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ABSTRACT
We initiate a direction for proving lower bounds on the size
of non-commutative arithmetic circuits. This direction is
based on a connection between lower bounds on the size of
non-commutative arithmetic circuits and a problem about
commutative degree four polynomials, the classical sum-of-
squares problem: find the smallest n such that there exists
an identity
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where each fi = fi(X,Y ) is bilinear in X = {x1, . . . , xk}
and Y = {y1, . . . , yk}. Over the complex numbers, we show
that a sufficiently strong super-linear lower bound on n in
(1), namely, n ≥ k1+ε with ε > 0, implies an exponential
lower bound on the size of arithmetic circuits computing
the non-commutative permanent.

More generally, we consider such sum-of-squares identities
for any biquadratic polynomial h(X,Y ), namely

h(X,Y ) = f2
1 + f2

2 + · · ·+ f2
n. (2)

Again, proving n ≥ k1+ε in (2) for any explicit h over the
complex numbers gives an exponential lower bound for the
non-commutative permanent. Our proofs relies on several
new structure theorems for non-commutative circuits, as
well as a non-commutative analog of Valiant’s completeness
of the permanent.

We proceed to prove such super-linear bounds in some re-
stricted cases. We prove that n ≥ Ω(k6/5) in (1), if f1, . . . , fn
are required to have integer coefficients. Over the real num-
bers, we construct an explicit biquadratic polynomial h such
that n in (2) must be at least Ω(k2). Unfortunately, these
results do not imply circuit lower bounds.

∗Full version can be found at ECCC website http://eccc.hpi-
web.de.

We also present other structural results about non-commuta-
tive arithmetic circuits. We show that any non-commutative
circuit computing an ordered non-commutative polynomial
can be efficiently transformed to a syntactically multilinear
circuit computing that polynomial. The permanent, for ex-
ample, is ordered. Hence, lower bounds on the size of syntac-
tically multilinear circuits computing the permanent imply
unrestricted non-commutative lower bounds. We also prove
an exponential lower bound on the size of non-commutative
syntactically multilinear circuit computing an explicit poly-
nomial. This polynomial is, however, not ordered and an
unrestricted circuit lower bound does not follow.

Categories and Subject Descriptors
F.2.1 [Theory of computation]: Numerical Algorithms
and Problems

General Terms
Theory

1. INTRODUCTION
1.1 Non-commutative computation
Arithmetic complexity theory studies computation of formal
polynomials over some field or ring. Most of this theory is
concerned with computation of commutative polynomials.
The basic model of computation is that of arithmetic cir-
cuit. Despite decades of work, the best size lower bound
for general circuits computing an explicit n-variate polyno-
mial of degree d is Ω(n log d), due to Baur and Strassen [29,
2]. Better lower bounds are known for a variety of more
restricted computational models, such as monotone circuits,
multilinear or bounded depth circuits (see, e.g., [6, 3]).

In this paper we deal with a different type of restriction. We
investigate non-commutative polynomials and circuits; the
case when the variables do not multiplicatively commute,
i.e., xy 6= yx if x 6= y, as in the case when the variables rep-
resent matrices over a field1. In a non-commutative circuit,
a multiplication gate is given with an order in which its in-
puts are multiplied. Precise definitions appear in Section 2.
A simple illustration of how absence of commutativity lim-
its computation is the polynomial x2 − y2. If x, y commute,
the polynomial can be computed as (x− y)(x+ y) using one

1As in this case, addition remains commutative, as well as
multiplication by constants.



multiplication. In the non-commutative case, two multipli-
cations are required to compute it.

Surprisingly, while interest in non-commutative computa-
tions goes back at least to 1970 [32], no better lower bounds
are known for general non-commutative circuits than in the
commutative case. The seminal work in this area is [21],
where Nisan proved exponential lower bounds on non-commu-
tative formula size of determinant and permanent. He also
gives an explicit polynomial that has linear size non-commu-
tative circuits but requires non-commutative formulas of ex-
ponential size, thus separating non-commutative formulas
and circuits.

One remarkable aspect of non-commutative computation is
its connection with the celebrated approximation scheme for
the (commutative) permanent [14]. The series of papers [7,
16, 1, 5] reduce the problem of approximating permanent to
the problem of computing determinant of a matrix whose
entries are elements of (non-commutative) Clifford algebras.
However, already in the case of quaternions (the third Clif-
ford algebra), determinant cannot be efficiently computed
by means of arithmetic formulas. This was shown by Chien
and Sinclair [4] who extend Nisan’s techniques to this and
other non-commutative algebras.

In this paper, we propose new directions towards proving
lower bounds on non-commutative circuits. We present struc-
ture theorems for non-commutative circuits, which enable
us to reduce circuit size lower bounds to apparently simpler
problems. The foremost such problem is the so called sum-
of-squares problem, a classical question on a border between
algebra and topology. We also outline a connection with
multilinear circuits, in which exciting progress was made
in recent years. We then make modest steps towards the
lower-bound goal, and present results some of which are of
independent interest. Before we describe the results, we take
a detour to briefly describe the sum-of-squares problem and
its long history.

1.2 The sum-of-squares problem
In this section all variables commute. Consider the polyno-
mial

SOSk = (x2
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k) · (y2
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k). (3)

Given a field (or a ring) F, define SF(k) as the smallest n
such that there exists a polynomial identity

SOSk = z2
1 + z2

2 + · · ·+ z2
n , (4)

where each zi = zi(X,Y ) is a bilinear form in variables
X = {x1, . . . , xk} and Y = {y1, . . . , yk} over the field F.

