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Abstract

Let σZ(k) be the smallest n such that there exists an identity
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with f1, . . . fn being polynomials with integer coefficients in the variables x1, . . . , xk

and y1, . . . , yk. We prove that σZ(k) ≥ Ω(k6/5).

1 Introduction

Consider the following problem: given k, what is the smallest n so that there exist real
polynomials f1, . . . , fn in the variables x1, . . . , xk and y1, . . . , yk satisfying the polynomial
identity

(x2
1 + x2

2 + · · ·+ x2
k) · (y2

1 + y2
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k) = f2
1 + f2

2 + · · ·+ f2
n. (1)

Let σR(k) denote the smallest n for which (1) holds. It is known that σR(k) = k for
k ∈ {1, 2, 4, 8}. When k = 1, we have x2

1y
2
1 = (x1y1)2. When k = 2, we have

(x2
1 + x2

2)(y2
1 + y2

2) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2.

Interpreting (x1, x2) and (y1, y2) as complex numbers x = x1 + ix2 and y = y1 + iy2, this
formula expresses the property |x|2 · |y|2 = |x · y|2 of multiplication of complex numbers.
When k = 4, there is a similar connection with multiplication of quaternions, when
k = 8, multiplication of octonions.

This fact is the historical motivation for the study of the problem. Other arise from
geometry and topology, and questions whether certain maps between spheres exist (see
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[9] for survey). A classical result of Hurwitz [1] states that σR(k) = k can be achieved
only for k ∈ {1, 2, 4, 8}. This is a special case of a more general theorem of Hurwitz
and Radon [8, 2]. The theorem states that (

∑s
i=1 x

2
i ) · (

∑k
i=1 y

2
i ) can be written as a

sum of k squares if and only if s ≤ ρ(k), where ρ(k) is the so called Radon-Hurwitz
number. In [8, 2], the function ρ(k) was exactly determined. Here are two properties
of this function: the equality ρ(k) = k holds only if k ∈ {1, 2, 4, 8}, and asymptotically
ρ(k) = Θ(log k). In contrast, Pfister showed that when k is a power of two, we can
always achieve k = n in (1), if we allow f1, . . . , fn to be real rational functions [7].

Beyond the classical, little is known about the function σR(k). The immediate bounds
are k ≤ σR(k) ≤ k2. One can improve the upper bound to k · d k

ρ(k)e which, together
with the estimate on ρ(k), gives

k ≤ σR(k) ≤ O
( k2

log k

)
. (2)

Using topological means, the lower bound has been increased by James [3], and gives an
asymptotic lower bound σR(k) ≥ (2− o(1))k (see also [5]). The gap between the lower
and upper bounds, however, remains wide open. Most importantly, we do not have a
lower bound k1+ε, or an upper bound k2−ε, for some ε > 0.

A simplified version of the problem has been considered, e.g., in [4, 10]; we can require
the polynomials f1, . . . , fn to have integer coefficients. Define σZ(k) as the smallest n
so that (1) holds with f1, . . . , fn polynomials with integer coefficients. So far, research
has mainly focused on computing the exact value of σZ(k) for small integers k, and little
was known about the asymptotic behavior of σZ(k). In this paper, we prove

Theorem 1. σZ(k) ≥ Ω(k6/5).

It is a remarkable fact that the best known real sum of squares formulas actually involve
polynomials with integer coefficients (see [12, 6]). Namely, the upper bound (2) is
obtained with f1, . . . , fn that have integer coefficients. It is an open question whether the
use of real numbers as opposed to integers can decrease n, that is, whether σR(k) = σZ(k)
holds for every k (and even for k = 11).

2 Sums of squares and intercalate matrices

We call a polynomial identity over R of the form (1) a real sum of squares formula of
type [k, n]. If the polynomials f1, . . . , fn have only integer coefficient, we call (1) an
integer sum of squares formula.

Let us first show that in the case of real numbers, the polynomials f1, . . . , fn are bilinear.
(We define [k] to be the set {1, . . . k}.)
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Lemma 2. If f1, . . . , fn are real polynomials that satisfy (1), then f1, . . . , fn are in fact
bilinear forms, that is, fi are of the form fi =

∑
p,q∈[k] ai,p,qxpyq.

