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explicit homogeneous bivariate polynomial of degree d which requires homogeneous non-commutative9

circuit of size Ω(d/ log d). For an n-variate polynomial with n > 1, the result can be improved to10

Ω(nd), if d ≤ n, or Ω(nd log n
log d
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1 Introduction24

Arithmetic Circuit Complexity aims to categorize polynomials according to how hard they25

are to compute in algebraic models of computation. The most natural model is that of an26

arithmetic circuit: a directed acyclic graph with constant or variables as the leaf labels and27

addition or multiplication as labels of the internal nodes. Therefore, starting from variables28

or constants at the leaves, the every node in the circuit naturally computes new polynomials29

by means of addition and multiplication operations. The question is how many of these30

operations are needed.31

The most challenging problem is to prove super-polynomial lower bounds against arith-32

metic circuits computing a low-degree polynomial. This is known as the VP vs VNP problem33

and is the algebraic analogue of the famed P vs. NP question. The classical result of Baur34

and Strassen [13, 1] gives an Ω(n log d) lower bound for an n variate polynomial of degree35

d. A variety of lower bounds has since been obtained by imposing various restrictions on36

the computational model - e.g., arithmetic formulas1 [8] or monotone circuits2 [15]. But the37

result of Baur and Strassen remains the strongest lower bound on unrestricted arithmetic38

circuits.39

1 Similar to circuits except that the underlying graph is only allowed to be a tree instead of a DAG.
2 Similar to circuits except that only non-negative constants are allowed.
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13:2 New Lower Bounds against Homogeneous Non-Commutative Circuits

In this paper, we are interested in the non-commutative setting where multiplication does40

not multiplicatively commute. Starting with the seminal works of Hyafil [7] and Nisan [9],41

non-commutative circuits are a well-studied object. The lack of commutativity is a severe42

limitation on the computational power which makes the task of proving circuit lower bounds43

seemingly easier. Nisan gave an exponential lower bound for non-commutative formulas44

whereas, commutatively, the best bound is only quadratic [8, 4]. Since then, it seemed that45

exponential non-commutative circuit lower bounds are just around the corner. Recently,46

Limaye, Srinivasan and Tavenas [14] proved such a lower bound in the homogeneous, constant47

depth setting for a polynomial that can be computed efficiently by non-commutative ABPs3.48

They showed that any constant depth ∆ non-commutative homogeneous circuit for the49

iterated matrix multiplication polynomial (a polynomial over n variables of degree d must50

have size nΩ(d
1
∆ ). However for general circuits, even in the non-commutative setting, the51

strongest lower bound remains Ω(n log d).52

We improve this lower bound to Ω(nd/ log d) under the assumption that the non-53

commutative circuit is additionally homogeneous (see Section 2 for definition). Non-54

commutatively, this is already interesting if n = 2: we obtain a bivariate polynomial55

of degree d which requires circuit size nearly linear in d. It is well-known that a (commut-56

ative or not) circuit computing a homogeneous polynomial of degree d can be converted57

to an equivalent homogeneous circuit with at most a d2 increase in size (see, for example,58

[6]). Hence, homogeneity is not a serious restriction if either d is small or if one proves a59

super-polynomial lower bound. However, our results fall in neither category and we do not60

know how to remove the homogeneity restriction. Furthermore, Carmosino et al. [3] have61

shown that strong enough superlinear lower bounds can be amplified to truly exponential62

ones. Unfortunately, the parameters of our result are not sufficient to allow amplification.63

Nevertheless, we strongly believe that it can be removed and that stronger non-commutative64

circuit lower bounds are just around the corner.65

2 Notation and preliminaries66

Let F be a field. A non-commutative polynomial over F is a formal sum of products of67

variables and field elements. We assume that the variables do not multiplicatively commute,68

whereas they commute additively and with elements of F. The ring of non-commutative69

polynomials in variables x1, . . . , xn is denoted F ⟨x1, . . . , xn⟩. A polynomial is said to be70

homogeneous if all monomials with a non-zero coefficient in f have the same degree.71

