Extremal Graph Theory

Jan Hladký
Definition (Extremal graph theory, Bollobás 1976):
Definition (Extremal graph theory, Bollobás 1976): Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.
Definition (Extremal graph theory, Bollobás 1976): Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.

An alternative definition: substructures in graphs

In this talk:
- Turán’s Theorem
- Erdős–Sós Conjecture
- Szemerédi Regularity Lemma
Mantel 1907/Turán 1941

If G has n vertices

If G has more than $n^2/4$ edges then it contains a triangle.

- optimal \implies extremal graph
- starting point of extremal graph theory
Mantel 1907/Turán 1941 \(G \) has \(n \) vertices
If \(G \) has more than \(n^2/4 \) edges then it contains a triangle.

- optimal \(\Rightarrow \) extremal graph
- starting point of extremal graph theory

Extensions:
- other graphs than the triangle (Turán, Erdős-Stone 1964)
- 3-uniform hypergraphs (still open!!!)
- “triangle density problem”
 Alexander Razborov, 2013 Robbins Prize (AMS)
Erdős–Sós Conjecture

Setting

G . . . graph on n vertices
T_ℓ . . . all trees on ℓ vertices
Erdős–Sós Conjecture

Setting
G ... graph on n vertices
\mathcal{T}_ℓ ... all trees on ℓ vertices

Embedding trees: motivation $\delta(G) \geq k$, then $\mathcal{T}_{k+1} \subset G$.
Erdős–Sós Conjecture

Setting
$G \ldots$ graph on n vertices
$\mathcal{T}_\ell \ldots$ all trees on ℓ vertices

Embedding trees: motivation $\delta(G) \geq k$, then $\mathcal{T}_{k+1} \subset G$.
Can this be weakened?
Erdős–Sós Conjecture

Setting
$G \ldots$ graph on n vertices
$\mathcal{T}_\ell \ldots$ all trees on ℓ vertices

Embedding trees: motivation $\delta(G) \geq k$, then $\mathcal{T}_{k+1} \subset G$. Can this be weakened?

Erdős-Sós Conjecture ’63 If the average degree of G is at least k, then $\mathcal{T}_{k+1} \subset G$. proof announced by Ajtai, Komlós, Simonovits, and Szemerédi
Erdős–Sós Conjecture

Setting
G . . . graph on n vertices
T_ℓ . . . all trees on ℓ vertices

Embedding trees: motivation $\delta(G) \geq k$, then $T_{k+1} \subset G$. Can this be weakened?

Erdős-Sós Conjecture ’63 If the average degree of G is at least k, then $T_{k+1} \subset G$.
proof announced by Ajtai, Komlós, Simonovits, and Szemerédi

Loebl-Komlós-Sós Conjecture ’95 If at least $n/2$ of the vertices of G have degrees at least k, then $T_{k+1} \subset G$.
approximate solution by H., Piguet, Komlós, Simonovits, Stein, Szemerédi
Szemerédi Regularity Lemma

Szemerédi 1975: Dense subsets of integers contain arithmetic progressions of arbitrary length
If \(A \subset \mathbb{N} \) such that \(\limsup_n \frac{|A \cap \{1, \ldots, n\}|}{n} > 0 \) then
\[\forall k \text{ there exists } a_0, d \in \mathbb{N} \text{ such that } a_0, a_0 + d, a_0 + 2d, \ldots, a_0 + (k - 1)d \in A. \]

History: 1953 Roth \(k = 3 \); 1977 Furstenberg (ergodic theory)

Szemerédi 1978: Regularity lemma Every graph can be decomposed into a bounded number of quasirandom pieces

Ruzsa and Szemerédi 1976: Removal lemma
easy consequence of the Regularity lemma (next slide)

2012: Abel Prize to Szemerédi

2002-2007: Hypergraph regularity lemma
Rödl, Schacht, Skokan, \ldots; Gowers
2012 Pólya Prize to Rödl and Schacht
Removal Lemma

Ruzsa and Szemerédi 1976: (Triangle) Removal lemma:
If a graph contains few triangles then it can be made triangle-free by removing few edges.
For every $\epsilon > 0$ there exists $\delta > 0$ and $n_0 \in \mathbb{N}$ such that the following holds.
If G is an n-vertex graph ($n > n_0$) which has at most δn^3 triangles then there is a set of at most ϵn^2 edges deletion of which makes G triangle-free.

Regularity-lemma free proof: Fox (Annals Math 2012)
Removal Lemma

Ruzsa and Szemerédi 1976: (Triangle) Removal lemma:
If a graph contains few triangles then it can be made triangle-free by removing few edges.
For every $\epsilon > 0$ there exists $\delta > 0$ and $n_0 \in \mathbb{N}$ such that the following holds.
If G is an n-vertex graph ($n > n_0$) which has at most δn^3 triangles then there is a set of at most ϵn^2 edges deletion of which makes G triangle-free.

Regularity-lemma free proof: Fox (Annals Math 2012)

Application I: Property testing
Removal Lemma

Ruzsa and Szemerédi 1976: (Triangle) Removal lemma:
If a graph contains few triangles then it can be made
triangle-free by removing few edges.
For every $\epsilon > 0$ there exists $\delta > 0$ and $n_0 \in \mathbb{N}$ such that the
following holds.
If G is an n-vertex graph ($n > n_0$) which has at most δn^3
triangles then there is a set of at most ϵn^2 edges deletion of
which makes G triangle-free.

Regularity-lemma free proof: Fox (Annals Math 2012)

Application I: Property testing

Application II: Roth’s Theorem: Dense sets contain 3-AP’s
(Version I) If $A \subset \mathbb{N}$ such that $\lim \sup_n \frac{|A \cap \{1, \ldots, n\}|}{n} > 0$ then
there exists $a_0, d \in \mathbb{N}$ such that $a_0, a_0 + d, a_0 + 2d \in A$.
(Version II) For every $\alpha > 0$ there exists n_0 such that the
following holds. $A \subset \{1, \ldots, n\}$ (for some $n > n_0$) $|A| > \alpha n$ then
there exists $a_0, d \in \mathbb{N}$ such that $a_0, a_0 + d, a_0 + 2d \in A$.