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We show that if a Boolean function f : {0, 1}n → {0, 1} can be computed by a monotone 
real circuit of size s using k-ary monotone gates then f can be computed by a monotone 
real circuit of size O (snk−2) which uses unary or binary monotone gates only. This partially 
solves an open problem presented in [2]. In fact, in size O (snk−1), the circuit uses only 
unary monotone gates and binary addition. We also show that if the monotone Karchmer–
Wigderson game of f can be solved by a “real communication protocol” of size s then f
can be computed by a monotone real circuit of the same size.

© 2017 Published by Elsevier B.V.
1. Introduction

In this note, we present some structural properties of 
the computational model of monotone real circuits. Moti-
vated by proof complexity applications, monotone real cir-
cuits were introduced in [10] where an exponential lower 
bound was obtained for this model; a similar lower bound 
was independently obtained in [3]. The first issue we ad-
dress here is the arity of gates used in computation. Mono-
tone real circuits, in their usual definition, use binary (and 
unary) gates over the reals. But if we allow, say, ternary 
gates, can we significantly speed-up the computation? For 
Boolean circuits, or circuits involving functions over a fi-
nite domain, the answer is obvious: every ternary gate can 
be expressed as a composition of a constant number of bi-
nary gates, so using ternary gates can give an advantage 
of at most a constant factor. In the case of computations 
over the reals, or any infinite ordered set, an analogous 
statement is far from obvious. In [2], the possibility of 
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gate-by-gate by simulation was stated as an open prob-
lem. We don’t know how to solve this problem, but we 
nevertheless show that ternary gates, or gates of not too 
large an arity, indeed cannot substantially speed-up real 
computations. We also show that the only gates needed 
are monotone unary gates and binary additions. This is in-
teresting in comparison with Kolmogorov’s superposition 
theorem [1,8] which states that every k-ary continuous 
function can be expressed using unary continuous func-
tions and addition.

Second, we give a correspondence between monotone 
real circuits and real communication protocols. This re-
sembles a similar correspondence between Boolean cir-
cuits and PLS-based protocols of Razborov [12], and, more 
closely, the construction of Krajíček [9] (see also [11,13]). 
The motivation is the following. In [7], Karchmer and 
Wigderson characterized Boolean circuit depth in terms of 
deterministic complexity of certain communication games. 
This game-theoretic viewpoint has been very useful both 
in proving lower bounds and constructing upper bounds 
on circuit depth. The constructions in [12,9] are intended to 
give a similar interpretation of Boolean circuit size in terms 
of games. This is useful especially when proving feasible 
interpolation theorems in various proof systems. We now 
give a similar characterization of monotone real circuits in 
terms of real games. As in [9] or [11], such a characteriza-

https://doi.org/10.1016/j.ipl.2017.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:pahrubes@gmail.com
mailto:pudlak@math.cas.cz
https://doi.org/10.1016/j.ipl.2017.11.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.11.002&domain=pdf


16 P. Hrubeš, P. Pudlák / Information Processing Letters 131 (2018) 15–19
tion can be directly used to give a simple proof of feasible 
interpolation in the Cutting Planes proof system, or applied 
to the related notion of “unsatisfiability certificates” intro-
duced in [6].

2. Monotone real circuits of high fan-in

For x, y ∈R
n , we write x ≤ y if xi ≤ yi for every coordi-

nate i ∈ [n] = {1, . . . , n}. A function f : S ⊆ R
n → R will be 

called monotone, if for every x, y ∈ S , x ≤ y implies f (x) ≤
f (y). We remark that, assuming sup{| f (x)| : x ∈ S} < ∞, 
f is monotone iff it is a restriction of some total mono-
tone function g : Rn → R. Since we will usually deal with 
a finite S , the distinction between partial/total functions is 
hence quite unimportant.1

A k-ary monotone real circuit is a finite directed acyclic 
graph with every node of in-degree at most k. It has one 
output node of out-degree zero. Nodes of in-degree zero 
are called input nodes and are labeled with variables. Ev-
ery other node v of in-degree p is labeled with a (total) 
monotone function gv : Rp → R. The size of the circuit 
is the number of its gates. The circuit computes a func-
tion f : Rn → R in the obvious way: an input label-led 
with xi computes xi , otherwise a node label-led with gv

computes gv( f1, . . . , f p) where f1, . . . , f p are the func-
tions computed by its predecessors. We say that the circuit 
computes a partial function, if the output node computes 
some extension of it.