Proof. It sufficient to show that f1, . . . , fn are homogeneous polynomials of degree one
in the variables X = {x1, . . . , xk}, and similarly for Y = {y1, . . . , yk}. For a polynomial
g, let g(j) denote the j-homogeneous part of g with respect to the variables X.

We want to show that f (j)
i = 0 whenever j 6= 1. Let m be the largest j so that there

exists i ∈ [n] with f
(j)
i 6= 0. Assume, for the sake of contradiction, that m > 1. The

maximality of m implies(
f2
1 + · · ·+ f2

n

)(2m) =
(
f

(m)
1

)2 + · · ·+
(
f (m)
n

)2
.

The left hand side is zero, and so the right hand side is zero as well. Over the real
numbers, this implies f (m)

1 = · · · = f
(m)
n = 0, which is a contradiction. In a similar

fashion, (
f2
1 + · · ·+ f2

n

)(0) =
(
f

(0)
1

)2 + · · ·+
(
f (0)
n

)2
,

which implies f (0)
1 = · · · = f

(0)
n = 0. Applying similar reasoning to Y , we conclude that

every fi is a bilinear form as claimed. QED

Following Yiu [10], we phrase σZ(k) in a more combinatorial language (though we deviate
from Yiu’s notation). We call a k × k matrix M = (Mi,j)i,j∈[k] with non-zero integer
entries an intercalate matrix, if

1) |Mi,j1 | 6= |Mi,j2 |, whenever j1 6= j2,

2) |Mi1,j | 6= |Mi2,j |, whenever i1 6= i2,

3) if i1 6= i2, j1 6= j2 and Mi1,j1 = ±Mi2,j2 , then Mi1,j2 = ∓Mi2,j1 .

We call C = C(M) = {|Mij | : i, j ∈ [k]} the set of colors in M . We say that M has n
colors, if |C| = n.

Condition 1) says that no color appears twice in the same row of M , condition 2) says
that no color appears twice in the same column of M . Condition 3) then requires that
for every 2× 2 submatrix (

a b
c d

)
of M , either |a|, |b|, |c|, |d| are all different, or the submatrix is of the form(

ε1a ε2b
ε3b ε4a

)
,
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where |a| 6= |b| and εi ∈ {+1,−1} satisfy ε1ε2ε3ε4 = −1. The following are examples of
2× 2 intercalate matrices:(

1 2
3 −4

)
,

(
1 2
2 −1

)
, and

(
−1 −2

2 −1

)
.

The following matrices are not intercalate:(
1 2
3 1

)
,

(
1 2
2 1

)
, and

(
−1 2

2 −1

)
.

The following proposition relates intercalate matrices and integer sum of squares formu-
las.

Proposition 3. The following are equivalent:

1. There exists an integer sum of squares formula of type [k, n].

2. There exists an intercalate k × k matrix with n colors.

Proof. Let us first show that existence of real sum of squares formula of type [k, n] is
equivalent to the following: there exists a family V of k2 vectors vi,j ∈ Rn, i, j ∈ [k],
with the following properties (v·u denotes the usual inner product in Rn)

i) vi,j ·vi,j = 1, for every i, j,

ii) vi,j1 ·vi,j2 = 0, whenever j1 6= j2,

iii) vi1,j ·vi1,j = 0, whenever i1 6= i2,

iv) vi1,j1 ·vi2,j2 + vi1,j2 ·vi2,j1 = 0, for every i1 6= i2, j1 6= j2.

Assume first that we have a real sum of squares formula of type [k, n] with f1, . . . , fn
bilinear forms, as guaranteed by Lemma 2. For ` ∈ [n] and i, j ∈ [k], let vi,j [`] be the
coefficient of xiyj in f`, and let vi,j = (vi,j [1], . . . , vi,j [n]). Equation (1) can be written
as

(x2
1 + · · ·+ x2

k) · (y2
1 + · · ·+ y2

k)

=
( ∑
i,j∈[k]

vi,jxiyj
)
·
( ∑
i,j∈[k]

vi,jxiyj
)
. (3)

4



The right hand side can be written as∑
i,j

(
(vi,j ·vi,j)x2

i y
2
j

)
+ 2

∑
i,j1<j2

(
(vi,j1 ·vi,j2)x2

i yj1yj2
)

+ 2
∑

i1<i2,j

(
(vi1,j ·vi2,j)xi1xi2y2

j

)
+

+2
∑

i1<i2,j1<j2

(
(vi1,j1 ·vi2,j2 + vi1,j2 ·vi2,j1)xi1xi2yj1yj2

)
.

