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Abstract

We give an exponential lower bound on the number of proof-lines in intuitionistic propositional logic, I L , axiomatised in the
usual Frege-style fashion; i.e., we give an example of I L-tautologies A1, A2, . . . s.t. every I L-proof of Ai must have a number of
proof-lines exponential in terms of the size of Ai . We show that the results do not apply to the system of classical logic and we
obtain an exponential speed-up between classical and intuitionistic logic.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One of the basic problems of proof complexity is to find lower bounds on sizes of proofs in various proof systems.
The general form of the problem is the following:
For a proof system S and a function g : ω → ω find a sequence of S-tautologies (determine whether it exists)
Ai , i ∈ ω, s.t. every S-proof of Ai must have size at least g(|Ai |).1

For weak proof systems, such as those formalising propositional logic, the problem is interesting when g is an
exponential or a superpolynomial function. Recently, an exponential lower bound on the number of proof-lines was
reached in [6] for the system K of modal logic. In this paper, we extend the result to the system of intuitionistic
propositional logic, I L . We will present examples of I L-tautologies A s.t. every I L-proof of A must contain an
exponential number of proof-lines. Exact axiomatisation of I L will be given in Section 3. The axiomatisation is a
particular kind of a Frege system for intuitionistic propositional logic. In [8] it has been shown that all such systems
are polynomially equivalent, and hence our proof is not sensitive to the choice of axiomatisation, as far as it remains
Frege-style.

The method of proof of this paper is simple. We show that there is a sound translation of I L to K preserving the
number of proof-lines.2 This enables us to reduce the lower bound for I L to that of K . Since the basic tool of [6] was
that of monotone interpolation, here too we obtain a form of monotone interpolation for I L . For a better exposition

E-mail address: pahrubes@centrum.cz.
1

|Ai | denotes the size of Ai . The size of a tautology or of a proof is the number of symbols it contains.
2 For exact formulation see Proposition 3.
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of the concept see [6], or for example [7]. However, we shall present two different types of hard I L-tautologies, the
first having the traditional interpolation style, the latter being based on the gap between monotone and non-monotone
circuits. The latter form is a formalisation of the assertion “C(p) defines a monotone function” for a general circuit
C defining a monotone Boolean function (see Section 5).3 I believed that such a tautology could give a lower bound
even for classical propositional systems. In Section 6 it is shown that this is in general not the case.

It has been proved earlier by Pavel Pudlák [9] that intuitionistic propositional calculus has an effective interpolation
property. (See also [4].) This was based on the result of Buss and Mints [3] who have shown that intuitionistic
disjunction has a constructive behaviour even in the sense of complexity of proofs, i.e., that from an intuitionistic
proof of a disjunction A ∨ B one can extract a proof of A or B in a polynomial time. These results, though revealing a
close connection between the complexity of intuitionistic proofs and Boolean circuits, and illuminating a new aspect
of constructivity in intutionistic logic, are not sufficient to give a concrete lower bound on sizes of I L proofs. This
is because by means of effective interpolation we reduce the problem of finding a proof size lower bound to that of
finding a circuit lower bound, a substantially more difficult problem. In this paper we show that I L has even monotone
effective interpolation property and hence we can apply the classical results in monotone circuit complexity to I L .

2. A different form of monotone interpolation for K

The proof system K is obtained by adding the symbol � to the language of propositional logic. The underlying
propositional logic is formalised by means of a Frege system (the axiomatisation of classical logic given in Section 6
is adequate). In addition, K has the rule of generalisation and the distributivity axiom

A
�A

, �(A → B) → (�A → �B).

We are going to reduce monotone interpolation for I L to the monotone interpolation for K . However, the form of
monotone interpolation offered in [6] is not suitable for this purpose, and we will first prove a different kind of
monotone interpolation for K . The following theorem can be found in [6]:

Theorem 0. Let α, β1 and β2 be propositional formulas. Assume that α is a monotone formula (i.e., containing only
the connectives ∧ and ∨) and that it contains only the variables p, and that β1 resp. β2 contain only the variables
p, s1 resp p, s2. Assume that

α(�p) → �β1 ∨ �β2

has a K -proof with n distributivity axioms. Then there exist monotone circuits C1(p) and C2(p) of size O(n2) s.t. for
any assignment σ of p

(1) if α is true then C1(p) = 1 or C2(p) = 1,
(2) if C1(p) = 1 then β1 is true (for any assignment of the variables s1), and if C2(p) = 1 then β2 is true (for any

assignment of the variables s2).

A propositional formula β will be called monotone in p if the formula, when transformed to a DNF form, does not
contain negation in front of any variable in p. If β is a general propositional formula in variables p, r , p = p1, . . . pn
and q = q1, . . . qn then β(p/¬q, s) will denote the formula obtained by substituting ¬qi for pi , i = 1, . . . n, in β.
We may also write simply β(¬q, s) if the meaning is clear.

Lemma 1. Let β1 = β1(p, r1) and β2 = β2(q, r2) be propositional formulas, p, q, r1, r2 disjoint. Let p =

p1, . . . pn and q = q1, . . . qn . Assume that β1 is monotone in p or β2 is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology.

(1) Then
∧

i=1,...n(pi ∨ qi ) → β1(p, r1) ∨ β2(q, r2) is a classical tautology.
(2) Let M, N be subsets of {1, . . . n} s.t. M ∪ N = {1, . . . n}. Then one of the following is a classical tautology:

3 The lower bound was first reached for the tautologies in Section 5. It was Pavel Pudlák who reminded the author that the same argument applies
also to the more natural tautologies of Section 4.
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(a)
∧

i∈M pi → β1(p, r1) or
(b)

∧
i∈N qi → β2(q, r2).