Our main result is:

Theorem 1. Assume that f : {0, 1}n → {0, 1} can be computed 
by a k-ary monotone real circuit of size s. Then f can be com-
puted by a binary monotone real circuit of size O (snk−2). More-
over, increasing the size to O (snk−1), we can assume that the 
circuit uses only unary gates and binary additions.

Here, binary addition is a fan-in 2 gate that adds the two 
real numbers. In the rest of this section, we prove Theo-
rem 1. The main ingredient, Theorem 4, is to show that a 
monotone function on a finite set S ⊆R

k can be computed 
by a binary monotone real circuit of size O (log2(|S|)k−2). 
To conclude Theorem 1, we then note that in a mono-
tone real circuit computing f : {0, 1}n → {0, 1}, the in-
termediary gates can be restricted to domain of size at 
most 2n . Theorem 4 itself is proved using two technical 
lemmas. Lemma 2 in its simplest, but already nontrivial, 
form states the following: a monotone two-valued function 
f : S0 → {0, 1}, with S0 ⊆R

2 finite, can be computed using 
one binary addition and unary monotone gates. The lemma 
is then extended to talk about an arbitrary k, as well as 
about a finite union of two-valued functions, under the as-
sumption that their domains and ranges are appropriately 
ordered. In Lemma 3, we take a monotone k-ary function 
f and “stretch” its domain so that Lemma 2 becomes ap-
plicable. This allows to compute f using functions of arity 
k − 1 and proceed inductively.

1 Also, the assumption sup{| f (x)| : x ∈ S} < ∞ could be removed, had 
we decided to work over R ∪ {±∞}.
Lemma 2. Let S0, . . . , Sm be finite subsets of Rk, k ≥ 1, such 
that Si ⊆ (i, i + 1)k for every i and let S := ⋃m

i=0 Si . Assume 
that f : S → R is a monotone function such that f (Si) ⊆
{2i, 2i +1} for every i. Then there exist monotone functions g, h
such that for all 〈x1, . . . , xk〉 ∈ S,

f (x1, . . . , xk) = g(x1 + h(x2, . . . , xk)).

Proof. We identify R × R
k−1 with Rk . Let Xi := {x ∈ R :

∃y ∈R
k−1, 〈x, y〉 ∈ Si} and Yi := {y ∈R

k−1 : ∃x ∈R, 〈x, y〉 ∈
Si} be the projections of Si to first coordinate, and the last 
k − 1 coordinates, respectively. Let Y := ⋃m

i=0 Yi . For y ∈ Y , 
let

α(y) := min ({x ∈ Xi : f (x, y) = 2i + 1} ∪ {i + 1}) ,

if y ∈ Yi .

This guarantees that, for every 〈x, y〉 ∈ Si , f (x, y) = 2i + 1
iff x ≥ α(y). Since |x − α(y)| < 1, we can write

f (x, y) = 
(2i + 1 + x − α(y))� , for every 〈x, y〉 ∈ Si .

Since f was a monotone function, −α is a monotone func-
tion on each of the sets Yi . Define

h(y) := 2i + 1 − α(y) , if y ∈ Yi .

The function is monotone on every set Yi . Moreover, since 
h(Si) ⊆ [i, i + 1], h is monotone on the whole of Y . This 
gives the expression f (x, y) = 
x + h(y)� as required. �
Lemma 3. Let f : S → T be a monotone function where S ⊆ R

k

and T ⊆ R are finite sets. Let t := �log2 |T |�. Then f can be 
computed by a monotone real circuit of size O (k(t − 1)) such 
that the circuit uses only unary gates, binary addition gates, and 
t gates of arity k − 1.

Proof. W.l.o.g., we can assume that S ⊆ (0, 1)k and T =
{0, 1, . . . , 2t − 1}. The circuit is constructed by induction 
with respect to t . For t = 0, the function is constant. If 
t = 1, this is simply Lemma 2 (with m = 0). Assume that 
t > 1 and let f ′ := 
 1

2 f �. Hence, f ′ : S → {0, . . . , 2t−1 − 1}
and assume we have constructed a circuit for f ′ . For 
x = 〈x1, . . . , xk〉, define i + x := 〈i + x1, . . . , i + xk〉, and let 
Si := {i + x : x ∈ S}. Define h : ⋃2t−1−1

i=0 Si → {0, . . . , 2t − 1}
by putting, for z ∈ Si of the form z = i + x,

h(z) := 2i if f (x) ≤ 2i
2i + 1 if f (x) ≥ 2i + 1 .

