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KREISEL’S CONJECTURE WITH MINIMALITY PRINCIPLE

PAVEL HRUBEŠ

Abstract. Weprove thatKreisel’s Conjecture is true, if Peano arithmetic is axiomatised usingminimality

principle and axioms of identity (theory PAM ). The result is independent on the choice of language of

PAM . We also show that if infinitely many instances of A(x) are provable in a bounded number of steps

in PAM then there exists k ∈ ù s.t. PAM ⊢ ∀x > k A(x). The results imply that PAM does not prove

scheme of induction or identity schemes in a bounded number of steps.

§1. Introduction. Kreisel’s Conjecture (KC ) is the following assertion:

Let A(x) be a formula of PA with one free variable. Assume that there
exists c ∈ ù s.t. for every n A(n) is provable inPA in c steps. Then ∀xA(x)
is provable in PA.

The peculiarity ofKC is that it is very sensitive to the way PA is axiomatised1. One
natural axiomatisation, which we shall denote PAI , is to formalise PA using the
scheme of induction

A(0) ∧ ∀x(A(x)→ A(S(x))) → ∀xA(x),

and to axiomatise “=” by identity schemes of the form

x = y → t(x) = t(y),

where t is an arbitrary term of PA. However, this does not yet settle the question.
Multiplication and addition can be formalised either as binary function symbols
or as ternary predicates. It was shown in [6] and [5] that KC is true in the theory
PAI (S,+), where S and+ are present as function symbols, and · is axiomatised as a
predicate. On the other hand,KC is false in the theory PAI (S,+, ·,−) where− is a
function symbol for subtraction (see [3]). The most interesting case, where exactly
the function symbols S,+, · are present, is an open problem.
In this paper, we consider a different axiomatisation of PA, the theory PAM .
Instead of the scheme of induction, we take minimality principle

∃xA(x)→ ∃x(A(x) ∧ ∀y < x¬A(y)),
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and identity will be finitely axiomatised using identity axioms of the form

x = y → S(x) = S(y),

for the function symbols of PA. We will show that KC is true in PAM (A weaker
result in this direction was given in [1] for minimality principle restricted to Σ1-
formulas.) The good news is that the result does not depend on the choice of the
language: we can add any finite number of function symbols and axioms to PAM
and KC is still valid (see Theorem 14).
The sensitivity of KC to the axiomatisation of PA diminishes its attractiveness
as a mathematical problem. However, it reveals an interesting question of the role
of functions symbols in proofs; and our inability to solve KC reveals how little we
understand that role. An intuition behind KC is that if we prove a formula A(n)
for a large n in a small number of steps then the proof cannot take advantage of the
specific structure of n. This intuition is in general false. In PAI we can prove for
every even natural number that it is even, in a bounded number of steps (see [7]),
and if we are given a sufficiently rich term structure than we can prove that n is a
square number, for n being a square number (see [3]). None of those phenomena
occur in the theory PAM . Hence PAM can teach us little about the theory PAI .
PAM is rather a natural example of a theory where our intuitions do work. In PAM ,
KC is true, we cannot prove that a number is even in a bounded number of steps,
and more generally, if many instances of A(x) are provable in a small number of
steps then the set of numbers satisfying A contains an infinite interval.

§2. The system PAM .

Predicate logic. As the systemof predicate logic we take a system of propositional
calculus plus the generalisation rule

B → A(x)

B → ∀xA(x)
,

and the substitution axiom

∀xA(x)→ A(t),

B not containing free x and t being substitutible for x in A(x). For simplicity, we
assume that the only rule of propositional logic is modus ponens. Identity = is not
taken as a logical symbol.

Robinson’s arithmetic and Identity axioms. Q will denote a particular finite ax-
iomatisation of Robinson’s arithmetic, a theory in the language <,=, 0, S,+, ·. As
we do not work in predicate calculus with identity, the axiomatisation of “=” is a
part of Q. The standard way is to formalise “=” using identity axioms, i.e., to have
axioms stating that = is an equivalence, plus finitely many axioms of the form

∀x, y x = y → S(x) = S(y)

for the symbols of Q. However, the relevant fact is that Q is axiomatised in a finite
way.
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PAM and minimality principle. PAM is a theory in the language <,=, 0, S,+, ·.
The axioms are the axioms of Q plus minimality principle

∃xA(x)→ ∃x(A(x) ∧ ∀y < x¬A(y)),

where A is a formula of PAM and y is substitutible for x in A(x).