On the left hand side, the coefficients of the monomials x2
i y

2
j , i, j ∈ [k] are equal to

one, and the other monomials have coefficient zero. Since (3) is equality of formal
polynomials, vi,j satisfy the four conditions above. Conversely, if we are given vectors
with such properties, we can construct sum of squares formula by means of (3).

In the case of integer sum of squares formula, the vectors vij have integer entries. In
the integer case, condition i) implies a stronger property

v) vij ∈ {0, 1,−1}n and vij has exactly one non-zero entry.

Here is how a family V with properties i) through v) corresponds to an intercalate
matrix. Given an intercalate matrix M with colors {a1, . . . , an}, define V as follows:
for every ` ∈ [n] and i, j ∈ [k], define vi,j [`] = sgn(Mi,j), if Mi,j = a`, and vi,j [`] = 0
otherwise. Conversely, given such a family V , define an intercalate matrix with colors
{1, . . . , n} as Mi,j = vi,j [`] · `, where ` is the unique coordinate such that vi,j [`] 6= 0. It is
straightforward to verify that the required properties of V resp. M are satisfied. QED

3 The number of colors in intercalate matrices

We say that two integer matrices M and M ′ are equivalent, if M ′ can be obtained from
M by

1) permuting rows and columns,

2) multiplying rows and columns by minus one, and

3) renaming colors, that is, if θ : Z→ Z is a one-to-one map, we have M ′i,j = θ(Mi,j),
for every i, j ∈ [k].

Here are two elementary properties of intercalate matrices.

Fact 4. A submatrix of an intercalate matrix is an intercalate matrix.

Fact 5. If M and M ′ are equivalent, then M is intercalate if and only if M ′ is intercalate.
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We say that a k × k matrix M is full, if for every i ∈ [k], we have Mi,i = 1.

The following lemma, which will be proved in Section 3.1, is the main step in the proof
of our main theorem.

Lemma 6. Let M be a k×k full intercalate matrix. Then M has at least Ω(k3/2) colors.

Lemma 6 implies the following theorem, which gives Theorem 1 by Proposition 3 .

Theorem 7. Any k × k intercalate matrix has at least Ω(k6/5) colors.

Proof. Let M be a k × k intercalate matrix with n colors. We show that M contains a
s×s submatrix M (0) which is equivalent to a full intercalate matrix, with s ≥ k2/n. For a
color a, let Ma = {(i, j) ∈ [k]×[k] : |Mi,j | = a}. The sets Ma form a partition of [k]×[k]
to n pairwise disjoint sets, and hence there exists some a so that s := |Ma| ≥ k2/n. Let
M (0) be the submatrix of M obtained by deleting rows and columns that do not contain
a. Since the color a never occurs twice in the same row or column in M (0), M (0) is s× s
matrix, and we can permute rows and columns of M (0) to obtain a matrix M (1) in which
the diagonal entries satisfy |M (1)

i,i | = a. We can thus multiply some of the rows of M (1)

by minus one to obtain a matrix M (2) in which the diagonal entries have M (2)
i,i = a.

Finally, we can rename the colors of M (2) to obtain a matrix M (3) with M
(3)
i,i = 1 for

every i ∈ [k]. Altogether, M (3) is a full intercalate matrix equivalent to M (0).

M (0) contains at most n colors. Hence Lemma 6 tells us that n ≥ Ω(s3/2). Since
s ≥ k2/n, we have n ≥ Ω(k3/n3/2), which implies n ≥ Ω(k6/5). QED

3.1 Number of colors in full intercalate matrices

The definition of intercalatness immediately implies the following:

Fact 8. If M is a full intercalate matrix, then Mi,j = −Mj,i for every i 6= j.

We now describe a few combinatorial properties of full intercalate matrices.

Lemma 9. Assume that M is 6× 6 intercalate matrix of the form

1 2 3
1 4

1
1 2 3

1 b
1

 ,

where the empty entries are some unspecified integers. Then b = −4.
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Proof. Let M1,4 = c. By Fact 8, M has the form

1 2 3 c
−2 1 4
−3 −4 1
−c 1 2 3

1 b
1

 .

