
Shadows of Newton polytopes

Pavel Hrubeš∗ Amir Yehudayoff†

Abstract

We define the shadow complexity of a polytope P as the maximum
number of vertices in a linear projection of P to the plane. We describe
connections to algebraic complexity and to parametrized optimization.
We also provide several basic examples and constructions, and develop
tools for bounding shadow complexity.

1 Introduction

A polytope is the convex hull of a finite set of points in Euclidean space.
Equivalently, it is a compact set that is defined by finitely many linear
inequalities. Polytopes are central in convex geometry and linear optimization
algorithms.

Our goal is to understand

how many vertices can a shadow of a polytope have?

A shadow of a polytope P ⊆ Rn is a set of the form L(P), where L : Rn → R2

is a linear map. The shadows of P are two-dimensional polygons, and hence
typically much simpler than P . The shadow complexity of P is

σ(P) = max
L
|vert(L(P))|,

where L is a linear map and vert(Q) is the vertex set of the polytope Q.
The shadow problem is interesting already in three-dimensional space.

Moser’s shadow problem asks about the shadow complexity of three-dimensional

∗Mathematical Institute of the Czech Academy of Science, pahrubes@gmail.com. Sup-
ported by the GACR grant 19-27871X.
†Department of Mathematics, Technion-IIT, amir.yehudayoff@gmail.com

1

polytopes [32]. Specifically, the question is what is the minimum of σ(P)
over all three dimensional polytopes P with n vertices. The solution is
Θ(log n/ log log n); see [11, 30]. In other words, every n-vertex polytope in
R3 has a projection to R2 with at least Ω(log n/ log log n) vertices, and there
are polytopes where this is tight. The latter is quite surprising; in such a
polytope, most vertices must disappear when projected to the plane.

Our main motivation comes from algebraic complexity theory. This is the
study of computations of polynomials over a field. The connection between
between polynomials and polytopes is via the notion of Newton polytope. Let
F be a field. For a list of variables x = (x1, . . . , xn) and α ∈ Nn, let xα be the
monomial

∏n
i=1 x

αi
i . A polynomial f ∈ F[x1, . . . , xn] is a formal sum of the

form
∑

α∈Nn aαx
α where sup(f) := {α ∈ Nn : aα 6= 0} is finite. The Newton

polytope of f is
Newt(f) := conv(sup(f)) ,

where conv(·) denotes the convex hull.
Koiran et al. [28] made a bold conjecture relating the complexity of Newt(f)

with the computational complexity of f . The τ -conjecture for Newton polygons
asserts, roughly speaking, that if a bi-variate polynomial f is easy to compute
then Newt(f) has a small number of vertices. This conjecture has serious
consequences. It implies that the permanent polynomial requires arithmetic
circuit of exponential size. This is a central and long-standing open problem
in algebraic complexity.

The Newton polytope of the permanent polynomial is the the Birkhoff
polytope DSn ⊆ Rn×n; namely, the set of n× n doubly stochastic matrices.
The vertices of DSn are all n × n permutation matrices. This perspective
leads us to the following question.

Problem 1. What is σ(DSn)?

The Birkhoff polytope has the curious property that it is both the Newton
polytope of the determinant and of the permanent polynomial. This creates
friction in the context of the τ -conjecture. Determinant is easy to compute
whereas permanent is largely believed to be hard. More specifically, it can
be shown that the τ -conjecture implies σ(DSn) ≤ 2O(

√
n log2 n). Proving that

σ(DSn) = 2Ω(n) refutes this τ -conjecture.1

1This observation came from Michael Forbes in a private conversation.

2

Any non-trivial connection between the arithmetic complexity of f and
some geometric complexity measure of Newt(f), such as shadow complexity,
will be an exciting development.

We exhibit such a connection in the case of monotone computations. A
monotone arithmetic circuit uses the operations +,× and only non-negative
numbers so that no cancellations can occur in the course of a computation
(for definitions see Section 5). They have been considered in the seminal
papers of Valiant [43] and of Jerrum and Snir [22], and many others. We
show that shadow complexity allows to prove hardness results for monotone
computation.

Theorem 1.1. Every monotone formula computing f contains at least
σ(Newt(f)) leaves.

What we are really interested in is understanding algebraic circuits,
not formulas. We show that in some cases shadow complexity allows to
lower bound monotone circuit complexity. A polynomial f is transparent if
|supp(f)| = σ(Newt(f)). In other words, there is a linear map L : Rn → R2

which maps supp(f) to distinct convexly independent points in R2.

Theorem 1.2. If f is transparent then every monotone circuit computing f
has size at least Ω(σ(Newt(f))).

Theorem 1.2 can be used to explicitly find a monotone multilinear poly-
nomial in n variables which requires an arithmetic circuit of size Ω(2n/3); see
Corollary 5.11. This is stronger than the 2Ω(n) lower bound from [37], as well

as the classical bounds from [43, 22] which are of the form 2Ω(n1/2).

Remark 1.3. The transparency assumption is unavoidable. There exists a
bivariate polynomial f with a monotone circuit of size O(n) such that Newt(f)
has 2n vertices (see Theorem 5.1).

Shadow complexity has an algorithmic perspective as well. A polytope
naturally defines a linear optimization problem Φ(w) = maxx∈P 〈x,w〉, where
〈x,w〉 is the standard inner product. The maximizers of this optimization
problem are vertices of P . The Birkhoff polytope, e.g., corresponds to
the maximum weight bipartite perfect matching problem. Some additional
examples of linear optimization problems include the shortest path problem
or the maximum cut problem.

3

In parametrized complexity, one considers weights that come from a
one dimensional space w(t) = w0 + tw1 parametrized by t ∈ R. The map
t 7→ Φ(w(t)) is a convex and piecewise linear function. A natural complexity
measure for such a map is the number β(P,w(t)) of the breakpoints in Φ(w(t)).
The parametrized complexity of P now becomes

β(P) = max
w0,w1

β(P,w(t)).

The quantity β(P) has been studied by Carstensen [9, 10], Mulmuley and
Shah [33, 34], and many others. Carstensen [10] and later [34] showed that
the shortest path problem in an n-vertex graph can have 2Ω(log2 n) breakpoints,
and that the maximum cut problem can have 2Ω(n) breakpoints. In Section 3.4,
we give an example of a polytope that corresponds to a linear optimization
problem on n variables with 2Ω(n) breakpoints; the previous constructions
gave only 2Ω(

√
n) breakpoints.

We observe a fundamental connection between shadow complexity and
parameterized complexity.

Theorem 1.4. If |vert(P)| > 1 then σ(P)
2
≤ β(P) ≤ σ(P)− 1.

This means that results from parametrized complexity translate to the
language of shadows, and vice versa. Carstensen’s lower bound for example
implies that

σ(DSn) ≥ 2Ω(log2 n).

This is the best lower bound on σ(DSn) we are aware of. The best upper
bound we know is σ(DSn) ≤ 2O(n). This is not entirely obvious and we shall
explain this later on (see Proposition 3.11).

The connection between shadow and parametrized complexities leads to
interesting conclusions. The idea, in a nutshell, is that if optimization over P
is easy then β(P) is low. For example, if we can optimize over P by a greedy
algorithm then β(P) is at most quadratic. We do not want to want to dive
into the theory of greedy algorithms, or a formal definition for that matter.
Edmonds and Rado [13, 16] proved that if R ⊆ {0, 1}n is a matroid then the
optimization problem over R can be solved by a greedy algorithm. Many
generalizations of this theorem have been considered (see [44] and references
within).

For our purposes, the following simple definition is sufficient. Let P ⊆ Rn

be a polytope and w ∈ Rn. We denote by OptP (w) the set of vertices v of

4

P such that 〈v, w〉 = maxx∈P 〈x,w〉. Given w,w′ ∈ Rn, we say that they are
order-equivalent if for every i, j ∈ [n], we have wi ≤ wj iff w′i ≤ w′j. The
polytope P is greedy-like, if for every order-equivalent w and w′, we have
OptP (w) = OptP (w′). In other words, P is greedy-like if for every weight
function w, where the maximum for w is achieved on P depends only on the
order induced by w.

Lemma 1.5. If P ⊆ Rn is a greedy-like polytope then β(P) ≤
(
n
2

)
and

σ(P) ≤ n(n− 1).

A more general link was established by Mulmuley [33]. He considers a
model of computation called PRAM model without bit operations intended
to solve decision problems or optimization problems. This model allows to
use basic arithmetic operations such as +,× as well as =,≤, but does not
allow access to the individual bits of the inputs. Mulmuley showed2 that a
fast parallel algorithm for optimizing over P gives a small β(P). This leads
to several interesting lower bounds in this model.