The function is monotone on each of the sets Si , and since 
h(Si) ⊆ {2i, 2i +1}, it is monotone on the whole 

⋃2t−1−1
i=0 Si

The definition guarantees that, for all x ∈ S ,

f (x) = h( f ′(x) + x). (1)

By Lemma 2, h can be computed by a circuit with 3
non-input gates, such that the circuit uses one binary ad-
dition, one unary gate, and one gate of arity k − 1. Hence, 
by (1), f can be computed from f ′ using one additional 
(k −1)-ary gate and k +2 binary addition/unary gates. This 
gives the required circuit for f . �



P. Hrubeš, P. Pudlák / Information Processing Letters 131 (2018) 15–19 17
Theorem 4. Let f : S → R be a monotone function where 
S ⊆ R

k is a finite set. Then f can be computed by a binary 
monotone real circuit of size O (log2(|S|)k−2). Moreover, in-
creasing the size to O (log2(|S|)k−1), we can assume that the 
circuit uses only unary gates and binary additions.

Proof. We prove the “moreover” part, the rest is simi-
lar. Let λ(k, m) denote the minimum s, such that for ev-
ery S ⊆ R

k with |S| ≤ 2m and every monotone function 
f : S → R, f can be computed by a circuit of size ≤ s
with only unary gates and binary additions. If m ≤ 1, it 
is easy to show that λ(k, m) = 2. (For then S consists of at 
most two points x, y. If f is non-constant, we can assume 
f (x) < f (y), hence for some coordinate xi < yi , and we 
can write f as a function of this coordinate only.) Hence 
we assume m ≥ 2.

If k = 1, λ(k, m) = 2. If k > 1, the previous lemma gives

λ(k,m) ≤ ckm + mλ(k − 1,m) , (2)

for a suitable constant c ≥ 2. This is seen as follows: given 
f : S → R, its range has size at most |S|. The lemma then 
shows that f can be computed using cmk additions, unary 
gates, and m gates of arity k − 1. The latter gates can be 
restricted to domain of size at most |S|, as only that many 
values can appear in the computation of f . (2) has a solu-
tion λ(k, m) ≤ c1mk−1 − c2(k + 1) with c2 > 0 a sufficiently 
large constant. Setting c1 > 0 to satisfy the initial condition 
λ(1, m) = 2 gives λ(k, m) ≤ c1mk−1. �
Proof of Theorem 1. Given a monotone real circuit com-
puting f : {0, 1}n → {0, 1}, we can assume that every gate 
in the circuit has domain of size at most |{0, 1}n| = 2n , and 
apply the previous theorem. �
3. Simulation of monotone real protocols by circuits

We now give a characterization of monotone real cir-
cuits in terms of games. We first define the notion of real 
protocol, which is a modification of a definition in [9].

Definition. A real protocol of degree k is a directed acyclic 
graph G = (V , E) and a set of functions r0

v , r1
v : {0, 1}n →R

for every v ∈ V , such that

(i). G has one source v0 (a node of in-degree zero) and 
the out-degree of every vertex is at most k,

(ii). for every sink � (a node of out-degree zero) there ex-
ists a variable xi with r0

� = r1
� = xi .

Let f be a partial monotone Boolean function in n vari-
ables. We say that the protocol solves the monotone KW 
game for f (or simply solves f ), if for every x ∈ f −1(0) and 
y ∈ f −1(1),

(a) r0
v0

(x) < r1
v0

(y),
(b) for every v ∈ V with p ≥ 1 children u1, . . . , up , if 

r0
v(x) < r1

v(y) then there exists ui with r0
ui

(x) < r1
ui

(y).