Property 3) in the definition of intercalate matrices implies that M2,5 = M3,6 = M4,1 =
−c, as M2,1 = −M4,5 and M3,1 = −M4,6. Using Fact 8, we thus conclude that M has
the form



1 2 3 c
−2 1 4 −c
−3 −4 1 −c
−c 1 2 3

c 1 b
c 1

 .

Here we have M5,2 = −M3,6 and hence M5,6 = M3,2. In other words, b = −4. QED

Let M be a k × k matrix. A triple (i, j1, j2) such that 1 ≤ i < j1 < j2 ≤ k is called
a position in M . Let (a, b) be an ordered pair of natural numbers. We say that (a, b)
occurs in position (i, j1, j2) in M , if |Mi,j1 | = a and |Mi,j2 | = b.

Proposition 10. Let M be a full intercalate matrix. Then every pair (a, b) occurs in
at most two different positions in M .

Proof. Assume that (a, b) occurs at three distinct positions (i(p), j1(p), j2(p)), p ∈
{0, 1, 2}, in M . By renaming colors, we can assume without loss of generality that
(a, b) = (2, 3). We show that M contains 9× 9 submatrix M ′ equivalent to a matrix of
the form  A1

A2

A3

 ,

where

Ai =

 1 2 3
1 ci

1

 .
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This will imply a contradiction: Lemma 9 implies that c2 = −c1, c3 = −c1 and c3 = −c2,
and hence c1 = −c1, which is impossible, as c1 6= 0.

We first show that the nine indices I = {i(p), j1(p), j2(p) : p ∈ {0, 1, 2}} are all distinct.
There are a few cases to consider.

1. The definition of position guarantees that

|{i(p), j1(p), j2(p)}| = 3

for every p ∈ {0, 1, 2}.

2. Since no color can appear twice in the same row,

|{i(0), i(1), i(2)}| = |{j1(0), j1(1), j1(2)}| = |{j2(0), j2(1), j2(2)}| = 3.

3. Since |Mi(p),j1(p)| = |Mi(q),j1(q)| = 2, M being intercalate implies

|Mi(p),j1(q)| = |Mi(q),j1(p)|.

Assume, for the sake of contradiction, that j2(p) = j1(q) for some p 6= q. Thus,
|Mi(p),j1(q)| = |Mi(p),j2(p)| = 3, and so |Mi(q),j1(p)| = 3. But j1(p) 6= j2(q), as
j1(p) < j2(p) = j1(q) < j2(q). This contradicts property (1 in the definition of
intercalate matrices, since |Mi(q),j1(p)| = |Mi(q),j2(q)|.

4. Assume, for the sake of contradiction, that i(q) = je(p) for some p 6= q and e = 1, 2.
Since M is full, Mi(q),je(p) = 1. As above, we conclude that |Mi(p),je(q)| = 1. But
i(p) 6= je(q), since i(p) < je(p) = i(q) < je(q). Thus the color 1 appear twice in
the row i(p), which is a contradiction.

Let M ′ be the 9×9 submatrix of M defined by the set of rows and columns I. Permuting
rows and columns of M ′, we obtain a matrix of the form B1

B2

B3

 ,

where

Bi =

 1 εi2 δi3
1

1


and εi, δi ∈ {1,−1}. Multiplying rows and columns by minus one where appropriate, we
conclude that M ′ is of the desired form. QED
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We are now ready for the proof of the lemma.

Proof of Lemma 6. There are at least k3/8 different positions in M . From n colors, one
can build at most n2 ordered pairs. Proposition 10 implies that any such pair appears
in at most two positions in M . Thus, 2n2 ≥ k3/8 and so n ≥ Ω(k3/2). QED

4 Comments and open problems

Full intercalate matrices. An obvious way how to improve the bound in Theorem 1
is to improve the exponent 3/2 in Lemma 6. In the current proof, we employ a simple
counting argument to show that a matrix M , in which every pair occurs in at most
two positions, must have at least Ω(k3/2) colors. This is true for any such matrix (not
only intercalate), and remains true if we allow pairs to repeat any constant number of
times (not just two). In this sense, we could have saved some work in the proof of
Proposition 10, for it would be sufficient to show that every pair occurs at most c times
in M , for some constant c. Interestingly, if we do not use additional properties of M ,
the bound Ω(k3/2) is tight, as the following proposition shows.