The above can be further linked to our discussion concerning monotone
arithmetic circuits. A monotone arithmetic formula can be interpreted as a
computation over the semiring (R,min,+,∞, 0) which solves the optimization
problem over Newt(f); see Section 5.1 for more details. This a particular
instance of the PRAM model.

Are there general non trivial bounds on shadow complexity? Let Mσ(n)
be the maximum σ(P) over all polytopes P ⊆ Rn with vertices in {0, 1}n. In
[29], Kortenkamp et al. have shown the following:

Proposition 1.6 ([29]). There exist constants 0 < c1 < c2 < 1 such that for
every n sufficiently large 2c1n ≤Mσ(n) ≤ 2c2n.

c1 ≥ 1/3 is achieved by an explicit construction; see also Remark 3.8.

1.1 Why the plane?

Why do we study projections of polytopes to two dimensions?
First, our results rely on the fact that in two dimensions Minkowski sum

(defined in Section 2.3) is well-behaved with respect to the number of vertices.
In R2, we have |vert(P +Q)| ≤ |vert(P)|+ |vert(Q)|. Already in R3, only the
trivial upper bound |vert(P +Q)| ≤ |vert(P)| · |vert(Q)| holds.

2There is a technical issue of bit-lengths which we avoid.

5

Second, there exists a polytope in R3 with k vertices such that every
projection to R2 has only O(log k/ log log k) vertices. Hence it may happen
that a polytope in Rn has exponentially many vertices when projected to R3

but only polynomially many when projected to R2.
That said, there are non-trivial upper bounds on the number of vertices

of P1 + · · ·+ Pr in Rd if r is large. For the sake of simplicity, we discuss the
case of d = 3. It follows from a result of Gritzman and Sturmfels [18] that,
given polytopes P1, . . . , Pr with n1, . . . , nr vertices in R3,

|vert(P1 + · · ·+ Pr)| ≤ O((n1 + · · ·+ nr)
2) .

This beats the trivial bound n1n2n3 already for r = 3. The improved bound
could be used to derive non-trivial bounds on monotone computations of a
bounded depth (see Remark 7.4).

1.2 Extension complexity

As a final remark, we briefly discuss a different possible connection between
polytopes and algebraic complexity. The extension complexity of P , denoted
xc(P), as the smallest r such that P is a linear projection of a polytope
Q ⊆ Rm where Q can be defined using r inequalities and an arbitrary
number of equalities; see [45, 38, 14] and references within. It is related to
communication complexity and algorithms (see, e.g., [36]).

We observe that, like shadow complexity, extension complexity also allows
to prove lower bounds on monotone computation. Namely, if f has monotone
formula of size s then xc(Newt(f)) ≤ O(s). This uses simple properties of
extension complexity together with a result of Balas [2].

Extension complexity, however, can not yield general lower bounds in
the non-monotone setting. There exists a polynomial with a polynomial size
arithmetic circuit, but whose Newton polytope has an exponential extension
complexity. See Section 5.4 for more details.

2 Tools

We start by presenting several tools for bounding shadow complexity, including
some elementary facts about Newton polytopes.

6

2.1 Parametrized complexity

Some of the bounds on shadow complexity we describe come from the algorith-
mic viewpoint. So, we first prove the connection between shadow complexity
and parametrized complexity.

Proof of Theorem 1.4. It is convenient to argue about

B∗(P,w(t)) := β(P,w(t)) + 1,

which counts to the number of pieces of Φ(w(t)). Given w(t) = w0 + tw1,
define L : Rn → R2 by

L(x) = (〈w0, x〉 , 〈w1, x〉).

Because 〈w(t), x〉 = 〈(1, t), L(x)〉, we see that

max
x∈P
〈x,w(t)〉 = max

y∈L(P)
〈y, (1, t)〉 .

Since the maximum is always achieved at a vertex of L(P), we obtain
B∗(P,w(t)) ≤ σ(P).

To prove the other inequality, we first show that B∗(Q) ≥ k/2 + 1 for
every polytope Q in R2 with k ≥ 2 vertices. Take non-parallel w0, w1 ∈ R2

so that 〈v, w1〉 are distinct for distinct vertices v of Q. Let w(t) = w0 + tw1

and w̄(t) = −w0 + tw1. Each vertex v of Q can be separated from the other
vertices by a hyperplane, and a small perturbation of the hyperplane is still
separating. Hence, there exists a non-empty open interval I such that either
maxx∈Q 〈x,w(t)〉 or maxx∈Q 〈x, w̄(t)〉 is achieved at x = v on t ∈ I. (And v
is the only such vertex.) Let v1 be the vertex for which 〈x,w1〉 is the largest,
and v2 the one where it is smallest. When t→∞, both maxx∈Q 〈x,w(t)〉 and
maxx∈Q 〈x, w̄(t)〉 is achieved at v1; similarly for v2 and t → −∞. It follows
that B∗(Q,w(t)) +B∗(Q, w̄(t)) ≥ k + 2 and so B∗(Q) ≥ k/2 + 1.

Now, given P ⊆ Rn, let L : Rn → R2 be a linear map so that L(P) has
σ(P) vertices. By the above, there exists w(t) in R2 so that maxx∈L(P) 〈x,w(t)〉
has at least σ(P)/2 breakpoints. Maximizing 〈x,w(t)〉 on L(P) is equivalent
to maximizing some w′(t) on P and so β(P) ≥ σ(P)/2.

2.2 Greedy polytopes

Our goal here is to prove that σ(P) is small whenever P is greedy-like
(Lemma 1.5).

7

Proof of Lemma 1.5. Let w(t) be a line in Rn. For a given t, the weight
vector w(t) defines a preorder on [n] by i ≤t j iff w(t)i ≤ w(t)j. Since P is
greedy-like, every breakpoint of Φ(w(t)) = maxx∈P 〈x,w(t)〉 occurs at a time
where the order ≤t changes. Hence there exist i 6= j such that the linear
function w(t)i−w(t)j changes sign. There are

(
n
2

)
pairs, and a linear function

can change sign at most once. So, Φ(w(t)) has at most
(
n
2

)
breakpoints. This

means β(P) ≤
(
n
2

)
and σ(P) ≤ n(n− 1).

We further show that the definition of greedy-like can be relaxed to weights
for which the maximum is achieved at a unique vertex. This weaker notion
can be easier to verify, as in the case of Kruskal’s algorithm mentioned in
Proposition 3.5.

Lemma 2.1. Let P ⊆ Rn be a polytope. Assume that for every order-
equivalent w,w′ ∈ Rn, the equality OptP (w) = OptP (w′) holds whenever
|OptP (w)| = 1. Then P is greedy-like.

Proof. Let P be as in the assumption. Assume that w,w′ ∈ Rn are order-
equivalent with |OptP (w)| ≥ 1. We want to show that OptP (w) = OptP (w′).
Given v ∈ OptP (w), we can find z ∈ Rn such that OptP (z) = {v}. Hence
for every ε > 0 we have OptP (w + εz) = {v}. For ε > 0 small enough,
we also have that w + εz and w′ + εz are order-equivalent. It follows that
v ∈ OptP (w′ + εz). Letting ε tend to zero, we can conclude v ∈ OptP (w′).

We have shown OptP (w) ⊆ OptP (w′). By symmetry, we also have
OptP (w) = OptP (w′).

2.3 Operations on polytopes

Given A,B ⊆ Rn, their Minkowski sum is defined as

A+B := {a+ b : a ∈ A, b ∈ B}.

If P and Q are polytopes then P +Q is also a polytope. In two-dimensions,
Minkowski sum has nice properties. Let P be a polytope in R2 with vertices
v1, . . . , vk where k > 1. We can assume they are ordered so that P lies in the
left closed half plane determined by the line going from vi to vi+1 for i < k,
and similarly for vk and v1. Let E(P) be the collection of unit vectors in the
direction of these k edges. That is, vectors of the form (vi+1− vi)/‖vi+1 − vi‖
for i < k, and (v1 − vk)/‖v1 − vk‖. If |vert(P)| ≤ 1 then E(P) := ∅.

8

Lemma 2.2. Let P1, . . . , Pr be non-empty polytopes in R2. Then E(P1 + · · ·+
Pr) =

⋃r
i=1E(Pi). Consequently, |vert(P1 + · · ·+ Pr)| ≤

∑r
i=1 |vert(Pi)|. The

latter holds for empty Pi’s as well.

The lemma is folklore. It can be inferred from Chapter 13.3 in [3], and we
give only an outline of proof.

