zjvαj
. Let us verify this fact using an inductive argument on the length of

the representing multiindex for bi. If its length is one, i.e. bi = (l), for some odd

l ≤ n, then we have (l)(
m∑

j=1

zjvαj ) =
m∑

j=1

(l)(zjvαj ) = 0. Having proven the result for

all odd multiindexes of length at most d− 1, we proceed by writing the action of a
standard polynomial with multiindex β = (β1, . . . , βd). Denote by

D = {A = (A1, . . . , Al) : ∪Ai = {1, . . . , d} and Ai consecutive and disjoint }.

For A = (A1, . . . , Al), and 1 ≤ r ≤ l we define βAr = (βminAr
, . . . , βmaxAr

), to be a
multiindex ”contained within” β on the position of set Ar. Denote

ΦA = {φ : {1, . . . , l} → {1, . . . ,m}, φ is increasing}, and Φ = ∪ΦA.

With these definitions, it is standard to check the following formula

(β1, . . . , βd)(
m∑

j=1

zjvαj ) =
∑

A∈D,φ∈ΦA

(
∏
r

βAr (zφ(r)vφ(r)))

Each of the product terms on the right hand side either contains some multi-
plicative term βAr of odd degree less than n, or it is a single term (β)(zφ(r)vφ(r)). By
the inductive assumption, in either case it is identically zero and the result follows.

�

Denote by expα = 2α, expn+1α = exp(expnα), where α is a cardinal. For a set
S, let [S]n = {X ⊂ S : cardX = n}. We will use the following result, which in the
language of partition relations claims that (expn−1α)+ → (α+)n

α ([4]).

Theorem 4. (Erdos, Rado)
Let α be an infinite cardinal, n ∈ IN, κ = (expn−1α)+ and {Gγ}γ<α be a partition

of [κ]n. Then there exist M ⊂ κ, cardM = α+ and [M ]n ⊂ Gγ for some γ < α.

Theorem 5. Suppose cardΓ ≥ expnα, n odd. Then every n-homogeneous polyno-
mial on `1(Γ) has a null space of density at least α+.
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Proof. Let P be an n-homogeneous polynomial, suppose Γ is an ordinal. We parti-
tion the set [Γ]n using continuum many sets {G{ai1,...,in :1≤i1≤···≤in≤n} : ai1,...,in

∈
IR} as follows. We put [γ1, . . . , γn] ∈ G{ai1,...,in :1≤i1≤···≤in≤n} iff {ai1,...,in : 1 ≤
i1 ≤ · · · ≤ in ≤ n} coincides with the set of coefficients of P , when restricted to the
n-dimensional space with coordinate vectors eβ1 , . . . , eβn where {βi} is an increas-
ingly reordered set {γi} (in the order coming from Γ). Applying the Erdos-Rado
theorem yields a subset S ⊂ Γ of the desired cardinality, such that the restriction
of P to `1(S) is a subsymmetric polynomial.

�

It is essentially impossible to improve the above result using combinatorial meth-
ods. By Lemma 39.1 of [4], we have the negative relation Γ = expn−1c 9 (n + 1)n

c .
Thus there exists a partition of [Γ]n into c subsets {Gt}t∈(0,1), for which there
exists no subset S ⊂ Γ with n + 1 elements, such that all subsets of S with n
elements belong to the same Gt. Define a polynomial on `1(Γ) using the formula
P ((xi)) =

∑
t,S={i1,...,in}∈Γt

txi1 . . . xin
. This is a correct definition, and moreover the

sum is absolutely convergent. The negative property of the partition {Gt} trans-
lates directly into the fact that P restricted to any n + 1 coordinates fails to be
subsymmetric. Since null spaces are sensitive to any change of coefficients, it is hard
to imagine a proof producing a large null space under these circumstances.

Theorem 6. Let X be a real Banach space of dens(X) ≥ expn+1α, where α is
a cardinal, n odd integer. Then every n-homogeneous polynomial on X has a null
space of density at least α+.

Proof. Let Γ = expnα. We construct a continuous injection T : `1(Γ) → X in-
ductively as follows. Having chosen T (ei) ∈ BX for all i < β < Γ together with
functionals fi ∈ BX∗ , fi(T (ei)) ≥ 1

2 , we choose T (eβ) ∈
⋂

i<β

Ker fi. The last set is

nonempty, since cardX ≤ 2w∗−densX∗
, so w∗ − densX∗ ≥ expnα and we can con-

tinue the inductive process. Now it remains to note that P ◦T is an n-homogeneous
polynomial on `1(Γ), its null subspaces carry right into X, and the previous theorem
applies.

