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THEORIES VERY CLOSE TO PA WHERE
KREISEL’S CONJECTURE IS FALSE

PAVEL HRUBEŠ

Abstract. We give four examples of theories in which Kreisel’s Conjecture is false: (1) the theory PA(-)
obtained by adding a function symbol minus, ‘−’, to the language of PA, and the axiom ∀x∀y∀z (x−y =
z) ≡ (x = y+z∨(x < y∧z = 0)); (2) the theoryZ of integers; (3) the theory PA(q) obtained by adding
a function symbol q (of arity ≥ 1) to PA, assuming nothing about q; (4) the theory PA(N ) containing a
unary predicate N (x) meaning ‘x is a natural number’. In Section 6 we suggest a counterexample to the so
called Sharpened Kreisel’s Conjecture.

§1. Introduction. Kreisel’s Conjecture (KC) is the following assertion (as quoted
by Friedman [1975]):

Let ∀n !(n) be a universal sentence of PA. Then if there is some k s.t. for
every n !(n) is provable in PA in k steps then ∀n !(n) is provable in PA.

Similarly, we could formulateKC for any formal systemS related to arithmetic. The
peculiarity of KC lies in the fact that it depends not so much on the logical strength
of S, i.e., on how many propositions are provable in S, but on the length of proofs
in S and, in particular, on the structure of terms in S. So far, it has been shown
that for some theories obtained by weakening1 of PA, KC is true. Parikh [1973]
has shown that KC is true in the theory obtained by replacing the binary function
symbols for multiplication and addition by ternary predicates in PA; the result has
been extended by Miyatake [1980] to the case where also + is present as a function
symbol. Baaz and Pudlák [1993] proved KC for the theory IΣ1.2 Kraj́ıček and
Pudlák [1988] proved that KC holds for any finitely axiomatised theory. On the
other hand, we can find trivial examples of theories where KC is false, e.g., one
obtained by adding every instance of an undecidable Π1-sentence as an axiom.
Yukami [1978] has shown, using the Matyasievich theorem, that KC is false when
we add to PA all the true equations of the form n · m = n ·m. The theories that
we are going to present will be more natural: the system PA(-) differs from PA
only in containing an additional function symbol, minus, which denotes a function
definable by a formula already in PA. The theoryZ has exactly the same language
as PA but it is a natural axiomatisation of the theory of integers. We will show
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that in those systems we can find k s.t. every sentence of the form n · m = n ·m
is provable in k steps, which implies that KC is false (as follows from Yukami’s
argument). The systems PA(q) and PA(N) will be obtained by weakening the
systems PA(-) andZ respectively. Here, KC will be disproved without determining
such an upper bound for multiplication, i.e., without bounding proof lengths of the
equation n ·m = n ·m.
I thank my supervisor Pavel Pudlák for his help and patience.

General notions. (1) PA will denote the usual Peano arithmetic.
(2) Let T be a theory, ! a formula and k a number. Then

T "k !
states that ! is provable in T in k steps.
(3) We assume that PA is formalised using the schemes of identity, i.e., infinitely
many axioms

x = y → t(z/x) = t(z/y)
for every term of PA and

x = y → (!(z/x) ≡ !(z/y))

for every formula of PA.
On the other hand, for the purposes of our construction it would be sufficient to
axiomatise identity with the finite list of axioms of the type x = y → S(x) = S(y),
and similarly for the other function and predicate symbols. The reason is that an
important fragment of the identity schema is derivable from the scheme of induction
in a fixed number of steps. The scheme of induction over a languageL is the scheme

IND : (!(z/0) ∧ ∀x!(z/x)→ !(z/S(x)))→ ∀z!(z),
where ! is a formula of the language L. The weak identity scheme over L will be
the scheme

WID : x = 0→ t(z/x) = t(z/0),
x = 0→ !(z/x) ≡ !(z/0),

where t and ! is a term resp. a formula of L.

Observation. Let L be a language containing the language of PA. There is k ∈ "
s.t. every instance of WID over L is provable in k steps in PA with induction over L.
Proof. The formula !(x) := x = 0 → t(x) = t(0) is proved by induction. If
x = 0, !(0) is 0 = 0 → t(0) = t(0). This is provable in a bounded number of
steps, since t(0) = t(0) is obtained by substitution to the formula x = x. Since
PA " ¬(S(x) = 0), then !(S(x)) is provable in a bounded number of steps, and
hence also !(x)→ !(S(x)). '
In order to obtain the full identity scheme, it would be sufficient to replace induction
by a stronger version

IND′ : (!(z, z) ∧ ∀x ≥ z !(z, x)→ !(z, S(x))) → ∀x ≥ z!(z, x).
However, it can be shown that the constructions of this paper require only the weak
scheme WID.
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(4) We shall be dealing with terms recursively defined by a given rule. Those
terms will be denoted Qn, Qnm, . . . where the indices range over natural numbers.
For example, Sn(0) will denote the term S(S(. . . S(0))) where the S’s occur n times
(this term will be also denoted by n). If !(Qn) is a formula containing the depicted
recursive term then