A non-commutative arithmetic circuit C over the field F is a directed acyclic graph as72

follows. Nodes (or gates) of in-degree zero are labelled by either a variable or an element in73

the field F. All the other nodes have in-degree two and they are labelled by either + or ×.74

The two edges going into a gate labelled by × are labelled by left and right to indicate the75

order of multiplication. Gates of in-degree zero will be called input gates; gates of out-degree76

zero will be called output gates.77

Every node in C computes a non-commutative polynomial in the obvious way. We say78

that C computes a polynomial f if there is a gate in C computing f (not necessarily an output79

gate). C will be called homogeneous if every gate in C computes a homogeneous polynomial.80

Given a circuit C, let Ĉ := (f : f is computed by some gate in C).81

A product gate will be called non-scalar, if both of its inputs compute a non-constant82

3 An algebraic computational model whose power lies in between that of circuits and formulas.
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polynomial. We define the size of C to be the number of non-input gates in it, and the83

non-scalar size of C to be the number of non-scalar product gates in it.84

Given integers n1, n2, [n1, n2] is the interval {n1, n1 + 1, . . . , n2} and [n] := [1, n].85

Note: Unless stated otherwise, circuits and polynomials are assumed to be non-commutative86

and the underlying field F is fixed but arbitrary.87

3 Main results88

For univariate polynomials there is no difference between commutative and non-commutative89

computations. Already with two variables, non-commutative polynomials display much richer90

structure. There are 2d monomials in variables x0, x1 of degree d (as opposed to d + 1 in the91

commutative world); so a generic bivariate polynomial requires a circuit of size exponential92

in d.93

Our first result is a lower bound that is almost linear in d. The hard polynomial is a94

bivariate monomial (a specific product of variables x0, x1).95

▶ Theorem 1. For every d > 1, there exists an explicit bivariate monomial of degree d such96

that any homogeneous non-commutative circuit computing it has non-scalar size Ω(d/ log d).97

In Remark 10, we point out a complementary O(d/ log d) upper bound for every bivariate98

monomial. Note that commutatively every such monomial can be computed in size O(log d).99

For n-variate polynomials, we obtain a stronger result (the hard polynomial is no longer100

a monomial).101

▶ Theorem 2. For every n, d > 1 there exists an explicit n-variate homogeneous polynomial102

of degree d which requires a homogenous non-commutative circuit of non-scalar size Ω(nd),103

if d ≤ n, or Ω(nd log n
log d ), if d ≥ n.104

Theorem 1 and Theorem 2 are proved in Sections 4.1 and 4.2 respectively.105

Given 0 ≤ d, n, the ordered symmetric polynomial, OSd
n, is the polynomial4106

OSd
n(x1, . . . , xn) =

∑
1≤i1<···<id≤n

 d∏
j=1

xij

 .107

It can be thought of as an ordered version of the commutative elementary symmetric108

polynomial. In Section 5, we shall prove a lower bound for this polynomial.109

▶ Theorem 3. If 2 ≤ d ≤ n/2, any homogeneous non-commutative circuit computing110

OSd
n(x1, . . . , xn) must have non-scalar size Ω(dn).111

For the central ordered symmetric polynomial OS⌊n/2⌋
n , the lower bound becomes Ω(n2).112

We also observe that the known commutative upper bounds on elementary symmetric113

polynomials work non-commutatively as well.114

▶ Proposition 4. OS1
n, . . . , OSn

n can be simultaneously computed by a non-commutative115

circuit of size O(n log2 n log log n), and by a homogeneous non-commutative circuit of size116

O(n2).117

4 Hence OS0
n = 1 and OSd

n = 0 whenever d > n.