Proof sketch of Lemma 2.2. Given a non-empty polytope P and w ∈ R2, let
Pw := {x ∈ P : 〈x,w〉 = maxz∈P 〈z, w〉} be the set of extreme of points of
P in the direction w. It is either a vertex or an edge of P . For a pair of
polytopes we have (P1 +P2)w = Pw

1 +Pw
2 . Every edge of P1 yields an edge of

P1 + P2 with the same direction. Conversely, every edge of P1 + P2 comes
from one of P1 or P2.

The second operation we use is

A tB := conv(A ∪B).

If P and Q are polytopes then P tQ is also a polytope.

Lemma 2.3. Let L : Rn → Rm be a linear map. Given polytopes P,Q ⊆ Rn,
L(P +Q) = L(P) + L(Q) and L(P tQ) = L(P) t L(Q).

Proof. The first equality holds by linearity. The second one can be proved by

L(P tQ) = L(conv(P ∪Q)) = conv(L(P ∪Q))

= conv(L(P) ∪ L(Q)) = L(P) t L(Q) .

We next relate the shadow complexity of P with the shadow complexity
of its faces. A face of a polytope P is the intersection of P with a hyperplane
H such that P is completely contained in one of the two closed halfspaces
determined by H. We stipulate that both ∅ and P are faces of P .

Lemma 2.4. Let F be a face of a polytope P . Then β(F) ≤ β(P) and
σ(F) ≤ 2σ(P).

For example, this implies β(DSn1) ≤ β(DSn2) whenever n1 ≤ n2. This
reflects the fact that finding a maximum perfect matching is harder for larger
graphs.

9

Proof. Without loss of generality, assume that P ⊂ Rn is contained in the
halfspace {x ∈ Rn : x1 ≥ 0} and that F 6∈ {∅, P} is the intersection with the
hyperplane x1 = 0.

Let w(t) be a line in Rn so that β(F,w(t)) = β(F) = k with w(t)1 = 0.
Let t1 < t2 be such that the breakpoints of maxx∈F 〈x,w(t)〉 are contained in
the open interval (t1, t2). Let V := vert(P) \ vert(F). Define

µF := min
x∈F,t∈[t1,t2]

〈x,w(t)〉

and
µP := max

v∈V,t∈[t1,t2]
〈v, w(t)〉 .

Take λ ∈ R sufficiently small so that for every v ∈ V , we have λv1 +µP < µF .
Define w̄(t) by changing the first coordinate of w(t) to λ+ 0 · t. This means
that

max
x∈F
〈x,w(t)〉 = max

x∈P
〈x, w̄(t)〉

holds on [t1, t2]. So, β(P, w̄(t)) = k and β(P) ≥ β(F).
If |vert(F)| ≤ 2, then σ(F) ≤ 2σ(P) holds trivially. Otherwise, σ(F) ≤

2σ(P) follows from Theorem 1.4.

2.4 Laurent polynomials

It is convenient to work with Laurent polynomials instead of polynomials. In a
Laurent polynomial, variables are allowed to have negative integer exponents.
The notions of supp(f) and Newton polytope of f are defined in the obvious
manner. A Laurent polynomial over R is monotone, if all of its coefficients
are non-negative.

Lemma 2.5. Let f, g be Laurent polynomials over F.

(i). Then Newt(fg) = Newt(f) + Newt(g).

(ii). Newt(f + g) = Newt(f) t Newt(g), provided F = R and both f and g
are monotone.

Proof. Part (i) can be found in [17] for polynomials; it extends to Laurent
polynomials. Part (ii) is straightforward to verify.

An application is that the shadow complexity of Newt(g) is at least the
shadow complexity of any of its factors.

10

Lemma 2.6. Let g be a non-zero polynomial (over an arbitrary field). If f
divides g then σ(Newt(f)) ≤ σ(Newt(g)).

Proof. Let L be such that L(Newt(f)) ⊆ R2 has σ(Newt(f)) vertices. By the
assumption, we have g = fh for some non-zero polynomial h and so Newt(g) =
Newt(f) + Newt(h) by Lemma 2.5. By Lemma 2.3, we have L(Newt(g)) =
L(Newt(f)) + L(Newt(h)) and so |vert(L(Newt(g)))| ≥ |vert(L(Newt(f)))| by
Lemma 2.2.

3 Examples

We now describe some examples, and analyze the shadow complexity of
several natural polytopes. We start with polytopes with small σ, continue
with polytopes with large σ, and then discuss our favorites, the ones where
we do not yet know.

3.1 The hypercube

Optimizing over the discrete cube {0, 1}n ⊂ Rn leads to the polytope Qn =
[0, 1]n. The solid cube Qn has 2n vertices, but its shadow complexity is small.

Proposition 3.1. σ(Qn) = 2n and β(Qn) = n.

The proposition shows that the factor of two in Theorem 1.4 is necessary.
The lower bound on σ also follows from a more general theorem of Klee [25].

Proof. Let `i ⊆ Rn be the line segment joining the origin and the i-th unit
vector for i ∈ [n]. The solid cube Qn is the Minkowski sum of `1, . . . , `n. Given
L : Rn → R2, the image L(Qn) is the Minkowski sum of L(`1), . . . , L(`n) by
Lemma 2.3. Since |vert(L(`i))| ≤ 2, Lemma 2.2 gives that |vert(L(Qn))| ≤ 2n.
The bound σ(Qn) ≥ 2n is achieved by the same lemma. It is enough to take
L so that L(`i) are not parallel to get |vert(L(Qn))| = 2n.

The above and Theorem 1.4 imply that β(Qn) ≥ n. It remains to prove
β(Qn) ≤ n. For every w ∈ Rn, the maximum maxx∈Qn 〈x,w〉 equals the sum
of the positive entries in w, or zero if all entries are non-positive. A breakpoint
of maxx∈Qn 〈x,w(t)〉 can therefore occur only when some coordinate of w(t)
changes sign. A linear function can change sign at most once and there are n
linear functions.

11

Remark 3.2. The solid cube Qn is not greedy-like as defined above. This is
because in the optimization algorithm, we must distinguish which entries are
non-negative. Shifting all coordinates of w by λ does not change their order
but may change where the maximum is achieved.

3.2 Permutahedra

Given z = (z1, . . . , zn) ∈ Rn, let

P (z) := conv{(zπ(1), . . . , zπ(n)) : π ∈ Sn},

where Sn is the family of permutations of [n]. The permutahedron is usually
defined using the point z = (0, 1, . . . , n − 1). However, we do not insist z
to have distinct coordinates. Setting z to be a zero-one vector with k ones,
P (z) becomes the convex hull of Boolean vectors of Hamming weight k. For
every z, the polytope P (z) is a linear projection of DSn. The polytope P (z)
typically has n! vertices, but its shadow complexity is always small.

Proposition 3.3. For every z ∈ Rn, σ(P (z)) ≤ n(n − 1). The bound is
attained for z = (0, 1, . . . , n− 1).

Proof. Let z := (0, 1, . . . , n− 1). Let ei ∈ Rn be the i-th unit vector. Let `i,j
be the line segment joining ei and ej for i 6= j. We claim that the polytope
P (z) can be written as the following Mikowski sum

P (z) =
⊕
i<j

`i,j. (1)

Indeed, let X be the n× n matrix such that Xi,j = x
zj
i . Observe that

P (z) = Newt(det(X)) .

The matrix X is a Vandermonde matrix whose determinant, over any field,
factorizes as det(X) =

∏
i<j(xj − xi). Lemma 2.5 implies (1).

Now, given L : Rn → R2, we thus have L(P (z)) =
⊕

i<j L(`i,j). By
Lemma 2.2, if we choose L so that the lines L(`i,j) are non-parallel, the
number of vertices of L(P) is 2 ·

(
n
2

)
= n(n− 1).

The general upper bound is an application of Lemma 1.5. We claim that
P (z) is greedy-like. Permuting the entries of z does not changes σ. So, we
can assume that z1 ≤ z2 ≤ . . . zn. Given w ∈ Rn,

max
x∈P (z)

〈x,w〉 = max
π∈Sn

〈z, wπ〉 ,

12

where wπ := (wπ(1), . . . , wπ(n)). The maximum is achieved iff wπ(1) ≤ wπ(2) · · · ≤
wπ(n). This means that Optw(P (z)) = Optw′(P (z)) whenever w and w′ are
order-equivalent.

Remark 3.4. Here we provide an additional algebraic proof. Consider z =
(z1, . . . , zn) with zi = 2i−1. The matrix X defined by Xi,j = x

zj
i is a Moore

matrix [31]. Over F = GF (2), the polynomial det(X(z)) factorizes as

det(X(z)) =
∏
A⊆[n]

∑
i∈A

xi .

