Non-Commutative Circuits and the Sum-of-Squares Problem

[Extended Abstract] ${ }^{*}$

Pavel Hrubeš
School of Mathematics, Institute for Advanced Study
Princeton, USA
pahrubes@gmail.com

Avi Wigderson
School of Mathematics,
Institute for Advanced Study
Princeton, USA
avi@ias.edu

Amir Yehudayoff
School of Mathematics, Institute for Advanced Study
Princeton, USA
amir.yehudayoff@gmail.com

Abstract

We initiate a direction for proving lower bounds on the size of non-commutative arithmetic circuits. This direction is based on a connection between lower bounds on the size of non-commutative arithmetic circuits and a problem about commutative degree four polynomials, the classical sum-ofsquares problem: find the smallest n such that there exists an identity

$$
\begin{equation*}
\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}\right) \cdot\left(y_{1}^{2}+y_{2}^{2}+\cdots+y_{k}^{2}\right)=f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2} \tag{1}
\end{equation*}
$$

where each $f_{i}=f_{i}(X, Y)$ is bilinear in $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{k}\right\}$. Over the complex numbers, we show that a sufficiently strong super-linear lower bound on n in (11), namely, $n \geq k^{1+\epsilon}$ with $\varepsilon>0$, implies an exponential lower bound on the size of arithmetic circuits computing the non-commutative permanent.

More generally, we consider such sum-of-squares identities for any biquadratic polynomial $h(X, Y)$, namely

$$
\begin{equation*}
h(X, Y)=f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2} \tag{2}
\end{equation*}
$$

Again, proving $n \geq k^{1+\epsilon}$ in (2) for any explicit h over the complex numbers gives an exponential lower bound for the non-commutative permanent. Our proofs relies on several new structure theorems for non-commutative circuits, as well as a non-commutative analog of Valiant's completeness of the permanent.

We proceed to prove such super-linear bounds in some restricted cases. We prove that $n \geq \Omega\left(k^{6 / 5}\right)$ in (1), if f_{1}, \ldots, f_{n} are required to have integer coefficients. Over the real numbers, we construct an explicit biquadratic polynomial h such that n in 22 must be at least $\Omega\left(k^{2}\right)$. Unfortunately, these results do not imply circuit lower bounds.

[^0]We also present other structural results about non-commutative arithmetic circuits. We show that any non-commutative circuit computing an ordered non-commutative polynomial can be efficiently transformed to a syntactically multilinear circuit computing that polynomial. The permanent, for example, is ordered. Hence, lower bounds on the size of syntactically multilinear circuits computing the permanent imply unrestricted non-commutative lower bounds. We also prove an exponential lower bound on the size of non-commutative syntactically multilinear circuit computing an explicit polynomial. This polynomial is, however, not ordered and an unrestricted circuit lower bound does not follow.

Categories and Subject Descriptors
F.2.1 [Theory of computation]: Numerical Algorithms and Problems

General Terms

Theory

1. INTRODUCTION

1.1 Non-commutative computation

Arithmetic complexity theory studies computation of formal polynomials over some field or ring. Most of this theory is concerned with computation of commutative polynomials. The basic model of computation is that of arithmetic circuit. Despite decades of work, the best size lower bound for general circuits computing an explicit n-variate polynomial of degree d is $\Omega(n \log d)$, due to Baur and Strassen 29, 2. Better lower bounds are known for a variety of more restricted computational models, such as monotone circuits, multilinear or bounded depth circuits (see, e.g., [6, 3]).

In this paper we deal with a different type of restriction. We investigate non-commutative polynomials and circuits; the case when the variables do not multiplicatively commute, i.e., $x y \neq y x$ if $x \neq y$, as in the case when the variables represent matrices over a field ${ }^{1}$ In a non-commutative circuit, a multiplication gate is given with an order in which its inputs are multiplied. Precise definitions appear in Section 2 A simple illustration of how absence of commutativity limits computation is the polynomial $x^{2}-y^{2}$. If x, y commute, the polynomial can be computed as $(x-y)(x+y)$ using one

[^1]multiplication. In the non-commutative case, two multiplications are required to compute it.

Surprisingly, while interest in non-commutative computations goes back at least to 1970 32, no better lower bounds are known for general non-commutative circuits than in the commutative case. The seminal work in this area is 21, where Nisan proved exponential lower bounds on non-commutative formula size of determinant and permanent. He also gives an explicit polynomial that has linear size non-commutative circuits but requires non-commutative formulas of exponential size, thus separating non-commutative formulas and circuits.

One remarkable aspect of non-commutative computation is its connection with the celebrated approximation scheme for the (commutative) permanent 14 . The series of papers 7 , 16, 1, 5 reduce the problem of approximating permanent to the problem of computing determinant of a matrix whose entries are elements of (non-commutative) Clifford algebras. However, already in the case of quaternions (the third Clifford algebra), determinant cannot be efficiently computed by means of arithmetic formulas. This was shown by Chien and Sinclair [4] who extend Nisan's techniques to this and other non-commutative algebras.

In this paper, we propose new directions towards proving lower bounds on non-commutative circuits. We present structure theorems for non-commutative circuits, which enable us to reduce circuit size lower bounds to apparently simpler problems. The foremost such problem is the so called sum-of-squares problem, a classical question on a border between algebra and topology. We also outline a connection with multilinear circuits, in which exciting progress was made in recent years. We then make modest steps towards the lower-bound goal, and present results some of which are of independent interest. Before we describe the results, we take a detour to briefly describe the sum-of-squares problem and its long history.

1.2 The sum-of-squares problem

In this section all variables commute. Consider the polynomial

$$
\begin{equation*}
\operatorname{SOS}_{k}=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}\right) \cdot\left(y_{1}^{2}+y_{2}^{2}+\cdots+y_{k}^{2}\right) \tag{3}
\end{equation*}
$$

Given a field (or a ring) \mathbb{F}, define $\mathcal{S}_{\mathbb{F}}(k)$ as the smallest n such that there exists a polynomial identity

$$
\begin{equation*}
\operatorname{SOS}_{k}=z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2} \tag{4}
\end{equation*}
$$

where each $z_{i}=z_{i}(X, Y)$ is a bilinear form in variables $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{k}\right\}$ over the field \mathbb{F}.

We refer to the problem of determining the value $\mathcal{S}_{\mathbb{F}}(k)$ as the sum-of-squares problem. Note that the problem is not interesting if \mathbb{F} has characteristic two, for then $\mathcal{S}_{\mathbb{F}}(k)=1$. Over other fields, the trivial bounds are

$$
k \leq \mathcal{S}_{\mathbb{F}}(k) \leq k^{2}
$$

In Section 1.3 , we describe the connection between the sum-of-squares problem and arithmetic complexity. At this point, let us discuss the mathematical significance of the sum-ofsquares problem (much more can be found, e.g., in [28]).

We focus on real sums of squares, for they are of the greatest historical importance ${ }^{2}$ Nontrivial identities exhibiting $\mathcal{S}_{\mathbb{R}}(k)=k$ initiated this story.

When $k=1$, we have $x_{1}^{2} y_{1}^{2}=\left(x_{1} y_{1}\right)^{2}$. When $k=2$, we have

$$
\left(x_{1}^{2}+x_{2}^{2}\right) \cdot\left(y_{1}^{2}+y_{2}^{2}\right)=\left(x_{1} y_{1}-x_{2} y_{2}\right)^{2}+\left(x_{1} y_{2}+x_{2} y_{1}\right)^{2} .
$$

Interpreting $\left(x_{1}, x_{2}\right)$ and (y_{1}, y_{2}) as complex numbers α and β, this formula expresses the property

$$
\begin{equation*}
|\alpha|^{2}|\beta|^{2}=|\alpha \beta|^{2} \tag{5}
\end{equation*}
$$

of multiplication of complex numbers. The case $k=1$ trivially expresses the same fact (5) for real α and β. In 1748, motivated by the number theoretic problem of expressing every integer as a sum of four squares, Euler proved an identity showing that $\mathcal{S}_{\mathbb{R}}(4)=4$. When Hamilton discovered the quaternion algebra in 1843, this identity was quickly realized to express (5) for mutiplying quaternions. This was repeated in 1848 with the discovery of the octonions algebra, and the 8 -square identity expressing (5) for octonions. Motivated by the study of division algebras, mathematicians tried to prove a 16 -square identity in the following 50 years. Finally Hurwitz in 1898 proved that it is impossible, obtaining the first nontrivial lower bound:

Theorem 1.1. (11]) $\mathcal{S}_{\mathbb{R}}(k)>k$, except if $k \in\{1,2,4,8\}$.