We refer to the problem of determining the value SF(k) as
the sum-of-squares problem. Note that the problem is not
interesting if F has characteristic two, for then SF(k) = 1.
Over other fields, the trivial bounds are

k ≤ SF(k) ≤ k2 .

In Section 1.3, we describe the connection between the sum-
of-squares problem and arithmetic complexity. At this point,
let us discuss the mathematical significance of the sum-of-
squares problem (much more can be found, e.g., in [28]).

We focus on real sums of squares, for they are of the great-
est historical importance2. Nontrivial identities exhibiting
SR(k) = k initiated this story.

When k = 1, we have x2
1y

2
1 = (x1y1)2. When k = 2, we have

(x2
1 + x2

2) · (y2
1 + y2

2) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2.

Interpreting (x1, x2) and (y1, y2) as complex numbers α and
β, this formula expresses the property

|α|2|β|2 = |αβ|2 (5)

of multiplication of complex numbers. The case k = 1 triv-
ially expresses the same fact (5) for real α and β. In 1748,
motivated by the number theoretic problem of expressing
every integer as a sum of four squares, Euler proved an iden-
tity showing that SR(4) = 4. When Hamilton discovered the
quaternion algebra in 1843, this identity was quickly realized
to express (5) for mutiplying quaternions. This was repeated
in 1848 with the discovery of the octonions algebra, and the
8-square identity expressing (5) for octonions. Motivated
by the study of division algebras, mathematicians tried to
prove a 16-square identity in the following 50 years. Finally
Hurwitz in 1898 proved that it is impossible, obtaining the
first nontrivial lower bound:

Theorem 1.1. ([11]) SR(k) > k, except if k ∈ {1, 2, 4, 8}.

The following interpretation of the sum-of-squares problem
got topologists interested in this problem: if z1, . . . , zn sat-
isfy (4), the map z = (z1, . . . , zn) : Rk × Rk → Rn is a
bilinear normed map. Namely, it satisfies |z(x̄, ȳ)| = |x̄||ȳ|
for every x̄, ȳ ∈ Rk, where | · | is the Euclidean norm. This
rigid structure allows for topological and algebraic geome-
try tools to yield the following, best known lower bound,
which unfortunately gains only a factor of two over the triv-
ial bound:

Theorem 1.2. ([13, 18]) SR(k) ≥ (2− o(1))k.

As it happens, the trivial upper bound can be improved as
well. There exists a normed bilinear map as above from
Rk ×Rρ(k) to Rk, with ρ(k) = Θ(log k). This was shown by
Radon and Hurwitz [24, 12], who computed the exact value
of the optimal ρ(k). Interestingly, such a map exists even if
we require the polynomials zi to have integer3 coefficients,
see [35, 19]. The existence of this integer bilinear normed
map turns out to be related to Clifford algebras as well: it
can be obtained using a matrix representation of a Clifford
algebra with ρ(k) generators. This can be seen to imply

Fact 1.3. SZ(k) ≤ O(k2/ log k).

This is the best known upper bound on SR, or SF for any
other field with char F 6= 2. This motivated researchers to

2The assumption that the zi’s in (4) are bilinear is satisfied
automatically if the zi’s are real polynomials.
3The coefficients of the zi’s can actually be taken to be in
{−1, 0, 1}.



study integer sums of squares, and try to prove lower bounds
on SZ. Despite the effort [18, 33, 28], the asymptotic bounds
on SZ remained as wide open as in the case of reals. One of
the contributions of this paper is the first super-linear lower
bound in the integer case. We show that SZ(k) ≥ Ω(k6/5).

To illustrate the subtlety of proving lower bounds on the
sum-of-squares problem, let us mention that if we allow the
zi’s to be rational functions rather than polynomials, the
nature of the problem significantly changes. In 1965, Pfister
[23] proved that if the zi’s are rational functions, SOSk can
be written as a sum of k squares whenever k is a power of
two.

1.3 Non-commutative circuits and bilinear
complexity

Conditional lower bounds on circuit complexity. The
connection between the sum-of-squares problem and non-
commutative lower bounds is that a sufficiently strong lower
bound on S(k) implies an exponential lower bound for per-
manent. Here we present our main results, for a more de-
tailed discussion, see Section 2.1. In the non-commutative
setting, there are several options to define the permanent,
we define it row-by-row, that is,

PERMn(X) =
X
π

x1,π(1)x2,π(2) · · ·xn,π(n),

where π is a permutation of [n] = {1, . . . , n}. The advertised
connection can be summarized as follows4.

Theorem 1.4. Let F be an algebraically closed field. As-
sume that SF(k) ≥ Ω(k1+ε) for a constant ε > 0. Then

PERMn requires non-commutative circuits of size 2Ω(n).

Theorem 1.4 is an instance of a general connection between
non-commutative circuits and commutative degree four poly-
nomials, which we now proceed to describe.

Let f be a commutative polynomial of degree four over a field
F. We say that f is biquadratic in variablesX = {x1, . . . , xk}
and Y = {y1, . . . , yk}, if every monomial in f has the form
xi1xi2yj1yj2 . If f is biquadratic in variables X and Y , we
define

sum-of-squares complexity: SF(f) is the smallest5 n so
that f can be written as

f = z2
1 + · · ·+ z2

n,

bilinear complexity: BF(f) is the smallest n so that f can
be written as

f = z1z
′
1 + · · ·+ znz

′
n,

where each zi and z′i are bilinear forms in X,Y . We thus
have SF(SOSk) = SF(k), as defined in the previous section.

4If char F = 2, the theorem holds trivially, since SF(k) = 1.
5When no such n exists, SF(f) is infinite.