�

Examples

Recall the classical fact that every continuous polynomial on c0, (resp. every
continuous polynomial on `p of degree less than p) is weakly sequentially contin-
uous (wsc for short), in particular it maps weakly null sequences into sequences
convergent to zero ([5]). This fact implies that in the formula for such a polyno-
mial on the long space c0(Γ), resp. `p(Γ), the cardinality of nonzero coefficients is
at most countable. We will exploit this property in the results below. We will say
that a subspace of `p(Γ) is a block subspace, if it is generated by a set of disjointly
supported vectors. Given a polynomial P on `p(Γ), and a disjoint decomposition
of Γ = ∪Γα, we say that P splits with respect to this decomposition, iff the for-
mula for P contains no nonzero terms containing variables from distinct Γα. It is
clear that this is exactly the case when we can write P =

∑
α

Pα, where Pα are de-

fined on Γα. So P has a ”diagonal” form with respect to the given decomposition.
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The existence of a splitting of cardinality τ for a n-homogeneous polynomial P , n
odd, immediately implies the existence of a null set of density τ . Indeed, choose
arbitrary vectors 0 6= vα ∈ `p(Γα). The formula for P restricted to [vα] is simply
P ((xα)) =

∑
α

cαxn
α. Assume WLOG that cα > 0, and fix a bijective correspondence

α ↔ β between two disjoint subsets of the index set of cardinality τ . Now the space
[vα − ( cα

cβ
)

1
n vβ ] is easily checked to be the desired (block) null space.

Proposition 7. Let Γ be an infinite cardinal, P : c0(Γ) → IR be an arbitrary
continuous polynomial. Then P has a null space of separable codimension in c0(Γ).

Proof. Since P is wsc, it mapps in particular w-null sequences to sequences con-
vergent to 0 ∈ IR. Using a standard argument we see that P depends only on a
countable set of coordinates S ⊂ Γ, and so P restricted to Γ \ S is identically zero.

�

A similar proof based on wsc property for polynomials of degree less than p on
`p spaces gives.

Proposition 8. Let Γ be an infinite cardinal, P : `p(Γ) → IR be an arbitrary
continuous polynomial of degree less than p. Then P has a null space of separable
codimension in `p(Γ).

In order to investigate polynomials of degree higher than p on `p(Γ) spaces, we
need the following lemma.

Lemma 9. Let P be a polynomial of n-th degree on `p(Γ), Γ > ω, n < 2dpe. Then
there exists a subset Γ′ ⊂ Γ, linearly ordered, such that the restriction of P to Γ′

has the form

P ((xi)) =
∑

j∈Γ′,dpe≤m≤n

∑
i1≤···≤il≤j

am
i1,...il,j

xi1 . . . xil
xm

j

Proof. In the formula for P ((xγ)) =
∑

i1≤···≤in

bi1,...,inxi1 . . . xin , we claim that for a

fixed i1, . . . idpe, the set of {idpe+1 . . . in} such that bi1,...,in
6= 0 is countable. Indeed,

the polynomial

R((yi)) =
∑

idpe+1≤···≤in

bi1,...,in
xi1 . . . xidpeydpe+1 . . . yin

is a homogeneous polynomial of degree less than p, so it is wsc, and therefore
depends on countably many coordinates. Discarding these coordinates from Γ, for
all finite terms constructed so far, we can inductively define an ordinal Γ′ of cardΓ,
such that whenever i1 ≤ · · · ≤ idpe ∈ Γ′, there exists no idpe < idpe+1 ≤ · · · ≤ in}
such that bi1,...,in

6= 0. This proves the claim.
�

The previous proposition may be further generalized to arbitrary degree polyno-
mial. The resulting formula will contain only those mixed terms whose last power
is of degree at least dpe.

Proposition 10. Let P be a n-homogeneous polynomial on `p(ω+
1 ), n < 2dpe.

Then P has an infinite dimensional (block) null space.
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Proof. Consider the P in the above form. Since for every j, the set of nonzero
am

i1,...il,j
is at most countable. We proceed inductively as follows. Pick the first ω1

elements of Γ = ω+
1 . It follows that there is some k0 ∈ Γ , and a set Γ1, minΓ1 > k0,

of cardinality ω+
1 such that am

i1,...il,j
= 0, whenever k0 ∈ {i1, . . . , il}, for all j ∈ Γ1.

Since ω+
1 is a regular cardinal, we can in the next step choose the initial ω1-interval

of Γ1, and k1 in there, such that for some Γ2 ⊂ Γ1, minΓ2 > k1 of cardinality ω+
1

we have that am
i1,...il,j

= 0, whenever k1 ∈ {i1, . . . , il}, for all j ∈ Γ2.
We proceed inductively along ω. The final set {kj}∞j=0 clearly defines a splitting

of P restricted to this index set.
�

Proposition 11. Let P be a 3rd degree polynomial on `2(ω1). Then P has an
infinite dimensional null (block) space.

Proof. WLOG, P has the formula P ((xi)) =
∑

j<ω1

∑
i≤j

ai,jxix
2
j . We are going to

construct a block sequence {uk}∞k=1 inductively as follows. First step. If there exists
some i such that Γ1 = {j : i < j, ai,j = 0} is uncountable, then we choose u1 = ei.
Clearly, P restricted to [u1, ei : i ∈ Γ1] splits with respect to the decomposition
{i},Γ1.