The following interpretation of the sum-of-squares problem got topologists interested in this problem: if z_{1}, \ldots, z_{n} satisfy (4), the map $z=\left(z_{1}, \ldots, z_{n}\right): \mathbb{R}^{k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is a bilinear normed map. Namely, it satisfies $|z(\bar{x}, \bar{y})|=|\bar{x}||\bar{y}|$ for every $\bar{x}, \bar{y} \in \mathbb{R}^{k}$, where $|\cdot|$ is the Euclidean norm. This rigid structure allows for topological and algebraic geometry tools to yield the following, best known lower bound, which unfortunately gains only a factor of two over the trivial bound:

Theorem 1.2. (13, 18) $\mathcal{S}_{\mathbb{R}}(k) \geq(2-o(1)) k$.

As it happens, the trivial upper bound can be improved as well. There exists a normed bilinear map as above from $\mathbb{R}^{k} \times \mathbb{R}^{\rho(k)}$ to \mathbb{R}^{k}, with $\rho(k)=\Theta(\log k)$. This was shown by Radon and Hurwitz [24, 12], who computed the exact value of the optimal $\rho(k)$. Interestingly, such a map exists even if we require the polynomials z_{i} to have integer ${ }^{3}$ coefficients, see 35, 19. The existence of this integer bilinear normed map turns out to be related to Clifford algebras as well: it can be obtained using a matrix representation of a Clifford algebra with $\rho(k)$ generators. This can be seen to imply

FACT 1.3. $\mathcal{S}_{\mathbb{Z}}(k) \leq O\left(k^{2} / \log k\right)$.

This is the best known upper bound on $\mathcal{S}_{\mathbb{R}}$, or $\mathcal{S}_{\mathbb{F}}$ for any other field with char $\mathbb{F} \neq 2$. This motivated researchers to

[^2]study integer sums of squares, and try to prove lower bounds on $\mathcal{S}_{\mathbb{Z}}$. Despite the effort 18, 33, 28, the asymptotic bounds on $\mathcal{S}_{\mathbb{Z}}$ remained as wide open as in the case of reals. One of the contributions of this paper is the first super-linear lower bound in the integer case. We show that $\mathcal{S}_{\mathbb{Z}}(k) \geq \Omega\left(k^{6 / 5}\right)$.

To illustrate the subtlety of proving lower bounds on the sum-of-squares problem, let us mention that if we allow the z_{i} 's to be rational functions rather than polynomials, the nature of the problem significantly changes. In 1965, Pfister 23 proved that if the z_{i} 's are rational functions, SOS_{k} can be written as a sum of k squares whenever k is a power of two.

1.3 Non-commutative circuits and bilinear complexity

Conditional lower bounds on circuit complexity. The connection between the sum-of-squares problem and noncommutative lower bounds is that a sufficiently strong lower bound on $\mathcal{S}(k)$ implies an exponential lower bound for permanent. Here we present our main results, for a more detailed discussion, see Section 2.1. In the non-commutative setting, there are several options to define the permanent, we define it row-by-row, that is,

$$
\operatorname{PERM}_{n}(X)=\sum_{\pi} x_{1, \pi(1)} x_{2, \pi(2)} \cdots x_{n, \pi(n)}
$$

where π is a permutation of $[n]=\{1, \ldots, n\}$. The advertised connection can be summarized as follow $\left.{ }^{4}\right\}$

Theorem 1.4. Let \mathbb{F} be an algebraically closed field. Assume that $\mathcal{S}_{\mathbb{F}}(k) \geq \Omega\left(k^{1+\varepsilon}\right)$ for a constant $\varepsilon>0$. Then PERM_{n} requires non-commutative circuits of size $2^{\Omega(n)}$.

Theorem 1.4 is an instance of a general connection between non-commutative circuits and commutative degree four polynomials, which we now proceed to describe.

Let f be a commutative polynomial of degree four over a field \mathbb{F}. We say that f is biquadratic in variables $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{k}\right\}$, if every monomial in f has the form $x_{i_{1}} x_{i_{2}} y_{j_{1}} y_{j_{2}}$. If f is biquadratic in variables X and Y, we define
sum-of-squares complexity: $\mathcal{S}_{\mathbb{F}}(f)$ is the smallest $\left.\right|^{5} n$ so that f can be written as

$$
f=z_{1}^{2}+\cdots+z_{n}^{2}
$$

bilinear complexity: $\mathcal{B}_{\mathbb{F}}(f)$ is the smallest n so that f can be written as

$$
f=z_{1} z_{1}^{\prime}+\cdots+z_{n} z_{n}^{\prime}
$$

where each z_{i} and z_{i}^{\prime} are bilinear forms in X, Y. We thus have $\mathcal{S}_{\mathbb{F}}\left(\mathrm{SOS}_{k}\right)=\mathcal{S}_{\mathbb{F}}(k)$, as defined in the previous section.

[^3]Let us first note that over certain fields, $\mathcal{S}_{\mathbb{F}}(f)$ and $\mathcal{B}_{\mathbb{F}}(f)$ are virtually the same:

Remark 1.5. Clearly, $\mathcal{B}_{\mathbb{F}}(f) \leq \mathcal{S}_{\mathbb{F}}(f)$. If \mathbb{F} is algebraically closed with char $\mathbb{F} \neq 2$, then $\mathcal{S}_{\mathbb{F}}(f) \leq 3 \mathcal{B}_{\mathbb{F}}(f)$. This holds since $2 z z^{\prime}=\left(z+z^{\prime}\right)^{2}+(\sqrt{-1} z)^{2}+\left(\sqrt{-1} z^{\prime}\right)^{2}$.

We now define the non-commutative version of SOS_{k} : the non-commutative identity polynomial is

$$
\begin{equation*}
\mathrm{ID}_{k}=\sum_{i, j \in[k]} x_{i} y_{j} x_{i} y_{j} . \tag{6}
\end{equation*}
$$

We show that a lower bound on $\mathcal{B}_{\mathbb{F}}\left(\mathrm{SOS}_{k}\right)$ implies a lower bound on the size of non-commutative circuit computing ID_{k}.

Theorem 1.6. The size of a non-commutative circuit over \mathbb{F} computing ID_{k} is at least $\Omega\left(\mathcal{B}_{\mathbb{F}}\left(\mathrm{SOS}_{k}\right)\right)$.

Theorem 1.6 is proved in Section 4 . The lower bound given by the theorem is reminiscent of the tensor rank approach to lower bounds for commutative circuits, where a lower bound on tensor rank implies circuit lower bounds [30]. In the noncommutative case we can prove a much stronger implication. For every $\varepsilon>0$, a $k^{1+\varepsilon}$ lower bound on $\mathcal{B}_{\mathbb{F}}\left(\mathrm{SOS}_{k}\right)$ gives an exponential lower bound for the permanent. Theorem 1.7 which is proved in Section 5 together with Remark 1.5 imply Theorem 1.4

Theorem 1.7. Assume that $\mathcal{B}_{\mathbb{F}}\left(\mathrm{SOS}_{k}\right) \geq \Omega\left(k^{1+\varepsilon}\right)$, for some $\varepsilon>0$. Then PERM_{n} requires non-commutative circuits of size $2^{\Omega(n)}$ over \mathbb{F}.