The number of factors is exponential but we can still get a quadratic upper
bound. We have P (z) =

⊕
A⊆[n] RA where RA = conv{ei : i ∈ A}. Given a

projection L : Rn → R2, we have L(P (z)) =
⊕

A⊆[n] L(RA). The polytopes

L(RA) contain at most
(
n
2

)
non-parallel edges and hence L(P (z)) has again

at most n(n− 1) vertices.

3.3 Spanning trees

Every α ∈ {0, 1}(
n
2) can be interpreted as an undirected graph on n vertices.

The polytope TREEn is defined as the convex hull of spanning trees of the
complete n-vertex graph.

Proposition 3.5. σ(TREEn) ≤ n4.

Proof. By Lemma 1.5, it is enough to show that P = TREEn is greedy-like.
Indeed, Kruskal’s algorithm for finding a minimum weight spanning tree takes
into account only the ordering of weights on the edges. That is, if w,w′

are order-equivalent and OptP (w) is a singleton then OptP (w) = OptP (w′).
Hence TREEn is greedy-like by Lemma 2.1. .

Remark 3.6. This is interesting when contrasted with algebraic complex-
ity. Consider the unique polynomial Treen with zero-one coefficients so that
Newt(Treen) = TREEn. It is a homogeneous multilinear polynomial of degree
n−1. Proposition 3.5 shows that the shadow complexity of its Newton polytope
is polynomial. On the other hand, Jerrum and Snir showed that Treen requires
exponential monotone arithmetic circuit [22]. They also pointed out that it
has a non-monotone circuit of polynomial size. More surprisingly, Treen has
a monotone circuit with division of polynomial size [15].

13

3.4 Cliques

The correlation polytope CORn ⊆ Rn×n is the convex hull of all symmetric
rank-one Boolean matrices:

CORn = conv{bbt : b ∈ {0, 1}n} .

Proposition 3.7. σ(CORn) = 2n.

Proof. Let ei,j be the n× n matrix whose (i, j) entry is one and every other
entry is zero. The vertices of CORn are of the form vA =

∑
i,j∈A ei,j with

A ⊆ [n]. Define

L(ei,j) :=

{
(2i, 22i) i = j,

(0, 2i+j) i 6= j,

and extend it linearly to Rn×n. Setting nA :=
∑

i∈A 2i, this guarantees

L(vA) = (
∑
i∈A

2i,
∑
i,j∈[n]

2i+j) = (nA, n
2
A).

These 2n points are convexly independent.

Remark 3.8. The polytope CORn lives in dimension N = n2, and so
σ(COR) = 2

√
N . The polytope ARTn ⊆ R3n, which we define next, has

truly exponential shadow complexity. It is defined as the convex hull of

{
(a0, . . . , an−1, b0, . . . , b2n−1) ∈ {0, 1}3n :

2n−1∑
i=0

bi2
i =

(n−1∑
i=0

ai2
i
)2}

.

In words, b is the binary representation of the square of the number represented
by a. It follows that σ(ARTn) = 2n.

Remark 3.9. The polynomial that corresponds to CORn is

Cliquen =
∑
A⊆[n]

∏
i,j∈[n]

xi,j .

It has n2 variables and Newt(Cliquen) = CORn. We can interpret the polyno-
mial as counting cliques of all sizes in a directed graph with loops, hence the
name.

14

3.5 More graph-based polytopes

Consider a layered directed graph Gn as follows. The vertex-set of Gn is
partitioned into layers V0, . . . Vn. The first and the last layer consist of a
single vertex s and t. Every other layer has n vertices. The edges are all pairs
from Vi × Vi+1 directed from layer i to i + 1. Overall, Gn has n(n− 1) + 2
vertices and N := (n − 2)n2 + 2n edges. Let CONNn ⊆ RN be the convex
hull of incidence vectors of directed paths from s to t in Gn. The following
proposition can be found in [10, 34].

Proposition 3.10. σ(CONNn) = 2Θ(log2 n).

We now deduce the best bound we are aware of for the Birkhoff polytope.

Proposition 3.11. 2Ω(log2 n) ≤ σ(DSn) ≤ 2O(n).

Proof. As pointed by Mulmuley and Shah in [34], the lower bound for CONNn
translates to DSn. For the upper bound, we claim that

σ(DS2n) ≤ 2

(
2n

n

)
σ(DSn) . (2)

This indeed implies σ(DSn) ≤ 2O(n).
Let us prove (2). Given A ⊆ [2n] with |A| = n, let ΠA be the set of

permutation matrices which, when viewed as a permutation on [2n], map
{1, . . . , n} to A. The set of all 2n× 2n permutation matrices is the union of
all ΠA with |A| = n. Hence,

DS2n = conv
(⋃
A: |A|=n

ΠA

)
.

We can view conv(ΠA) as the Minkowski sum of two copies of DSn em-
bedded into R2n×2n. Given L : R2n×2n → R2 this gives, by Lemma 2.2,
|vert(L(conv(Π(A))))| ≤ 2|vert(L(DSn))|. The bound in (2) follows.

Remark 3.12. The upper bound on DSn is more exactly of the form 2(2−o(1))n.
In the proof, we implicitly construct a monotone arithmetic formula for permn

of this size. This matches the lower bound from [40]. Curiously, permn has
a monotone circuit of size O(n2n) and a (non-monotone) formula of size
O(n22n).

15

Remark 3.13. Let Matn := (X0 ·X1 · · ·Xn)1,1, where X0, . . . , Xn are n× n
matrices whose entries are distinct variables. Then Newt(Matn) = CONNn.

Remark 3.14. The perfect matching polytope MATCHn is the the convex
hull of incidence vectors of perfect matchings in the complete (non-bipartite)
graph on 2n vertices. A similar argument to the proof of Proposition 3.11
gives

σ(DSn) ≤ σ(MATCHn) ≤
(

2n

n

)
σ(DSn) ≤ 2O(n) .

4 Projections

We now discuss some connection between algebraic projections of polynomials
and linear projections of Newton polytopes. The results here shall also be
used later on.

A high power projection (h.p.-projection for short) is a homomorphism

π : F[x1, . . . , xn]→ F[y1, . . . , ym, y
−1
1 , . . . y−1

m]

such that π(xi) = aiy
αi for every xi, where ai ∈ F and αi ∈ Zm, and for every

f ∈ F[x1, . . . , xn],

π(f(x1, . . . , xn)) = f(π(x1), . . . , π(xn)).

The constants ai are called the coefficients of π and αi its exponents. If F = R
and π has non-negative coefficients, then π is called monotone.

An h.p.-projection π induces a linear map Lπ : Rn → Rm by setting
Lπ(ei) = αi and extending it linearly to Rn. It follows that supp(π(f)) ⊆
Lπ(supp(f)). The inclusion may be strict, as some monomials of f can
cancel out in the projection. If no cancellations occur, we indeed have
Newt(π(f)) = Lπ(Newt(f)). This is satisfied, e.g., if f is monotone and the
coefficients of π are positive, or if the coefficients are algebraically independent.

In the other direction, take L : Rn → Rm a linear map defined by m× n
matrix with integer coefficients. Consider a h.p.-projection πL of the form
π(xi) = aix

L(ei)
i . If we choose the coefficients ai to be sufficiently independent,

we again obtain L(Newt(f)) = Newt(πL(f)).
The following we do not really need, but it puts things into perspective.

A similar fact has been noted by Grochow [19].

16

Proposition 4.1. Let f be a monotone polynomial. Assume that a Laurent
polynomial g is a monotone h.p.-projection of f . Then Newt(g) is a linear
projection of some face of Newt(f). Hence σ(Newt(g)) ≤ 2σ(Newt(f)).

Proof. Assume g = π(f) with π an h.p.-projection. Let A ⊆ [n] be the set
of i ∈ [n] with ai = 0. Let f ∗ be the polynomial obtained by substituting 0
for xi for every i ∈ A. The polytope Newt(f ∗) is a face of Newt(f). Indeed,
since f has non-negative exponents, Newt(f ∗) = Newt(f) ∩ H where H is
the hyperplane defined by

∑
i∈A zi = 0, and Newt(f) lies in the halfspace∑

i∈A zi ≥ 0.
We can now write π(f) = π∗(f ∗) where π∗ has positive coefficients.

This means that supp(π(f)) = Lπ∗(supp(f ∗)) and hence Newt(π(f)) =
Lπ∗(Newt(f

∗)). The bound on σ follows from Lemma 2.4

The following we do need:

Lemma 4.2. Let f be a polynomial over an infinite field F. Assume that
σ(Newt(f)) = k. Then there exists a bivariate Laurent polynomial g ∈
F(y1, y2, y

−1
1 , y−1

2) which is an h.p.-projection of f so that Newt(g) has k
vertices. Moreover, if f is a homogeneous polynomial then g is a polynomial.
If F = R, then the coefficients in the projection can be assumed positive.