Notation. Let t be term and a A a formula not containing function symbols. We
write

t = t(x1, . . . xn), resp. A = A(x1, . . . xn)

if t resp. A contains exactly the variables x1, . . . xn, and for every i, j = 1, . . . n,
i < j implies that there exists an occurrence of xi which precedes all the occurrences
of xj in t resp. A, where t resp. A is understood as a string ordered from left to
right.
For a formula A, we write

A = A(t1, . . . tn),

if there exists a formula B = B(x1, . . . xn) which does not contain any function
symbol, and

A = B(x1/t1, . . . xn/tn).

In this case, we say that the terms t1, . . . tn occur in A. Note that the term SS(0)
occurs in the formula x = SS(0), whereas S(0) does not.

§3. Characteristic set of equations of a proof. Let S be a proof in PAM . We shall
now define RS , the characteristic set of equations of S. The idea is to treat terms in
S as completely uninterpreted function symbols, and we ask what information are
we given about the function symbols in the proof S.
For every term s which occurs in a formula in S, or it has been substituted
somewhere in S, we introduce a new n-ary function symbol fs , where n is the
number of variables occurring in s . We shall say that fs represents s in RS . For a
formula A in S let us add to RS equations in the following manner:

1. ifA is an axiomof propositional logic, or has been obtained be a generalisation
rule, or by means of modus ponens, add nothing.
2. If A is a substitution axiom of the form

∀xB(s1(x), . . . sn(x))→ B(s1(s), . . . sn(s)),

where si(x) = si(zi , x, zi
′), s = s(z) and si(s) = si(s)(yi ), we add to RS the

equations

fsi (s)(yi ) = fsi (zi , fs(z), zi
′), for i = 1, . . . n.

3. if A is an axiom of Q containing the terms si = si(xi), i = 1, . . . n, we add to
RS the equations

fsi (xi) = si(xi), for i = 1, . . . n.

4. If A is an instance of the minimality principle of the form

∃xB(s1(x), . . . sn(x))→ ∃x(B(s1(x), . . . sn(x)) ∧ ∀y<x¬B(s1(y), . . . sn(y))),
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where si(x) = si(zi , x, zi
′) and si(y) = si(yi ), we add the equations

fsi (y)(yi ) = fsi (x)(zi , y, zi
′), for i = 1, . . . n.

§4. The theory PAM (F). Let F be a list of function symbols not occurring
in PAM . The theory PAM (F) is obtained by adding the function symbols F to
the language of PAM , and extending the minimality principle to the language of
PAM (F). We do not add the identity axioms for the symbols in F . We do not have
axioms of the form

x = y → f(x) = f(y),

for f ∈ F .

Convention and definition. In this paper, we denote the terms of PAM (F) by
t1, t2, . . . , and the terms of PAM by s1, s2, . . . . T will denote the set of closed terms
of PAM (F). Let T0 ⊂ T be the set of closed terms of the form f(t1, . . . tn), where
f ∈ F . The elements of T0 will be denoted by ë1, ë2, . . . .
The key connection between PAM (F) and the characteristic set of equations is
given in the following proposition. ðRS is an abbreviation for the conjunction of
universal closures of the equations in RS .

Proposition 1. Let S be a PAM proof of the formula A(s1, . . . sn), where si =
si(xi), i = 1, . . . n. Let RS be the characteristic set of equations of S. Then

PAM (F) ⊢ ðRS → A(fs1(x1), . . . fsn (xn)).

Proof. Let S = A1, . . . Ak . For a formula Ai , let A
⋆
i be the formula obtained

by replacing terms s = s(x) occurring in Ai by fs(x). It is sufficient to prove that
every A⋆i is provable in PAM (F) from ðRS . First note the following:

Claim. Let A be a formula s.t. the variable x occurs in A only in the context s(x).
Let t1 and t2 be PAM (F) terms with the same variables y. Then

PAM (F) ⊢ ∀y(t1 = t2)→ (A(x/t1) ≡ A(x/t2)).