The theorem is reminiscent of a result in Boolean complexity, where a sufficient linear lower bound on complexity of a bipartite graph implies an exponential circuit lower bound for a related function (see 15 for discussion.)

An important property that the non-commutative permanent shares with its commutative counterpart is its completeness for the class of explicit polynomials. This enables us to generalize Theorem 1.7 to the following theorem. Let $\left\{f_{k}\right\}$ be a family of commutative biquadratic polynomials such that the number of variables in f_{k} is polynomial in k. We call $\left\{f_{k}\right\}$ explicit, if there exists a polynomial-time algorithm which, given k and a degree-four monomial α as input $\underbrace{6}$ computes the coefficient of α in f_{k}. The polynomial SOS_{k} is clearly explicit.

Theorem 1.8. Let \mathbb{F} be a field such that char $\mathbb{F} \neq 2$. Let $\left\{f_{k}\right\}$ be a family of explicit biquadratic polynomials. Assume that $\mathcal{B}_{\mathbb{F}}\left(f_{k}\right) \geq \Omega\left(k^{1+\epsilon}\right)$ for some $\epsilon>0$. Then PERM_{n} requires non-commutative circuits of size $2^{\Omega(n)}$ over \mathbb{F}.

[^4]Lower bounds on sum-of-squares complexity in special cases. Remark 1.5 tells us that for some fields, $\mathcal{B}_{\mathbb{F}}=\Theta\left(\mathcal{S}_{\mathbb{F}}\right)$, and hence to prove a circuit lower bound, it is sufficient to prove a lower bound on $\mathcal{S}_{\mathbb{F}}$. We prove lower bounds on $\mathcal{S}_{\mathbb{F}}(k)$ in some restricted cases. For more details, see Section 2.2.

Over \mathbb{R}, we find an explicit 'hard' polynomial

Theorem 1.9. There exists an explicit family $\left\{f_{k}\right\}$ of real biquadratic polynomials with coefficients in $\{0,1,2,4\}$ such that $\mathcal{S}_{\mathbb{R}}\left(f_{k}\right)=\Theta\left(k^{2}\right)$.

By Theorem 1.8 , if the construction worked over the complex numbers \mathbb{C} instead of \mathbb{R}, we would have an exponential lower bound on the size of non-commutative circuits for the permanent. Such a construction is not known.

We investigate sums of squares over integers. We prove the following:

THEOREM 1.10. $\mathcal{S}_{\mathbb{Z}}(k) \geq \Omega\left(k^{6 / 5}\right)$.

This result, too, does not imply a circuit lower bound. However, if we knew how to prove the same for $\mathbb{Z}[\sqrt{-1}]$ instead of \mathbb{Z}, we would get lower bounds for circuits over \mathbb{Z}. Such lower bounds are not known.

1.4 Ordered and multilinear circuits

An important restriction on computational power of circuits is multilinearity. This restriction has been extensively investigated in the commutative setting. A polynomial is multilinear, if every variable has individual degree at most one in it. Syntactically multilinear circuits are those in which every product gate multiplies gates with disjoint sets of variables. This model was first considered in 22, where lower bounds on constant depth multilinear circuits were proved (and later improved in 26]). In a breakthrough paper, Raz 25 proved super-polynomial lower bounds on multilinear formula size for the permanent and determinant. These techniques were extended by 27 to give a lower bound of about $n^{4 / 3}$ for the size multilinear circuits.

An interesting observation about non-commutative circuits is that if they compute a polynomial of a specific form, they are without loss of generality multilinear. Let us call a noncommutative polynomial f ordered, if the variables of f are divided into disjoint sets X_{1}, \ldots, X_{d} and every monomial in f has the form $x_{1} \cdots x_{d}$ with $x_{i} \in X_{i}$. The non-commutative permanent, as defined above, is thus ordered. An ordered circuit is a natural model for computing ordered polynomials. Roughly, we require every gate to take variables from the sets X_{i} in the same interval $I \subset[d]$. One property of ordered circuits is that they are automatically syntactically multilinear.

We show that any non-commutative circuit computing an ordered polynomial can be efficiently transformed to an ordered circuit, hence a multilinear one, computing the same polynomial. Such a reduction is not known in the commutative case, and gives hope that a progress on multilinear
lower bounds for permanent or determinant will yield general non-commutative lower bounds.

Theorem 1.11. Let f be an ordered polynomial of degree d. If f is computed by a non-commutative circuit of size s, it can be computed by an ordered circuit of size $O\left(d^{3} s\right)$.

Again, we fall short of utilizing this connection for general lower bounds. By a simple argument, we manage to prove an exponential lower bound on non-commutative multilinear circuits, as we state in the next theorem. However, the polynomial AP_{k} in question is not ordered, and we cannot invoke the previous result to obtain an unconditional lower bound.

Theorem 1.12. Let

$$
\mathrm{AP}_{k}=\sum_{\sigma} x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(k)}
$$

where σ is a permutation of $[k]$. Then every non-commutative multilinear circuit computing AP_{k} is of size at least $2^{\Omega(k)}$.

1.5 A different perspective: lower bounds using rank

An extremely appealing way to obtain lower bounds is by using sub-additive measures, and matrix rank is perhaps the favorite measure across many computational models. It is abundant in communication complexity, and in circuit complexity it has also found its applications. Often, one cannot hope to find a unique matrix whose rank would capture the complexity of the investigated function. Instead, we can associate the function with a family of matrices, and the complexity of the function is related to the minimum rank of matrices in that family. Typically, the family consists of matrices which are in some sense "close" to some fixed matrix.

For arithmetic circuits, many of the known structure theorems 8, 21, 25, 9 invite a natural rank interpretation. This interpretation, however, has lead to lower bounds only for restricted circuits. We sketch below the rank problem which arises in the case of commutative circuits, and explain why it is considerably simpler in the case of non-commutative ones.

Let f be a commutative polynomial of degree d. Consider $N \times N$ matrices whose entries are elements of some field, and \hat{E} rows and columns are labelled by monomials of degree roughly $d / 2$. Hence N is in general exponential in the degree of f. Associate with f a family \mathcal{M} of all $N \times N$ matrices M with the following property: for every monomial α of degree d, the sum of all entries $M_{\beta_{1}, \beta_{2}}$, such that $\beta_{1} \beta_{2}=\alpha$, is equal to the coefficient of α in f. In other words, we partition M into subsets T_{α} corresponding to the possible ways to write α as a product of two monomials, and we impose a condition on the sum of entries in every T_{α}. It can be shown that the circuit complexity of f can be lower bounded by the minimal rank of the matrices in \mathcal{M}.

Note that the sets T_{α} are of size exponential in d, the degree of f. The structure of the sets is not friendly either.

Our first structure theorem for non-commutative circuits, which decomposes non-commutative polynomials to central polynomials, translates to a similar rank problem. However, the matrices $M \in \mathcal{M}$ will be partitioned into sets of size only d (instead of exponential in d). This is thanks to the fact that there are much fewer options to express a non-commutative monomial as a product of other monomials. Our second structure theorem, concerning block-central polynomials, gives a partition into sets of size at most two. The structure of these sets is quite simple too. However, not simple enough to allow us to prove a rank lower bound. In the rank formulation of circuit lower bounds, we can therefore see non-commutative circuits as a first step towards understanding commutative circuit lower bounds.

2. OVERVIEW OF PROOFS

We now outline proofs of the main theorems of the paper. Theorems 1.4 - 1.7 will be proved in Sections 3 - 5 proofs of the rest of the theorems are omitted due to space restrictions.

2.1 Conditional lower bounds on non-commutative circuit size

In this section we describe the path that leads from noncommutative circuit complexity to bilinear complexity.

Preliminaries. Let \mathbb{F} be a field. A non-commutative polynomial is a formal sum of products of variables and field elements. We assume that the variables do not multiplicatively commute, that is, $x y \neq y x$ whenever $x \neq y$. However, the variables commute with elements of \mathbb{F}. The reader can imagine the variables as representing square matrices.