T "b !(Qn)
is an abbreviation for the statement ‘there exists k such that for every n,T "k !(Qn)’.
Similarly for a greater number of terms possibly with a greater number of indices.
As an example we state the following important lemma (see Yukami [1984]):
Lemma 1. PA "b Sn(y)+x = Sn(y+x) and hencePA "b x+Sn(y) = Sn(x+y).
Proof. Let !(y, x) denote the formula Sn(y) + x = Sn(y + x). The proof is
carried in PA by induction. If x = 0 then !(y, 0) = Sn(y) + 0 = Sn(y + 0) and
clearly PA "b !(y, 0). It can also be shown that PA "b !(y, x)→ !(y, S(x)). For
assume !(y, x). Then we have Sn(y) + S(x) = S(Sn(y) + x) = S(Sn(y + x)) =
Sn(S(y + x)) = Sn(y + S(x)) and hence also !(y, S(x)). '
The following can be obtained fromYukami [1978] and so we just sketch the proof:
Theorem 2. Let T be a consistent recursively axiomatised theory which contains
the language ofPA and extendsPA. Assume that there is k ∈ " s.t. for every n,m ∈ "
the formula

n ·m = n ·m
is provable in T in k steps. Then KC is false in T .
Proof. By the Matyasievich theorem we can find terms of PA, t1(x, y1, . . . , yl )
and t2(x, y1, . . . , yl ) s.t. the formula

!(x) := ∀x∃y1, . . . ∃yl t1(x, y1, . . . , yl ) = t2(x, y1, . . . , yl )
is true and undecidable in T . From Lemma 1 every equation of the form n +m =
n +m is provable in a bounded number of steps. This, together with the assumption
of the theorem, gives an upper bound for the proofs of the instances !(n). '

§2. The theory PA(−). The theory PA(-) is obtained by adding to PA a new
binary function symbol ‘−’ and the axiom

∀x∀y∀z (x − y = z) ≡ (x = y + z ∨ (x < y ∧ z = 0)),
and extending the scheme of induction to the language of PA(−). We are going to
prove the following theorem:
Theorem 3. There exists a k ∈ " such that for every n,mPA(-) "k Sn(0)·Sm(0) =
Sn·m(0), or shortly

PA(-) "b Sn(0) · Sm(0) = Sn·m(0).
Corollary 1. There is a number k and a formula!(x) in the language of PA such
that for every n PA(-) "k !(Sn(0)) but PA(-) ! ∀x !(x).
The point of the construction is the following. For a large term T we are
sometimes able to decide in a small number of steps whether it is equal to zero or
one, as will be seen below. For example, let T (z) denote the term

(. . . ((z · 1) · 1) . . . ) · 1).
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Then we can prove the following propositions in a bounded number of steps: z =
0 ≡ T (z) = 0, z = 1 ≡ T (z) = 1.3 The information whether a term equals zero
or not does not seem very useful. It may become so if we have a term q(x, y) s.t.
q(x, y) = 0 iff x ,= y. For then if we show that q(t1, t2) ,= 0, in a small number of
steps, then we also have t1 = t2 in a small number of steps. Minus, as introduced
here, enables us to find a term with such a property.
Let the expression t1- t2 be an abbreviation for ((t1− t2)+(t2− t1)). We observe
the following:
Lemma 4. The following is provable in PA(-):
1. (x + z)-(y + z) = x- y,
2. (x- y = 0) ≡ (x = y),
3. (1− (x- y) = 0) ≡ (x ,= y).
Let Tnm(x) denote the term

Sm(0) · Sn(x)-Sn·m(Sm(0) · x).

We will show that PA(-) "b 1 − Tnm(0) ,= 0, which immediately implies PA(-) "b
Sm(0) · Sn(0) = Sn·m(0).

Definition 1. 1. Let t, t1, t2 be terms. Then t[t1/t2] will denote the term
obtained by replacing all the occurrences of t1 in t by t2.

2. We shall write t1 ∼ t2, if the terms t1 and t2 are identical.

Lemma 5. 1. PA(-) "b Sm(0) · S(x) = Sm(Sm(0) · x).
2. Tnm(S(x))[S

m(0) · S(x)/Sm(Sm(0) · x)] ∼ Tn+1m (x), for every n.
3. PA(-) "b ∀x Tnm(x) = Tnm(0) and hence PA(-) "b T nm(0) ,= 0→ ∀xTnm(x) ,= 0.
Proof. (1) With the use of Lemma 1 we obtain

Sm(0) · S(x) = Sm(0) · x + Sm(0) = Sm(Sm(0) · x + 0) = Sm(Sm(0) · x).

(2) By inspection.
(3) It is sufficient to prove Tnm(S(x)) = T

n
m(x) in a bounded numbers of steps,

the statement then follows by induction. The following equivalences are proved in
a bounded number of steps by the use of Lemma 1 and the statement 1.