Let us first note that over certain fields, SF(f) and BF(f)
are virtually the same:

Remark 1.5. Clearly, BF(f) ≤ SF(f). If F is algebraically
closed with char F 6= 2, then SF(f) ≤ 3BF(f). This holds
since 2zz′ = (z + z′)2 + (

√
−1z)2 + (

√
−1z′)2.

We now define the non-commutative version of SOSk: the
non-commutative identity polynomial is

IDk =
X
i,j∈[k]

xiyjxiyj . (6)

We show that a lower bound on BF(SOSk) implies a lower
bound on the size of non-commutative circuit computing
IDk.

Theorem 1.6. The size of a non-commutative circuit over
F computing IDk is at least Ω(BF(SOSk)).

Theorem 1.6 is proved in Section 4. The lower bound given
by the theorem is reminiscent of the tensor rank approach to
lower bounds for commutative circuits, where a lower bound
on tensor rank implies circuit lower bounds [30]. In the non-
commutative case we can prove a much stronger implication.
For every ε > 0, a k1+ε lower bound on BF(SOSk) gives an
exponential lower bound for the permanent. Theorem 1.7,
which is proved in Section 5, together with Remark 1.5 imply
Theorem 1.4.

Theorem 1.7. Assume that BF(SOSk) ≥ Ω(k1+ε), for
some ε > 0. Then PERMn requires non-commutative cir-
cuits of size 2Ω(n) over F.

The theorem is reminiscent of a result in Boolean complex-
ity, where a sufficient linear lower bound on complexity of a
bipartite graph implies an exponential circuit lower bound
for a related function (see [15] for discussion.)

An important property that the non-commutative perma-
nent shares with its commutative counterpart is its com-
pleteness for the class of explicit polynomials. This enables
us to generalize Theorem 1.7 to the following theorem. Let
{fk} be a family of commutative biquadratic polynomials
such that the number of variables in fk is polynomial in
k. We call {fk} explicit, if there exists a polynomial-time
algorithm which, given k and a degree-four monomial α as
inputs6, computes the coefficient of α in fk. The polynomial
SOSk is clearly explicit.

Theorem 1.8. Let F be a field such that char F 6= 2. Let
{fk} be a family of explicit biquadratic polynomials. Assume
that BF(fk) ≥ Ω(k1+ε) for some ε > 0. Then PERMn re-

quires non-commutative circuits of size 2Ω(n) over F.

6We think of the input as given in a binary representation;
the algorithm thus runs in time polynomial in log k.



Lower bounds on sum-of-squares complexity in special
cases. Remark 1.5 tells us that for some fields, BF = Θ(SF),
and hence to prove a circuit lower bound, it is sufficient to
prove a lower bound on SF. We prove lower bounds on SF(k)
in some restricted cases. For more details, see Section 2.2.

Over R, we find an explicit ‘hard’ polynomial

Theorem 1.9. There exists an explicit family {fk} of real
biquadratic polynomials with coefficients in {0, 1, 2, 4} such
that SR(fk) = Θ(k2).

By Theorem 1.8, if the construction worked over the com-
plex numbers C instead of R, we would have an exponential
lower bound on the size of non-commutative circuits for the
permanent. Such a construction is not known.

We investigate sums of squares over integers. We prove the
following:

Theorem 1.10. SZ(k) ≥ Ω(k6/5).

This result, too, does not imply a circuit lower bound. How-
ever, if we knew how to prove the same for Z[

√
−1] instead

of Z, we would get lower bounds for circuits over Z. Such
lower bounds are not known.

1.4 Ordered and multilinear circuits
An important restriction on computational power of circuits
is multilinearity. This restriction has been extensively inves-
tigated in the commutative setting. A polynomial is multi-
linear, if every variable has individual degree at most one in
it. Syntactically multilinear circuits are those in which every
product gate multiplies gates with disjoint sets of variables.
This model was first considered in [22], where lower bounds
on constant depth multilinear circuits were proved (and later
improved in [26]). In a breakthrough paper, Raz [25] proved
super-polynomial lower bounds on multilinear formula size
for the permanent and determinant. These techniques were
extended by [27] to give a lower bound of about n4/3 for the
size multilinear circuits.

An interesting observation about non-commutative circuits
is that if they compute a polynomial of a specific form, they
are without loss of generality multilinear. Let us call a non-
commutative polynomial f ordered, if the variables of f are
divided into disjoint sets X1, . . . , Xd and every monomial in
f has the form x1 · · ·xd with xi ∈ Xi. The non-commutative
permanent, as defined above, is thus ordered. An ordered
circuit is a natural model for computing ordered polynomi-
als. Roughly, we require every gate to take variables from
the sets Xi in the same interval I ⊂ [d]. One property of
ordered circuits is that they are automatically syntactically
multilinear.

We show that any non-commutative circuit computing an
ordered polynomial can be efficiently transformed to an or-
dered circuit, hence a multilinear one, computing the same
polynomial. Such a reduction is not known in the commu-
tative case, and gives hope that a progress on multilinear

lower bounds for permanent or determinant will yield gen-
eral non-commutative lower bounds.

Theorem 1.11. Let f be an ordered polynomial of degree
d. If f is computed by a non-commutative circuit of size s,
it can be computed by an ordered circuit of size O(d3s).

Again, we fall short of utilizing this connection for general
lower bounds. By a simple argument, we manage to prove
an exponential lower bound on non-commutative multilinear
circuits, as we state in the next theorem. However, the
polynomial APk in question is not ordered, and we cannot
invoke the previous result to obtain an unconditional lower
bound.

Theorem 1.12. Let

APk =
X
σ

xσ(1)xσ(2) · · ·xσ(k),

where σ is a permutation of [k]. Then every non-commutative

multilinear circuit computing APk is of size at least 2Ω(k).