A non-commutative arithmetic circuit Φ is a directed acyclic graph as follows. Nodes (or gates) of in-degree zero are labelled by either a variable or a field element in \mathbb{F}. All the other nodes have in-degree two and they are labelled by either + or \times. The two edges going into a gate v labelled by \times are labelled by left and right. We denote by $v=v_{1} \times v_{2}$ the fact that $\left(v_{1}, v\right)$ is the left edge going into v, and $\left(v_{2}, v\right)$ is the right edge going into v. (This is to determine the order of multiplication.) The size of a circuit Φ is the number of edges in Φ. The integer $\mathcal{C}(f)$ is the size of a smallest circuit computing f.

Note. Unless stated otherwise, we refer to non-commutative polynomials as polynomials, and to non-commutative circuits as circuits.

The proof is presented in three parts, which are an exploration of the structure of non-commutative circuits.

Part I: structure of circuits. The starting point is the structure of polynomials computed by non-commutative circuits, which we now explain. The methods we use are elementary, and are an adaptation of works like 8,9 to the non-commutative world.

We start by defining the 'building blocks' of polynomials,
which we call central polynomials. A homogeneous ${ }^{7}$ polynomial f of degree d is called central, if there exist integers m and d_{0}, d_{1}, d_{2} satisfying $d / 3 \leq d_{0}<2 d / 3$ and $d_{0}+d_{1}+d_{2}=d$ so that

$$
\begin{equation*}
f=\sum_{i \in[m]} h_{i} g \bar{h}_{i} \tag{7}
\end{equation*}
$$

where
(i). the polynomial g, which we call the body, is homogeneous of degree $\operatorname{deg} g=d_{0}$,
(ii). for every $i \in[m]$, the polynomials h_{i}, \bar{h}_{i} are homogeneous of degrees $\operatorname{deg} h_{i}=d_{1}$ and $\operatorname{deg} \bar{h}_{i}=d_{2}$.

The width of a homogeneous polynomial f of degree d, denoted $w(f)$, is the smallest integer n so that f can be written as

$$
\begin{equation*}
f=f_{1}+f_{2}+\cdots f_{n} \tag{8}
\end{equation*}
$$

with each f_{i} a central polynomial. In Section 3.1 we show that the width of f is at most $O\left(d^{3} \mathcal{C}(f)\right)$, and so lower bounds on width imply lower bounds on circuit complexity. We prove this by induction on the circuit complexity of f.

Part II: degree-four. In the first part, we argued that a lower bound on width implies a lower bound on circuit complexity. In the case of degree-four, a central polynomial has a very simple structure: d_{0} is always 2 , and so the body must reside in one of three places: left (when $d_{1}=0$), center (when $d_{1}=1$), and right (when $d_{1}=2$). For a polynomial of degree four, we can thus write (8) with n at most order $\mathcal{C}(f)$, and each f_{i} of this special form.

This observation allows us to relate width and bilinear complexity, as the following proposition shows. For a more general statement, see Proposition 4.1 which also shows that the width and bilinear complexity are in fact equivalent.

PROPosition 2.1. $w\left(\mathrm{ID}_{k}\right) \geq \mathcal{B}\left(\mathrm{SOS}_{k}\right)$.

Part I and Proposition 2.1 already imply Theorem 1.6 which states that a lower bound on bilinear complexity implies a lower bound on circuit complexity of ID_{k}.

Part III: general degree to degree-four. The argument presented in the second step can imply at most a quadratic lower bound on circuit size. To get exponential lower bounds, we need to consider polynomials of higher degrees. We think of the degree of a degree- $4 r$ polynomial as divided into 4 groups, for which we try to mimic the special structure from part II: A block-central polynomial is a central polynomial

[^5]so that $d_{0}=2 r$ and $d_{1} \in\{0, r, 2 r\}$. The structure of blockcentral polynomials is similar to the structure of degree-four central polynomials in that the body is of fixed degree and it has three places it can reside in: left (when $d_{1}=0$), center (when $d_{1}=r$), and right (when $d_{1}=2 r$). In Section 5 we show that a degree- $4 r$ polynomial f can be written as a sum of at most $O\left(r^{3} 2^{r} \mathcal{C}(f)\right)$ block-central polynomials.

We thus reduced the analysis of degree- $4 r$ polynomials to the analysis of degree-four polynomial. This reduction comes with a price, a loss of a factor of 2^{r}. We note that this loss is necessary. The proof is a rather technical case distinction. The idea behind it is a combinatorial property of intervals in the set [$4 r$], which allows us to transform a central polynomial to a sum of 2^{r} block-central polynomials.

Here is an example of this reduction in the case of the identity polynomial. The lifted identity polynomial, LID $_{r}$, is the polynomial in variables z_{0}, z_{1} of degree $4 r$ defined by

$$
\mathrm{LID}_{r}=\sum_{e \in\{0,1\}^{2 r}} z_{e} z_{e}
$$

where for $e=\left(e_{1}, \ldots, e_{2 r}\right) \in\{0,1\}^{2 r}$, we define $z_{e}=\prod_{i=1}^{2 r} z_{e_{i}}$. The lifted identity polynomial is the high-degree counterpart of the identity polynomial, which allows us to prove that a super-linear lower bound implies an exponential one (the corollary is proved in Section 55:

Corollary 2.2. If $\mathcal{B}\left(\mathrm{SOS}_{k}\right) \geq \Omega\left(k^{1+\epsilon}\right)$ for some $\epsilon>0$, then $\mathcal{C}\left(\mathrm{LID}_{r}\right) \geq 2^{\Omega(r)}$.

To complete the picture, we show that LID_{r} is reducible to the permanent of dimension $4 r$.

Lemma 2.3. There exists a matrix M of dimension $4 r \times$ $4 r$ whose nonzero entries are variables z_{0}, z_{1} so that the permanent of M is LID $_{r}$.

To prove the lemma, the matrix M is constructed explicitly, see Section 5 The conditional lower bound on the permanent, Theorem 1.7. follows from Corollary 2.2 and Lemma 2.3

An important property that non-commutative permanent shares with its commutative counterpart is completeness for the class of explicit polynomials. This enables us to argue that a super-linear lower bound on the bilinear complexity of an explicit degree-four polynomial implies an exponential lower bound on permanent. In the commutative setting, this a consequence of the VNP completeness of permanent, as given in 31. In the non-commutative setting, one can prove a similar result 10 .

2.2 Restricted lower bounds on sum-of-squares complexity

We now discuss the lower bounds for restricted sum-of-squares problems we prove: an explicit lower bound over \mathbb{R} and a lower bound for SOS_{k} over integers.

We phrase the problem of lower bounding $\mathcal{S}_{\mathbb{R}}(g)$ in terms of matrices of real vectors. Let $V=\left\{\mathbf{v}_{i, j}: i, j \in[k]\right\}$ be a $k \times k$ matrix whose entries are vectors in \mathbb{R}^{n}. We call V a vector matrix, and n is called the height of V. The matrix V defines a biquadratic polynomial $f(V)$ in $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{k}\right\}$ by

$$
f(V)=\sum_{i_{1} \leq i_{2}, j_{1} \leq j_{2}} a_{i_{1}, i_{2}, j_{1}, j_{2}} x_{i_{1}} x_{i_{2}} y_{j_{1}} y_{j_{2}},
$$

where $a_{i_{1}, i_{2}, j_{1}, j_{2}}$ is equal to $\mathbf{v}_{i_{1}, j_{1}} \cdot \mathbf{v}_{i_{2}, j_{2}}+\mathbf{v}_{i_{1}, j_{2}} \cdot \mathbf{v}_{i_{2}, j_{1}}$, up to a small correction factor which is not important at this point. We can think of the coefficients as given by the permanent of the 2×2 sub-matrix ${ }^{8}$ of V defined by i_{1}, i_{2} and j_{1}, j_{2}.

The following lemma gives the connection between sum-ofsquares complexity and vector matrices.