Proof. Let L(z) = Az with A ∈ R2×n be a linear map so that

|vert(L(Newt(f)))| = k.

We can assume that the entries of A are rational, because a small perturbation
of A cannot decrease |vert(L(Newt(f)))|. Now, we can assume that the entries
of A are integers, because we can multiply A by a suitable integer.

Moreover, when f is homogeneous of degree d, increasing all entries of A
by λ corresponds to shifting L(Newt(f)) by (λd, λd), which does not change
the number of vertices. Hence, in this case, A can be taken with non-negative
integer entries.

Let us now consider a h.p.-projection π with π(xi) = aiy
L(ei). It follows

that supp(π(f)) ⊆ L(supp(f)). Now, we claim that we can choose the
coefficients ai so that equality holds. This can be seen as follows. Given
α ∈ supp(f), the coefficient of yL(α) in π(f) is a non-zero polynomial hα in
the coefficients of π. Hence, if F is infinite, there exist non-zero coefficients
for which hα is non zero for every α ∈ supp(f). If F = R, they can be taken
positive.

17

Remark 4.3. We emphasize the difference between linear projections of
polytopes and algebraic projections of polynomials. Since the permanent
polynomial is VNP-complete, Cliquen from Remark 3.9 is a projection (in the
common sense) of permm with m polynomial in n. However, Newt(Cliquen)
is not a linear projection of Newt(permm), neither of any of its faces, unless
m is exponentially large [19]. The idea is that DSm has O(m2) facets whereas
Newt(Cliquen) is not a projection of any polytope with few facets. It follows
that Cliquen is not a monotone projection of permm.

5 Monotone computation

As the standard model of computation of polynomials we take the arithmetic
circuit model. It is a (finite) directed acyclic graph whose every node has
in-degree zero or two. Nodes of in-degree zero (input nodes) are labelled with
a constant or a variable. Nodes of in-degree two are labelled with operations
+ or ×. Every node of the circuit computes a polynomial in F in the natural
way. As the size of the circuit, we take the number of nodes. A circuit is
called a formula if its underlying graph is a tree. For more background and
motivation, see [41] and references within.

Our focus is mainly on monotone computation. A polynomial over R is
monotone if all of its coefficients are non-negative. Similarly, a monotone
arithmetic circuit can use only non-negative constants.

5.1 Optimization problems

We start with a somewhat surprising connection between monotone computa-
tion and Newton polytopes. A monotone circuit over R computing f can be
interpreted as a computation over the semi-ring M = (R∪{∞},min,+,∞, 0).
That is, replace “+” by “min”, replace “×” by “+”, replace “0” by “∞”, and
replace every “a > 0” by “0”. A circuit with operations from M has also
been called a tropical circuit [23]. The resulting circuit computes the function
f ∗ : Rn → R which turns out to be precisely

f ∗(w) = min
x∈Newt(f)

〈x,w〉 .

For example, any monotone circuit for the permanent polynomial can also be
viewed as a tropical circuit for the minimum weight perfect matching in a

18

bipartite graph. Computations over general semi-rings have been considered
in [22, 23], where the reader can find more details.

5.2 Shadows and monotone computations

We explore some connections between the structure of the Newton polytope of
f and monotone arithmetic computations. We prove that shadow complexity
allows to prove lower bounds on monotone complexity (Theorems 1.1 and 1.2).
We also show that in general Theorem 1.1 does not hold for circuits instead
of formulas and so the assumption of transparency in Theorem 1.2 cannot be
removed.

Theorem 5.1. For every n, there exists a monotone bivariate polynomial fn
such that fn has a monotone arithmetic circuit of size O(n) and Newt(f) has
2n vertices.

Theorem 5.1 is proved in Section 8. The construction is reminiscent of
that in [5] of a univariate polynomial with circuit of size s and 2Ω(s) real roots
(cf. Chapter 12 of [8]). A weaker bound can also be deduced as follows:

Remark 5.2. Recall the polynomial Matn from Remark 3.13. Then Matn
has a monotone circuit of size O(n4) whereas σ(Newt(Matn)) = 2Ω(log2 n).

Remark 5.3. When a monotone arithmetic formula is interpreted as a tropi-
cal formula (cf. Section 5.1), it becomes an instance of parallel computation in
the PRAM model without bit operations of Mulmuley [33]. Hence Theorem 1.1
can be seen as special case3 of Theorem 3.3 from [33].

5.3 Monotone formulas

Here we show that shadow complexity allows to lower bound monotone
formula complexity.

A high powered circuit (h.p.-circuit for short) is an arithmetic circuit in
which every input node is labelled by a term axk1

1 · · ·xknn with a ∈ F and
k1, . . . , kn ∈ Z. The size of the circuit is the number of its nodes.

In other words, we have given the circuit a power to compute every term
axα at a unit cost. This is especially important in the case of h.p.-formula.

3This is not a “black box” reduction. Mulmuley’s result has an additional parameter
representing bit size of the input, whereas we have no such thing.

19

An arithmetic formula of size s can compute a polynomial of degree at most s,
whereas there is no such restriction in an h.p.-formula. Furthermore, we have
allowed the variables to have negative exponents and hence an h.p.-circuit
computes a Laurent polynomial instead of a polynomial. But this is only a
cosmetic detail.

Theorem 5.4. Let f be a monotone bivariate Laurent polynomial such that
Newt(f) has k vertices. Then every monotone h.p.-formula computing f has
at least k leaves.

Proof. Straightforward induction using Lemma 2.5 and 2.2.

We can now prove that every monotone formula computing f contains at
least σ(Newt(f)) leaves.

Proof of Theorem 1.1. By Lemma 4.2 there exists a bivariate g which is a
monotone h.p.-projection of f so that Newt(g) has k vertices. The projection
also transforms a monotone formula for f to a monotone h.p.-formula for
g.

5.4 Lower bounds from extension complexity

As mentioned in Section 1.2, one can obtain monotone formula lower bounds
also from extensions complexity of Newton polytopes. The main ingredient is
the following lemma.

Lemma 5.5. For polytopes P,Q ⊆ Rn we have

xc(P +Q) ≤ xc(P) + xc(Q) and xc(P tQ) ≤ xc(P) + xc(Q) + 2.

Proof. The first inequality is rather obvious. The second follows from a
theorem of Balas [2], see also [12].

The lower bound is now proved by a straightforward induction.

Theorem 5.6. Assume that f has a monotone formula of size s. Then
xc(Newt(f)) ≤ O(s).

Remark 5.7. The Pfaffian Pfn is the polynomial so that Pf2n = det(X), where
X is the 2n× 2n antisymmetric matrix with Xi,i = 0 and Xi,j = −Xj,i = xi,j
if i < j. The Pfaffian has an arithmetic circuit of size polynomial in n, and
a formula of size 2O(log2 n); see [43]. The Newton polytope Newt(Pfn) is the
perfect matching polytope MATCHn, as described in Remark 3.14. By a result
of Rothvoss [39], MATCHn has extension complexity 2Ω(n).

20

5.5 Monotone circuits

We move to proving the circuit lower bound stated in Theorem 1.2. We first
observe that Minkowski sum typically can not avoid convex independence.

Lemma 5.8. Let A,B ⊆ R2 be non-empty sets such that A+B is a convexly
independent set with |A| ≥ |B|. Then either |A| ≤ 2 or |B| ≤ 1.

Proof. For the sake of contradiction, assume that A+B is convexly indepen-
dent, |A| ≥ 3 and |B| ≥ 2. By Lemma 2.2, the convex hull of A+B has at
most |A|+ |B| vertices. By the size assumption, there exist a1 6= a2 ∈ A and
b1 6= b2 ∈ B with a1 + b1 = a2 + b2. The point a1 + b1 is the average of a1 + b2

and a2 + b1 and it is distinct from them, a contradiction.

Theorem 5.9. Let f be a monotone bivariate Laurent polynomial such that
supp(f) is convexly independent and |supp(f)| = k. Then f requires monotone
h.p.-circuit with k/4 gates.

Theorem 5.9 implies Theorem 1.2 via Lemma 4.2.

Proof. The lower bound is proved using the following “progress” measure.
Given A ⊆ R2 and ε ∈ {0, 1}, let Aε := A if ε = 1 and Aε := ∅ if ε = 0. Given
v ∈ R2, let v + A := {v} + A. Let A be a finite set of finite subsets of R2.
For functions ε : A → {0, 1} and v : A → R2, let

Aε,v =
⋃
A∈A

(v(A) + A)ε(A).