1.5 A different perspective: lower bounds us-
ing rank

An extremely appealing way to obtain lower bounds is by
using sub-additive measures, and matrix rank is perhaps the
favorite measure across many computational models. It is
abundant in communication complexity, and in circuit com-
plexity it has also found its applications. Often, one cannot
hope to find a unique matrix whose rank would capture the
complexity of the investigated function. Instead, we can
associate the function with a family of matrices, and the
complexity of the function is related to the minimum rank
of matrices in that family. Typically, the family consists
of matrices which are in some sense ”close” to some fixed
matrix.

For arithmetic circuits, many of the known structure theo-
rems [8, 21, 25, 9] invite a natural rank interpretation. This
interpretation, however, has lead to lower bounds only for
restricted circuits. We sketch below the rank problem which
arises in the case of commutative circuits, and explain why
it is considerably simpler in the case of non-commutative
ones.

Let f be a commutative polynomial of degree d. Consider
N × N matrices whose entries are elements of some field,
andÊ rows and columns are labelled by monomials of degree
roughly d/2. Hence N is in general exponential in the degree
of f . Associate with f a familyM of all N ×N matrices M
with the following property: for every monomial α of degree
d, the sum of all entries Mβ1,β2 , such that β1β2 = α, is equal
to the coefficient of α in f . In other words, we partition M
into subsets Tα corresponding to the possible ways to write
α as a product of two monomials, and we impose a condition
on the sum of entries in every Tα. It can be shown that the
circuit complexity of f can be lower bounded by the minimal
rank of the matrices in M.

Note that the sets Tα are of size exponential in d, the de-
gree of f . The structure of the sets is not friendly either.



Our first structure theorem for non-commutative circuits,
which decomposes non-commutative polynomials to central
polynomials, translates to a similar rank problem. How-
ever, the matrices M ∈ M will be partitioned into sets of
size only d (instead of exponential in d). This is thanks
to the fact that there are much fewer options to express a
non-commutative monomial as a product of other monomi-
als. Our second structure theorem, concerning block-central
polynomials, gives a partition into sets of size at most two.
The structure of these sets is quite simple too. However, not
simple enough to allow us to prove a rank lower bound. In
the rank formulation of circuit lower bounds, we can there-
fore see non-commutative circuits as a first step towards
understanding commutative circuit lower bounds.

2. OVERVIEW OF PROOFS
We now outline proofs of the main theorems of the paper.
Theorems 1.4 - 1.7 will be proved in Sections 3 - 5; proofs
of the rest of the theorems are omitted due to space restric-
tions.

2.1 Conditional lower bounds on non-commu-
tative circuit size

In this section we describe the path that leads from non-
commutative circuit complexity to bilinear complexity.

Preliminaries. Let F be a field. A non-commutative poly-
nomial is a formal sum of products of variables and field
elements. We assume that the variables do not multiplica-
tively commute, that is, xy 6= yx whenever x 6= y. However,
the variables commute with elements of F. The reader can
imagine the variables as representing square matrices.

A non-commutative arithmetic circuit Φ is a directed acyclic
graph as follows. Nodes (or gates) of in-degree zero are
labelled by either a variable or a field element in F. All
the other nodes have in-degree two and they are labelled by
either + or ×. The two edges going into a gate v labelled by
× are labelled by left and right. We denote by v = v1 × v2

the fact that (v1, v) is the left edge going into v, and (v2, v)
is the right edge going into v. (This is to determine the order
of multiplication.) The size of a circuit Φ is the number of
edges in Φ. The integer C(f) is the size of a smallest circuit
computing f .

Note. Unless stated otherwise, we refer to non-commutative
polynomials as polynomials, and to non-commutative cir-
cuits as circuits.

The proof is presented in three parts, which are an explo-
ration of the structure of non-commutative circuits.

Part I: structure of circuits. The starting point is the
structure of polynomials computed by non-commutative cir-
cuits, which we now explain. The methods we use are ele-
mentary, and are an adaptation of works like [8, 9] to the
non-commutative world.

We start by defining the ‘building blocks’ of polynomials,

which we call central polynomials. A homogeneous7 poly-
nomial f of degree d is called central, if there exist integers m
and d0, d1, d2 satisfying d/3 ≤ d0 < 2d/3 and d0+d1+d2 = d
so that

f =
X
i∈[m]

highi, (7)

where

(i). the polynomial g, which we call the body, is homoge-
neous of degree deg g = d0,

(ii). for every i ∈ [m], the polynomials hi, hi are homoge-
neous of degrees deg hi = d1 and deg hi = d2.

The width of a homogeneous polynomial f of degree d, de-
noted w(f), is the smallest integer n so that f can be written
as

f = f1 + f2 + · · · fn, (8)

with each fi a central polynomial. In Section 3.1 we show
that the width of f is at most O(d3C(f)), and so lower
bounds on width imply lower bounds on circuit complex-
ity. We prove this by induction on the circuit complexity of
f .

Part II: degree-four. In the first part, we argued that a
lower bound on width implies a lower bound on circuit com-
plexity. In the case of degree-four, a central polynomial
has a very simple structure: d0 is always 2, and so the body
must reside in one of three places: left (when d1 = 0), center
(when d1 = 1), and right (when d1 = 2). For a polynomial
of degree four, we can thus write (8) with n at most order
C(f), and each fi of this special form.

This observation allows us to relate width and bilinear com-
plexity, as the following proposition shows. For a more gen-
eral statement, see Proposition 4.1, which also shows that
the width and bilinear complexity are in fact equivalent.