Lemma 2.4. Let g be a biquadratic polynomial. Then $\mathcal{S}_{\mathbb{R}}(g) \leq n$ is equivalent to the existence a vector matrix V of height n so that $g=f(V)$.

As long as it is finite, the height of a vector matrix for any polynomial does not exceed k^{2}, and a counting argument shows that this holds for "almost" all polynomials. The problem is to construct explicit polynomials that require large height. Even a super-linear lower bound seems nontrivial, since the permanent condition does not talk about inner products of pairs of vectors, but rather about the sum of inner products of two such pairs. We manage to construct an explicit polynomial which requires near-maximal height $\Omega\left(k^{2}\right)$. In our proof, the coefficients impose (through the 2×2 permanent conditions) either equality or orthognality constraints on the vectors in the matrix, and eventually the existence of many pairwise orthogonal ones. In a crucial way, we employ the fact that over \mathbb{R}, if two unit vectors have inner product one, they must be equal. This property ${ }^{9}$ fails over \mathbb{C}, but it is still possible that even over \mathbb{C} our construction has similar height (of course, if this turns out to be even $k^{1+\epsilon}$, we get an exponential lower bound for non-commutative circuits).

The construction, however, does not shed light on the classical sum-of-squares problem which is concerned specifically with the polynomial SOS_{k}. In the case of SOS_{k}, the conditions on the matrix V from Lemma 2.4 are especially nice and simple: (1) all vectors in V are unit vectors, (2) in each row and column the vectors are pairwise orthogonal, and (3) every 2×2 permanent (of inner products) must be zero.

As mentioned in the introduction, the best upper bounds for the sum-of-squares problem have integer coefficients, and so a lot of effort was invested into proving lower bounds in the integer case. Despite that, previously known lower bounds do not even reach $2 k$. We prove the first super-linear lower bound, $\mathcal{S}_{\mathbb{Z}}(k)=\Omega\left(k^{6 / 5}\right)$. Over integers, we take advantage

[^6]of the fact that the unit vectors in V must have entries in $\{-1,0,1\}$ and there is exactly one nonzero entry in each vector. The nonzero coordinate can be thus thought of as a "color" in $[n]$, which is signed by plus or minus. This gives rise to the earlier studied notion of intercalate matrices (see, 33 and the book 28]). The integer sum-of-squares problem can thus be phrased in terms of minimizing the number of colors in a signed intercalate matrix, which can be approached as an elementary combinatorial problem.

Our strategy for proving the integer lower bound has three parts. The first step uses a simple counting argument to show that there must exist a sub-matrix in which one color appears in every row and every column. In the second step we show that the permanent conditions give rise to a "forbidden configuration" in such sub-matrices. In the last step we conclude that any matrix without this forbidden configuration must have many colors.

3. NON-COMMUTATIVE CIRCUITS

We use the following notation. For a node v in a circuit Φ, we denote by Φ_{v} the sub-circuit of Φ rooted at v. Every node v computes a polynomial $\widehat{\Phi}_{v}$ in the obvious way. A monomial α is a product of variables, and $\operatorname{COEF}_{\alpha}(f)$ is the coefficient of α in the polynomial f. Denote by $\operatorname{deg} f$ the degree of f, and if v is a node in a circuit Φ, denote by $\operatorname{deg} v$ the degree of $\widehat{\Phi}_{v}$.

3.1 Structure of non-commutative circuits

In this section we describe the structure of the polynomials computed by non-commutative circuits. The methods we use are elementary, and are an adaptation of works like 8 , 9 to the non-commutative world.

We start by defining the 'building blocks' of polynomials, which we call central polynomials. Recall that a polynomial f is homogeneous, if all monomials with a non-zero coefficient in f have the same degree, and that circuit Φ is homogeneous, if every gate in Φ computes a homogeneous polynomial. A homogeneous polynomial f of degree d is called central, if there exist integers m and d_{0}, d_{1}, d_{2} satisfying

$$
d / 3 \leq d_{0}<2 d / 3 \text { and } d_{0}+d_{1}+d_{2}=d
$$

so that

$$
\begin{equation*}
f=\sum_{i \in[m]} h_{i} g \bar{h}_{i}, \tag{9}
\end{equation*}
$$

where
(i). the polynomial g is homogeneous of degree $\operatorname{deg} g=d_{0}$,
(ii). for every $i \in[m]$, the polynomials h_{i}, \bar{h}_{i} are homogeneous of degrees $\operatorname{deg} h_{i}=d_{1}$ and $\operatorname{deg} \bar{h}_{i}=d_{2}$.

Remark 3.1. In the definition of central polynomial, no assumption on the size of m is made. Hence we can without loss of generality assume that $h_{i}=c_{i} \alpha_{i}$ and $\bar{h}_{i}=\beta_{i}$, where α_{i} is a monomial of degree d_{1}, β_{i} is a monomial of degree d_{2}, and c_{i} is a field element.

The width of a homogeneous polynomial f of degree d, denoted $w(f)$, is the smallest integer n so that f can be written as

$$
f=f_{1}+f_{2}+\cdots+f_{n},
$$

where f_{1}, \ldots, f_{n} are central polynomials of degree d. The following proposition shows that the width of a polynomial is a lower bound for its circuit complexity. We will later relate width and bilinear complexity.

Proposition 3.2. Let f be a homogeneous polynomial of degree $d \geq 2$. Then

$$
\mathcal{C}(f) \geq \Omega\left(d^{-3} w(f)\right)
$$

Proof. We start by observing that the standard homogenization of commutative circuits 30,3 works for non-commutative circuits as well.

Lemma 3.3. Let g be a homogeneous polynomial of degree d. Then there exists a homogeneous circuit of size $O\left(d^{2} \mathcal{C}(f)\right)$ computing g.

Assume that we have a homogeneous circuit Φ of size s computing f. We will show that $w(f) \leq d s$. By Lemma 3.3. this implies that $w(f) \leq O\left(d^{3} \mathcal{C}(f)\right)$, which completes the proof. Without loss of generality, we can also assume that no gate v in Φ computes the zero polynomial (gates that compute the zero polynomial can be removed, decreasing the circuit size).

For a multiset of pairs of polynomials $\mathcal{H}=\left\{\left\langle h_{i}, \bar{h}_{i}\right\rangle: i \in\right.$ [m]\}, define

$$
g \times \mathcal{H}=\sum_{i \in[m]} h_{i} g \bar{h}_{i} .
$$

Let $\mathcal{G}=\left\{g_{1}, \ldots, g_{t}\right\}$ be the set of homogeneous polynomials g of degree $d / 3 \leq \operatorname{deg} g<2 d / 3$ so that there exists a gate in Φ computing g. We show that for every gate v in Φ so that $\operatorname{deg} v \geq d / 3$ there exist multisets of pairs of homogeneous polynomials $\mathcal{H}_{1}(v), \ldots, \mathcal{H}_{t}(v)$ satisfying

$$
\begin{equation*}
\widehat{\Phi}_{v}=\sum_{i \in[t]} g_{i} \times \mathcal{H}_{i}(v) \tag{10}
\end{equation*}
$$

We prove (10) by induction on the depth of Φ_{v}. If $\operatorname{deg}(v)<$ $2 d / 3$ then $\Phi_{v}=g_{i} \in \mathcal{G}$ for some $i \in[t]$. Thus 10 is true, setting $\mathcal{H}_{i}(v)=\{\langle 1,1\rangle\}$ and $\mathcal{H}_{j}(v)=\{\langle 0,0\rangle\}$ for $j \neq i$ in $[t]$. Otherwise, we have $\operatorname{deg} v \geq 2 d / 3$. When $v=v_{1}+v_{2}$, we do the following. Since Φ is homogeneous, v_{1}, v_{2} and v have the same degree which is at least $2 d / 3$. Induction thus implies: for every $e \in\{1,2\}$,

$$
\widehat{\Phi}_{v_{e}}=\sum_{i \in[t]} g_{i} \times \mathcal{H}_{i}\left(v_{e}\right) .
$$

This gives

$$
\widehat{\Phi}_{v}=\widehat{\Phi}_{v_{1}}+\widehat{\Phi}_{v_{2}}=\sum_{i \in[t]} g_{i} \times\left(\mathcal{H}_{i}\left(v_{1}\right) \cup \mathcal{H}_{i}\left(v_{2}\right)\right) .
$$

When $v=v_{1} \times v_{2}$, we have $\operatorname{deg} v=\operatorname{deg} v_{1}+\operatorname{deg} v_{2}$. Since $\operatorname{deg} v \geq 2 d / 3$, either (a) $\operatorname{deg} v_{1} \geq d / 3$ or (b) $\operatorname{deg} v_{2} \geq d / 3$.