Otherwise, for every i there exists εi > 0 such that ∆i = {j : j > l, |al,j | > εi}
is uncountable. Fix i = 1 and still using the previous assumption, pick an l > 1
such that the set Γ1 = {j : j ∈ ∆1, j > i, |ai,j | < ε1

2 } is uncountable. Here
we are using the property of the ground space `2, namely if such a choice were
not possible, we would have some j for which the set {i : i < j, |ai,j | ≥ ε1

2 }
is infinite. This is a contradiction with the continuity of the linear term in the
shifted polynomial Q(x) = P (ej +x). Assume WLOG that there exists some δ > 0,
a = ε1 > a − 3δ > ε1

2 > b > b − 3δ > c ≥ 0, and a disjoint decomposition
of Γ1 into uncountable subsets Γ1

1,Γ
2
1 such that |a1,j − a| < δ for all j ∈ Γ1,

|al,j − b| < δ for all j ∈ Γ1
1 and |al,j − c| < δ for all j ∈ Γ2

1. Put u1 = el − b+c
2a e1.

Consider now the polynomial P restricted to the subspace generated by the basic
long sequence {e1

i : i < ω1} = {u1, ej : j ∈ Γ1}. Its formula has the canonical form
P ((xi)) =

∑
j<ω1

∑
i≤j

a1
i,jxix

2
j , where moreover |a1

1,i| > δ for all i > 1, and both sets

A = {i : i > 1, a1
1,i > δ} and B = {i : i > 1, a1

1,i < −δ} are uncountable. Blocking
once more, this time using a bijection φ : A → B and suitable coefficients ci, i ∈ A
we obtain the disjoint blocks vi = ei + cieφ(i), i ∈ A, such that in the restriction
of P to [e1

1, vi] splits with respect to e1
1 and [vi]. The inductive step consists of

repeating the previous argument, for the polynomial P restricted to the last index
set defining the previous splitting. This leads to a sequence {uk}∞k=1, where each uk

lies in the block subsequent to blocks containing ui, i < k, and defining a splitting
of P . Thus P splits with respect to disjoint block vectors {uk}∞k=1, and the result
follows.

�

Fact 12. Let P be a n-homogeneous polynomial on `p(Γ), n odd, Γ uncountable,
Z ↪→ `p(Γ) be a null space of density τ > ω. Then P has a null block space of
density τ .

Proof. Let Z ↪→ `p(Γ) be a subspaces of density τ . Proceed by transfinite induction,
constructing disjointly supported nonzero vectors vα ∈ Z. Suppose that Y = [vα :
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α < η < τ ] is a maximal element with respect to inclusion, and η < τ a cardinal.
Consider the union of supports S = ∪ supp vα, and the continuous projection
P : `p(Γ) → `p(S). Clearly, P−1(0) ∩ Z 6= {0}, since otherwise Z would have a
family of separating functionals of cardinality η < densZ, which is impossible as
it is a reflexive space ([5]). So choosing an element vη ∈ P−1(0) ∩ Z leads to a
contradiction with the maximality of Y , proving the claim.

�

Remark. The assumption that τ is uncountable cannot be dropped. Indeed, con-

sider the subspace of `p generated by vectors vn =
∞∑

i=kn

an
i ei for some fast decreasing

sequence an
i ↘ 0, and fast increasing kn →∞. We have {vn} ∼ {en} the canonical

basis. The coordinates of vj(i), j ≤ n in the intervals i ∈ [kn, kn+1) are chosen so

that for every pair of nonzero vectors x =
n∑

j=1

bjvj , y =
n∑

j=1

cjvj there exists some

i ∈ [kn, kn+1) for which x(i), y(i) 6= 0. This can be obtained by a simple com-
pactness argument. It follows, that [vn : n ∈ IN] contains no two nonzero disjoint
blocks.

Given n − 2 < p ≤ n, where n is odd, we define a polynomial operator Qp :
`p(c) → `1(c) by Q((xi)) = (xn

i ). Clearly, Q is n-homogeneous and injective. Let
P be the 3-homogeneous polynomial on `1(c) without any infinite dimensional null
space.

Lemma 13. In the notation above, R = P ◦ Q is a 3n-homogeneous polynomial
on `p(c), which has no infinite dimensional block null space. In particular, it has
no nonseparable null space. Moreover, for every l ≥ 4n + 1 odd, there exists an
l-homogeneous polynomial on `p(c) without a nonseparable null space.

Proof. If [vi : i ∈ IN] were a block null space for R, [Q(vi) : i ∈ IN] would be a
block null space for P , using the the form of Q. This is a contradiction. To get the
moreover statement, it suffices to use the polynomials R ·

∑
i∈c

xn+1
i .

�
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