Proposition 11. There exists n = O(k3/2) and sets S1, . . . , Sk ⊆ [n] such that

1. |Si| ≥ k, for every i ∈ [k], but

2. for every distinct i1, i2, i3 ∈ [k], we have |Si1 ∩ Si2 ∩ Si3 | ≤ 1.

This means that to improve the bound in Lemma 6, we must employ more properties
of M .

The proposition will follow from the following construction of the dual of this set system,
namely, the sets Tj ⊆ [k] with j ∈ [n] defined by Tj = {i : j ∈ Si}. It suffices to construct
the Tj ’s, and show that for any two distinct j, j′ ∈ [n], we have |Tj ∩ Tj′ | ≤ 2. This
construction, which is sometimes called a 3-design, may be interesting in its own right.
For this we need some notation.

For any field F, let H(F) = SL2(F) be the group of 2 × 2 matrices of determinant one
over F, and let P (F) = F∪{∞} denote the projective line. We will need the cardinalities
of these objects: if F is finite, we have |H(F)| = (|F|+1)|F|(|F|−1) and |P (F)| = |F|+1.

The Mobius action of H(F) on P (F) is defined by gx = (ax + b)/(cx + d), for g the
matrix whose rows are (a, b) and (c, d). This action is well known to be 3-transitive:
let x1, x2, x3 and y1, y2, y3 be two triples of elements from P (F), then there is a unique
g ∈ H(F) such that gxi = yi for every i ∈ {1, 2, 3}. In particular, if xi = yi for all
i, then that g is the identity of H(F). For a subset R ⊆ P (F) and g ∈ H(F), denote
gR = {gx : x ∈ R}.
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Let q be a prime power. We will use the objects above with the fields of size q and q2. For
b ∈ {1, 2}, let Fb be the field with qb elements, and let Hb = H(Fb) and Pb = P (Fb). We
have P1 ⊆ P2 and H1 is a subgroup of H2. Let C = {g1, g2, . . . , gn} denote a complete
set of left-coset representatives of H1 in H2. We assume that the identity of H2 is in C.

Our set system can now be defined. Let Tj = gjP1 for all j ∈ [n]. In words, we consider
the n shifts of P1 under the Mobius action of all members of the coset representatives
in C.

Let us check the parameters, and then prove the intersection property. We have k =
|P2| = q2 + 1 and n = (q2 + 1)q2(q2− 1)/(q+ 1)q(q− 1) = q(q2 + 1) = Θ(k3/2). We have
|Tj | = q + 1 for each j, and symmetry thus implies that each Si in the proposition has
size |Si| = q(q + 1) > k.

Lemma 12. For every two distinct j, j′, we have |Tj ∩ Tj′ | ≤ 2.

Proof. Assume for contradiction that for two distinct coset representatives g, g′ ∈ C,
we have |gP1 ∩ g′P1| ≥ 3. Then there must be an element h ∈ C (in the same coset
as g−1g′) such that h maps some three distinct elements x1, x2, x3 ∈ P1 respectively to
three distinct elements y1, y2, y3 ∈ P1. Let r ∈ H1 be the unique element such that
ryi = xi for i ∈ {1, 2, 3}. Then rh (which is in the same coset as h) fixes x1, x2, x3,
and so must be the identity of H2. But this means that g, g′ are in the same coset,
completing the contradiction.

Sums of squares over Gaussian integers. The sum of squares problem can be
posed over any field or a ring. However, one should explicitly require the polynomials
f1, . . . , fn in (1) to be bilinear. This requirement rules out trivial solutions; over C, e.g.,
every polynomial can be written as sum of three squares. For a ring S, define σS(k) as
the smallest n so that there exists an identity of the form (1) with f1, . . . fn, bilinear
forms over S. Here, one can assume that the characteristic of S is not 2 for otherwise
σS(k) = k. No superlinear lower bound on σF(k) is known over any field F. It would be
especially interesting to have such a bound over an algebraically closed field. Our lower
bound, apart from not working over a field, significantly employs the fact that −1 does
not have a square root. It would be interesting to remove this restriction.

Problem. Prove a superlinear lower bound on σG(k), where G is the ring of Gaussian
integers.
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