In the case (a), by induction,

$$
\widehat{\Phi}_{v_{1}}=\sum_{i \in[t]} g_{i} \times \mathcal{H}_{i}\left(v_{1}\right) .
$$

Defining $\mathcal{H}_{i}(v)=\left\{\left\langle h, \bar{h} \widehat{\Phi}_{v_{2}}\right\rangle:\langle h, \bar{h}\rangle \in \mathcal{H}_{i}\left(v_{1}\right)\right\}$, we obtain

$$
\widehat{\Phi}_{v}=\widehat{\Phi}_{v_{1}} \widehat{\Phi}_{v_{2}}=\left(\sum_{i \in[t]} g_{i} \times \mathcal{H}_{i}\left(v_{1}\right)\right) \widehat{\Phi}_{v_{2}}=\sum_{i \in[t]} g_{i} \times \mathcal{H}_{i}(v) .
$$

Since $\widehat{\Phi}_{v_{2}}$ is a homogeneous polynomial, $\mathcal{H}_{i}(v)$ consists of pairs of homogeneous polynomials. In case (b), define $\mathcal{H}_{i}(v)=$ $\left\{\left\langle\widehat{\Phi}_{v_{1}} h, \bar{h}\right\rangle:\langle h, \bar{h}\rangle \in \mathcal{H}_{i}\left(v_{2}\right)\right\}$.

Applying $\sqrt{10}$ to the output gate of Φ, we obtain

$$
f=\sum_{i \in[t]} g_{i} \times \mathcal{H}_{i},
$$

where \mathcal{H}_{i} are multisets of pairs of homogeneous polynomials. For every $i \in[t]$ and every $r \leqq d-\operatorname{deg} g_{i}$, define $\mathcal{H}_{i}^{r}=\left\{\langle h, \bar{h}\rangle \in \mathcal{H}_{i}: \operatorname{deg}(h)=r, \operatorname{deg} \overline{\bar{h}}=d-\operatorname{deg} g_{i}-r\right\}$. Then $g_{i} \times \mathcal{H}_{i}^{r}$ is a central polynomial. Moreover, since f is homogeneous of degree d, we obtain

$$
f=\sum_{i \in[t]} \sum_{r=0}^{d-\operatorname{deg} g_{i}} g_{i} \times \mathcal{H}_{i}^{r}
$$

Since $t \leq s$, the proof is complete.

3.2 Degree four polynomials

Before we describe the specific structure of degree four polynomials, let us give a general definition. Let X_{1}, \ldots, X_{r} be (not necessarily disjoint) sets of variables. For a polynomial f, let $f\left[X_{1}, \ldots, X_{r}\right]$ be the homogeneous polynomial of degree r so that for every monomial α, we have: i) $\operatorname{CoEF}_{\alpha}\left(f\left[X_{1}, \ldots, X_{r}\right]\right)=\operatorname{CoEF}_{\alpha}(f)$, if $\alpha=x_{1} x_{2} \cdots x_{r}$ with $x_{i} \in X_{i}$ for every $i \in[r]$, and ii) $\operatorname{COEF}_{\alpha}\left(f\left[X_{1}, \ldots, X_{r}\right]\right)=0$, otherwise.

We easily obtain the following refinement of structure of degree-four polynomials:

Lemma 3.4. If $f=f\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$, then $w(f)$ is the smallest n so that f can be written as $f=f_{1}+\cdots+f_{n}$, where for every $t \in[n]$, either
(a) $f_{t}=g_{t}\left[X_{1}, X_{2}\right] h_{t}\left[X_{3}, X_{4}\right]$, or
(b) $f_{t}=\sum_{i \in[m]} h_{t, i}\left[X_{1}\right] g_{t}\left[X_{2}, X_{3}\right] \bar{h}_{t, i}\left[X_{4}\right]$,
where $g_{t}, h_{t}, h_{t, i}, \bar{h}_{t, i}$ are some polynomials.

4. DEGREE FOUR AND BILINEAR COMPLEXITY

We consider polynomials of a certain structure. Let f be a polynomial in variables $X, Y=\left\{x_{1}, \ldots, x_{k}\right\},\left\{y_{1}, \ldots, y_{k}\right\}$ so that $f=f[X, Y, X, Y]$, i.e.,

$$
\begin{equation*}
f=\sum_{i_{1}, j_{1}, i_{2}, j_{2} \in[k]} a_{i_{1}, j_{1}, i_{2}, j_{2}} x_{i_{1}} y_{j_{1}} x_{i_{2}} y_{j_{2}} \tag{11}
\end{equation*}
$$

For a non-commutative polynomial g, we define $g^{(c)}$ to be the polynomial g understood as a commutative polynomial. For example, if $g=x y+y x$, then $g^{(c)}=2 x y$.

In particular, if f is of the form 11), the polynomial $f^{(c)}$ is biquadratic. In the following proposition, we relate the width of a polynomial f and $\mathcal{B}\left(f^{(c)}\right)$.

Proposition 4.1. Let f be a homogeneous polynomial of degree four of the form 11. Then $\mathcal{B}\left(f^{(c)}\right) \leq w(f)$.

Proof. Using Lemma 3.4 we can write $f=f_{1}+\cdots+f_{n}$, where for every $t \in[n]$, either
(a) $f_{t}=g_{t}[X, Y] h_{t}[X, Y]$, or
(b) $f_{t}=\sum_{i \in[m]} h_{t, i}[X] g_{t}[Y, X] \bar{h}_{t, i}[Y]$.

The commutative polynomial $f_{t}^{(c)}$ is a product of two bilinear forms in X and Y : in case (a), of $g_{t}[X, Y]^{(c)}$ and $h_{t}[X, Y]^{(c)}$, and in case (b), of $g_{t}[Y, X]^{(c)}$ and $\sum_{i} h_{t, i}[X] \bar{h}_{t, i}[Y]$. Altogether $f^{(c)}=f_{1}^{(c)}+\cdots+f_{n}^{(c)}$, where each $f_{t}^{(c)}$ is a product of two bilinear forms, and hence $\mathcal{B}\left(f^{(c)}\right) \leq n$.

Proof of Theorem 1.6. Recall the definition of the identity polynomial,

$$
\mathrm{ID}_{k}=\sum_{i, j \in[k]} x_{i} y_{j} x_{i} y_{j}
$$

The commutative polynomial $\mathrm{ID}_{k}^{(c)}$ is the polynomial SOS_{k}

$$
\mathrm{SOS}_{k}=\sum_{i \in[k]} x_{i}^{2} \sum_{j \in[k]} y_{j}^{2} .
$$

The theorem follows from Proposition 3.2 and 4.1 .

Let us note that it is not necessary to separate variables in ID_{k} into two disjoint sets X and Y. In the non-commutative setting, this is just a cosmetic detail:

$$
\text { REMARK 4.2. } w\left(\mathrm{ID}_{k}\right)=w\left(\sum_{i, j \in[k]} x_{i} x_{j} x_{i} x_{j}\right)
$$

5. HIGHER DEGREES

In this section, we show that a sufficiently strong lower bound on the width of a degree four polynomial implies an exponential lower bound on the width, and hence circuit size, of a related high degree polynomial.