Proposition 2.1. w(IDk) ≥ B(SOSk).

Part I and Proposition 2.1 already imply Theorem 1.6, which
states that a lower bound on bilinear complexity implies a
lower bound on circuit complexity of IDk.

Part III: general degree to degree-four. The argument
presented in the second step can imply at most a quadratic
lower bound on circuit size. To get exponential lower bounds,
we need to consider polynomials of higher degrees. We think
of the degree of a degree-4r polynomial as divided into 4
groups, for which we try to mimic the special structure from
part II: A block-central polynomial is a central polynomial

7Recall that a polynomial f is homogeneous, if all monomials
with a non-zero coefficient in f have the same degree, and
that circuit Φ is homogeneous, if every gate in Φ computes
a homogeneous polynomial.



so that d0 = 2r and d1 ∈ {0, r, 2r}. The structure of block-
central polynomials is similar to the structure of degree-four
central polynomials in that the body is of fixed degree and it
has three places it can reside in: left (when d1 = 0), center
(when d1 = r), and right (when d1 = 2r). In Section 5 we
show that a degree-4r polynomial f can be written as a sum
of at most O(r32rC(f)) block-central polynomials.

We thus reduced the analysis of degree-4r polynomials to the
analysis of degree-four polynomial. This reduction comes
with a price, a loss of a factor of 2r. We note that this loss
is necessary. The proof is a rather technical case distinction.
The idea behind it is a combinatorial property of intervals
in the set [4r], which allows us to transform a central poly-
nomial to a sum of 2r block-central polynomials.

Here is an example of this reduction in the case of the iden-
tity polynomial. The lifted identity polynomial, LIDr, is the
polynomial in variables z0, z1 of degree 4r defined by

LIDr =
X

e∈{0,1}2r
zeze ,

where for e = (e1, . . . , e2r) ∈ {0, 1}2r, we define ze =
Q2r
i=1 zei .

The lifted identity polynomial is the high-degree counterpart
of the identity polynomial, which allows us to prove that a
super-linear lower bound implies an exponential one (the
corollary is proved in Section 5):

Corollary 2.2. If B(SOSk) ≥ Ω(k1+ε) for some ε > 0,

then C(LIDr) ≥ 2Ω(r).

To complete the picture, we show that LIDr is reducible to
the permanent of dimension 4r.

Lemma 2.3. There exists a matrix M of dimension 4r ×
4r whose nonzero entries are variables z0, z1 so that the per-
manent of M is LIDr.

To prove the lemma, the matrix M is constructed explicitly,
see Section 5. The conditional lower bound on the perma-
nent, Theorem 1.7, follows from Corollary 2.2 and Lemma
2.3.

An important property that non-commutative permanent
shares with its commutative counterpart is completeness for
the class of explicit polynomials. This enables us to argue
that a super-linear lower bound on the bilinear complexity
of an explicit degree-four polynomial implies an exponential
lower bound on permanent. In the commutative setting,
this a consequence of the VNP completeness of permanent,
as given in [31]. In the non-commutative setting, one can
prove a similar result [10].

2.2 Restricted lower bounds on sum-of-squares
complexity

We now discuss the lower bounds for restricted sum-of-squares
problems we prove: an explicit lower bound over R and a
lower bound for SOSk over integers.

We phrase the problem of lower bounding SR(g) in terms
of matrices of real vectors. Let V = {vi,j : i, j ∈ [k]} be a
k × k matrix whose entries are vectors in Rn. We call V a
vector matrix, and n is called the height of V . The matrix V
defines a biquadratic polynomial f(V ) in X = {x1, . . . , xk}
and Y = {y1, . . . , yk} by

f(V ) =
X

i1≤i2,j1≤j2

ai1,i2,j1,j2xi1xi2yj1yj2 ,

where ai1,i2,j1,j2 is equal to vi1,j1 ·vi2,j2 +vi1,j2 ·vi2,j1 , up to
a small correction factor which is not important at this point.
We can think of the coefficients as given by the permanent
of the 2× 2 sub-matrix8 of V defined by i1, i2 and j1, j2.

The following lemma gives the connection between sum-of-
squares complexity and vector matrices.

Lemma 2.4. Let g be a biquadratic polynomial. Then
SR(g) ≤ n is equivalent to the existence a vector matrix V
of height n so that g = f(V ).

As long as it is finite, the height of a vector matrix for any
polynomial does not exceed k2, and a counting argument
shows that this holds for“almost”all polynomials. The prob-
lem is to construct explicit polynomials that require large
height. Even a super-linear lower bound seems nontrivial,
since the permanent condition does not talk about inner
products of pairs of vectors, but rather about the sum of
inner products of two such pairs. We manage to construct
an explicit polynomial which requires near-maximal height
Ω(k2). In our proof, the coefficients impose (through the
2 × 2 permanent conditions) either equality or orthognal-
ity constraints on the vectors in the matrix, and eventually
the existence of many pairwise orthogonal ones. In a cru-
cial way, we employ the fact that over R, if two unit vectors
have inner product one, they must be equal. This prop-
erty9 fails over C, but it is still possible that even over C
our construction has similar height (of course, if this turns
out to be even k1+ε, we get an exponential lower bound for
non-commutative circuits).

The construction, however, does not shed light on the clas-
sical sum-of-squares problem which is concerned specifically
with the polynomial SOSk. In the case of SOSk, the condi-
tions on the matrix V from Lemma 2.4 are especially nice
and simple: (1) all vectors in V are unit vectors, (2) in each
row and column the vectors are pairwise orthogonal, and (3)
every 2× 2 permanent (of inner products) must be zero.