Tnm(S(x)) = S
m(0) · Sn(S(x)) - Sn·m(Sm(0) · S(x))

= Sm(0) · S(Sn(x)) - Sn·m(Sm(Sm(0) · x))
= (Sm(0) · Sn(x) + Sm(0)) - Sn·m(Sm(Sm(0) · x))
= (Sm(0) · Sn(x) + Sm(0)) - Sn·m(Sm(Sm(0) · x) + 0)
= (Sm(0) · Sn(x) + Sm(0)) - (Sn·m(Sm(0) · x) + Sm(0)).

By Lemma 4 part 1 we conclude

Tnm(S(x)) = S
n(x) · Sm(0)-Sn·m(Sm(0) · x). '

Lemma 6. Let t, t1, t2 be terms. Then the implication t1 = t2 → t = t[t1/t2] is
provable in PA(-) in three steps.

3However, in PA we are unable to prove even z > 2→ T (z) > 2, or even ∀zT (z) = z in a bounded
number of steps. In PA(-) this becomes easily provable.
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Proof. Let z be a variable not occurring in t and let t′ := t[t1/z]. Let x1, x2
be variables not occurring in t′. The implication x1 = x2 → t′[z/x1] = t′[z/x2] is
an axiom of identity. Applying substitutions x1/t1 and x2/t2 we obtain t1 = t2 →
t′[z/t1] = t′[z/t2]. But t′(z/t1) ∼ t and t′(z/t2) ∼ t[t1/t2]. '

Let Qnm(y, x) denote the term

y
!!
+

""
1− Tn−1m (x)

!!
+

""
1− Tn−2m (x)

!!
..
.!!
+

""
1− T 0m(x)

Lemma 7. PA(-) "b Qnm(y+(1−Tnm(x)), x) = Qnm(y, S(x))+(1−T 0m) and hence
PA(-) "b Qnm(y + (1 − Tnm(x)), x) = Qnm(y, S(x)) + 1.
Proof. Let t1 be the term Sm(0) · S(x) and t2 be the term Sm(Sm(0) · x). Let us
show that

(Qnm(y, S(x)) + (1− T 0m))[t1/t2] ∼ Qnm(y + (1− Tnm(x)), x).

We have

Qnm(y, S(x)) + (1− T 0m) ∼

y
!!
+

""
1− Tn−1m (S(x))

!!
+

""
1− Tn−2m (S(x))

!!
..
.!!
+

""
1− T 0m(S(x))

!!
+

""
1− T 0m(x)

Hence

(Qnm(y, S(x)) + (1− T 0m))[t1/t2] ∼

y
!!
+

""
1− Tn−1m (S(x))[t1/t2]

!!
+

""
1− Tn−2m (S(x))[t1/t2]

!!
..
.!!
+

""
1− T 0(S(x))[t1/t2]

!!
+

""
1− T 0m(x)[t1/t2]

But T 0m(x) does not contain t1 and by Lemma 5 T
k
m(S(x))[t1/t2] ∼ Tk+1m (x).

Therefore
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(Qnm(y, S(x)) + (1− T 0m))[t1/t2] ∼

y
!!
+

""
1− Tnm(x)

!!
+

""
1− Tn−1m (x)

!!
..
.!!
+

""
1− T 1m(x)

!!
+

""
1− T 0m(x)

which is the term Qnm(y + (1− Tnm(x)), x).
By the previous Lemma and Lemma 5, part 1, we obtain

PA(-) "b (Qnm(y, S(x)) + (1− T 0m))[t1/t2] = Qnm(y, S(x)) + (1− T 0m)

and therefore

PA(-) "b Qnm(y + (1− Tnm(x)), x) = Qnm(y, S(x)) + (1− T 0m(x)).

The other part of the proposition follows from the fact thatPA(-) "b T 0m(x) = 0. '
Proof of Theorem 3. We reason inPA(-). Assume thatSm(0)·Sn(0) ,= Sm·n(0).
Then byLemma 5 for every x,Tnm(x) ,= 0. Then, by Lemma 4, part 3, 1−Tnm(x) = 0
for every x. The previous lemma then gives the equality

(#) Q(y, x) = Q(y, S(x)) + 1.

Let y := 0. By induction we can prove that for every z,

(##) Q(0, 0) = Q(0, z) + z.

If z = 0 we have Q(0, 0) = Q(0, 0) + 0 which is true. Assume that the statement
holds for z, i.e., Q(0, 0) = Q(0, z) + z. From (#) we haveQ(0, z) = Q(0, S(z)) + 1
and hence Q(0, 0) = Q(0, S(z)) + 1 + z = Q(0, S(z)) + S(z).
But the proposition (##) implies thatQ(0, 0) ≥ z for every z, which is impossible.

'

§3. The theory PA(q). Let q be a function symbol of arity ≥ 1. The theory
PA(q) will be the theory obtained by adding the symbol q to the language of PA
and extending the scheme of induction to the language of PA(q). Hence the only
axioms describing the properties of q in PA(q) are those given in the induction and
the identity schemes.