Proof. (1) Assume that, for example, β2 is monotone in q. Then∧
i=1,...n

(pi → qi ) → (β2(p, r2) → β2(q, r2))

is a tautology. Hence also∧
i=1,...n

(¬pi ∨ qi ) → (β2(p, r2) → β2(q, r2))

and ∧
i=1,...n

(pi ∨ qi ) → (β2(¬p, r2) → β2(q, r2))

are tautologies. From the assumption that

β1(p, r1) ∨ β2(¬p, r2)

is a tautology we obtain that also∧
i=1,...n

(pi ∨ qi ) → (β1(p, r1) ∨ β2(q, r2))

is a tautology.
(2) Let M and N be fixed. Clearly,∧

i∈M

pi ∧

∧
i∈N

qi →

∧
i=1,...n

(pi ∨ qi )

is a tautology and, by (1),∧
i∈M

pi ∧

∧
i∈N

qi → (β1(p, r1) ∨ β2(q, r2))

is a tautology. Since β1 and β2 contain no common variables, and β1, resp. β2 does not contain the variables q, resp.
p then either

∧
i∈M pi → β1(p, r1) or

∧
i∈N qi → β2(q, r2) is a tautology. �

Let α = α(p, r) and β = β(p, s) be propositional formulas, r , s disjoint. We will say that a circuit C in variables
p interpolates α and β if for every assignment σ of the variables p

1. if for some assignment of r , α is true then C(p) = 1, and
2. if C(p) = 1 then for every assignment of s, β is true.

Theorem 2. Let β1 = β1(p, r1) and β2 = β2(q, r2) be propositional formulas, p, q, r1, r2 disjoint. Let
p = p1, . . . pk and q = q1, . . . qk . Assume that β1 is monotone in p or β2 is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology. Then∧
i=1,...k

(�pi ∨ �qi ) → (�β1(p, r1) ∨ �β2(q, r2))

is a K -tautology. Moreover, if the tautology has a K -proof with n distributivity axioms then there exists a monotone
circuit C(p) of size O(n2) which interpolates ¬β2(¬p, r2) and β1(p, r1).
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Proof. Let us first show that the formula is a tautology. The assumption
∧

i=1,...k(�pi ∨ �qi ) can be transformed to
a disjunction of conjunctions of the form∧

i∈M

�pi ∧

∧
i∈N

�qi

such that M ∪ N = {1, . . . k}. Hence it is sufficient to show that for such M and N∧
i∈M

�pi ∧

∧
i∈N

�qi → (�β1 ∨ �β2) (?)

is a tautology. By the previous Lemma either
∧

i∈M pi → β1 or
∧

i∈N qi → β2 is a classical tautology. In the first
case clearly

∧
i∈M �pi → �β1 is a tautology and hence also (?) is. Similarly in the latter case.

From Theorem 0 there exist monotone circuits D1 and D2 in variables p, q of size O(n2) s.t. for any assignment

(D1(p, q) = 1) → β1, (1)

(D2(p, q) = 1) → β2 (2)

and if the assignment satisfies
∧

i=1,...k(pi ∨ qi ) then

D1(p, q) = 1 ∨ D2(p, q) = 1.

This in particular gives

D1(p, ¬p) = 1 ∨ D2(p, ¬p) = 1. (3)

Let C(p) := D1(p, 1, . . . 1) and C ′(q) := D2(1, . . . 1, q). Since in (1) β1 does not contain q, we have

(C(p) = 1) → β1. (4)

Similarly, by replacing q by ¬p in (2) we have

(C ′(¬p) = 1) → β2(¬p, r2). (5)

Since D1 and D2 are monotone, (3) gives

D1(p, 1, . . . 1) = 1 ∨ D2(1, . . . 1, ¬p) = 1

and hence

C(p) = 1 ∨ C ′(¬p) = 1. (6)

Let us show that the circuit C interpolates ¬β2(¬p, r2) and β1(p, r1). By (4) it is sufficient to prove that if for some
assignment ¬β2(¬p, r2) is true then C(p) = 1. But if ¬β2(¬p, r2) is true then by (5) C ′(¬p) = 0 and, by (6),
C(p) = 1. �

3. Translation of I L to K

The language of intuitionistic propositional logic, I L , contains the connectives →, ∨, ∧ and a fixed variable
symbol ⊥. The only rule of inference is modus ponens

A, A → B
B

.

The axioms are the following:
Ax1 A → (B → A)

Ax2 (A → (B → C)) → ((A → B) → (A → C))

Ax3 ⊥→ A
Ax4, Ax5 A ∧ B → B, A ∧ B → A
Ax6 (A → (B → C)) → (A ∧ B → C)

Ax7, Ax8 A → A ∨ B, B → A ∨ B
Ax9 (B → A) → ((C → A) → (B ∨ C → A)).
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76 P. Hrubeš / Annals of Pure and Applied Logic 146 (2007) 72–90

We give a translation of intuitionistic logic to K s.t. for any intuitionistic tautology A its translation At is
K -tautology. The translation is not in general faithful, it may happen that At is a tautology without A being so.4

Also, the translation is not polynomial. However, there is a polynomial (linear) relation between the number of proof-
lines in an intuitionistic proof of A and the number of distributivity axioms in a K -proof of At .

For an intuitionistic formula A of I L , its translation At to K will be defined as follows5:

1. pt
= �p and ⊥

t
=⊥.

2. (A → B)t
= �A ∧ At

→ �B ∧ Bt .
3. (A ∨ B)t

= (�A ∧ At ) ∨ (�B ∧ Bt ).
4. (A ∧ B)t

= At
∧ Bt .

Note that At is always a formula of K of modal-depth one, i.e., At does not contain nested modalities. We can think
of the translation as a combination of three different translations: a) the Gödel translation from I L to S4, b) the
translation from S4 to K 4, i.e., (�A)t

= �At
∧ At , and c) the translation from K 4 to K which was employed in [6],

based on deleting all boxes which are in a scope of another �. Routinely, but laboriously, we can verify the following:

Proposition 3. (1) If A is an I L-tautology then At is a K -tautology.
(2) If A has an I L-proof with n proof-lines then At has a K -proof with O(n) axioms of distributivity.

Proof. We proceed by induction on the number of proof-lines in an I L-proof. Let us first show that the translation of
an axiom is K -tautology. It will be apparent that the proofs do not require more than, say, five distributivity axioms.
Note that we can use a form of deduction theorem in K , i.e., in order to prove A → B it is sufficient to prove B from
the assumption A provided we do not apply generalisiation to a consequence of A in the proof. For an I L-formula A,
A? will be an abbreviation for �A ∧ At .

Ax1.

(A → (B → A))t
= A?

→ �(B → A) ∧ (B?
→ A?).

But �A → �(B → A) and hence A?
→ �(B → A) is a K -tautology and A?

→ (B?
→ A?) is a propositional

tautology.

Ax2. The translation of A2 is an implication s.t. on its left hand side we have the conjunction of

�(A → (B → C)) (a)

and

A?
→ �(B → C) ∧ (B?

→ C?), (b)

and on the right hand side we have the conjunction of

�((A → B) → (A → C)) (c)

and

(�(A → B) ∧ (A?
→ B?) → (�(A → C) ∧ (A?