Let
µ(A) = max

ε,v
{|Aε,v| : Aε,v is convexly independent}.

Claim. Let A′ = A ∪ {B} and A1, A2 ∈ A. Then

µ(A′) ≤µ(A) + |B| , (3)

µ(A′) ≤µ(A) + 2 , if B = u+ A1 for some u ∈ R2 , (4)

µ(A′) ≤µ(A) + 4 , if B = A1 ∪ A2 , (5)

µ(A′) ≤µ(A) + 4 , if B = A1 + A2 . (6)

Proof of Claim. Inequality (3) is straightforward.
To prove (4), suppose that ε, v are such that A′ε,v is convexly independent.

Suppose ε(A1) = ε(B) = 1 and v(A1) + A1 6= v(B) + B; otherwise we have

21

|A′ε,v| ≤ µ(A). Then (v(A1) + A1) ∪ (v(B) +B) = {v(A1), v(B) + u}+ A1 is
convexly independent. Since |{v(A1), v(B) + u}| = 2, by Lemma 5.8, A1 has
size at most 2. This means µ(A′) ≤ µ(A) + 2 by (3).

For (5), observe that µ(A′) ≤ µ(A∪{u1+A1, u2+A2}) whenever u1, u2 6= 0
are distinct and apply (4) twice.

Finally, we prove (6). If B = A1 + A2 is not convexly dependent, it
contributes nothing to µ. Assume that B is convexly independent and
|A1| ≥ |A2| > 0. By Lemma 5.8, either |A1 + A2| ≤ 4 or |A2| = 1. In the
former case, µ(A′) ≤ µ(A) + 4 by (3). In the latter, A2 = {u} for some u and
A′ = A ∪ {u+ A1} and we can apply (4).

Let us call a h.p.-circuit transparent, if every gate in the circuit computes
a polynomial with convexly independent support. Given a circuit Ψ and a
node u, let supp(u) be the support of the Laurent polynomial computed by u.
Let AΨ be the set {supp(u) : u ∈ Ψ}.

Using the Claim, we can show that whenever a transparent and monotone
Ψ has s gates then µ(AΨ) ≤ 4s. The proof is by induction. The induction
base s = 1 trivially holds. It remains to verify the induction step. Let u be an
output gate of Ψ. If u is also an input gate, apply (3). If u = u1 + u2 then
supp(u) = supp(u1) ∪ sup(u2) and (5) completes the proof. If u = u1 × u2

then supp(u) = supp(u1) + sup(u2) and (6) completes the proof.
Finally, consider a monotone circuit Ψ for f of minimal size s. No

gate in the circuit computes the zero polynomial (unless f itself the zero
polynomial). The circuit is transparent because a monotone computation
does not cancel monomials unless multiplying by zero, and because +,× can
not “undo” convex independence. This means that µ(AΨ) ≤ 4s. On the
other hand, since supp(f) consists of k convexly independent points, we have
µ(AΨ) ≥ |supp(f)| = k.

Other illustrative consequences are the following:

Corollary 5.10.
∑n

k=0 x
kyk

2
requires monotone h.p.-arithmetic circuit of

size Ω(n).

Recall the Cliquen polynomial from Remark 3.9 and the polytope ARTn
from Remark 3.8. Let Artn be the unique polynomial with zero-one coefficients
so that Newt(Artn) = ARTn.

Corollary 5.11. Both Cliquen and Artn require monotone arithmetic circuits
of size Ω(2n).

22

Proof. Proposition 3.7 and Remark 3.8 show that Cliquen and Artn are trans-
parent with shadow complexity 2n.

5.6 Generalizations

The results of this section can be strengthened in several ways. First, one
could extend the notion of monotone computation to any field. A monotone
circuit would be such that for every sum gate f1+f2, no monomial can vanish4:
supp(f1 + f2) = supp(f1) ∪ supp(f2). Then Theorem 1.1 goes through.

Second, one may consider circuits with high-power gates. This would be
an arithmetic circuit which, apart from the +,× gates, can use also unary
gates of the form ()k which raises its input to a power of k ∈ N. A similar
notion has appeared in the context of additive complexity of a polynomial
and counting real roots of univariate polynomials (see Section 12.3 of [8] and
references within). Our lower bounds hold also in this setting. This is because
Newt(fk) with k > 0 is merely a scaling of Newt(f).

Finally, our results extend to other semi-rings as well. For definitions of
polynomials over semi-rings and their computations see, e.g., [22, 23]. Let
B = ({0, 1},∨,∧, 0, 1) be the Boolean semi-ring.

Proposition 5.12. Theorems 1.1 and 1.2 hold also over B.

Proof. Given a circuit over B computing f , we can interpret it as a compu-
tation over R by replacing ∧ by × and replacing ∨ by +. The circuit then
computes a polynomial f ∗ over R with supp(f ∗) = supp(f). Since the two
theorems take into account only supp(f ∗), they hold over B as well.

6 Divisions

The model of monotone circuits can be extended to include division gates. We
may allow the circuit to use an extra gate computing f/g. A monotone circuit
with divisions can compute a non-monotone polynomial; e.g., x2−x+1 = x3+1

x+1
.

Monotone circuits with divisions were extensively studied by Fomin et
al. [15]. They proved, among other nice things, a separation between monotone
circuits and monotone circuits with division. The Spanning Tree polynomial
(see Section 3.3) has a polynomial size monotone circuit with divisions but

4Monomials can however vanish on a product as in (x + y)(x− y) = x2 − y2.

23

requires an exponential size monotone circuit by [22]. This is in sharp contrast
with the result of Strassen that division gates cannot help in the general
arithmetic setting5.

Super-polynomial lower bounds on monotone circuits with division com-
puting a monotone polynomial f are not known. In [15], strong lower bounds
were given for a non-monotone f . The non-monotonicity, however, is more
than a subtlety. Their proof hinges on the fact that (x− 1)2 + 2−2n+1

can be
written as f/g with f, g monotone, whereas they require degrees 22n .

This question can be phrased more generally. If f can be computed by a
monotone circuit with divisions of size s then we can find non-zero h and g
with monotone circuit size O(s) such that fh = g. In other words, f divides
g.

Problem 2. Find an explicit monotone fn (with polynomially many variables
and of a polynomial degree) such that g requires superpolynomial monotone
circuit whenever g 6= 0 and fn divides g.

A seminal result of Kaltofen [24], see also [7], states the following: if f of
degree d can be computed by a circuit of size s, we can compute each factor
of f by a (non-monotone) circuit of size polynomial in s and d. We believe
that in fact d can be replaced by the degree of the factor. This means that in
the non-monotone setting, Problem 2 is equivalent to proving lower bound
on fn.

Shadow complexity gives a partial solution to Problem 2.

Theorem 6.1. Let f be a (not necessarily monotone) real polynomial such
that σ(Newt(f)) = k. Assume that g 6= 0 is a monotone polynomial such that
f divides g. Then every monotone formula computing g contains at least k
leaves.

Proof. Lemma 2.6 gives σ(Newt(g)) ≥ σ(Newt(f)), and we can apply Theo-
rem 1.1.

Shadow complexity also provides lower bounds on monotone circuit com-
plexity provided the degree is not too large. This is another partial solution
to Problem 2.

5This holds for polynomials of low degree; the spanning tree polynomial indeed has this
property.

24

Proposition 6.2. Let f be either Cliquen or Artn. Let g 6= 0 be a monotone
polynomial such that f divides g.

(i). g requires monotone formula with 2n leaves.

(ii). If g has degree d ≤ 2o(n
1
2), then g requires monotone circuit of size

2Ω(n
1
2).

(iii). If g = αf with α a monomial of an arbitrary degree, then g requires
monotone arithmetic circuit of size Ω(2n).

Proof. (i) follows from Theorem 6.1 and the fact that f is transparent (see
Proposition 3.7 and Remark 3.8). Similarly, Newt(αf) is merely a shift of
Newt(f) and hence it remains transparent, which gives (iii).

For (ii) we use a result of Hyafil [21]: If g has a monotone circuit of size s,
then it has a monotone formula of size 2O(log s log d+log2 d). Part (i) completes
the proof.

The degree assumption in (ii) is rather artificial. A monotone circuit with
divisions can result in g with an exponential degree, as is the case in the
circuit from [15] computing the spanning tree polynomial. Nevertheless, this
yields lower bounds at least for monotone formulas with division.

Theorem 6.3. The polynomials Cliquen and Artn require monotone formula
with division of size 2Ω(n).