CCC 2023



13:4 New Lower Bounds against Homogeneous Non-Commutative Circuits

The polylog factor in the proposition depends on the underlying field and can be improved118

for some Fs. Moreover, when measuring non-scalar size, one can obtain an O(n log n) upper119

bound if F is infinite – this is tight by [1].120

The ordered symmetric polynomial can be contrasted with the truly symmetric polynomial121

Sk
n =

∑
1i1,...,ik∈[n] distinct

xi1 · · · xik
,122

Non-commutatively, already Sn
n is as hard as the permanent [6] and is expected to require123

exponential circuits.124

▶ Remark 5. A polynomial of degree d can be uniquely written as f =
∑d

k=0 f (k) where f (k)
125

is homogeneous of degree k. It is well-known that if f has a circuit of size s, the homogeneous126

parts f (0), . . . , f (d) can be simultaneously computed by a homogeneous circuit of size O(sd2)127

(this holds non-commutatively as well [6]). Note that OS0
n, . . . , OSn

n are the homogeneous128

parts of
∏n

i=1(1 + xi) which has a circuit of a linear size. Theorem 3 shows that in this case,129

homogenization provably costs a factor of the degree.130

4 Lower bounds against homogeneous non-commutative circuits131

Let us define the measure we use to prove our lower bounds. Suppose f ∈ F ⟨x1, . . . , xn⟩ is a132

homogeneous polynomial of degree d. Given an interval J = [a, b] ⊆ [d], the polynomial fJ is133

obtained be setting variables in position outside of J to one. More precisely, if α =
∏d

i=1 xji
134

is a monomial then αJ :=
∏b

i=a xji
, and the map is extended linearly so that fJ =

∑
k ckαJ

k135

whenever f =
∑

k ckαk. Given a non-negative integer ℓ, let136

Fℓ(f) =
(
fJ : J ⊆ [d] is an interval of length ℓ

)
.137

Given homogeneous polynomials f1, . . . , fm, our hardness measure is defined as138

µℓ(f1, . . . , fm) := dim(span(
m⋃

i=1
Fℓ(fi))) .139

Here, span(F) denotes the vector space of F-linear combinations of polynomials in F and140

dim is its dimension.141

The following lemma bounds the measure in terms of circuit size.142

▶ Lemma 6. Let C be a homogeneous circuit with s non-scalar multiplication gates. Then143

for every ℓ ≥ 2, µℓ(Ĉ) ≤ (ℓ − 1)s.144

Proof. This is by induction on the size of C. If C consists of input gates only then Fℓ(Ĉ) = ∅,145

as we assumed ℓ ≥ 2 and Ĉ consists of linear polynomials.146

Otherwise, assume that u is some output gate of C and let C′ be the circuit obtained by147

removing that gate. If u is a sum gate or a scalar product gate then148

µℓ(Ĉ) ≤ µℓ(Ĉ′) .149

For if u computes f then f = a1f1 + a2f2 for some constants a1, a2 and f1, f2 ∈ Ĉ′. If f has150

degree d then for every interval J ⊆ [d] of length ℓ, fJ = (a1f1 + a2f2)J = a1fJ
1 + a2fJ

2 ∈151

span(Fℓ(Ĉ′)).152

If u is a non-scalar product gate computing f = f1 · f2 then153

µℓ(Ĉ) ≤ µℓ(Ĉ′) + (ℓ − 1) .154
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To see this assume f1, f2 have degrees d1 and d2 respectively, and let J ⊆ [d1 + d2] be an155

interval of length ℓ. If J is contained in [d1], fJ = (f1f2)J = fJ
1 f∅

2 is a scalar multiple156

of fJ
1 and hence fJ is contained in span(Fℓ(Ĉ′)); similarly if J is contained in [d1 + 1, d2].157

Otherwise, both d1 and d1 + 1 are contained in J . But there are only ℓ − 1 such intervals.158

Hence Fℓ(Ĉ) contains at most ℓ − 1 polynomials outside of span(Fℓ(Ĉ′)).159

This means that µℓ increases only at product gates, and that it increases only by ℓ − 1 at160

such gates. Hence µℓ(Ĉ) ≤ (ℓ − 1)s. ◀161

▶ Remark 7. If f has n variables and degree d, the measure µℓ(f) can be at most the162

minimum of d − (ℓ − 1) and nℓ. Hence, Lemma 6 can by itself give a lower of at most the163

order of d log n/ log d.164

4.1 Lower bounds for a single monomial165

Interestingly, Lemma 6 gives non-trivial lower bounds for f being merely a product of166

variables (that is, monomials), namely lower bounds of the form Ω̃(d) for a monomial of167