The Claim is proved easily by induction with respect to the complexity of A; for
atomic formulas we use identity axioms for PAM function symbols.
Let us use the Claim to prove the proposition. If Ai is an axiom of propositional
logic then A⋆i is also an axiom of propositional logic. Similarly if Ai has been
obtained by means of generalisation rule or modus ponens.
Assume that

Ai = Ai(s1(x), . . . sn(xn))

is an axiom of Q. Then

A⋆i = Ai(fs1(x), . . . fsn(xn)).

By the condition (3) of the definition of RS and the Claim we have

PAM (F) ⊢ ðRS → A⋆i ≡ Ai .

Since Ai is an axiom of Robinson arithmetic, then it is an axiom of PAM (F), and
PAM (F) ⊢ ðRS → A⋆i .
Assume that Ai is an instance of a substitution axiom of the form

∀xB(x)→ B(s),
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where B is as in part (2) of the definition of RS . Then A⋆i = ∀xB(x)⋆ → B(s)⋆.
B(x)⋆ is the formula

B(fs1(z1, x, z1
′), . . . fsn(zn , x, zn

′))

and B(s)⋆ is the formula

B(fs1(s)(y1), . . . fsn(s)(yn)).

Since the term s(z) is substitutable for x in B(x) then fs(z) is substitutible for x in
B(x)⋆. Hence

∀xB(x)⋆ → B(fs1(z1, fs(z), z1
′), . . . fsn (zn , fs(z), zn

′))

is an instance of the substitution axiom. By the Claim and part (2) of the definition
of RS , the formula

B(fs1(z1, fs (z), z1
′), . . . fsn (zn , fs(z), zn

′)) ≡ B(fs1(s)(y1), . . . fsn(s)(yn))

is provable in PAM (F) from ðRS . Therefore

PAM (F) ⊢ ðRS → (∀xB(x)⋆ → B(s)⋆).

If Ai is an instance of the minimality principle, the proof is similar. ⊣

§5. Models of PAM (F). By means of Proposition 1 one can transform the ques-
tion about bounded-length provability in PAM to that of provability in PAM (F).
Fortunately, it is not difficult to construct models of PAM (F), which makes the
latter question easier.
For a model M and a predicate symbol P, PM denotes the relation defined by
P inM . Similarly [α]M is the function defined by α inM , for α being a function
symbol.
Let N be a model of PAM . We would like to “expand” the model to a model
of PAM (F). By a suitable coding, we can define the set of closed terms T and
the set T0 ⊆ T inside N . (I.e., T and T0 contain non-standard elements, if N
is non-standard.) We extend the Convention above to terms defined in N . The
universe of our new model will be the set of closed terms T . Let ó be a function
fromT0 toN definable inN . InsideN we can (uniquely) extend it to the function
ó⋆ : T → N in the following manner:

1. ó⋆(0) := [0]N , ó⋆(ë) := ó(ë), and
2. ó⋆(St) := [S]N (ó

⋆(t)), ó⋆(t1 + t2) := ó
⋆(t1)[+]N ó

⋆(t2), and ó
⋆(t1 · t2) :=

ó⋆(t1)[·]N ó⋆(t2).

We will use the function ó⋆ to define the model Nó . On T we define the identity
=Nó by the condition

t1 =Nó t2 ≡ ó
⋆(t1) =N ó

⋆(t2).

<Nó is defined as

t1 <Nó t2 ≡ ó
⋆(t1) <N ó

⋆(t2).

The function symbols will be interpreted inNó as follows: if α is an n-ary function
symbol of PAM (F) then [α]Nó is the function which to t1, . . . tn ∈ T assigns the
term α(t1, . . . tn) ∈ T .
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The model Nó is the set T with =, < interpreted by the relations =Nó , <Nó ,
and the PAM (F) function symbols interpreted as [0]Nó , [S]Nó , [+]Nó , [·]Nó , and
[f]Nó , f ∈ F .