→ C?)). (d)

By applying distributivity twice to the tautology

�((A → (B → C)) → ((A → B) → (A → C)))

we obtain that the following are K -tautologies:

�(A → (B → C)) → �((A → B) → (A → C)), (?)

�(A → (B → C)) → (�(A → B) → �(A → C)). (??)

4 Consider the formula ¬¬p → p.
5 Hence the symbol ⊥ is assumed also in K . If not, ⊥ can be simulated by any fixed contradiction in K .
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Hence (c) follows from (a) by (?). In order to prove (d) from (a) and (b), let us show that �(A → C) and A?
→ C?

follow from (a), (b),

�(A → B) (e)

and

A?
→ B?. (f)

Again, from (a), (e) and (??) we obtain �(A → C). (b) implies, in particular,

A?
→ (B?

→ C?).

This, together with (f), gives A?
→ C? by means of propositional logic only.

Ax3, Ax4–5 and Ax7–8 are easy.
The translation of Ax6 is an implication which contains

�(A → (B → C)), (a)

A?
→ �(B → C) ∧ (B?

→ C?) (b)

on the left hand side and

�(A ∧ B → C), (c)

�(A ∧ B) ∧ At
∧ Bt

→ C? (d)

on the right hand side. (c) follows from (a) by applying distributivity to the tautology

�((A → (B → C)) → (A ∧ B → C)).

In order to prove (d) from (b), let us show that C? follows from (b) and

�(A ∧ B) ∧ At
∧ Bt . (e)

Since �(A ∧ B) implies �A ∧ �B, (e) implies �A ∧ �B ∧ At
∧ Bt and hence A?

∧ B?. (b) gives, in particular,
A?

→ (B?
→ C?) which together with A?

∧ B? implies C?, by means of propositional logic only.
The translation of Ax9 is an implication with

�(B → A) (a)

B?
→ A? (b)

on the left hand side, and

�((C → A) → (B ∨ C → A)), (c)

�(C → A) ∧ (C?
→ A?) → �(B ∨ C → A) ∧ (�(B ∨ C) ∧ (B?

∨ C?) → A?) (d)

on the right hand side. By applying distributivity twice to the tautology

�((B → A) → ((C → A) → (B ∨ C → A)))

we obtain that the following are tautologies:

�(B → A) → �((C → A) → (B ∨ C → A)) (?)

�(B → A) → (�(C → A) → �(B ∨ C → A)). (??)

By means of (?), (c) follows from (a). In order to prove (d) from (a) and (b), it is sufficient to prove �(B ∨ C → A)

from (a) and

�(C → A), (e)
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and to prove A? from (b) and

C?
→ A?, (f)

B?
∨ C?. (g)

But �(B ∨ C → A) follows from (a) and (e) by means of (??) and A? follows from (b), (f) and (g) by means of
propositional logic only.

Let us consider modus ponens. Assume that I L ` A and I L ` A → B. We must show that K ` Bt . By the
inductive assumption K ` At and K ` (A → B)t

= �A ∧ At
→ �B ∧ Bt . Since I L ` A then A is a classical

tautology and K ` �A by generalisation. In the proof of �A, no distributivity is required. But hence K ` �A ∧ At .
Hence K ` �B ∧ Bt and K ` Bt , using no additional distributivity axiom. �

Lemma 4. Let α(p) be a formula in CNF form of size k containing no negations. Assume that

Γ := α(p) → β1 ∨ β2

has an intuitionistic proof with n proof-lines. Then

α(�p) → �β1 ∨ �β2

has a K -proof with O(n + k) distributivity axioms.

Proof. For simplicity, let us assume that α =
∧

i (pi
1 ∨ pi

2). In the general case the argument is similar. Then

αt
=

(∧
i

(pi
1 ∨ pi

2)

)t

=

∧
i

(pi
1 ∨ pi

2)
t
=

∧
i

((�pi
1 ∧ (pi

1)
t ) ∨ (�pi

2 ∧ (pi
2)

t ))

=

∧
i

((�pi
1 ∧ �pi

1) ∨ (�pi
2 ∧ �pi

2)).

But
∧

i ((�pi
1 ∧ �pi

1) ∨ (�pi
2 ∧ �pi

2)) is, using no distributivity, equivalent to
∧

i (�pi
1 ∨ �pi

2). Hence α(p)t is
equivalent to α(�p), using no distributivity. We have

Γ t
= (α → β1 ∨ β2)

t

= �α ∧ αt
→ (�(β1 ∨ β2) ∧ (β1 ∨ β2)

t )

= �α ∧ αt
→ (�(β1 ∨ β2) ∧ ((�β1 ∧ β t

1) ∨ (�β2 ∧ β t
2))).

Hence Γ t is, using no distributivity, equivalent to

�α(p) ∧ α(�p) → �(β1 ∨ β2) ∧ ((�β1 ∧ β t
1) ∨ (�β2 ∧ β t

2)). (?)

Assume that Γ has an intuitionistic proof with n proof-lines. Hence Γ t and (?) have K -proofs with O(n) distributivity
axioms. Hence also

�α(p) ∧ α(�p) → (�β1 ∨ �β2)

has a K -proof with O(n) distributivity axioms. Since α is a monotone formula then α(�p) → �α(p) is provable
with O(k) distributivity axioms. Therefore

α(�p) → (�β1 ∨ �β2)

has a K -proof with O(n + k) distributivity axioms. �

4. Monotone interpolation for IL

The formula Clas(p) will be the formula p ∨ ¬p and Clas(p1, . . . pn) will be an abbreviation for∧
i=1,...n

Clas(pi ).
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Theorem 5. Let β1 = β1(p, r1) and β2 = β2(q, r2) be propositional formulas, p, q, r1, r2 disjoint. Let
p = p1, . . . pk and q = q1, . . . qk and v := p, q, r1, r2. Assume that β1 is monotone in p or β2 is monotone in
q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology. Then∧
i=1,...k

(pi ∨ qi ) → (Clas(v) → β1) ∨ (Clas(v) → β2)

is an I L-tautology. Moreover, if the tautology has an I L-proof with n proof lines then there exists a monotone circuit
C(p) of size O((n + k)2) which interpolates ¬β2(¬p, r2) and β1(p, r1).