degree d. The simplest example is for an n-variate monomial of degree n2.168

▶ Proposition 8. Every homogeneous circuit computing f =
∏n

i=1
∏n

j=1(xixj) contains at169

least n2 non-scalar product gates.170

Proof. This is an application of Lemma 6 with ℓ = 2. The family F2(f) consists of all171

monomials xixj . Hence, µ2(f) = n2. If C computes f , we have µ2(Ĉ) ≥ µ2(f) and hence C172

contains at least n2 product gates. ◀173

Another case of interest is a monomial in two variables, x0, x1, of degree d. Suppose174

f =
∏d

i=1 xσi where σ = (σ1, . . . , σd) ∈ {0, 1}d. Then µℓ(f) equals the number of distinct175

substrings of σ of length ℓ. Hence we want to find a σ which contains as many substrings as176

possible. One construction of such an object is provided by the de Bruijn sequence [5].177

de Bruijn sequences178

For a given k, a de Bruijn sequence of order k over alphabet A is a cyclic sequence σ in179

which every k-length string from Ak occurs exactly once as a substring. Note that σ must180

have length |A|k. Furthermore, precisely k − 1 of the substrings overlap the beginning and181

the end of the sequence and σ contains |A|k − (k − 1) substrings when viewed as an ordinary182

sequence. de Bruijn sequences are widely studied and, in particular, they exist. Moreover,183

efficient algorithms are known for constructing de Bruijn sequences (see, for example, [11]184

and its references). In the case of binary alphabet A = {0, 1}, this is especially so. We can185

start with a string of k zeros. At each stage, extend the sequence by 1, unless this results in186

a k-string already encounters, otherwise extend by 0.187

Given d ≥ 2, let σ be a binary de Bruijn sequence of order ⌈log2 d⌉. It has length188

2⌈log2 d⌉ ≥ d. Define the polynomial189

Bd(x0, x1) :=
d∏

i=1
xσi

.190

The following implies the result of Theorem 1.191

▶ Proposition 9. Every homogeneous circuit computing Bd contains Ω(d/ log d) non-scalar192

product gates.193

CCC 2023



13:6 New Lower Bounds against Homogeneous Non-Commutative Circuits

Proof. This is an application of Lemma 6 with ℓ = ⌈log2 d⌉. [d] contains d − ℓ − 1 intervals194

of length ℓ, all of which give rise to different substrings of σ. The family Fℓ(Bd) consists of195

d − (ℓ − 1) different monomials and hence µℓ(Bd) = d − (ℓ − 1). By the lemma, assuming196

ℓ > 1, a homogenous circuit for Bd must contain (d − (ℓ − 1))/(ℓ − 1) = Ω(d/ log d) product197

gates. ◀198

▶ Remark 10. Using de Bruijn sequences over alphabet of size n, one can give an explicit199

monomial in n > 1 variables and degree d ≥ n which requires homogeneous circuit of200

non-scalar size Ω(d log n/ log d). This can also be deduced from Proposition 9 by viewing201

degree k bivariate monomials as a single variable.202

Conversely, every such monomial α can be computed in size O(d log n/ log d) using203

multiplication gates only (such a computation is automatically homogeneous). Indeed, we204

can first compute all monomials of degree at most k by a circuit of size O(nk+1) and then205

compute α using ⌈d/k⌉ additional multiplication gates. Choosing k around 0.5 log2 d log−1
2 n206

is sufficient. This also means that the bound in Theorem 2 is tight.207

4.2 Computing partial derivatives simultaneously208

In order to obtain stronger lower bounds, we will translate the classical theorem of Baur and209

Strassen [1] on computing partial derivatives to the non-commutative setting.210

We define partial derivative with respect to first position only, as follows. Given a211

polynomial f and a variable x, f can be uniquely written as f = xf0 + f1 where no monomial212

in f1 contains x in the first position. We set ∂xf := f0.213

The proof of the following lemma is almost the same as the one due to Baur and Strassen.214

The only additional subtlety is that we need the derivatives to be computed by a homogeneous215

circuit. This requires the generalization of homogeneity to allow arbitrary variable weights.216