As mentioned in the introduction, the best upper bounds for
the sum-of-squares problem have integer coefficients, and so
a lot of effort was invested into proving lower bounds in the
integer case. Despite that, previously known lower bounds
do not even reach 2k. We prove the first super-linear lower
bound, SZ(k) = Ω(k6/5). Over integers, we take advantage

8 In some cases, e.g., when i1 = i2, this matrix can become
1× 2, 2× 1 or even 1× 1, but we still think of it as a 2× 2
matrix. This is also where the correction factor comes from.
9Here, the inner product of two complex vectors a, b isP
i aibi, rather than

P
i aibi, with b the complex conjugate

of b.



of the fact that the unit vectors in V must have entries in
{−1, 0, 1} and there is exactly one nonzero entry in each
vector. The nonzero coordinate can be thus thought of as
a “color” in [n], which is signed by plus or minus. This
gives rise to the earlier studied notion of intercalate matrices
(see, [33] and the book [28]). The integer sum-of-squares
problem can thus be phrased in terms of minimizing the
number of colors in a signed intercalate matrix, which can
be approached as an elementary combinatorial problem.

Our strategy for proving the integer lower bound has three
parts. The first step uses a simple counting argument to
show that there must exist a sub-matrix in which one color
appears in every row and every column. In the second step
we show that the permanent conditions give rise to a “for-
bidden configuration” in such sub-matrices. In the last step
we conclude that any matrix without this forbidden config-
uration must have many colors.

3. NON-COMMUTATIVE CIRCUITS
We use the following notation. For a node v in a circuit Φ,
we denote by Φv the sub-circuit of Φ rooted at v. Every

node v computes a polynomial bΦv in the obvious way. A
monomial α is a product of variables, and COEFα(f) is the
coefficient of α in the polynomial f . Denote by deg f the
degree of f , and if v is a node in a circuit Φ, denote by deg v

the degree of bΦv.

3.1 Structure of non-commutative circuits
In this section we describe the structure of the polynomials
computed by non-commutative circuits. The methods we
use are elementary, and are an adaptation of works like [8,
9] to the non-commutative world.

We start by defining the ‘building blocks’ of polynomials,
which we call central polynomials. Recall that a polyno-
mial f is homogeneous, if all monomials with a non-zero
coefficient in f have the same degree, and that circuit Φ is
homogeneous, if every gate in Φ computes a homogeneous
polynomial. A homogeneous polynomial f of degree d is
called central, if there exist integers m and d0, d1, d2 satisfy-
ing

d/3 ≤ d0 < 2d/3 and d0 + d1 + d2 = d

so that

f =
X
i∈[m]

highi, (9)

where

(i). the polynomial g is homogeneous of degree deg g = d0,

(ii). for every i ∈ [m], the polynomials hi, hi are homoge-
neous of degrees deg hi = d1 and deg hi = d2.

Remark 3.1. In the definition of central polynomial, no
assumption on the size of m is made. Hence we can without
loss of generality assume that hi = ciαi and hi = βi, where
αi is a monomial of degree d1, βi is a monomial of degree
d2, and ci is a field element.

The width of a homogeneous polynomial f of degree d, de-
noted w(f), is the smallest integer n so that f can be written
as

f = f1 + f2 + · · ·+ fn,

where f1, . . . , fn are central polynomials of degree d. The
following proposition shows that the width of a polynomial
is a lower bound for its circuit complexity. We will later
relate width and bilinear complexity.

Proposition 3.2. Let f be a homogeneous polynomial of
degree d ≥ 2. Then

C(f) ≥ Ω(d−3w(f)).

Proof. We start by observing that the standard homoge-
nization of commutative circuits [30, 3] works for non-commu-
tative circuits as well.

Lemma 3.3. Let g be a homogeneous polynomial of degree
d. Then there exists a homogeneous circuit of size O(d2C(f))
computing g.

Assume that we have a homogeneous circuit Φ of size s com-
puting f . We will show that w(f) ≤ ds. By Lemma 3.3, this
implies that w(f) ≤ O(d3C(f)), which completes the proof.
Without loss of generality, we can also assume that no gate
v in Φ computes the zero polynomial (gates that compute
the zero polynomial can be removed, decreasing the circuit
size).

For a multiset of pairs of polynomials H = {〈hi, hi〉 : i ∈
[m]}, define

g ×H =
X
i∈[m]

highi .

Let G = {g1, . . . , gt} be the set of homogeneous polynomials
g of degree d/3 ≤ deg g < 2d/3 so that there exists a gate in
Φ computing g. We show that for every gate v in Φ so that
deg v ≥ d/3 there exist multisets of pairs of homogeneous
polynomials H1(v), . . . ,Ht(v) satisfyingbΦv =

X
i∈[t]

gi ×Hi(v). (10)

We prove (10) by induction on the depth of Φv. If deg(v) <

2d/3 then bΦv = gi ∈ G for some i ∈ [t]. Thus (10) is true,
setting Hi(v) = {〈1, 1〉} and Hj(v) = {〈0, 0〉} for j 6= i in
[t]. Otherwise, we have deg v ≥ 2d/3. When v = v1 + v2,
we do the following. Since Φ is homogeneous, v1, v2 and v
have the same degree which is at least 2d/3. Induction thus
implies: for every e ∈ {1, 2},bΦve =

X
i∈[t]

gi ×Hi(ve).

This givesbΦv = bΦv1 + bΦv2 =
X
i∈[t]

gi ×
`
Hi(v1) ∪Hi(v2)

´
.

When v = v1 × v2, we have deg v = deg v1 + deg v2. Since
deg v ≥ 2d/3, either (a) deg v1 ≥ d/3 or (b) deg v2 ≥ d/3.