Proof. Brent’s [6] argument that formulas with division can be balanced
implies that if f has monotone formula with divisions of size s, then f =
g/h where both g and h have monotone formulas of size polynomial in s.
Proposition 6.2 part (i) completes the proof

Remark 6.4. Transparency is fragile. If f is transparent then f 2 is not
necessarily so. In fact, if f is monotone then f 2 is never transparent unless
|supp(f)| ≤ 1. Hence, the techniques from Proposition 6.2 do not give anything
when g = fm and m is exponentially large.

Remark 6.5. A different partial solution to Problem 2 can be inferred
from monotone Boolean lower bounds. Let Cliquek,n be the polynomial∑

A

∏
i,j∈A xi,j, where A ranges over k-element subsets of [n]. For k :=

b(n/ log n)2/3/4c, and for every m, the polynomial (Cliquek,n)m requires a

monotone arithmetic circuit of size 2n
Ω(1)

.

25

Indeed, a monotone arithmetic can be interpreted as a monotone Boolean
circuit (cf. Section 5.1). Hence, a monotone arithmetic circuit for (Cliquek,n)m

translates to a monotone Boolean circuit deciding whether a graph has a k-
clique. This requires an exponential circuit by a result of Alon and Boppana [1].

7 τ-Conjecture for Newton polygons

Koiran et al. made the following conjecture [28].

Conjecture 1 ([28]). Let F be a field. Let f ∈ F[x1, x2] be a bivariate
polynomial which can be written as

f =

p∑
i=1

q∏
j=1

fi,j , where |supp(fi,j)| ≤ r , (7)

then Newt(f) has at most O((pqr)c) vertices (for some absolute constant c).

The authors of [28] have shown that Conjecture 1 implies VP6=VNP over
the field in question. The conjecture is related to a similar conjecture by
Koiran from [26] about the number of real roots of univariate polynomials. In
[20], it was shown that the conjecture from [26] in fact implies Conjecture 1.
Theorem 5.4 validates the conjecture in the monotone setting:

Remark 7.1. Let f be as in (7) with fij monotone. Then Newt(f) has at
most pqr vertices.

The conjecture can be used to upper-bound the shadow complexity.

Proposition 7.2. Let F be an infinite field. Assume Conjecture 1 holds over
F. Assume that a polynomial f of degree d has an arithmetic circuit of size s.
Then σ(Newt(f)) ≤ sO(

√
d log d).

Proof. First, observe that if Conjecture 1 is true, it is also true when f and
fij in (7) are allowed to be Laurent polynomials.

Now, if f has a circuit of size s, then f has a depth-four circuit of size
sO(
√
d log d); see [27] and references within. This means that we can write

f =

p∑
i=1

q∏
j=1

fi,j , where |supp(fi,j)| ≤ r ,

26

with pqr ≤ sO(
√
d log d).

Suppose that σ(Newt(f)) = k. By Lemma 4.2, there is a h.p.-projection
π so that the Newton polytope of the bivariate Laurent polynomial π(f)
has k vertices. Hence π(f) =

∑p
i=1

∏q
j=1 π(fi,j). Since |supp(π(fi,j))| ≤ r,

Conjecture 1 implies k ≤ O((pqr)c) and hence k ≤ sO(d log d).

This gives quantitative bounds for some specific polytopes, mainly the
Birkhoff polytope and the Matching polytope from Remark 3.14:

Corollary 7.3. Assume that Conjecture 1 holds over some infinite field.
Then both σ(DSn) and σ(MATCHn) are at most 2O(

√
n log2 n).

Proof. DSn is the Newton polytope of the determinant polynomial which
has an arithmetic circuit of size s = nO(1). For MATCHn, the same holds by
Remark 5.7.

We do not know whether these conclusions hold or not. Another implica-
tion of Conjecture 1 is that σ(Qk,n) ≤ nO(1), where Qk,n is the convex hull of
vectors in {0, 1}n of Hamming weight k. It follows from Proposition 3.3 that
this is actually true: σ(Qk,n) ≤ n2.

Remark 7.4. Results of Gritzman and Sturmfels [18] (cf. Section 1.1) imply
the following monotone three-dimensional version. Let f be as in (7), where
fij ∈ R[x1, x2, x3] are monotone. Then Newt(f) ⊆ R3 has at most O(p(qr)2)
vertices.

8 An easy polynomial with many vertices

Here we construct a bivariate polynomial with a monotone arithmetic circuit
of linear size, but whose Newton polytope has exponentially many vertices.
This proves Theorem 5.1.

We use the following notation. Given (a, b) ∈ R2,

(a, b) · P := {(ax, by) : (x, y) ∈ P}.

Given a ∈ R,
aP := (a, a) · P.

Observation 8.1. For a bivariate polynomial f(x, y),

Newt(f(xa, yb)) = (a, b)Newt(f(x, y)) and Newt(fa) = aNewt(f).

27

The building block of the polynomial are the following two polytopes. Let
Pn be the polytope with vertices {(k, k2) : 0 ≤ k ≤ n − 1}. Let Qn be the
polytope with vertices {(k, k2 + k) : 0 ≤ k ≤ n− 1}. These polytopes can be
constructed inductively as follows.

Lemma 8.2. For every n ≥ 1,

P2n = (2, 4) · Pn t ((1, 1) + (2, 4) ·Qn)) (8)

Q2n = (1, 2) · (Pn +Qn) t {(2n− 1, 2n(2n− 1))} . (9)

Proof.
Part (8). Let 0 ≤ k ≤ 2n− 1. If k = 2r is even then r ≤ n− 1 and

(k, k2) = (2, 4)(r, r2)

with (r, r2) a vertex of Pn. If k = 2r + 1 is odd then r ≤ n− 1 and

(k, k2) = (2r + 1, 4r2 + 4r + 1) = (1, 1) + (2, 4) · (r, r2 + r) ,

where (r, r2 + r) is a vertex of Qn. This shows the containment ⊆ in (8). The
other direction holds since Pn tQn can have at most 2n vertices.

Part (9). We first describe the vertices of (1, 2)(Pn +Qn). We claim that

vert((1, 2)(Pn+Qn)) = {v0, v1, . . . , v2n−2, u}, (10)

where vk := (k, k2 + k), u := (n− 1, 2n(n− 1)).

Given 0 ≤ k ≤ 2n− 2, let us show that vk is a vertex of (1, 2)(Pn +Qn). If
k = 2r is even, we have r ≤ n− 1 and

(k, k2 + k) = (2r, 4r2 + 2r) = (1, 2)(r, r2) + (1, 2)(r, r2 + r).

If k = 2r + 1 is odd, we have r ≤ n− 2 and

(k, k2 + k) = (2r + 1, 4r2 + 6r + 2) = (1, 2)(r + 1, (r + 1)2) + (1, 2)(r, r2 + r).

This means that vk ∈ (1, 2)(Pn +Qn). Now, every (z1, z2) ∈ (1, 2)(Pn +Qn)
satisfies z2 ≥ z2

1 + z1, because

2r2
1 + 2(r2

2 + r2)− (r1 + r2)2 − (r1 + r2) = (r1 − r2)2 − (r1 − r2) ≥ 0.

28

Since vk lies on the curve z2 = z2
1 + z1, and the curve is strictly convex, vk

cannot be convex combination of other points in (1, 2)(Pn + Qn). So, vk is
indeed a vertex. To show that u is a vertex, note that both (1, 2)Pn and
(1, 2)Qn are contained in the halfplane {(z1, z2) ∈ R2 : z2 ≤ 2nz1}. On the
boundary z2 = 2nz1, (1, 2)Qn has vertices (0, 0) and u, and (1, 2)Pn only the
vertex (0, 0). This implies u is a vertex of (1, 2)(Pn +Qn). This proves the
containment ⊆ in (10). Equality holds since Pn + Qn can have at most 2n
vertices.

To infer (9) from (10), note that u lies on the line connecting the origin
and v2n−1 = (2n− 1, 2n(2n− 1)).

Proof of Theorem 5.1. Inductively define a sequence of bivariate polynomials.
The base case is

p0 = 1 and q0 = 1.

The inductive step is

pn+1 = pn(x2, y4)2 + xNyNqn(x2, y4)2

and

qn+1 = pn(x2, y4)qn(x2, y4) + xN(N−1)yN
2(N−1)

where N = 2n+1.
We claim that for every n ≥ 0,

Newt(pn) = 2nP2n and Newt(qn) = 2nQ2n . (11)

For n = 0, this follows from Newt(p0) = Newt(q0) = {(0, 0)} = P1 = Q1. The
induction step uses Lemma 2.5 and Observation 8.1. Assume that (11) holds
for a given n ≥ 0. Then

Newt(pn(x2, y4)) = 2n(2, 4)P2n and Newt(qn(x2, y4)) = 2n(2, 4)Q2n .