Let f be a homogeneous polynomial of degree $4 r$. We assume that f contains only two variables z_{0} and z_{1}. We define $f^{(\lambda)}$ to be the polynomial obtained by replacing degree r monomials in f by new variables. Formally, for every monomial α of degree r in variables z_{0}, z_{1}, introduce a new variable x_{α}. The polynomial $f^{(\lambda)}$ is defined as the homogenous degree four polynomial in the 2^{r} variables $X=\left\{x_{\alpha}: \operatorname{deg} \alpha=r\right\}$ satisfying

$$
\begin{equation*}
\operatorname{CoEF}_{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}}}\left(f^{(\lambda)}\right)=\operatorname{CoEF}_{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}}(f) \tag{12}
\end{equation*}
$$

Remark 5.1. Let g be a homogeneous degree four polynomial in k variables. If $k \leq 2^{r}$, then there exists a polynomial f of degree $4 r$ in variables z_{0}, z_{1} such that $g=f^{(\lambda)}$ (up to a renaming of variables).

We now relate $w(f)$ and $w\left(f^{(\lambda)}\right)$. To do so, we need a modified version of Proposition 3.2 Let f be a homogeneous polynomial of degree $4 r$. We say that f is block-central, if either
I. $f=g h$, where g, h are homogeneous polynomials with $\operatorname{deg} g=\operatorname{deg} h=2 r$, or
II. $f=\sum_{i \in[m]} h_{i} g \bar{h}_{i}$, where g, h_{i}, \bar{h}_{i} are homogeneous polynomials of degrees $\operatorname{deg} g=2 r$ and $\operatorname{deg} h_{i}=\operatorname{deg} \bar{h}_{i}=$ r for every $i \in[m]$.

Every block-central polynomial is also central. The following lemma shows that every central polynomial can be written as a sum of 2^{r} block-central polynomials. The lemma thus enables us to consider a simpler problem, i.e., lower bounding the width with respect to block-central polynomials. However, this simplification comes with a price, namely, a loss of a factor of 2^{r}.

Lemma 5.2. Let f be a central polynomial of degree $4 r$ in two variables z_{0}, z_{1}. Then there exist $n \leq 2^{r}$ and blockcentral polynomials f_{1}, \ldots, f_{n} so that $f=f_{1}+\cdots+f_{n}$.

Proof. The proof is by a rather long case distinction, and we omit it.

We can now relate the width of f and $f^{(\lambda)}$.

Proposition 5.3. Let f be a homogeneous polynomial of degree $4 r$ in the variables z_{0}, z_{1}. Then $w(f) \geq 2^{-r} w\left(f^{(\lambda)}\right)$.

Proof. Assume $w(f)=n$. Lemma 5.2 implies $f=$ $f_{1}+\cdots+f_{n^{\prime}}$, where $n^{\prime} \leq 2^{r} n$ and f_{j} are block-central polynomials. Equation 12 implies

$$
f^{(\lambda)}=f_{1}^{(\lambda)}+\cdots+f_{n^{\prime}}^{(\lambda)}
$$

It is thus sufficient to show that every $f_{t}^{(\lambda)}$ is a central polynomial, for then $w\left(f^{(\lambda)}\right) \leq n^{\prime} \leq 2^{r} n$.

In order to do so, let us extend the definition of $(.)^{(\lambda)}$ as follows. If g is a polynomial of degree ℓr in the variables z_{0}, z_{1}, let $g^{(\lambda)}$ be the homogeneous polynomial of degree ℓ in X so that

$$
\operatorname{coEF}_{x_{\alpha_{1}} \cdots x_{\alpha_{k}}}\left(g^{(\lambda)}\right)=\operatorname{CoEF}_{\alpha_{1} \cdots \alpha_{k}}(g)
$$

If g, h are homogeneous polynomials whose degree is divisible by r, we obtain $(g h)^{(\lambda)}=g^{(\lambda)} h^{(\lambda)}$. Hence if $f_{t}=g_{t} h_{t}$ a block-centralpolynomial of type I, then $f_{t}^{(\lambda)}=g_{t}^{(\lambda)} h_{t}^{(\lambda)}$ is a central polynomial of type (a) according to Lemma 3.4 with $X=X_{1}=X_{2}=X_{3}=X_{4}$. If $f_{t}=\sum_{i} h_{t, i} g_{t} \bar{h}_{t, i}$ is a blockcentralpolynomial of type II, $f_{t}^{(\lambda)}=\sum_{i} h_{t, i}^{(\lambda)} g_{t}^{(\lambda)} \bar{h}_{t, i}^{(\lambda)}$, and hence $f_{t}^{(\lambda)}$ is a centralpolynomial of type (b) according to Lemma3.4

By Remark 5.1, we can start with a degree four polynomial in $k \leq 2^{r}$ variables and "lift" it to a polynomial f of degree $4 r$ such that $f^{(\lambda)}=g$. We can then deduce that a sufficiently strong lower bound on the bilinear complexity of g implies an exponential lower bound for the circuit complexity of f. We apply this to the specific case of the identity polynomial. The lifted identity polynomial, LID_{r}, is the polynomial in variables z_{0}, z_{1} of degree $4 r$ defined by

$$
\operatorname{LID}_{r}=\sum_{e \in\{0,1\}^{2 r}} z_{e} z_{e}
$$

where for $e=\left(e_{1}, \ldots, e_{s}\right) \in\{0,1\}^{s}$, we define $z_{e}=\prod_{i=1}^{s} z_{e_{i}}$.

Corollary 5.4 (Corollary 2.2 Restated). If $\mathcal{B}\left(\mathrm{SOS}_{k}\right) \geq \Omega\left(k^{1+\epsilon}\right)$ for some $\epsilon>0$, then $\mathcal{C}\left(\mathrm{LID}_{r}\right) \geq 2^{\Omega(r)}$.

Proof. The definition of LID_{r} can be equivalently written as

$$
\operatorname{LID}_{r}=\sum_{e_{1}, e_{2} \in\{0,1\}^{r}} z_{e_{1}} z_{e_{2}} z_{e_{1}} z_{e_{2}}
$$

By definition, $\operatorname{LID}_{r}^{(\lambda)}=\sum_{i, j \in[k]} x_{i} x_{j} x_{i} x_{j}$ with $k=2^{r}$. Hence, by Remark 4.2, $w\left(\operatorname{LID}_{r}^{(\lambda)}\right)=w\left(\mathrm{ID}_{k}\right)$. By Proposition 5.3 $w\left(\mathrm{LID}_{r}\right) \geq 2^{-r} w\left(\operatorname{LID}_{r}^{(\lambda)}\right)$. Hence $w\left(\mathrm{LID}_{r}\right) \geq 2^{-r} w\left(\mathrm{ID}_{k}\right)$. By Proposition 4.1. $w\left(\mathrm{ID}_{k}\right) \geq \mathcal{B}\left(\mathrm{ID}_{k}\right)$. If $\mathcal{B}\left(\mathrm{ID}_{k}\right) \geq c k^{1+\epsilon}$ for some constants $c, \epsilon>0$, we have $w\left(\right.$ LID $\left._{r}\right) \geq c 2^{-r} 2^{r(1+\epsilon)}=$ $c 2^{\epsilon r}$. By Proposition 3.2. $\mathcal{C}\left(\mathrm{LID}_{r}\right) \geq \Omega\left(r^{-3} 2^{\epsilon r}\right)=2^{\Omega(r)} . \square$

One motivation for studying the lifted identity polynomial is that we believe it is hard for non-commutative circuits. However, note that an apparently similar polynomial has small circuit size. For $e=\left(e_{1}, \ldots, e_{s}\right) \in\{0,1\}^{s}$, let $e^{\star}=$ $\left(e_{s}, \ldots, e_{1}\right)$. The polynomial

$$
\sum_{e \in\{0,1\}^{2 r}} z_{e} z_{e^{\star}}
$$

has a non-commutative circuit of linear size. This result can be found in 21, where it is also shown that the noncommutative formula complexity of this polynomial is exponential in r.

We now show that LID_{r} is reducible to the permanent of dimension $4 r$.