We emphasize that taking derivatives with respect to the first position is essential in the217

non-commutative setting.218

▶ Lemma 11. Assume that f ∈ F ⟨x1, . . . , xn⟩ can be computed by a homogeneous circuit219

of size s and non-scalar size s×. Then ∂x1f, . . . , ∂xnf can be simultaneously computed by a220

homogeneous circuit of size O(s) and non-scalar size O(s×).221

Proof. Given w = (w1, . . . , wn) ∈ Nn, let wi be the weight of xi and let the weight of a222

monomial α =
∏d

j=1 xij
be defined as wt(α) =

∑d
j=1 wij

. A polynomial f ∈ F ⟨x1, . . . , xn⟩223

is said to be w-homogeneous if every monomial in it has the same weight. We call this the224

weight of f , denoted by wt(f). Furthermore we say that a circuit C is w-homogeneous if225

every gate in it computes a w-homogeneous polynomial. The weight of any node, v, in a226

w-homogeneous circuit is defined to be the weight of the polynomial being computed by it.227

Note that if (w1, . . . , wn) = (1, . . . , 1), then w-homogeneity coincides with the usual228

notion of homogeneity. Therefore Lemma 11 follows from the following claim.229

▷ Claim 12. For any w = (w1, . . . , wn) ∈ Nn, if there is a w-homogenous circuit that230

computes f ∈ F ⟨x1, . . . , xn⟩ of size s and non-scalar size s×, then there is a w-homogeneous231

circuit that computes D(f) = {∂x1f, . . . , ∂xnf} of size at most 5s and non-scalar size at most232

2s×.233

We prove this claim by induction on s. Recall that circuit size is measured by the234

number of non-input gates. For the base case, s = 0, the circuit only consists of leaves. The235

derivatives are then either 0 or 1 and can again be computed in zero size.236
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Assume s > 0. Let w = (w1, . . . , wn) ∈ Nn be arbitrarily fixed. Furthermore, suppose237

there is a w-homogenous circuit C that computes f ∈ F ⟨x1, . . . , xn⟩ of size s. Choose a238

vertex v in C such that both its children are leaves, and let v̂ be the polynomial it computes.239

v̂ is a homogeneous polynomial in at most two variables and degree at most two; w.l.o.g., we240

can also assume that v̂ is at least linear (otherwise v could be replaced by a leaf).241

Let C′ be the circuit obtained from C by removing the incoming edges to v and labelling242

the vertex v with a new variable, say x0. Let us assign it weight w0 := wt(v̂).243

Let f ′ be the polynomial computed by C′. Then, D(f) = {∂x1f, . . . , ∂xnf} can be244

recovered from D(f ′) = {∂x0f ′, ∂x1f ′, . . . , ∂xn
f ′} using the following version of chain rule:245

∂xk
f = (∂xk

f ′ + ∂xk
v̂ · ∂x0f ′)|

x0:=v̂
.246

Note that ∂xk
v̂ is a variable or a constant, and that it is zero except for at most two of the247

xk’s.248

Let us set w′ = (w′
0, w1, . . . , wn). Note that the weight of every vertex in C′ is the same as249

the corresponding vertex in C. Therefore, since C is w-homogeneous, C′ is w′-homogeneous.250

Furthermore, C′ has s − 1 non-input gates and, by the inductive assumption, there is a251

w′-homogeneous circuit D′ of size 5(s − 1) which computes D(f ′). Using D′ and the chain252

rule above, we can construct a circuit with 5 additional gates which computes D(f). The253

size of this circuit is at most 5(s − 1) + 5 = 5s and is easily seen to be w-homogeneous.254

When counting non-scalar complexity, note that in the construction, only non-scalar255

product gates introduce non-scalar gates, and we always introduce at most two such gates. ◀256

We can now prove Theorem 2.257

Proof of Theorem 2. Let n, d be given with5 n > 1, d > 2. Let k be the smallest integer258

such that nk ≥ n(d − 1). Take a de Bruijn sequence σ of order k in alphabet [n]. Take259

sequences σ1, . . . , σn ∈ [n]d−1 so that their concatenation σ1 . . . σn is the initial segment of260