Proof. Let us first show that the formula is a tautology. The assumption
∧

i=1,...k(pi ∨ qi ) can be transformed to an
intuitionistically equivalent disjunction of conjunctions of the form∧

i∈M

pi ∧

∧
i∈N

qi

such that M ∪ N = {1, . . . k}. Hence it is sufficient to show that for such M and N∧
i∈M

pi ∧

∧
i∈N

qi → (Clas(v) → β1) ∨ (Clas(v) → β2) (?)

is an intuitionistic tautology. By Lemma 1 either
∧

i∈M pi → β1 or
∧

i∈N qi → β2 is a classical tautology. In the first
case

Clas(v) →

(∧
i∈M

pi → β1

)
is an intuitionistic tautology, since the assumption Clas(v) enables us to reproduce the classical proof in I L . But then
also ∧

i∈M

pi → (Clas(v) → β1)

and hence (?) are I L tautologies. The latter case is similar.
Assume that the formula

Γ :=

∧
i=1,...n

(pi ∨ qi ) → (Clas(v) → β1) ∨ (Clas(v) → β2)

has an intuitionistic proof with n proof-lines. By Lemma 4 the formula∧
i=1,...k

(�pi ∨ �qi ) → (�(Clas(v) → β1) ∨ �(Clas(v) → β2))

has a K -proof with O(n + k) distributivity axioms. However, Clas(v) is a classical tautology. Hence

�(Clas(v) → β1) → �β1

and

�(Clas(v) → β2) → �β2

can be proved in K using one axiom of distributivity each. Hence∧
i=1,...k

(�pi ∨ �qi ) → (�β1 ∨ �β2)

has a K -proof with O(n + k) distributivity axioms. Hence, by Theorem 2 there exists a monotone circuit of size
O((n + k)2) which interpolates ¬β2(¬p, r2) and β1(p, r1). �
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Let

Cliquek
n(p, r)

be the proposition asserting that r is clique of size k on the graph represented by p.6

Let

Colork
n(p, s)

be the proposition asserting that s is a k-coloring of the graph represented by p.

Theorem 6. Let p = p1, . . . , pn and q = q1, . . . qn and let p, q, r , s be disjoint, v := p, q, r , s. Let

Θk
n :=

∧
i=1,...n

(pi ∨ qi ) → (Clas(v) → ¬Cliquek+1
n (p, s)) ∨ (Clas(v) → ¬Colork

n(p/¬q, r)).

Then Θk
n is an I L-tautology. If k :=

√
n then every I L-proof of the tautology Θk

n contains at least

2Ω(n
1
4 )

proof-lines.

Proof. We shall apply Theorem 5 to the formulas β1 := ¬Cliquek+1
n (p, s) and β2 := ¬Colork

n(¬q, r). First, β2 is
monotone in q since Color(p, r) is monotone in p. Second, β1(p, s) ∨ β2(q/¬p, r) is a classical tautology, since
β2(q/¬p, r) = ¬Colork

n(p/¬¬p, r) is classically equivalent to ¬Colork
n(p, r) and

¬Cliquek+1
n (p, s) ∨ ¬Colork

n(p, r)

is a classical tautology. Hence Θk
n is an I L-tautology. Assume that it has an I L-proof with m proof-lines. Then, by

Theorem 5, there exists a monotone circuit C in variables p of size O((m+n)2) which interpolates ¬β2(q/¬p), r) and
β1. Since ¬β2(q/¬p), r) is classically equivalent to Colork

n(p, r), C interpolates Colork
n(p, r) and ¬Cliquek+1

n (p, s).

By the result in [1] every such circuit must have size at least 2Ω(n
1
4 ). Hence m ≥

√
2Ω(n

1
4 ) ∼ 2Ω(n

1
4 ). �

An extension to I L Har

A formula A will be called a Harrop formula if every disjunction in A occurs in the context

B ∨ C → D.

The system I L Har will be obtained by adding the axiom

¬¬A → A

to I L for any Harrop formula A. (¬A is an abbreviation for A →⊥.) Hence I L Har restricted to Harrop formulas is
equivalent to classical logic, in the sense that a Harrop formula A is provable in I L Har iff A is a classical tautology.
However, the disjunction retains non-classical behaviour in I L Har and we can extend the lower bound to I L Har .
Recall the translation from intutionistic to K -formulas from Section 3.

Lemma 7. Let A be a Harrop formula. Then

¬� ⊥→ (�A → At )

is a K -tautology. Moreover, the tautology has a K -proof with O(|A|) distributivity axioms.

Proof. Straightforward induction on the size of A. The assumption ¬� ⊥ is required at the basis step � ⊥→⊥
t . �

6 An explicit formulation of Clique and Color can be found in [7], for example. However, the only important feature of the formulas is that the
formula Clique is monotone in variables p.
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Lemma 8. 1. If A is an I L Har -tautology then ¬� ⊥→ At is K -tautology.
2. If A has an I L Har -proof of size7 n then ¬� ⊥→ At has a K -proof with O(n) axioms of distributivity.

Proof. The proof would proceed by induction as the proof of Proposition 3. It is sufficient to show that for any Harrop
formula A,

¬� ⊥→ (¬¬A → A)t

is a K -tautology with a proof with O(|A|) distributivity axioms. But

(¬¬A → A)t
= �¬¬A ∧ (¬¬A)t

→ �A ∧ At

is, using two axioms of distributivity, equivalent to

�A ∧ (¬¬A)t
→ �A ∧ At

and hence it is sufficient to find a K -proof for

¬� ⊥→ (�A ∧ (¬¬A)t
→ �A ∧ At ),

resp. for

¬� ⊥→ (�A → �A ∧ At ),

with O(|A|) distributivity axioms. But that follows from the previous Lemma. �

The following theorem implies an exponential lower bound on sizes of proofs in I L Har :

Theorem 9. Let β1 = β1(p, r1) and β2 = β2(q, r2) be Harrop formulas, p, q, r1, r2 disjoint. Let p = p1, . . . pk
and q = q1, . . . qk . Assume that β1 is monotone in p or β2 is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology. Then∧
i=1,...k

(pi ∨ qi ) → (β1 ∨ β2)

is an I L Har -tautology. Moreover, if the tautology has an I L Har proof of size n then there exists a monotone circuit
C(p) of size O((n + k)2) which interpolates ¬β2(¬p, r2) and β1(p, r1).