Theorem 8. There is a number k and a formula !(x) in the language of PA(q)
such that for every n PA(q) "k !(Sn(0)) but PA(q) ! ∀x !(x).
Proof. Assume that q is a binary function. The sentence

∀x∀y∀z (q(x, y) = z) ≡ (x = y + z ∨ (x < y ∧ z = 0))

will be denoted as SUBTR[q]. As in Theorem 2 we can find a formula !′(x) in the
language of PA such that ∀x !(x) is not provable in PA (and hence in PA(q)), but
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the instances are provable in a bounded number of steps, if we have an upper bound
on proof-lengths for the equations n ·m = n ·m. Let !(x) be the formula

SUBTR[q]→ !′(x).

In every instance of the formula we can assume SUBTR[q] and use q in place of
minus as in the previous section. HenceweobtainPA(q) "b !(Sn(0)). The sentence
∀x !(x) is not provable in PA(q), since PA(q) is a conservative extension of PA and
the formula SUBTR[q] is satisfiable (i.e., every model of PA can be expanded to the
model of PA(q) + SUBTR[q]).
If q has an arity bigger than two, we can use the term q(x, y, 0, . . . 0) instead.
Assume that q is a unary function symbol. In PA we have a binary term OP
coding pairs of natural numbers. The previous argument can be applied to the term
q(OP(x, y)). '

§4. The theory of integers. The functionminus, as introduced in section 2, is quite
different from the functions definable by terms in PA. Not only it is not increasing
but it is also very ‘discontinuous’. Note that with minus we have definitions by
cases on terms: if we have functions f1, f2, g1, g2 defined by terms then we also
have a term in PA(−) which defines the function h such that h(x) = f1(x), if
g1(x) ≤ g2(x), and h(x) = f2(x) otherwise.4 We defined minus in this way
because we wanted to have a theory with the same universe as PA. However, this
property of minus is not essential in the proof of Theorem 3. We will now show that
a similar argument can be applied to the theory of integers, where minus is definable
in the natural way.
The theory of integers,Z , is the theory with constant 0, function symbols S,+, ·
and predicates <,≤,=. The axioms are the following (we take the leisure to write
x > y (≥ y) instead of y < x (≤ x) and abbreviate the bounded quantifiers in the
usual way):
Q1 : ∀x∀y(S(x) = S(y)) → x = y,
Q3′ : ∀x∃y S(y) = x,
Q4 : ∀x x + 0 = x,
Q5 : ∀x∀y x + S(y) = S(x + y),
Q6 : ∀x x · 0 = 0,
Q7 : ∀x∀y x · S(y) = x · y + x,
R8 : ∀x < 0∃y > 0 x + y = 0,
D9 : ∀x∀y x ≤ y ≡ x < y ∨ x = y,
L10 : ∀x ≥ 0 S(x) > 0,
L11 : ∀x x < 0 ≡ ¬(x ≥ 0)),
L12 : ∀x∀y (x < y ≡ ∃z > 0 y = x + z)
and the scheme of induction
IND: (!(0) ∧ ∀x ≥ 0 !(x)→ !(S(x)))→ ∀x ≥ 0 !(x).
The axioms Q1-Q7determine the behavior of S,+ and ·; they are the axioms of PA
except for themodified axiomQ3′. R8 is the key axiomrelating positive andnegative
numbers. D9 is a definition of≤. The axiomsL10-L11 can be equivalently replaced
by axioms asserting that< is a linear ordering and that x < S(x). The motivation

4Observe that h(x) = f1(x)(1− (g1(x)− g2(x))) + f2(x)(1− ((g2(x) + 1)− g1(x))).
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for choosing our axiomatisation is the following: axioms preceding L12, except for
the definition D9, use the relations <, ≤ only in the context x < 0, x ≤ 0 etc., i.e.,
we employ only the property ‘to be a positive (non-negative) number’. The axiom
L10 asserts that the successor of a non-negative number is positive, the axiom L11
says that every number is either positive or non-positive and not both. It is just
the last axiom which determines the exact properties of <. Note that there is no
function symbol for minus in Z and that the scheme of induction applies only to
positive numbers.
Lemma 9. Let! be a formula in the language ofZ . Then the following are provable
in Z :
IND 1 ((!(0)∧(∀x ≥ 0!(x)→ !(S(x))∧(∀x < 0!(S(x))→ !(x)))→ ∀x!(x),
IND 2 ((!(0) ∧ (∀x!(x) ≡ !(S(x)))→ ∀x!(x).
Proof. It is sufficient to prove part one, the other follows immediately. Reason
within Z . Assume that (i) !(0), (ii) (∀x ≥ 0 !(x) → !(S(x)) and (iii) ∀x <
0 !(S(x)) → !(x). From (i), (ii) and IND we obtain ∀x ≥ 0 !(x). By L11
it is sufficient to show that ∀x < 0 !(x). The following can be easily proved by
induction (and the axioms Q4, Q5):
Claim. ∀x∀y ≥ 0 x + S(y) = S(x) + y.
Let !′(x) be the formula