In the case (a), by induction,

bΦv1 =
X
i∈[t]

gi ×Hi(v1) .

Defining Hi(v) = {〈h, hbΦv2〉 : 〈h, h〉 ∈ Hi(v1)}, we obtain

bΦv = bΦv1 bΦv2 =
“X
i∈[t]

gi ×Hi(v1)
”bΦv2 =

X
i∈[t]

gi ×Hi(v).

Since bΦv2 is a homogeneous polynomial, Hi(v) consists of
pairs of homogeneous polynomials. In case (b), defineHi(v) =

{〈bΦv1h, h〉 : 〈h, h〉 ∈ Hi(v2)}.

Applying (10) to the output gate of Φ, we obtain

f =
X
i∈[t]

gi ×Hi ,

where Hi are multisets of pairs of homogeneous polyno-
mials. For every i ∈ [t] and every r ≤ d − deg gi, define
Hri = {〈h, h〉 ∈ Hi : deg(h) = r, deg h = d − deg gi − r}.
Then gi ×Hri is a central polynomial. Moreover, since f is
homogeneous of degree d, we obtain

f =
X
i∈[t]

d−deg giX
r=0

gi ×Hri .

Since t ≤ s, the proof is complete.

3.2 Degree four polynomials
Before we describe the specific structure of degree four poly-
nomials, let us give a general definition. Let X1, . . . , Xr
be (not necessarily disjoint) sets of variables. For a poly-
nomial f , let f [X1, . . . , Xr] be the homogeneous polyno-
mial of degree r so that for every monomial α, we have: i)
COEFα(f [X1, . . . , Xr]) = COEFα(f), if α = x1x2 · · ·xr with
xi ∈ Xi for every i ∈ [r], and ii) COEFα(f [X1, . . . , Xr]) = 0,
otherwise.

We easily obtain the following refinement of structure of
degree-four polynomials:

Lemma 3.4. If f = f [X1, X2, X3, X4], then w(f) is the
smallest n so that f can be written as f = f1 + · · · + fn,
where for every t ∈ [n], either

(a) ft = gt[X1, X2]ht[X3, X4], or

(b) ft =
P
i∈[m] ht,i[X1]gt[X2, X3]ht,i[X4],

where gt, ht, ht,i, ht,i are some polynomials.

4. DEGREE FOUR AND BILINEAR COM-
PLEXITY

We consider polynomials of a certain structure. Let f be a
polynomial in variables X,Y = {x1, . . . , xk}, {y1, . . . , yk} so
that f = f [X,Y,X, Y ], i.e.,

f =
X

i1,j1,i2,j2∈[k]

ai1,j1,i2,j2xi1yj1xi2yj2 . (11)

For a non-commutative polynomial g, we define g(c) to be
the polynomial g understood as a commutative polynomial.
For example, if g = xy + yx, then g(c) = 2xy.

In particular, if f is of the form (11), the polynomial f (c)

is biquadratic. In the following proposition, we relate the
width of a polynomial f and B(f (c)).

Proposition 4.1. Let f be a homogeneous polynomial of
degree four of the form (11). Then B(f (c)) ≤ w(f).

Proof. Using Lemma 3.4, we can write f = f1 + · · ·+fn,
where for every t ∈ [n], either

(a) ft = gt[X,Y ]ht[X,Y ], or

(b) ft =
P
i∈[m] ht,i[X]gt[Y,X]ht,i[Y ].

The commutative polynomial f
(c)
t is a product of two bi-

linear forms in X and Y : in case (a), of gt[X,Y ](c) and

ht[X,Y ](c), and in case (b), of gt[Y,X](c) and
P
i ht,i[X]ht,i[Y ].

Altogether f (c) = f
(c)
1 + · · ·+f

(c)
n , where each f

(c)
t is a prod-

uct of two bilinear forms, and hence B(f (c)) ≤ n.

Proof of Theorem 1.6.. Recall the definition of the
identity polynomial,

IDk =
X
i,j∈[k]

xiyjxiyj .

The commutative polynomial ID
(c)
k is the polynomial SOSk

SOSk =
X
i∈[k]

x2
i

X
j∈[k]

y2
j .

The theorem follows from Proposition 3.2 and 4.1.

Let us note that it is not necessary to separate variables in
IDk into two disjoint sets X and Y . In the non-commutative
setting, this is just a cosmetic detail:

Remark 4.2. w(IDk) = w(
P
i,j∈[k] xixjxixj).

5. HIGHER DEGREES
In this section, we show that a sufficiently strong lower
bound on the width of a degree four polynomial implies an
exponential lower bound on the width, and hence circuit
size, of a related high degree polynomial.

Let f be a homogeneous polynomial of degree 4r. We assume
that f contains only two variables z0 and z1. We define f (λ)

to be the polynomial obtained by replacing degree r mono-
mials in f by new variables. Formally, for every monomial α
of degree r in variables z0, z1, introduce a new variable xα.
The polynomial f (λ) is defined as the homogenous degree
four polynomial in the 2r variables X = {xα : degα = r}
satisfying

COEFxα1xα2xα3xα4
(f (λ)) = COEFα1α2α3α4(f) . (12)



Remark 5.1. Let g be a homogeneous degree four polyno-
mial in k variables. If k ≤ 2r, then there exists a polynomial
f of degree 4r in variables z0, z1 such that g = f (λ) (up to a
renaming of variables).

We now relate w(f) and w(f (λ)). To do so, we need a mod-
ified version of Proposition 3.2. Let f be a homogeneous
polynomial of degree 4r. We say that f is block-central, if
either

I. f = gh, where g, h are homogeneous polynomials with
deg g = deg h = 2r, or

II. f =
P
i∈[m] highi, where g, hi, hi are homogeneous

polynomials of degrees deg g = 2r and deg hi = deg hi =
r for every i ∈ [m].