Proof. The proof is similar to that of Theorem 5. Note that if we prove a tautology of the form

¬� ⊥→ (A → �B ∨ �C)

in K using n axioms of distributivity than we can prove

(A → �B ∨ �C)

using n + 1 axioms of distributivity. �

Remark. Since the →, ¬-fragment of I L Har is equivalent to classical logic formalised using implication and
negation, we also have a translation from a →, ¬∧-fragment of classical logic to K , where classical logic is
axiomatised as a Frege system (e.g., the system F offered in Section 6 restricted to →, ¬-language). However, the
translation cannot be used to find a lower bound on classical proofs. From Lemma 7 it follows that for every Harrop
formula A of size n, if A is a classical tautology then ¬� ⊥→ At has a K -proof with O(n) distributivity axioms.

7 Note that here size of a proof means the number of its symbols.
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5. Tautologies based on the gap between monotone and general circuits

We are now going to present a different kind of a hard tautology in I L . Again, the idea is still possibility of
extracting a monotone circuit from an intutionistic proof, but the construction no longer deserves the title “monotone
interpolation”. Assume that we have a classical formula α(p) which defines a monotone Boolean function f , where
α itself is allowed to be non-monotone (i.e., may contain negations). In propositional logic we can find a tautology
asserting that α does indeed define a monotone function. The most transparent formulation is the tautology∧

i=1,...n

(pi → qi ) → (α(p) → α(q)). (?)

One might conjecture that a proof of (?) must have size at least Cm( f ), the size of a smallest monotone circuit C
computing f . This seems likely because the first-hand strategy for proving (?) is by constructing a monotone circuit
computing f . Furthermore, if N P 6= coN P then some tautologies of the form (?) are hard also in F , for the problem
of deciding whether a circuit (or even a formula) defines a monotone function is coN P-complete.8 Hence in order to
obtain a hard tautology of the form (?) it would be sufficient to find a formula α s.t. (i) α defines a monotone Boolean
function f , (ii) α has a polynomial size, and (iii) Cm( f ) is exponential. It should not deter us that an example of such
a formula is not known, for there are examples of circuits with such properties, and it is only a technical detail to
rephrase (?) for a circuit. Whether this strategy can give hard tautologies for classical Frege systems will be discussed
in the next section. On the other hand, the approach is successful in intuitionistic logic. It is sufficient to formulate (?)

with disjunctions rather than implications and we obtain tautologies with exponential lower bounds on the number of
proof lines in I L .

The major difference between this approach and that of monotone interpolation is the following: if we want to
obtain a lower bound on proofs by means of monotone interpolation, we need more than just the fact that a monotone
function f cannot be computed by a small monotone circuit. We must employ the full statement of Razborov’s theorem
that for given monotone functions g, h s.t. g ≤ h (i.e., g(x) ≤ h(x) on every input) there is no small monotone circuit
defining a function f s.t. g ≤ f ≤ h.9 In the setting of this section, it is sufficient to assume that f is not computable
by a small monotone circuit. The additional, also non-trivial, fact required is that f is computable by a small general
circuit.

Theorem 10. Assume that α(p) is a propositional formula which defines a monotone Boolean function f (p). Let
p = p1, . . . pk and q = q1, . . . qk , v := p, q. Then the formula∧

i=1,...k

(pi ∨ qi ) → ((Clas(v) → α(p)) ∨ (Clas(v) → ¬α(¬q)))

is an I L-tautology. Moreover, if the tautology has an I L-proof with n proof-lines then there exists a monotone circuit
of size O((n + k)2) which computes f .

Proof. We shall apply Theorem 5. Let us check the assumptions of the Theorem for β1 := α(p) and β2 := ¬α(p/¬q).
Since α defines a monotone function then β1 is monotone in p. (Recall that β1 is monotone in p if it can be transformed
to a DNF form with no negations attached to p.) Since

β2(q/¬p) = ¬α(¬¬p) (?)

then

β1(p) ∨ β2(q/¬p)) ≡ α(p) ∨ ¬α(p)

is a classical tautology. Hence Γ :=
∧

i=1,...k(pi ∨ qi ) → ((Clas(v) → β1) ∨ (Clas(v) → β2) is I L-tautology and if
Γ has a proof in I L with n proof-lines then there exists a monotone circuit C of size O((n + k)2) which interpolates
¬β2(q/¬p) and β1(p). But since β1(p) = α(p) and from (?) ¬β2(q/¬p) is equivalent to α(p) then C interpolates
α(p) and α(p), and hence it computes f . �

8 To see that the problem is in coN P is easy. For coN P-completeness note that the formula ¬p ∧ A(q) is monotone iff A(q) is a contradiction.
9 On the other hand, note that if f ∈ N P ∩ coN P , as is the case of the perfect matching function, then a bound on Cm ( f ) is indeed sufficient.
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As remarked above, Theorem 10 does not yet give a lower bound for I L for we do not have an example of a
function f definable by a small Boolean formula but not by a small monotone circuit. In order to avoid this obstacle,
we will now code circuits with formulas. Let C be a circuit in variables p s.t. the ∧- and ∨-gates have fan-in two. We
shall define a formula [C(p)] which asserts that C outputs 1 on variables p. For any gate a of C let us have a variable
ra . If a is a leaf (i.e., a variable in p) we let ra := a. Otherwise we assume that the variables ra, a ∈ C and p are
mutually different. The condition for a will be the formula Ma s.t.

1. if a = ¬b then Ma := (ra ≡ ¬rb),
2. if a = b ∧ c then Ma := (ra ≡ (rb ∧ rc)) and
3. if a = b ∨ c then Ma := (ra ≡ (rb ∨ rc))

Let c be the output gate of C . Then [C(p)] will be the formula∧
a∈C

Ma → rc,

where the conjunction ranges over the gates in C . When we write e.g. [¬C(¬q)] as below, we mean the result of
application of a similar procedure to the circuit ¬C(¬q) (the gates being coded by different variables than those of
C(p).)

Lemma 11. Let C(p) be a circuit defining a monotone Boolean function. Let p = p1, . . . pn and q = q1, . . . qn . Let
M, N be subsets of {1, . . . n} s.t. M ∪ N = {1, . . . n}. Then one of the following is a classical tautology:

1.
∧

i∈M pi → [C(p)] or
2.
∧

i∈N qi → [¬C(¬q)].