Lemma 5.5 (Lemma 2.3 restated). There exists a matrix M of dimension $4 r \times 4 r$ whose nonzero entries are variables z_{0}, z_{1} so that the permanent of M is LID $_{r}$.

Proof. For $j \in\{0,1\}$, let D_{j} be the $2 r \times 2 r$ matrix with z_{j} on the diagonal and zero everywhere else. The matrix M is defined as

$$
M=\left[\begin{array}{cc}
D_{0} & D_{1} \\
D_{1} & D_{0}
\end{array}\right]
$$

The permanent of M taken row by row is

$$
\operatorname{PERM}(M)=\sum_{\sigma} M_{1, \sigma(1)} M_{2, \sigma(2)} \cdots M_{4 r, \sigma(4 r)}
$$

where σ is a permutation of [4r]. The permutations that give nonzero value in $\operatorname{PERM}(M)$ satisfy: for every $i \in[2 r]$, if $\sigma(i)=i$ then $\sigma(2 r+i)=2 r+i$, and if $\sigma(i)=2 r+i$ then $\sigma(2 r+i)=i$. By definition of M, this means that for every such σ and $i \in[2 r], M_{i, \sigma(i)}=M_{i+2 r, \sigma(i+2 r)}$. Moreover, given the values of such a σ on $[2 r]$, it can be uniquely extended to all of $[4 r]$.

Theorem 1.7 follows from Corollary 2.2 and Lemma 2.3

6. ACKNOWLEDGEMENT

Research supported by NSF Grant DMS-0835373.

7. REFERENCES

[1] A. Barvinok. A simple polynomial time algorithm to approximate the permanent within a simply exponential factor. Random Structures and Algorithms 14(1), pages 29-61, 1999.
[2] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical computer science (22), pages 317-330, 1983.
[3] P. Burgisser. Completeness and reduction in algebraic complexity theory. Springer-Verlag Berlin Heidelberg 2000.
[4] S. Chien and A. Sinclair. Algebras with polynomial identities and computing the determinant. SIAM Journal on Computing 37, pages 252-266, 2007.
[5] S. Chien, L. Rasmussen and A. Sinclair. Clifford algebras an approximating the permanent. STOC 02', pages 222-231, 2002.
[6] J. von zur Gathen. Algebraic complexity theory. Ann. Rev. Comp. Sci. (3), pages 317-347, 1988.
[7] C. Godsil and I. Gutman. On the matching polynomial of a graph. Algebraic Methods in Graph Theory, pages 241-249, 1981.
[8] L. Hyafil. On the parallel evaluation of multivariate polynomials. SIAM J. Comput. 8(2), pages 120-123, 1979.
[9] P. Hrubeš and A. Yehudayoff. Homogeneous formulas and symmetric polynomials. arXiv:0907.2621
[10] P. Hrubeš, A. Wigderson and A. Yehudayoff. Relationless completeness and separations. To appear in CCC.
[11] A. Hurwitz. Über die Komposition der quadratischen Formen von beliebigvielen Variabeln. Nach. Ges. der Wiss. Göttingen, pages 309-316, 1898.
[12] A. Hurwitz. Über die Komposition der quadratischen Formen. Math. Ann., 88, pages 1-25, 1923.
[13] I. M. James. On the immersion problem for real projective spaces. Bull. Am. Math. Soc., 69, pages 231-238, 1967.
[14] M. Jerrum, A. Sinclair and E. Vigoda. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51(4), pages 671-697, 2004.
[15] S. Jukna Boolean function complexity: advances and frontiers. Book in preparation.
[16] N. Karmarkar, R. Karp, R. Lipton, L. Lovasz and M. Luby. A Monte-Carlo algorithm for estimating the permanent. SIAM Journal on Computing 22(2), pages 284-293, 1993.
[17] T. Kirkman. On pluquatemions, and horaoid products of sums of n squares. Philos. Mag. (ser. 3), 33, pages 447-459; 494-509, 1848.
[18] K. Y. Lam. Some new results on composition of quadratic forms. Inventiones Mathematicae., 1985.
[19] T. Y. Lam and T. Smith. On Yuzvinsky's monomial pairings. Quart. J. Math. Oxford. (2), 44, pages 215-237, 1993.
[20] K. Mulmuley. On P vs. NP, Geometric Complexity Theory, and the Riemann Hypothesis. Technical Report, Computer Science department, The University of Chicago, 2009.
[21] N. Nisan. Lower bounds for non-commutative computation. STOC 91', pages 410-418, 1991.
[22] N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via partial derivatives. Computational Complexity, vol. 6, pages 217-234, 1996.
[23] A. Pfister. Zur Darstellung definiter Funktionen als Summe von Quadraten. Inventiones Mathematicae., 1967.
[24] J. Radon. Lineare scharen orthogonalen matrizen. Abh. Math. Sem. Univ. Hamburg 1, pages 2-14, 1922.
[25] R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. Journal of the Association for Computing Machinery 56 (2), 2009.
[26] R. Raz and A. Yehudayoff. Lower bounds and separation for constant depth multilinear circuits. Proceedings of Computational Complexity, pages 128-139, 2008.
[27] R. Raz, A. Shpilka and A. Yehudayoff. A lower bound for the size of syntactically multilinear arithmetic circuits. SIAM Journal on Computing 38 (4), pages 1624-1647, 2008.
[28] D. B. Shapiro. Composition of quadratic forms. W. de Gruyter Verlag, 2000.
[29] Die berechnungskomplexitat von elementarsymmetrischen funktionen und von interpolationskoeffizienten. Numerische Mathematik (20), pages 238-251, 1973.
[30] V. Strassen. Vermeidung von Divisionen. J. Reine Angew. Math. 264, pages 182-202, 1973.
[31] L. G. Valiant. Completeness classes in algebra. STOC '79, pages 249-261.
[32] S. Winograd. On the number of multiplications needed to compute certain functions. Comm. on Pure and Appl. Math. (23), pages 165-179, 1970.
[33] P. Yiu. Sums of squares formulae with integer coefficients. Canad. Math. Bull. , 30, pages 318-324, 1987.
[34] P. Yiu. On the product of two sums of 16 squares as a sum of squares of integral bilinear forms. Quart. J. Math. Oxford. (2) , 41, pages 463-500, 1990.
[35] S. Yuzvinsky. A series of monomial pairings. Linear and multilinear algebra, 15, pages 19-119, 1984.

[^0]: *Full version can be found at ECCC website http://eccc.hpiweb.de.

[^1]: ${ }^{1}$ As in this case, addition remains commutative, as well as multiplication by constants.

[^2]: ${ }^{2}$ The assumption that the z_{i} 's in (4) are bilinear is satisfied automatically if the z_{i} 's are real polynomials.
 ${ }^{3}$ The coefficients of the z_{i} 's can actually be taken to be in $\{-1,0,1\}$.

[^3]: ${ }^{4}$ If char $\mathbb{F}=2$, the theorem holds trivially, since $\mathcal{S}_{\mathbb{F}}(k)=1$.
 ${ }^{5}$ When no such n exists, $\mathcal{S}_{\mathbb{F}}(f)$ is infinite.

[^4]: ${ }^{6}$ We think of the input as given in a binary representation; the algorithm thus runs in time polynomial in $\log k$.

[^5]: ${ }^{7}$ Recall that a polynomial f is homogeneous, if all monomials with a non-zero coefficient in f have the same degree, and that circuit Φ is homogeneous, if every gate in Φ computes a homogeneous polynomial.

[^6]: ${ }^{8}$ In some cases, e.g., when $i_{1}=i_{2}$, this matrix can become $1 \times 2,2 \times 1$ or even 1×1, but we still think of it as a 2×2 matrix. This is also where the correction factor comes from. ${ }^{9}$ Here, the inner product of two complex vectors a, b is $\sum_{i} a_{i} b_{i}$, rather than $\sum_{i} a_{i} \bar{b}_{i}$, with \bar{b} the complex conjugate of b.