Proposition 2. Let N be a model of PAM . Let ó : T0 → N be definable in N .
ThenNó is a model of PAM (F). The PAM part ofNó is elementary equivalent toN .

Proof. Axioms ofRobinson arithmetic and the identity axioms for PAM function
symbols are satisfied by the definition ofNó . Take, for example, the axiom

∀x, y x + S(y) = S(x + y).

In order to prove that it is true inNó , we must show that for every t1, t2 ∈ T

t1[+]Nó [S]Nó (t2) =Nó [S]Nó (t1[+]Nó t2).

From the definition of [S]Nó and [+]Nó , this is equivalent to

t1 + S(t2) =Nó S(t1 + t2),

where the equivalence is between elements of T . From the definition of =Nó , this
is equivalent to

ó⋆(t1 + S(t2)) =N ó
⋆(S(t1 + t2)).

From the definition of ó⋆, this is equivalent to

ó⋆(t1)[+]N [S]N (ó
⋆(t2)) =N [S]N (ó

⋆(t1)[+]Nó
⋆(t2)),

which is true inN , sinceN is a model of Robinson arithmetic.
The minimality principle is satisfied, for it was satisfied in the original model and
the construction is defined insideN .
PAM -part ofNó is isomorphic toN , ifNó is factorised with respect to =Nó . ⊣

Identity axioms and the scheme of induction are not in general true in Nó . To
show that the identity axioms are not true, take the sentence

f(0) = f(0 + 0).

The sentence can be false in a model of PAM (F), for we can choose the value of
ó(f(0)) and ó(f(0 + 0)) in an arbitrary way. Hence also the formula

x = 0→ f(x) = f(0)

is not valid in models of PAM (F). On the other hand, the formula can be proved
by induction with respect to x, and hence the scheme of induction is not valid in
models of PAM (F).

§6. SolvingRS in models of PAM (F). LetR be the characteristic set of equations
of a PAM proof. LetN be amodel of PAM . We shall now argue inside themodelN .
LetR′ be the set of equations obtained fromR by taking all possible substitutions
of terms from T into R. More exactly, R′ contains the equations

t(t1, . . . tn) = t
′(t1, . . . tn),

for t(x1, . . . xn) = t′(x1, . . . xn) ∈ R and t1, . . . tn ∈ T .
The general form of an equations in R′ is

ë = s(ë′).
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Inside N , we define R⋆ as the smallest set of equations with the following prop-
erties:

1. R′ ⊆ R⋆,
2. i) ë = ë ∈ R⋆ for every ë ∈ T0, ii) if t1 = t2 ∈ R⋆ then t2 = t1 ∈ R⋆ , and iii)
if t1 = t2, t2 = t3 ∈ R⋆ then t1 = t3 ∈ R⋆

3. if t = s(t1, . . . , ti , t′, ti+1 . . . tn) ∈ R⋆ and t′ = s ′(t′1, . . . t
′
m) ∈ R

⋆ then

t = s(t1, . . . , ti , s
′(t′1, . . . t

′
m), ti+1, . . . tn) ∈ R

⋆

(we allow the case that s ′ is a variable),
4. if s(t1, . . . , tn) = s(t′1, . . . , t

′
n) ∈ R

⋆ then

t1 = t
′
1 ∈ R

⋆, . . . tn = t
′
n ∈ R

⋆.

The general form of the equations in R⋆ is

s(ë) = s ′(ë′)

On T0 we define the relations ∼ and ≺ as follows:

1. ë1 ∼ ë2 iff ë1 = ë2 ∈ R⋆,
2. ë′ ≺ ë iff there exists s s.t. ë = s(ë1, . . . , ëi , ë′, ëi+1, . . . ën) ∈ R⋆. We require
that s is not a variable.

For a term t of PAM (F) let t⋆ denote the PAM term obtained by replacing the
function symbols fs by s . To be exact, i) 0⋆ := 0, ii) (s(t1, . . . t2))⋆ := s(t⋆1 , . . . t

⋆
n),

and iii) (fs(t1, . . . t2))
⋆ := s(t⋆1 , . . . t

⋆
n). The following Lemma is simple but impor-

tant:

Lemma 3. 1. If t1 = t2 ∈ R⋆ then t⋆1 and t
⋆
2 are the same terms.