Proof. Let α(p) be a propositional formula defining f . As we have checked in the proof of the previous Theorem, the
formulas β1(p) := α(p) and β2(q) := ¬α(¬p) satisfy the assumptions of Lemma 1. Hence either

∧
i∈M pi → α(p)

or
∧

i∈N qi → ¬α(¬q) is a tautology. Assume the first alternative. Let c be the output gate of C . Clearly∧
a∈C

Ma → (rc ≡ α(p))

is a tautology and hence also

∧
i∈M

pi →

(∧
a∈C

Ma → rc

)
=

∧
i∈M

pi → [C(p)]

is a tautology. In the latter case the argument is identical. �

Theorem 12. Assume that C(p) is a circuit which defines a monotone Boolean function f (p). Let p = p1, . . . pk
and q = q1, . . . qk . Let v be the list of variables p, q plus the variables occurring in [C(p)] or [¬C(¬q)]. Then the
formula

Γ :=

∧
i=1,...k

(pi ∨ qi ) → ((Clas(v) → [C(p)]) ∨ (Clas(v) → [¬C(¬q)])

is an I L tautology. Moreover, if the tautology has an I L proof with n distributivity axioms then there exists a monotone
circuit of size O((n + k)2) which computes f .

Proof. To show that the formula is I L-tautology follows from Lemma 11 by an analogous argument as in Theorem 5.
Let us assume that Γ has an I L-proof S with n proof-lines. Let α(p) be a formula defining f . For a gate a of
C , let γa(p) be a formula equivalent to the circuit Ca . Similarly for a formula δa(q) and a gate a of the circuit
D(q) := ¬C(¬q). If c resp. d are the output gates of C resp. D, we can assume that γc = α(p) and δd = ¬α(¬q).
Substituting throughout S γa for ra , a ∈ C , and δa for ra , a ∈ D, we obtain an I L-proof of

∆ := Γ (ra/γa)a∈C (ra/δa)a∈D
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with n proof-lines. Let

λ1(p) :=

∧
a∈C

Ma(ra/γa)a∈C

and

λ2(q) :=

∧
a∈D

Ma(ra/δa)a∈D.

Then ∆ is equal to∧
i=1,...k

(pi ∨ qi ) → ((Clas(v) → (λ1 → α(p))) ∨ (Clas(v) → (λ2 → ¬α(¬q))).

Clearly, λ1 and λ2 are classical tautologies and hence the formulas

β1(p) := λ1 → α(p)

and

β2(p) := λ2 → ¬α(q)

satisfy the assumptions of Theorem 10. Hence there is a monotone circuit E(p) of size O((n+k)2) which interpolates
β1(p) and ¬β2(¬q). Since λ1 and λ2 are classical tautologies then both β1(p) and ¬β2(¬q) are equivalent to α(p)

and hence E computes f . �

Corollary. There exists a sequence γn, n ∈ ω of I L tautologies of size n s.t. every I L-proof of γn has at least 2Ω(n
1
4 )

proof-lines.

Proof. By [13] and [5] there exists a monotone function f computable by a polynomial circuit C s.t. every monotone

circuit computing f has at least the size 2Ω(n
1
4 ). Apply the Theorem to the circuit C . �

6. Classical logic

In this section we state what is now obvious, that there is an exponential speed-up between classical and
intuitionistic systems of propositional logic. This follows from the fact that the tautology of Theorem 6 has a
polynomial-size classical proof. We also prove something less obvious, that the tautology of Theorem 12 has a
polynomial-size classical proof, if C is taken as a particular circuit computing the perfect matching function.

We will define the system of classical propositional logic, the Frege system F , as the system I L plus the axiom

¬¬A → A,

where ¬A is understood as A →⊥.

Speed-up between classical and intuitionistic propositional calculi

Theorem 13. Let Θk
n be the I L-tautology of Theorem 6. If k :=

√
n then every I L-proof of the tautology Θk

n contains
an exponential number of proof-lines but Θk

n has a polynomial size classical proof.

Proof. In order to show that Θk
n has a polynomial size classical proof it is sufficient to prove that

¬Cliquek+1
n (p, s) ∨ ¬Colork

n(p, r)

has a polynomial-size Frege proof. But that follows from [2]. �
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Remark. Now that we have an exponential lower bound for intuitionistic calculus, a speed up between classical and
intuitionistic logic could be trivially obtained as follows: let Θi , i ∈ ω, be any sequence of I L-tautologies s.t. Θi have
only exponential proofs in I L . Let us consider the sequence

Γi := (p ∨ ¬p) ∨ Θi .

Then Γi have linear size classical proofs. Moreover, by [3] if I L ` A ∨ B then I L ` A or I L ` B, and the proof of
A resp. B has a polynomial size with respect to the size of the proof of A ∨ B. Since I L 6` p ∨ ¬p then Γi have only
exponential size proofs in I L . (A similar argument can be found in [12].)

A quasi-polynomial speed-up between I L and F on tautologies of the form of Theorem 12 will follow from the
argument in the next part of this section.

Fuzzy logic. Gödel–Dummett logic is the system I L plus the axiom

(A → B) ∨ (B → A).

It is one of the basic systems of fuzzy logic. We can obtain speed-up between Gödel–Dummett and intuitionistic logic
in the same way as in the previous remark. More interestingly, we can find polynomial size proofs of tautologies of
the form of Theorem 6. The tautology in Theorem 6 has the form∧

i=1,...n

(pi ∨ qi ) → (Clas(v) → β1(p, s)) ∨ (Clas(v) → β2(q, r)),

where v is the list p, q, r , s and∧
i=1,...n

(pi ∨ qi ) → (β1(p, s) ∨ β2(q, r))

has a polynomial classical proof. In Gödel–Dummett logic

(A → (B ∨ C)) → ((A → B) ∨ (A → C))

is a tautology. Hence it is sufficient to prove∧
i=1,...n

(pi ∨ qi ) → (Clas(v) → (β1(p, s) ∨ β2(q, r))),

or

Clas(v) →

( ∨
i=1,...n

(pi ∨ qi ) → (β1(p, s) ∨ β2(q, r))

)
.

However, the last tautology has a polynomial size proof since the assumption Clas(v) enables us to reproduce the
classical proof in Gödel–Dummett logic.