σ. Define the polynomial261

f = x1α1 + · · · + xnαn , where αi =
d−1∏
j=1

xσi
j

.262

Assume f has a homogeneous circuit of non-scalar size s. Then, by Lemma 11, α1, . . . , αn263

can be simultaneously computed by a homogeneous circuit of size s′ = O(s). We now apply264

Lemma 6 with ℓ = k. By construction, µk(α1, . . . , αn) = n(d − 1 − (k − 1)) = n(d − k). This265

is because αJ
i are distinct monomials for different i’s and intervals of length k. The lemma266

then gives s′ ≥ n(d − k)/(k − 1). If d ≤ n, we have k = 2 and so s′ ≥ n(d − 2). If d > n,267

we have k ≤ c1 log2 d/ log2 n and d − k ≥ c2d, for some constants c1, c2 > 0. Hence indeed268

s′ ≥ Ω(nd log n
log d ). ◀269

4.3 Lower bound for ordered symmetric polynomials270

We now prove Theorem 3. Firstly, we note the following.271

▶ Remark 13. OS2
n requires Ω(n) non-scalar product gates (even in the commutative setting).272

This can be proved by a standard partial derivatives argument as in [10].273

Hence we can focus on degree d > 2, in which case we give the following strengthening of274

Theorem 3:275

5 If d = 2, OS2
n satisfies the theorem; see Remark 13.

CCC 2023



13:8 New Lower Bounds against Homogeneous Non-Commutative Circuits

▶ Theorem 14. If 1 < k < n, any homogeneous circuit computing OSk+1
n (x1, . . . , xn) requires276

non-scalar size Ω(k(n − k)).277

Proof. Assume that a homogeneous circuit computes f = OSk+1
n (x1, . . . , xn) using s non-278

scalar product gates. Then by Lemma 11 there is a homogeneous circuit of non-scalar size279

O(s) which simultaneously computes {∂x1f, . . . , ∂xn
f}. Let this circuit be C. Then, by280

Lemma 6, µ2(Ĉ) ≤ O(s). Note that281

∂xi
f = OSk

n−i(xi+1, . . . , xn) .282

Let fi,j := (∂xi
f)[j,j+1]. We claim that the polynomials in F := (fi,j : i ∈ [n − k], j ∈ [k − 1])283

are linearly independent. This implies that µ2(Ĉ) ≥ (n − k)(k − 1) and gives a lower bound284

of Ω(k(n − k)) as required.285

We now prove that F is indeed linearly independent. Consider the lexicographic ordering286

on S := [n − k] × [k − 1] defined by:287

(i0, j0) < (i, j) iff (j0 > j) or (j0 = j and i0 < i) .288

Let (i0, j0) ∈ S be given. Denote δi0,j0(g) the coefficient of the monomial xi0+j0xn+j0−k+1289

in g. Then for every (i, j) ∈ S,290

δi0,j0(fi,j) =
{

1 if (i0, j0) = (i, j)
0 if (i0, j0) < (i, j) .

(1)291

To see (1), assume that ∂xif contains xn+j0−k+1 in position j + 1 in some monomial292

α with a non-zero coefficient. The degree of α is k, and the positions j + 1, . . . , k need293

to be filled with variables from xn+j0−k+1, . . . , xn in an ascending order. There are k − j294

such positions and k − j0 such variables. Therefore j ≥ j0. Furthermore, if j = j0, the295

last k − j0 positions in α are uniquely determined as the variables xn+j0−k+1, . . . , xn in296

that order. Similarly, if ∂xif contains xi0+j0 in position j0 in some α, the first j0 positions297

must be filled with variables from xi+1, . . . , xi0+j0 . Hence i ≤ i0, and in case of equality,298

the first j0 positions are uniquely determined. This means that δi0,j0(fi,j) = 0 whenever299