2. If ë1 ≺ ë2 then ë⋆1 is a proper subterm of ë
⋆
2.

3. Let α resp. α′ be PAM function symbols of arities i resp i ′ (so i, i ′ ≤ 2) and let

α(t1, . . . ti) = α
′(t′1, . . . t

′
i′ ) ∈ R

⋆.

Then i = i ′, α and α′ are the same function symbols, and R⋆ contains the
equations

t1 = t
′
1, . . . ti = t

′
i .

Proof. Parts (1) and (2) follow from the definition of R⋆. (3). That α and α′

are the same follows from part (1). That

t1 = t
′
1 ∈ R

⋆, . . . ti = t
′
i ∈ R

⋆

follows from (4) of the definition of R⋆. ⊣

Lemma 4. 1. ∼ is an equivalence on T and it is a congruence w.r. to ≺, i.e., if
ë1 ∼ ë

′
1, ë2 ∼ ë

′
2 and ë1 ≺ ë2 then ë

′
1 ≺ ë

′
2.

2. ≺ is transitive and antireflexive. Moreover, every descending chain in ≺ is finite
(in the sense ofN ).

Proof. That ∼ is an equivalence follows from the condition (2) in the definition
of R⋆. That ∼ is a congruence w.r. to ≺ follows from conditions (2) and (3). For if
R⋆ contains the equations ë1 = ë′1, ë2 = ë

′
2 and the equation

ë2 = s(ë, ë1, ë′),
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then it also contains the equation

ë′2 = s(ë, ë
′
1, ë

′).

Transitivity of ≺ follows from (3) of the definition.
Antireflexivity and finite chain property follow from Lemma 3, part (2). If ë ≺ ë
then ë⋆ is a proper subtermof itself, which is impossible, and if there exists an infinite
decreasing ≺-chain then there exists a term with an infinite number of subterms (in
the sense ofN ). ⊣

1. ë ∈ T0 will be called trivial, ifR⋆ contains the equation ë = s , for a PAM term
s .

2. ë is an atom, if it is ≺-minimal and non-trivial.
3. A basis B ⊆ T0 is a set of atoms s.t. every ∼-equivalence class on T0 which
contains an atom contains exactly one element from B (i.e., it is a set of
representatives of ∼-classes of equivalence restricted to atoms).

Lemma 5. 1. A basisB exists.
2. If R⋆ contains an equation

s(b1, . . . bn) = s
′(b′1, . . . b

′
n′),

where b1, . . . bn, b′1, . . . b
′
n′ are inB then n = n

′, bi and b′i are the same terms for
every i = 1, . . . n, and the terms s(x1, . . . xn) and s ′(x1, . . . xn) are the same.

3. For every ë ∈ T0 there exists a unique s s.t. the equation ë = s(b) is in R⋆,
where b ∈ B . s(b) will be called the expression of ë inB

Proof. (1) is trivial.
(2). The depth of a term s will be the length of the longest branch in s , if s is
understood as a tree. s has depth zero, if s is a variable or the constant 0. The proof
is by induction with respect to the sum of depths of s and s ′.
If both s and s ′ have depth zero then the equation has one of the following forms:
i) 0 = 0, ii) b = b′, iii) b = 0, iv) 0 = b′. i) and ii) agree with the statement of the
lemma, since ii) is possible only if b and b′ are the same terms (no different elements
ofB are∼-equivalent). iii) and iv) are impossible, for otherwise b and b′ would be
trivial.
The alternative that s has depth zero and s ′ does not, or vice versa, is impossible.
For then the equation has the form i) b = s ′(b′), or ii) 0 = s ′(b′). i) contradicts the
assumption that b is an atom and ii) contradicts Lemma 3.
If both s and s ′ have depth> 0 then, by (3) of Lemma 3, there is a PAM function
symbol α s.t. s(b1, . . . bn) is the term α(s1(b1), . . . si(bi)) and s ′(b′1, . . . b