Using (8),

Newt(pn+1) =2 · 2n(2, 4)P2n t ((N,N) + 2 · 2n(2, 4)Q2n))

=2n+1((2, 4)P2n t ((1, 1) + (2, 4)Q2n)))

=2n+1P2n+1 .

29

Similarly, part (9) gives

Newt(qn+1) =2n(2, 4)(P2n +Q2n) t {(N(N − 1), N2(N − 1))}
=2n+1 ((1, 2)(P2n +Q2n) t {(N − 1, N(N − 1))})
=2n+1Q2n+1 .

This proves (11).
To compute pn, qn, first construct a circuit of size O(n) that simultaneously

computes xM , xM(M−1), yM , yM
2(M−1) for every M = 2m with m ≤ n. Now,

construct a circuit for pn and qn inductively. Given a circuit for pn and qn,
we can construct a new one computing pn+1, qn+1 by introducing a constant
number of extra gates.

9 Open problems

We conclude with the main open problems of this paper.

Open Problem 1. Is σ(DSn) or σ(MATCHn) exponential in n?

Open Problem 2. Is Conjecture 1 true? If not, is it true when f in (7) is
required to have convexly independent support?

Open Problem 3. Find an explicit monotone fn (with polynomially many
variables and of a polynomial degree) such that g requires superpolynomial
monotone arithmetic circuit whenever g 6= 0 and fn divides g.

Acknowledgement. We thank Michael Forbes for pointing out the con-
nection between shadow complexity and Conjecture 1.

References

[1] N. Alon and R. B. Boppana. The monotone circuit complexity of boolean
functions. Combinatorica, 7(1):1–22, 1987.

[2] E. Balas. Disjunctive programming: properties of the convex hull of
feasible points. Discrete Applied Mathematics, 89:3–44, 1998.

30

[3] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational Geometry: Algorithms and Applications. Springer, 2 edition,
2000.

[4] S. Berkowitz, L. Valiant, S. Skyum and C. Rackoff. Fast parallel compu-
tation of polynomials using few processors. Siam J. Comp., 12:641–644,
1983.

[5] A. Borodin and S. Cook. On the number of additions needed to cumpute
specific polynomial. SIAM J. Comput., 5:146–157, 1976.

[6] R. P. Brent. The parallel evaluation of general arithmetic expressions. J.
ACM, 21:201–206, 1974.

[7] P. Bürgisser. Completeness and Reduction in Algebraic Complexity The-
ory, volume 7 of Algorithms and Computation in Mathematics. Springer,
2000.

[8] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity
theory, volume 315 of A series of comprehensive studies in mathematics.
Springer, 1997.

[9] P. Carstensen. Complexity of some parametric integer and network
programming problems. Math. Programming, 26:64–75, 1983.

[10] P. Carstensen. The complexity of some problems in parametric linear
and combinatorial programming. PhD thesis, Univ. of Michigan, 1983.

[11] B. Chazelle, H. Edelsbrunner, and L. J. Guibas. The complexity of
cutting complexes. Discrete Comput Geom, 4:139–181, 1989.

[12] M. Confronti, M. D. Summa, and Y. Faenza. Balas formulation for the
union of polytopes is optimal. Math. Programming, 180:311–326, 2020.

[13] J. Edmonds. Matroids and the greedy algorithm. Math. Programming 1,
pages 127–136, 1971.

[14] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf. Linear vs.
semidefinite extended formulations: Exponential separation and strong
lower bounds. CoRR, abs/1111.0837, 2011.

31

[15] S. Fomin, D. Grigoriev, and G. Koshevoy. Subtraction-free complexity,
cluster transformations, and spanning trees. Found Comput Math, 16:1–
31, 2016.

[16] D. Gale. Optimal assignments in an ordered set: an application of
matroid theory. J. Combin. Theory 4, pages 1073–1082, 1968.

[17] S. Gao. Absolute irreducibility of polynomials via newton polytopes.
Journal of Algebra, 237(2):501–520, 2001.

[18] P. Gritzmann and B. Sturmfels. Minkowski addition of polytopes: Com-
putational complexity and applications to Gröbner bases. SIAM J. Disc.
Math., 6(2), 1993.

[19] J. A. Grochow. Monotone projection lower bounds from extended for-
mulation lower bounds. Theory of Computing, 13:1–15, 2017.

[20] P. Hrubeš. On the distribution of runners on a circle. European Journal
of Combinatorics, 89, 2020.

[21] L. Hyafil. On the parallel evaluation of multivariate polynomials. SIAM
J. Comput., 8(2):120–123, 1979.

[22] M. Jerrum and M. Snir. Some exact complexity results for straight-line
computations over semirings. Journal of the ACM, 1982.

[23] S. Jukna. Lower bounds for tropical circuits and dynamic programs.
Theory of Computing Systems, 57:160–194, 2015.

[24] E. Kaltofen. Uniform closure properties of p-computable functions. In
STOC, pages 330–337, 1987.

[25] V. Klee. On a conjecture of Lindenstrauss. Israel Journal of Mathematics,
1:1–4, 1963.

[26] P. Koiran. Shallow circuits with high-powered inputs. In Symposium
on Innovations in Computer Science. Tsingua University Press, Beijing,
2011.

[27] P. Koiran. Arithmetic circuits: the chasm at depth four gets wider.
Theoretical Computer Science, 448:56–65, 2012.

32

[28] P. Koiran, N. Portier, S. Tavenas, and S. Thomassé. A τ -conjecture for
Newton polygons. Foundations of computational mathematics, 15(1):187–
197, 2015.

[29] U. H. Kortenkamp, J. Richter-Gebert, A. Sarangajan, and G. M. Ziegler.
Extremal properties of 0/1-polytopes. Discrete and Computational Ge-
ometry, 17:439–448, 1997.

[30] J. G. Lagarias, Y. Luo, and A. Padrol. Moser’s shadow problem. ArXiv,
2013.

[31] E. H. Moore. A two-fold generalization of fermat’s theorem. Bull. Amer.
Math. Soc., 2(7):189–199, 1896.

[32] L. Moser. Poorly formulated unsolved problems in combinatorial geome-
try. In mimeographed notes. (East Lansing conference), 1966.

[33] K. Mulmuley. Lower bounds in a parallel model without bit operations.
SIAM J. Comput., 28(4):1460–1509, 1999.

[34] K. Mulmuley and P. Shah. A lower bound for the shortest path problem.
Journal of Computer and System Sciences, 62(2):253–267, 2001.

[35] N. Nisan. Lower bounds for non-commutative computation. In Proceeding
of the 23th STOC, pages 410–418, 1991.

[36] A. Rao and A. Yehudayoff. Communication Complexity: And Applica-
tions. Cambridge University Press. doi:10.1017/9781108671644

[37] R. Raz and A. Yehudayoff. Multilinear formulas, maximal-partition
discrepancy and mixed-sources extractors. J. Comput. Syst. Sci. 77(1),
pages 167–190, 2011.

[38] T. Rothvoß. Some 0/1 polytopes need exponential size extended formu-
lations. CoRR, abs/1105.0036, 2011.

[39] T. Rothvoß. The matching polytope has exponential extension complexity
the matching polytope has exponential extension complexity. J. ACM,
2017.

[40] E. Shamir and M. Snir. On the depth complexity of formulas. Journal
Theory of Computing Systems, 13(1):301–322, 1979.

33

[41] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent
results and open questions. Foundations and Trends in Theoretical
Computer Science, 5(3-4), 2010.

[42] H. R. Tiwari. On computing the shadows and slices of polytopes. arXiv,
2008.

[43] L. G. Valiant. Negation can be exponentially powerful. Theoretical
Computer Science, 12:303–314, 1980.

[44] A. Vince. A framework for the greedy algorithm. Discrete Applied
Mathematics 121, pages 247–260, 2002.

[45] M. Yannakakis. Expressing combinatorial optimization problems by linear
programs. Journal of Computer and System Sciences, 43(3):441–466,
1991.

34

	Introduction
	Why the plane?
	Extension complexity

	Tools
	Parametrized complexity
	Greedy polytopes
	Operations on polytopes
	Laurent polynomials

	Examples
	The hypercube
	Permutahedra
	Spanning trees
	Cliques
	More graph-based polytopes

	Projections
	Monotone computation
	Optimization problems
	Shadows and monotone computations
	Monotone formulas
	Lower bounds from extension complexity
	Monotone circuits
	Generalizations

	Divisions
	-Conjecture for Newton polygons
	An easy polynomial with many vertices
	Open problems