Short proofs of tautologies based on monotonicity of the perfect matching problem

One might conjecture that we could employ classical analogies of the tautologies in Theorem 12, i.e., tautologies
of the form10∧

i=1,...n

(pi → qi ) → (C(p) → C(q)) (?)

for a circuit C computing a monotone Boolean function f , to find lower bounds for classical propositional systems.
However, we will show that the tautology asserting monotonicity of a particular circuit defining the perfect matching
function has a polynomial size F-proof. Since we have a quasi-polynomial lower bound for monotone circuits

10 In F we would understand (?) as containing the conditions Ma for gates of C(p) and C(q) in the assumption.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

86 P. Hrubeš / Annals of Pure and Applied Logic 146 (2007) 72–90

computing the perfect matching function, we conclude that there is no polynomial function relating the size of F-
proof of (?) and Cm( f ). In order to completely frustrate the possibility of finding lower bounds for F by means
of (?), we would like to find polynomial size F-proofs for a circuit defining a monotone function f s.t. the gap
Cm( f )/C( f ) is exponential. Unfortunately, we know only one example of such a function (namely the one obtained
from [13]), and the complexity of the algorithm does not invite formalisation.

The perfect matching problem
Let G be a bipartite graph on U and V , U = u1, . . . un , V = v1, . . . vn . A matching M is a set of vertex disjoint

edges of G. M is a perfect matching, if |M | = n. G will be represented by propositional variables pi j , i, j = 1, . . . n
s.t. there is an edge in G connecting ui and v j iff pi j = 1. The perfect matching function fP M is the function in
p = pi j , i, j = 1, . . . n, variables s.t. fP M (p) = 1 iff the graph represented by p has a perfect matching. Clearly,
fP M is a monotone function. By the result of Razborov [10] every monotone circuit computing fP M must have a
superpolynomial size. On the other hand, there is a polynomial time algorithm deciding whether a bipartite graph G
has a perfect matching, and hence there are polynomial-size circuits computing fP M .

Recall the coding of circuits from Section 5. For circuits C1, . . . Cn and a formula A

A(C1, . . . Cn)

will be an abbreviation form∧
a∈Ci ,i=1,...n

Ma → A(r1, . . . rn),

where r1, . . . rn are variables representing the outputs of C1, . . . Cn . For a list of variables q, Cq will denote the list of
circuits indexed by the formulas q . Let A = A(p, q) be a formula. We will say that circuits Cq in variables p

1. solve the problem A, if

A(p, q) → A(p, Cq) (?)

is a tautology, and
2. solve the problem A polynomially in F , if the circuits have polynomial size and (?) has a polynomial size F-proof.

Moreover, the function f A(p) will be the Boolean function s.t. for any assignment of the variables p, f A(p) = 1 iff
there exists an assignment of q s.t. A(p, q) is true.

As opposed to the previous notation, we shall say that A(p, q) is monotone in p if A contains only the binary
connectives ∧, ∨, and negations do not occur in front of variables p.

Lemma 14. Let A = A(p, q) be a formula, r = r1, . . . rk , p = p1, . . . pk . Assume that circuits Cq in variables p
solve the problem A. Then

(1) the circuit C(p) := A(p, Cq(p)) computes the function f A(p).
(2) Assume in addition that Cq solve the problem A polynomially in F and that A is monotone in p. Then the tautology

∧
i, j=1,...n

(pi → ri ) → (C(p) → C(r)) (?)

has a polynomial size proof in F.

Proof. (1) is clear.
(2) We must show that∧

i=1,...n

(pi → ri ) → (A(p, Cq(p)) → A(r , Cq(r)) (?)

has a polynomial size F-proof. Since A(p, q) is monotone in p, we obtain a linear proof of∧
i=1,...n

(pi → ri ) → (A(p, Cq(p)) → A(r , Cq(p)). (i)
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Since the circuits Cq solve the problem A polynomially in F , we have a polynomial proof of

A(r , Cq(p)) → A(r , Cq(r)), (ii)

which together with (i) gives a polynomial size F proof of (?). (Note that (?) contains all the circuit gate conditions
in its assumption.) �

Let p = pi j , i, j = 1, . . . n and q = qi j , i, j = 1, . . . n. Then the formula

MATCH(p, q)

is the formula asserting that q is a matching on the graph represented by p, i.e., the formula∧
i, j

(¬qi j ∨ pi j ) ∧

∧
i, j1 6= j2

(¬qi j1 ∨ ¬qi j2) ∧

∧
i1 6=i2, j

(¬qi1 j ∨ ¬qi2 j ),

where the indices range over 1, . . . n. The formula

PMATCH(p, q) :=

∧
i

∨
j

qi j ∧ MATCH(p, q)

is the formula asserting that q is a perfect matching. In the Appendix, we will sketch the construction of circuits Cq
which polynomially solve the problem PMATCH in F . This will give the following theorem:

Theorem 15. There is a circuit C which computes the perfect matching function s.t. the tautology∧
i, j=1,...n

(pi j → qi j ) → (C(p) → C(q))

has a polynomial size F-proof. Hence (to match the formulation of Theorem 12) also the tautology∧
i, j=1,...n

(pi j ∨ qi j ) → ([C(p)] ∨ [¬C(¬q)])

has a polynomial size F-proof.
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Appendix

The algorithm

Let us first outline the algorithm for finding a perfect matching in a graph. For a matching M and a vertex v, we
will say that v is matched if v ∈ Vert(M). Similarly, an edge e is matched if e ∈ M . A path P in G will be called
alternating if it alternates between matched and unmatched edges and the first vertex is unmatched. An alternating
path will be called augmenting if it ends by an unmatched vertex, too.

The algorithm constructs a sequence of matchings M0, . . . Mn , Mi having size i . Let M0 := ∅. At the stage i + 1,
find an augmenting path P for Mi and let Mi+1 := (Mi \ P) ∪ (P \ Mi ).

An augmenting path for a matching M in G can be found as follows. Let u ∈ U be an unmatched vertex in G and
define a sequence of sets of vertices U u

0 , U u
1 , . . . U u

n ⊆ U , V u
1 , . . . V u

n ⊆ V .

U u
0 := {u}

V u
i+1 := {a ∈ Vert(G), ∃b ∈ U i

i 〈a, b〉 ∈ G \ M}, i = 0, . . . n − 1

U u
i+1 := {a ∈ Vert(G), ∃b ∈ V i

i 〈a, b〉 ∈ M}, i = 1, . . . n − 1.

Clearly, for every a ∈ V u
k resp. a ∈ U u

k there exists an alternating path of length 2k − 1 resp. 2k from u to a. Hence if
we find a and k = 1, . . . n s.t. a ∈ V u

k and a is unmatched, then there is an augmenting path from u to a. Moreover,
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we can easily construct the path: we can find a′
∈ U u

k−1 s.t. 〈a′, a〉 ∈ G is unmatched. Again there is an alternating
path of length 2k − 2 from u to a′, and we can find some a′′

∈ V u
k−2 s.t. 〈a′′, u〉 ∈ G is matched etc until we reach u.