′
n′) is the

term α(s ′1(b1)
′, . . . s ′i (b

′

1)), with i ≤ 2. By the condition (4) of the definition of R
⋆,

R⋆ contains the equations

sk(bk) = s
′

k(b
′

k), k = 1, . . . i

The statement then follows from the inductive assumption.
(3). That every term can be thus expressed follows from the finite chain property.
If ë is ≺-minimal then either it is trivial and ë = s ∈ R⋆ for some s , or it is non-
trivial and ë = b ∈ R⋆ for some b ∈ B . If ë is not minimal, use the finite chain
property. Uniqueness is a consequence of part (2). ⊣
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In the following Proposition, we use an expression like Nó |= t1 = t2, where
t1, t2 ∈ T . This requires an explanation since t1 and t2 can be nonstandard.
However, by the definition of Nó , Nó |= t1 = t2, is equivalent to ó⋆(t1) = ó⋆(t2),
which is meaningful insideN .

Proposition 6. Let ó0 be a function from B to N . Then it can be extended to a
function ó : T0 → N s.t.

Nó |= R
⋆, and henceNó |= ðR.

Proof. For ë ∈ T0, let s(b1, . . . , bn) be its expression in terms of B . We define
ó by the condition

ó(ë) := [s](ó0(b1), . . . , ó0(bn)),

where [s] stands for the function defined by s inN .
Let us have s(ë1, . . . ën) = s ′(ë′1, . . . ë

′
m) in R

⋆. We must show that

(1) s(ë1, . . . ën) =Nó s
′(ë′1, . . . ë

′
m)).

Let ëi = si(bi) resp. ë′i = s
′
i (b

′

i) be the expression of ëi , i = 1, . . . n, resp. ë
′
i , i =

1, . . . m, in terms ofB . Let ó⋆ be as in the definition ofNó . Then (1) is equivalent
to

ó⋆(s(ë1, . . . ën)) =N ó
⋆(s ′(ë′1, . . . ë

′
m))).

By the definition of ó⋆, this is equivalent to

[s](ó(ë1), . . . ó(ën)) =N [s
′](ó(ë′1), . . . ó(ë

′
m))),

which is in turn equivalent to (2):

[s]([s1](ó0(b1)), . . . [sn](ó0((bn))) = [s]
′([s ′1](ó0((b

′

1)), . . . [s
′
m](ó0((b

′

m))).

From the definition of R⋆, the equation

s(s1(b1), . . . sn(bn)) = s
′(s ′1(b

′

1), . . . s
′
m(b

′

m))

is in R⋆ But, from part (2) of Lemma 5 the equation is then trivial and hence (2) is
true. ⊣

§7. The proof of KC .

Lemma 7. Let A be an infinite set of formulas. Assume that the formulas contain
exactly k terms, they have a bounded number of variables and that there exists c ∈ ù
s.t. every A in A is provable in c steps. Then there exists a (finite) set of equations
R and an infinite C ⊆ A s.t. every A ∈ C has a proof with the characteristic set of
equations R. Moreover, if A = A(sA1 , . . . s

A
k ) then s

A
i is represented by the function

symbol fi in R, for every A ∈ C and i = 1, . . . k.

Proof. If formulas in A contain a bounded number of terms and variables, and
can be proved in a bounded number of steps, then there exists c⋆ s.t. the formulas
can be proved in c steps using at most c⋆ terms, and the terms are of arity at
most c⋆. However, there are only finitely many characteristic sets of equations for
such proofs (ignoring renaming of the function symbols), and hence there exists
an infinite subset of A sharing the same characteristic set R. Similarly for the
“moreover” part. ⊣
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Lemma 8. Let A1(s1) and A2(s2) be formulas s.t. the terms s1 and s2 are different
constant terms. Assume that the formulas have proofs with the same characteristic set
of equationsR where s1 and s2 are represented by the same (constant) function symbol
f. LetN be a model of PAM , let R⋆ and a basisB be defined inN . Let s(b) be the
expression of f in B . Then f is non-trivial, i.e., R⋆ does not contain an equation of
the form f = s .