(i0, j0) < (i, j). Furthermore, α :=
∏i0+j0

p=i0+1 xp

∏n
p=n+j0−k+1 xp is the unique monomial in300

fi0,j0 with δi0,j0(α) = 1, concluding (1).301

Finally, assume for the sake of contradiction that there exists a non-trivial linear combin-302

ation303 ∑
(i,j)∈S

γi,jfi,j = 0 .304

Let (i0, j0) be the first pair in the lexicographic ordering with γi0,j0 ̸= 0. Then we have305

0 =
∑

(i,j)∈S

γi,jδi0,j0(fi,j) = γi0,j0δi0,j0(fi0,j0) +
∑

(i,j)>(i0,j0)

γi,jδi0,j0(fi,j) .306

Using (1), the last sum is zero and γi0,j0δi0,j0(fi0,j0) = γi0,j0 = 0, contrary to the assumption307

γi0,j0 ̸= 0. ◀308

5 Upper bounds for ordered symmetric polynomials309

In Proposition 4, we promised upper bounds on the complexity of elementary symmetric310

polynomials. The promise we now fulfil.311
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A quadratic upper bound in the homogeneous setting312

We want to show that for d ∈ {0, . . . , n}, OSd
n can be simultaneously computed by a313

homogeneous circuit of size O(n2).314

Note that315

OSd
n(x1, . . . , xn) = OSd−1

n−1(x1, . . . , xn−1) · xn + OSd
n−1(x1, . . . , xn−1).316

Hence, once we have computed OSd
n−1, d ∈ {0, . . . , n−1}, we can compute OSd

n, d ∈ {0, . . . , n}317

using O(n) extra gates. The overall complexity is quadratic.318

An almost linear upper bound in the non-homogeneous setting319

We want to show that OSd
n, d ∈ {0, . . . , n}, can be simultaneously computed by a non-320

commutative circuit of size n · poly(log n).321

The proof is the same as its commutative analog for elementary symmetric polynomials,322

see [1] or the monograph by Burgisser et al. [2, Chapters 2.1-2.3].323

The main observation is that polynomial multiplication can be done efficiently. Let324

f =
n∑

i=0
yit

i, g =
n∑

i=0
zit

i,325

where f, g ∈ F ⟨y0, . . . , yn, z0, . . . , zn⟩ [t]. In other words, we assume that t commutes with326

otherwise non-commuting variables y0, . . . , yn,z0, . . . , zn. We view f, g as univariate poly-327

nomials in the variable t with non-commutative coefficients. Then fg =
∑2n

i=0 cit
i with328

ci =
∑i

j=0 yjzi−j . Commutatively, the polynomials c0, . . . , c2n can be simultaneously com-329

puted by a small circuit. Indeed, if F contains sufficiently many roots of unity, one can obtain330

an O(n log n) circuit using Fast Fourier Transform; in other fields there are modification331

giving a circuit of size O(n log n log log n) see [12, 2]. When counting only non-scalar product332

gates, this can be improved to O(n) if F is sufficiently large. We observe that the same holds333

if the coefficients of f, g do not commute. This is because the polynomials ck are bilinear in334

y0, . . . , yn,z0, . . . , zn. Commutativity does not make a difference in this case (an exercise).335

Now consider the polynomial hn(t) =
∏n

i=1(xi + t) ∈ F ⟨x1, . . . , xn⟩ [t]. Then one can see336

that OSd
n(x1, . . . , xn) is the coefficient of tn−d in h(t). The coefficients can be be recursively337

computed by first computing
∏⌈n/2⌉

i=1 (xi + t),
∏n

i=⌈n/2⌉+1(xi + t), and then combining the338

two by means of the fast polynomial multiplication above. This gives the claimed complexity.339

6 Open problems340

We end with two open problems.341

▶ Open Problem 1. Find an explicit bivariate polynomial of degree d which requires non-342

commutative homogeneous circuit of size superlinear in d343

▶ Open Problem 2. Given a non-commutative monomial α, can addition gates help to344

compute α?345

Observe that the bounds obtained in this paper are barely linear in d. Problem 1 simply346

asks for a quantitative improvement. A circuit with no addition gates is automatically347

homogeneous – hence a negative answer to Problem 2 would allow to remove the homogeneity348

assumption in Theorem 1.349
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