∀z < 0 z + x = 0→ !(z),

where z does not occur freely in !. Let us show that ∀x ≥ 0 !′(x). If x = 0
then for every z if z + x = 0 then z = 0, the antecedent is not satisfied and the
statement holds. Assume that !(x) is true for x ≥ 0. Let us show that !(Sx) is
true. Let z < 0 be such that z+S(x) = 0. Then S(z)+x = 0 and, by the inductive
assumption, we have !(S(z)) (more exactly, if S(z) ≥ 0 we have !(S(z)) from
the first part of the proposition and we use the inductive assumption in the case
S(z) < 0) . From (iii) we have !(z). Hence !′(S(x)) is true and therefore also
∀x ≥ 0 !′(x). This, together with axiom R8, gives ∀x < 0 !(x). '
The following proposition serves mainly to convince the reader of the soundness
of the systemZ .
Proposition 10. The following formulae are provable in Z :
1. (i) x ,= S(x), (ii) x + y = y + x, (iii) (x + y) + z = x + (y + z), (iv) y +
z = x + z ≡ y = x, (v) x · (y + z) = x · y + x · z, (vi) x · y = y · x,
(vii) (x · y) · z = x · (y · z).

2. (i) ∀x∀y∃!z x = y + z, (ii) ∀x ≥ 0∀y ≥ 0 x + y ≥ 0, (iii) ∀x ≤ 0∀y ≤
0 x + y ≤ 0.

3. (i) ¬x < x, (ii) x < y ∨ y < x ∨ x = y, (iii) (x < y) ∧ (y < z) → (x < z),
(iv) ¬(x < y ∧ y < x).

4. (i) ∀x∀y(x > 0 ∧ y > 0 ∨ x < 0 ∧ y < 0)→ x · y > 0, (ii) x · x ≥ x.
5. ∃!z∀x x · z + x = 0.
Proof. For (1) proceed as in PA but use IND2 where appropriate. We will prove
part (ii), the rest is similar. (In order to prove (i) note that the statement S(0) ,= 0
follows fromL10 andL11.) Let us first prove that for all x, 0+x = x. Let !(x) be
the formula 0+ x = x. If x = 0 the formula holds because ofQ4. Let us show that
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!(x) iff!(S(x)), for everyx. Assume!(x). Then 0+S(x) = S(0+x) = S(x) and
!(S(x)) holds. Assume !(S(x)). Then 0+S(x) = S(x) and so S(0+x) = S(x).
By Q1 we have 0 + x = x and !(x) holds. By IND2 we then obtain ∀x!(x). Let
now !(x) be the formula ∀y x + y = y + x. If x = 0, the formula holds as shown.
As in the previous case we can prove that !(x) iff !(S(x)), for every x and hence
∀x!(x) holds.
(2) The first proposition is straightforward, the second one requires the axiom
L10. The next one uses the axiom L11.
(3) If x < x then there is z > 0 such thatx = x+z. But then (x = x+0 = x+z)
and by (1), (iv) we have z = 0. But that is impossible, by axiom L11. The rest
follows from the statements already proved.
(4) Easy.
(5) Let z0 be such that S(z0) = 0. Then x ·S(z0) = 0. But x ·S(z0) = x · z0 + x.
If on the other hand x · z + x = 0 for every x then also S(0) · z + S(0) = 0 and
hence S(0) · S(z) = 0. But S(0) · S(z) = S(z) and hence S(z) = 0. Therefore
z = z0. '
We are now going to prove the following theorem:

Theorem 11. There is k such that for every n,m Z "k Sn(0) · Sm(0) = Sn·m(0),
or shortly

Z "b Sn(0) · Sm(0) = Sn·m(0).

Corollary 2. There is a number k and a formula !(x) in the language ofZ such
that for every n Z "k !(Sn(0)) butZ ! ∀x ≥ 0 !(x).
Lemma 12. Let T be a theory such that ∃z!(z) is provable in T . Let T ′ be the
extension of T with a new constant symbol c and the axiom !(c). Then
1. There exists a function p : " → " with the following property: if $ is a formula
in the language of T such that T ′ "k $ then T "p(k) $

2. Hence if S is a set of formulae in the language of T and k ∈ " is such that
T ′ "k $ for every $ ∈ S then there is j ∈ " s.t. T "j $, for every $ ∈ S.

Proof. The first part is easy and the other follows. '
The lemma shows that we can, without significantly shortening the proofs, extend
the language of Z by new constant symbols. Hence, by Proposition 10 part 5, we
can work in the systemZ (-1) obtained by adding a new constant -1 to the language
of Z together with the axiom

∀x x · (-1) + x = 0.

Definition 2. 1. The expression t1 − t2 will be an abbreviation for t1 + (-1).t2
2. The expression t1 ⊕ t2 will be an abbreviation for t1 · t1 + t2 · t2.