Proof. Assume the contrary. Than we have an equation f = s in R⋆ for a PAM
term s . By Lemma 3, part (1), this implies that s1 and s2 are the same terms. ⊣

Theorem 9. Kreisel’s conjecture is true in PAM .

Proof. Let A(x) be a formula of PAM with one free variable x. Without loss
of generality we can assume that the only term in A which contains x is x itself.
(Otherwise take the formula ∃y y = x∧A(y)). We writeA asA(x, s1, . . . sj), where
s1 = s1(x1), . . . sj = sj(xj) are the other terms occurring in A. Assume that for
every n ∈ ù the formula A(n) is provable in PAM in c steps. Let us show that
∀xA(x) is true in every model of PAM .
By Lemma 7 there exist n,m, n 6= m s.t. the formulasA(n), A(m) are provable by
means of the same characteristic set of equationsR, where n andm are represented
by the same constant function symbol f. We can assume that R contains also the
equations

fsi (xi) = si(xi), i = 1, . . . j.

Let F be the set of new function symbols occurring in R. Let N be a model of
PAM . We construct the set R

⋆ and a basisB , insideN . Let s(b) be the expression
of f in terms of B . By Lemma 8, the term f is non-trivial. Hence there exists
k ≤ m, n s.t. s(b) has the form Sk(b), and so R⋆ contains the equation

f = Sk(b), b ∈ B .

In particular, k is a standard number. Assume that there is ç ∈ N s.t. A(ç) is false.
Than ç is non-standard, since the standard instances ofA(x) are true. Let us define
the function ó0 : B → N by ó0(b) := ç − k, and ó(b′) = 0, if b′ is different from
b. By Proposition 6, ó0 can be extended to ó : T0 → N in such a way that

Nó |= ðR.

SinceNó |= R⋆ then

Nó |= f = S
k(b)

and

Nó |= f = ç,

from the definition of ó0. Hence Nó |= A(f,fs1 , . . . fsj ) iff N |= A(ç, s1, . . . sj)
and therefore

Nó 6|= A(f,fs1 , . . . fsj ).

This contradicts the Proposition 1. ⊣
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§8. Applications and generalisations. If we axiomatise PA as PAI , i.e., using the
scheme of induction and schemes of identity, many unexpected propositions can be
proved in a bounded number of steps. A nice example is the formula Even(x),

∃y x = y + y,

asserting that x is even. For every even n ∈ ù Even(n) can be proved in a bounded
number of steps. The reason is that every formula of the form

Sn(0) + Sm(0) = Sn+m(0)

can be proved in a bounded number of steps. Hence there exists a formula A(x) s.t.

1. the set X := {n ∈ ù;N |= A(n)} is infinite but X does not contain an infinite
interval, and

2. there exists c s.t. for every n ∈ X , A(n) is provable in c steps in PAI .
2.

The following proposition shows that in PAM such a situation is impossible. If we
prove infinitely many instances of A in a bounded number of steps then A provably
contains an infinite interval. Hence PAM is quite a simple-minded theory, from
the number of proof-lines perspective. It does not play tricks and it fulfils our
expectations.
Note that the assumption “X is infinite” can be replaced by the assumption “X
is large”.

Theorem 10. Let A(x) be a formula of PAM . Assume that there exists c ∈ ù and
an infinite set X ⊆ ù s.t. for every n ∈ X A(n) is provable in c steps. Then there
exists k ∈ ù s.t. PAM ⊢ ∀x > kA(x).

Proof. Assume that A(x) is as in the proof of Theorem 9. By Lemma 7 there
exist n,m, n < m s.t. the formulas A(n) and A(m) are provable by proofs with the
same characteristic set of equations R. We can assume that R contains also the
equations

fsi (xi) = si(xi), i = 1, . . . j

and that n and m are represented by the same constant function symbol f in R.
Let F be the set of new function symbols occurring in R.
Let N be a model of PAM . Let us show that

N |= ∀x > mA(x).