A set X ⊆ U will be called critical in G, if |X | > |G(X)|, where G(X) ⊆ V is the image of X over the graph G.
The correctness of the algorithm can be proved using
Hall’s theorem:

G has a perfect matching iff G does not have a critical set.
It can be easily shown that the sets U u

i , V u
i constructed above either define an augmenting path, or

X :=

⋃
i=0,...n

U u
i

is a critical set. For if Y :=
⋃

i=0,...n V u
i then i) Y = G(X), from the definition, and ii) |Y | = |(X \ {u})| = |X | − 1,

since every vertex of Y is matched to some vertex in X \ {u}. Therefore if G has a perfect matching then, since there
is no critical set, the algorithm finds an augmenting path for Mi and hence it extends the matching Mi to Mi+1, until
a perfect matching is reached.

The formalisation

There exist polynomial formulas Countkn(p1, . . . pn) asserting that exactly k of the variables p = p1, . . . pn are
true s.t. their expected properties have polysize proofs in F (see [2]). This enables the formalisastion of basic counting
arguments in F .

The formula MATCHk(p, q) will be an abbreviation for

MATCH(p, q) ∧ Countkn

( ∨
j=1,...n

qi j , i = 1, . . . n

)
.

For a vertex a, the formula MATCHEDa(q) will be an abbreviation for
∨

j=1,...n qi j , if a = ui ∈ U , and∨
j=1,...n q j i , if a = vi ∈ V .
A path of odd length in a bipartite graph on U and V which starts in some ui1 ∈ U can be represented by a sequence

ui1 , . . . uik ∈ U v j1 , . . . v jk ∈ V s.t. the path contains edges 〈uil , v jl 〉 and 〈vil , u jl+1〉. Let f = fi j , i, j = 1, . . . n and
g = gi j , i, j = 1, . . . n be fresh variables. Let a = ui , b = v j be vertices. Then the formula

ODDPATHk
ab(p, f , g)

will be the formula asserting that f and g represent an odd path from a to b of length k, i.e., the assertion that i) f
and g are onto partial functions from 1, . . . n to 1, . . . k, and f1i = 1, gk j = 1, ii) for every i ′, j ′ = 1, . . . n, and
l = 1, . . . k if fi ′l = 1 and g j ′l = 1 then pi ′ j ′ = 1. The formula

ALTODDPATHk
ab(p, q, f , g)

will be the formula asserting that f and g represent an alternating path of odd length from a to b w.r. to the matching
q , i.e., the conjunction of i) ODDPATHk

ab(p, f , g), ii) ¬MATCHEDa(q) and iii)
∧

i, j ( fil ∧ g jl → ¬qi j ), for odd l,
and

∧
i, j ( fil ∧ g jl → ¬qi j ) for l even. Similarly for an odd path which starts in some a ∈ U and for even length

paths. Let

PATHk
ab(p, f , g), and ALTPATHk

ab(p, f , g)

be the formulas asserting that f and g represent a path resp. alternating path from a to b of length k.

AUGPATHk
ab(p, q, f , g)

will be the formula asserting that f and g represent an augmenting path from u to v w.r. to the matching q, i.e., an
alternating path from a to b s.t. b is unmatched. Finally,

AUGPATH(p, q, f , g)

is the disjunction of all AUGPATHk
ab(p, q, f , g).
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For a list of formulas A = Ai j , i, j = 1, . . . n, Dom(A) will be the list of n formulas∧
i

Ai1, . . .
∧

i

Ain .

The formula

CRIT(p, r),

r = r1, . . . rn , will be the formula asserting that the set X := {ui ∈ U ; ri = 1} is a critical set in the graph represented
by p. More exactly, it is a disjunction of conjunctions of the form Countkn(r1, . . . rn) ∧ Count j

n(Dom(ri ∧ pi j )), for
j < k.

The following lemma shows that the easy direction of Hall’s theorem is shortly provable in F :

Lemma 16. The formula

PMATCH(p, q) → ¬CRIT(p, r)

has a polynomial-size Frege proof.

Proof. Assume PMATCH(p, q) and CRIT(p, r). Then we shortly obtain a negation of pigeonhole principle which
has a short Frege refutation. �

Lemma 17. There are polynomial circuits C f and Dg in variables p, q s.t. the following has polynomial-size Frege
proof:

MATCH(p, q) → (AUGPATH(p, q, C f , Dg) ∨ CRIT(p, Dom(C f ))).

Proof. Recall the sets U a
0 , . . . U a

n and V u
0 , . . . V a

n . For a ∈ U , we can find polynomial-size circuits E s
au , s = 0, . . . n,

u ∈ U , and F s
av , s = 1, . . . n, v ∈ U , s.t. E s

au = 1 iff u ∈ U a
s and E s

av = 1 iff v ∈ V a
s , and moreover, the anologons

of the defining relations between U a
i and V a

i have polynomial proofs in F . The proof is then a straightforward
formalisation of the above informal argument. �

Lemma 18. There exist circuits Cq in variables p, q, f , g s.t. the following has polynomial-size Frege proof:

MATCHk(p, q) → (MATCHk+1(p, Cq) ∨ CRIT(p, Dom(Cq))).

Proof. The following is a simple counting argument in F : if M is a matching of size k and P is an augmenting path
then (P \ M) ∪ (M \ P) is a matching of size k + 1. The statement of the Lemma then follows from the previous
one. �

Let us recall the matchings M0, . . . Mn from our description of the algorithm. Using the circuits from Lemma 17
and Lemma 18, we can find polynomial circuits Ck

q (p) s.t. there are short Frege proofs of

MATCHk(p, Ck
q ) ∨ CRIT(p, Dom(Cq))),

i.e., they either define a matching of size k, or a critical set. Since MATCHn(p, q) is trivially equivalent to
PMATCH(p, q), we also have circuits Cq and polynomial proofs for

PMATCH(p, Cq) ∨ CRIT(p, Dom(Cq))).

Finally, from Lemma 16 it follows that

PMATCH(p, q) → PMATCH(p, Cq)

has a polynomial-size Frege proof, and hence the circuits Cq solve the problem PMATCH(p, q) polynomially in F .



Aut
ho

r's
   

pe
rs

on
al

   
co

py
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