Lemma 13. The following formulae are provable in Z :
1. (x + z)− (x + z) = x − y.
2. x − y = 0 ≡ x = y.
3. (0⊕ 0) = 0.
4. (x ⊕ y) ≥ 0.
5. x ,= 0→ (y ⊕ x > y).
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Proof. (1)–(3) are easy.
(4) and (5) follow from Proposition 10, part (4). '
Let Tnm(x) denote the term

Sm(0) · Sn(x)− Sn·m(Sm(0) · x).

We will show that Z "b T nm(0) = 0, which immediately implies Z "b Sm(0) ·
Sn(0) = Sn·m(0).
The proof proceeds similarly to that one in section 2.

Lemma 14. 1. Z "b Sm(0) · S(x) = Sm(Sm(0) · x).
2. Tnm(S(x))[S

m(0) · S(x)/Sm(Sm(0) · x)] ∼ Tn+1m (x), for every n.
3. Z "b ∀x Tnm(x) = Tnm(0).
Proof. As in Lemma 5. '

Let Qnm(y, v, x) denote the term

y
!!

⊕
""

v − Tn−1m (x)

!!
⊕

""
v − Tn−2m (x)

!!
..
.!!

⊕
""

v − T 0m(x)

The following is proved as in Lemma 7:

Lemma 15. Z "b Q(y⊕ (v−Tnm(x)), v, x) = Q(y, v, S(x))⊕ (v−T 0m) and hence
Z "b Q(y ⊕ (v − Tnm(x)), v, x) = Q(y, v, S(x)) ⊕ v.
Proof of Theorem 9. We reason in Z . Assume that Sm(0) · Sn(0) ,= Sm·n(0).
Therefore Tnm(0) ,= 0. Let v0 := Tnm(0). We have v0 − Tnm(0) = 0 and v0 ,= 0. By
Lemma 13 part 3, v0 − Tnm(x) = 0 for every x.
The previous lemma then gives

Q(y ⊕ 0, v0, x) = Q(y, v0, S(x)) ⊕ v0.

Let y := 0. Then we obtain (Lemma 13, part 3)

(#) Q(0, v0, x) = Q(0, v0, S(x)) ⊕ v0.

By induction with respect to z we can prove that for every z ≥ 0 and for every x

Q(0, v0, x) ≥ z.

If z = 0, the proposition follows from Lemma 13, part 4 (since Q(0, v0, x) has the
form t1 ⊕ t2.) Assume the statement holds for z ≥ 0. From (#) and Lemma 13,
part 5, and the fact that v0 ,= 0 we have Q(0, v0, x) > Q(0, v0, S(x)). By the
inductive assumption Q(0, v0, x) ≥ z for every x and hence Q(0, v0, S(x)) ≥ z.
Hence Q(0, v0, x) > Q(0, v0, S(x)) implies Q(0, v0, x) > z andQ(0, v0, x) ≥ S(z).
But that is impossible. '
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§5. The theory PA(N). LetN(x) be a unary predicate. The expressions ∀x ∈ N
!(x), ∃x ∈ N !(x)will abbreviate the formulae∀x N(x)→ !(x), ∃x N(x)∧!(x)
respectively. Let ! be a formula of PA. Then the relativisation of ! will be
the formula obtained by replacing the quantifiers ∀x, ∃x by ∀x ∈ N , ∃x ∈ N
respectively. The theory PA(N) will be the theory obtained by adding the unary
predicate N to the language of PA, its axioms—besides induction—will be the
relativisations of axioms of PA, and the induction being replaced by the scheme

(!(0) ∧ ∀x ∈ N !(x)→ !(S(x)))→ ∀x ∈ N !(x),

where ! is any formula of PA(N).
The intended meaning of the predicateN is ‘is a natural number’. We see that PA
is equivalent (meaning mutually interpretable conserving the length of proofs) to
the theoryPA(N) plus the axiom ∀x N(x). At the same time the theory PA(N) can
be extended to a theory equivalent toZ , by adding only a finite number of axioms.
This fact is used in the following theorem.
Theorem 16. There is a formula !(x) in the language of PA(N) and a number k
such that for every n, PA(N) "k !(Sn(0)) but PA(N) ! ∀x ∈ N !(x).
Proof. The proof is similar to the proof of Theorem 9. Let κ denote the sentence
obtained by the conjunction of the axioms of Z , apart from induction, and the
sentence ∀x N(x) ≡ x ≥ 0. Let !′(x) be as in Theorem 9 and let !(x) denote the
formula

κ → !′(x).