We construct the set R⋆ and a basis B , inside N . As in Theorem 12 we can show
that R⋆ contains the equation

f = Sk(b), b ∈ B ,

for some k ≤ m.Let ç ∈ N , ç > m be given. Let us define the function ó0 : B → N
by ó0(b) := ç − k (ç is bigger than k), and ó(b′) = 0, if b′ is different from b. By
Proposition 6, ó0 can be extended to ó : T0 → N in such a way that

Nó |= ðR

and henceNó |= A(f,fs1 , . . . fsj ), by Proposition 1. Hence also

N |= A(ç),

2Whether one can find anAwith the property (2), s.t.X does not contain even an infinite arithmetical
sequence is an interesting, and open, problem (see [4]).
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sinceNó |= f = ç, and the PAM parts ofN andNó are elementary equivalent. ⊣

Corollary 11. The formulas Even(2n), Sn(0) + Sm(0) = Sn+m(0) and Sn(0) ·
Sm(0) = Sn·m(0) are not provable in PAM in a bounded number of steps.

Proof. The assertion for Even(2n) follows directly from the theorem. If Sn(0)+
Sm(0) = Sn+m(0) was provable in a bounded number of steps then also Even(2n)
would be. Similarly for the formula Sn(0) · Sm(0) = Sn·m(0). ⊣

The following proposition illustrates the fact that identity schemes are not prov-
able in PAM in a bounded number of steps.

Proposition 12. There is no c ∈ ù s.t. for every n ∈ ù

Sn(0) = Sn(0 + 0)

is provable in PAM in c steps.

Proof. Assume the contrary. Then by Lemma 7 there exist n,m, n 6= m s.t. the
formulas Sn(0) = Sn(0 + 0) and Sm(0) = Sm(0 + 0) are provable by proofs with
the same characteristic set of equations R, where Sn(0) and Sm(0) are represented
by a constant f1 and Sn(0 + 0), Sm(0 + 0) by f2 in R. Let F be the set of new
function symbols occurring in R.
Let us work in the standard model N . We construct the set R⋆ and a basis B .
Let s1(b1) and s2(b2) be the expressions of f1 and f2, respectively, in terms ofB .
The terms f1 and f2 are non-trivial. By Lemma 3, part (1), s1(b1) has the form

Sk(b1), k ≤ m, n, b1 ∈ B

and s2(b2) has the form

S i (b2), i ≤ m, n, b2 ∈ B ,

where b2 is different from b1. Let c1, c2 ∈ ù be such that c1 + k 6= c2 + i . Let us
define the function ó0 : B → N as follows: ó0(b1) = c1, ó0(b2) = c2 and ó0(b) = 0
otherwise. Let us extend ó0 to ó : T0 → N by means of Proposition 6. Let us have
the model Nó . As in Theorem 9, we obtain

Nó |= ðR,

and

Nó 6|= f1 = f2,

which contradicts the Proposition 1. ⊣

Corollary 13. There is no c s.t. every instance of the identity scheme is provable
in PAM with c lines. There is no c s.t. every instance of the scheme of induction is
provable in PAM with c lines.

Proof. The first statement is an immediate consequence of the theorem. The
second follows from the fact that x = 0 → Sn(0) = Sn(x) can be proved in a
bounded number of steps, by means of the induction scheme. ⊣

As we have mentioned in the Introduction, validity ofKC in PAI depends on the
function symbols present in the axiomatisation. In PAM this is again not the case,
as we state in the last theorem.
Let L be the language =, <, 0, S, ·, α1, . . . αk , where α1, . . . αk are new function or
predicate symbols. Let PAM (L) ⊇ PAM be the theory obtained by extending the
minimality principle and the identity axioms to the language L. A theory T in L
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will be called a simple extension of PAM , if T is an extension of PAM (L) by finitely
many axioms.

Theorem 14. Let T be a simple extension of PAM . Then KC is true in T . I.e., for
any formula A(x) of T if there exists c s.t. for any n ∈ ù, A(n) is provable in T in c
steps then T ⊢ ∀xA(x).

Proof. If T is inconsistent, the statement is immediate. For a consistent T , we
can see that the proof of KC for PAM does not use any specific properties of the
language of PA, or the particular axiomatisation of Q, as long as it is finite. ⊣
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