Every block-central polynomial is also central. The follow-
ing lemma shows that every central polynomial can be writ-
ten as a sum of 2r block-central polynomials. The lemma
thus enables us to consider a simpler problem, i.e., lower
bounding the width with respect to block-central polynomi-
als. However, this simplification comes with a price, namely,
a loss of a factor of 2r.

Lemma 5.2. Let f be a central polynomial of degree 4r
in two variables z0, z1. Then there exist n ≤ 2r and block-
central polynomials f1, . . . , fn so that f = f1 + · · ·+ fn.

Proof. The proof is by a rather long case distinction,
and we omit it.

We can now relate the width of f and f (λ).

Proposition 5.3. Let f be a homogeneous polynomial of
degree 4r in the variables z0, z1. Then w(f) ≥ 2−rw(f (λ)).

Proof. Assume w(f) = n. Lemma 5.2 implies f =
f1 + · · ·+ fn′ , where n′ ≤ 2rn and fj are block-central poly-
nomials. Equation (12) implies

f (λ) = f
(λ)
1 + · · ·+ f

(λ)

n′ .

It is thus sufficient to show that every f
(λ)
t is a central poly-

nomial, for then w(f (λ)) ≤ n′ ≤ 2rn.

In order to do so, let us extend the definition of (.)(λ) as
follows. If g is a polynomial of degree `r in the variables
z0, z1, let g(λ) be the homogeneous polynomial of degree `
in X so that

COEFxα1 ···xαk (g(λ)) = COEFα1···αk (g).

If g, h are homogeneous polynomials whose degree is divisi-
ble by r, we obtain (gh)(λ) = g(λ)h(λ). Hence if ft = gtht a

block-centralpolynomial of type I, then f
(λ)
t = g

(λ)
t h

(λ)
t is a

central polynomial of type (a) according to Lemma 3.4 with
X = X1 = X2 = X3 = X4. If ft =

P
i ht,igtht,i is a block-

centralpolynomial of type II, f
(λ)
t =

P
i h

(λ)
t,i g

(λ)
t ht,i

(λ), and

hence f
(λ)
t is a centralpolynomial of type (b) according to

Lemma 3.4.

By Remark 5.1, we can start with a degree four polynomial
in k ≤ 2r variables and“lift” it to a polynomial f of degree 4r
such that f (λ) = g. We can then deduce that a sufficiently
strong lower bound on the bilinear complexity of g implies an
exponential lower bound for the circuit complexity of f . We
apply this to the specific case of the identity polynomial.
The lifted identity polynomial, LIDr, is the polynomial in
variables z0, z1 of degree 4r defined by

LIDr =
X

e∈{0,1}2r
zeze ,

where for e = (e1, . . . , es) ∈ {0, 1}s, we define ze =
Qs
i=1 zei .

Corollary 5.4 (Corollary 2.2 restated).

If B(SOSk) ≥ Ω(k1+ε) for some ε > 0, then C(LIDr) ≥ 2Ω(r).

Proof. The definition of LIDr can be equivalently writ-
ten as

LIDr =
X

e1,e2∈{0,1}r
ze1ze2ze1ze2 .

By definition, LID
(λ)
r =

P
i,j∈[k] xixjxixj with k = 2r. Hence,

by Remark 4.2, w(LID
(λ)
r ) = w(IDk). By Proposition 5.3,

w(LIDr) ≥ 2−rw(LID
(λ)
r ). Hence w(LIDr) ≥ 2−rw(IDk). By

Proposition 4.1, w(IDk) ≥ B(IDk). If B(IDk) ≥ ck1+ε for

some constants c, ε > 0, we have w(LIDr) ≥ c2−r2r(1+ε) =

c2εr. By Proposition 3.2, C(LIDr) ≥ Ω(r−32εr) = 2Ω(r).

One motivation for studying the lifted identity polynomial
is that we believe it is hard for non-commutative circuits.
However, note that an apparently similar polynomial has
small circuit size. For e = (e1, . . . , es) ∈ {0, 1}s, let e? =
(es, . . . , e1). The polynomialX

e∈{0,1}2r
zeze? ,

has a non-commutative circuit of linear size. This result
can be found in [21], where it is also shown that the non-
commutative formula complexity of this polynomial is expo-
nential in r.

We now show that LIDr is reducible to the permanent of
dimension 4r.

Lemma 5.5 (Lemma 2.3 restated). There exists a ma-
trix M of dimension 4r×4r whose nonzero entries are vari-
ables z0, z1 so that the permanent of M is LIDr.

Proof. For j ∈ {0, 1}, let Dj be the 2r× 2r matrix with
zj on the diagonal and zero everywhere else. The matrix M
is defined as

M =

»
D0 D1

D1 D0

–
.

The permanent of M taken row by row is

PERM(M) =
X
σ

M1,σ(1)M2,σ(2) · · ·M4r,σ(4r),



where σ is a permutation of [4r]. The permutations that
give nonzero value in PERM(M) satisfy: for every i ∈ [2r],
if σ(i) = i then σ(2r + i) = 2r + i, and if σ(i) = 2r + i
then σ(2r + i) = i. By definition of M , this means that for
every such σ and i ∈ [2r], Mi,σ(i) = Mi+2r,σ(i+2r). More-
over, given the values of such a σ on [2r], it can be uniquely
extended to all of [4r].

Theorem 1.7 follows from Corollary 2.2 and Lemma 2.3.
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