The theoryPA(N)+κ is equivalent toZ . This is true even in the sense of conserving
the lengths of proofs: the lengths of proofs in Z and PA(N) + κ differ at most
by a constant. As shown above Z "b !′(Sn(0)) and hence there is a k such that
for every n, PA(N) "k !(Sn(0)). The formula ∀x ∈ N(x) !(x) is not provable in
PA(N), for PA(N) is conservative over PA. '

§6. Modifications of KC. Let us recall the proposition
SUBTR[q]→ !′(x)

of Theorem8, and let us substitute a binary term tofPA for q. Using the assumption
SUBTR[t], the instances of the formula

!(x) := SUBTR[t]→ !′(x)

can be proved in a bounded number of steps. On the other hand, since t is a term
of PA, we can also prove ¬SUBTR[t] in PA and hence also ∀x!(x) is provable in
PA. But wemust notice that the proof of SUBTR[t]→ !′(x) is very dissimilar from
the proofs of its instances: we prove the instances using the assumption SUBTR[t]
but we prove the generalization by proving ¬SUBTR[t]. This observation does not
contradict KC but it goes very strongly against its spirit: themotivation for believing
KC is that we can somehow transform the proofs of the instances to the proof of
the generalization. But at least in a naive reading of the phrase ‘transformation of
the proof’ this is not the case.
The same observation applies to the so called Sharpened Kreisel’s Conjecture
(SKC). SKC asserts, roughly (see, e.g., Kraj́ıček and Pudlák [1988]), that if !(n)
can be proved by a short proof for a large n then the proof can be transformed to the
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proof of the proposition ‘the numbers satisfying ! contain an (infinite) arithmetical
sequence’. Depending again on the charitability of the reading of the phrase ‘to be
transformed’, we can give a counterexample to SKC. For take the formula

!(x) := SUBTR[t]→ ∃zx = z · z.

Using the assumption SUBTR[t] the formula can be proved for every n which is a
square in a bounded number of steps. Since ¬SUBTR[t] is provable then ∀x!(x)
is also provable, and hence also the sentence ‘the numbers satisfying ! contain an
arithmetical sequence’. However, this proof is ‘very different’ from the proof of
!(n), for a square n. The gap between the proofs of the instances and the proof
of the generalization would stand out more clearly if we managed to show that
formulae of the form ¬SUBTR[t] cannot be proved in PA in a bounded number
of steps. For then the instances of !(x) would be proved in k steps regardless to
the t chosen but the proof of the generalization would have an arbitrary length, as
determined by the particular t.
Conjecture. For every k ∈ " there exists a binary term t of PA s.t.

!k ¬SUBTR[t].

Corollary 1. There exists k ∈ " s.t. for every j ∈ " there exists a formula !(x)
s.t. the set {n ∈ ","k !(n)} is infinite but the set {n ∈ ","j !(n)} does not contain
an arithmetical sequence.
‘Proof’. Let φ(x) be the formula ∃z x = z · z. There exists k ∈ " s.t. for
every binary term t and every square number n, "k SUBTR[t] → φ(n), and "k
SUBTR[t] → ¬φ(n), if n is not a square. For a given j ∈ " there exists, by the
Conjecture, a binary term t s.t. !k+j+5 ¬SUBTR[t]. Let

!(x) := SUBTR[t]→ φ(x).

Then {n ∈ ","k !(n)} is infinite. Assume that the set {n ∈ ","j !(n)} contains
an arithmetical sequence. Then there exists a number n which is not a square s.t.
"j !(n), i.e.,

"j SUBTR[t]→ φ(n).

On the other hand, since n is not a square, we have

"k SUBTR[t]→ ¬φ(n).

This altogether gives "k+j+5 ¬SUBTR[t], contrary to our assumption. ‘'’
Corollary 2. There exists k ∈ " s.t. for every j ∈ " there exists a formula !(x)
s.t. !j ∀x!(x) but "k !(n) for every n ∈ ".
‘Proof’. Let t1, t2, . . . bea sequenceof terms s.t.!i ¬SUBTR[ti ]. LetProof(x, y)
be an arithmetical translation of the proposition that the formula with Gödel num-
ber y has a proof with x proof lines in PA. Let Ti be the theory

PA+¬Proof(i , !¬SUBTR[ti ]").
Let us have a sequence ofΠ0-formulas φ1(x),φ2(x), . . . s.t. ∀xφi(x) is undecidable
in Ti . Furthermore, we can bound the complexity of the formulas in such a way
that there exists k ∈ " s.t. for every n and every i if φi(n) is true then PA "k
SUBTR[ti ] → φi(n), and PA "k SUBTR[ti ] → ¬φi(n) otherwise. Since the
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argument of Theorem 3 can be formalised in PA, we can also assume that for the
given k we have

PA " ∀x(¬φi(x)→ Proof(k, !SUBTR[ti ]→ ¬φi(x)")).
Let !i(x) := SUBTR[ti ] → φi(x). Then for every n ∈ ", PA "k !i(n). Assume
that there exists j ∈ " s.t. for every i PA "j ∀x!i(x). Let i > k + j + 6. There
exists a modelN of Ti and n ∈ N s.t.N |= ¬φi(n). Hence

N |= Proof(k, !SUBTR[ti ]→ ¬φi(n)").
From the assumption that PA "j ∀x!i(x) we have also

N |= Proof(j + 1, !SUBTR[ti ]→ φi(n)").
But this altogether gives

N |= Proof(k + j + 6, !¬SUBTR[ti ]"),
which contradicts the fact thatN |= Ti . ‘'’
The latter corollary violates the idea of transforming the proofs of the instances
to the proof of the generalization, while the first is a refutation of SKC. However,
we must note that the Conjecture takes its plausibility from the same intuitions
as KC itself. For it seems that for a sufficiently large and chaotic term we cannot
prove in a small number of steps that it does not have the property SUBTR. The
assumption is a special case of the following general problem. Let us again have
the theory PA(q), where q can have arity ≥ 0. We may ask what is the relationship
between a formula![q] in the language ofPA(q) and the formulae![t] obtained by
replacing q by a term t of PA of the same arity. Clearly, it can happen that ![q] is
not provable in PA(q) while ![t] can be proved in PA for every term t (of adequate
arity). On the other hand, by the same intuitions that lead us to believing KC we
expect that if such a situation occurs then the proofs of ![t] must use some specific
properties of t and thus have lengths which depends on the complexity of t. If q
has arity n ≥ 0, we can formulate an n-modified Kreisel’s Conjecture:
MKCn. Let k ∈ ". Assume that for every n-ary term t of PA the formula ![t] is
provable in PA in k steps. Then the formula ![q] is provable in PA(q).
All the instances of MKCn for n > 0 are equivalent. If n = 0, the assertion
is equivalent to the proposition (which may be called ‘The Very Weak Kreisel’s
Conjecture’):
VWKC. Let k ∈ ". Assume that for every constant term C of PA the formula

!(C ) is provable in PA in k steps. Then the formula ∀x!(x) is provable in PA.
The VWKC immediately follows from KC. And it seems very straightforward: it
seems enough to take forC a sufficiently large and chaotic term. But this is not the
case. It can be shown that true equations of the form C = 0, ¬(C = 0), C = 1,
¬(C = 1), for a constant term C , can be proved for even ‘very large’ and ‘very
chaotic’ terms in a bounded number of steps. (This is somewhat surprising, for
all our previous constructions were based on symmetric terms.) Hence we cannot
easily rule out the alternative that all true equations of the form C = 0, ¬(C = 0),
C = 1, ¬(C = 1) can be proved in a bounded number of steps. This would imply
that also the formulae ¬SUBTR[t] can be proved in PA in a bounded number of
steps, for binary t (note that necessary conditions for SUBTR[t] are (i) t(1, 0) ,= 0
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and (ii) t(1, 1) = 0). Hence also our assumption and the conjectures MKCn, n > 0,
would be false.
We are here facing a dichotomy, none of whose parts is very favourable for KC:
if MKC1 is true, then the Corollary 1 of our Conjecture frustrates the concept of
‘transforming instances to the generalization’. If, on the other hand, MKC1 is false
then it makes our reasons for believing KC even more doubtful: for KC andMKC1
take their plausibility from essentially the same source.

§7. Is KC true? We have met two kinds of systems in this paper: one in which
we have an upper bound on multiplication and therefore KC is false, and the other
where KC is false for a different reason. The following questions therefore do not
need to have the same answers: (i) is there an upper bound for multiplication in PA?
(ii) is KC false in PA? If we are allowed to guess, if not to conjecture, then the
answer to (i) is ‘no’ and to (ii) ‘yes’. The reason why we believe that no upper
bound for multiplication can be found in PA is roughly this: for a large term t, all
the tricks we have tried have helped us to prove in a bounded number of steps only
whether t = 0, ,= 0,= 1, ,= 1, or some general and not very useful property of t.
The point of our preceding construction is that using ‘-’ we convert the apparently
useless information t ,= 0 to the proposition t1 = t2, for some useful t1 and t2. But if
we have only terms which provably define increasing functions then the information
whether t = 0, ,= 0,= 1, ,= 1 is indeed useless. On the other hand, we believe that
KC is very likely to be false. Leaving aside the alternative that in PA the upper
bound for multiplication can in fact be found, we see that the systems PA(q) and
PA(N) are very close to PA, the system PA(N) being almost indiscernible from PA.
Second, the examples of Section 6 go strongly against the spirit of KC and they
could perhaps be converted to a counterexample. Our current inability to find a
counterexample may follow merely from our combined inability to determine the
lengths of proofs of instances !(n) and our lack of techniques for proving the
undecidability of ∀n !(n).
If, after all, KC is true then our result shows that the proof must concentrate on
the specific properties of PA. In the proof it must be relevant that the functions
definable by terms in PA are provably increasing, polynomial etc. We cannot hope
for a proof that would work independently on the function symbols used, and thus
we cannot hope to solve KC by some clever general argument.
We would like to end with a list of problems apparently easier than KC but which
could help us understand the function of terms, and perhaps to solve KC itself.

Problem 1. In this paper, we have used the schemes of identity (which, as noted
in the Introduction, can be replaced by the induction scheme). Can we find a
‘natural’ extension of PA where KC is false, if only the axioms of identity and the
minimum-element scheme are used?

Problem 2. Find a set of true equations on termswith a fixed number of variables
(ideally, constant terms) which cannot be proved in a bounded number of steps.
For example, the instances of commutativity of large sums or products.

Problem 3. Prove or disprove the so called Very Weak Kreisel’s Conjecture of
Section 6.
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