The size of a protocol is the number of vertices.
The monotone Karchmer–Wigderson game for f is de-
fined as follows. Player I has input x such that f (x) = 0
and Player II an input y with f (y) = 1. They are sup-
posed to agree on some bit s.t. xi < yi . Given a real pro-
tocol solving f , we say that a vertex v is feasible for x, y,
if r0

v(x) < r1
v(y) holds. Condition (a) says that v0 is fea-

sible for every x ∈ f −1(0), y ∈ f −1(1). Condition (b) says 
that if v is feasible for x, y then at least one of its children 
is feasible for x, y. Given x ∈ f −1(0) and y ∈ f −1(1), we 
can traverse the graph from the source to a sink � using 
only vertices feasible for x, y. Since � is feasible, we have 
xi = r0

� (x) < r1
� (y) = yi , hence xi < yi . In this sense, the 

protocol solves the KW game for f . To underline the game 
perspective: assuming the two players are endowed with 
the ability to decide whether rv (x) < rv(y) holds, they can 
solve the KW game by traversing the protocol from the 
source to a sink.2

In their seminal paper [7], Karchmer and Wigderson 
characterized monotone circuit depth by the number of 
bits needed to communicate in order to solve the mono-
tone game. In this paper we are interested in the cir-
cuit size, which cannot be characterized by communication 
complexity of the game even in the case of monotone 
Boolean circuits. Therefore we consider the size of pro-
tocols, rather than amount of communication needed to 
solve the game.

Given a k-ary monotone real circuit computing f , we 
can convert it to a protocol of degree k solving f : the un-
derlying graph will be the same (with reversed direction of 
edges) and the functions r0

v = r1
v can be set simply as the 

functions computable by the subcircuit rooted at v . The-
orem 5 shows that the much less obvious converse also 
holds. The theorem also provides one justification of the 
legitimacy of our definition of real protocol. Another jus-
tification would come from proof complexity applications 
mentioned in the introduction: from Cutting Planes refu-
tations, one can directly obtain real protocols, allowing to 
reproduce the various interpolation theorems in [9,11,6].

Theorem 5. Given a real protocol P solving f , there exists a 
monotone real circuit C computing f such that the underlying 
graph of C is the same as the graph of P (with reversed direction 
of edges).

Proof. Assume that f and a protocol P are as above. Sup-
pose w.l.o.g. that r0

v(z), r1
v(z) ≥ 0 for all v ∈ V and z ∈

{0, 1}n . For every v ∈ V , define a function f v : {0, 1}n → R

inductively as follows. Given z ∈ {0, 1}n ,

(i). if � is a sink, f�(z) := r0
� (z) = r1

� (z),
(ii). for v ∈ V with children u1, . . . , up ,

f v(z) := max{r1
v(w) : w ∈ f −1(1) ,

∀i∈[p] fui (z) ≥ r1
ui

(w)} , (3)

2 This could be formalized using the notion of “real game” from [9]. 
In this setting, players transmit real numbers rather than bits. In a given 
round of communication, Player I generates a real number a1 and Player II 
a number a2. They privately send the numbers to a referee, who in turn 
tells them whether a1 < a2 or not. Based on this information, the players 
proceed to the next round.
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where we put f v(z) := 0 if the maximum is over the 
empty set.

We now claim that for every x ∈ f −1(0), y ∈ f −1(1)

and v ∈ V

f v(x) ≤ r0
v(x) , (4)

r1
v(y) ≤ f v(y) . (5)

This is proved by induction on depth. If v is a sink, both 
statements are clear. Suppose that v is as in (ii) and (4), 
(5) hold for the children of v . If y ∈ f −1(1), we can set 
w := y in (3) to obtain f v(y) ≥ r1

v(y), proving (5). In or-
der to prove (4), suppose that x ∈ f −1(0) and, for the 
sake of contradiction, f v (x) > r0

v(x). Hence, (3) shows there 
exists w ∈ f −1(1) such that r1

v(w) > r0
v(x) and for ev-

ery ui , fui (x) ≥ r1
ui

(w). On the other hand, condition (b) 
of the Definition demands that there exists some ui with 
r0

ui
(x) < r1

ui
(w). This gives fui (x) > r0

ui
(x), contrary to the 

inductive assumption.
To conclude the theorem, note that by (3), f v(z) can 

be computed from fu1 (z), . . . , fup (z) by a single p-ary 
monotone gate. Hence, f v0 can be computed by a k-ary 
monotone real circuit whose underlying graph is the same 
as that of P . Finally, (4), (5) and (a) of the Definition 
give f v0(x) < f v0(y) for every x ∈ f −1(0) and y ∈ f −1(1). 
Hence, we can compute f as

f (z) =
{

0 if f v0(z) < t
1 if f v0(z) ≥ t ,

where t := miny∈ f −1(1) f v0(y) (this does not require an ad-
ditional gate). �

Combined with Theorem 1, this implies:

Corollary 6. Let f be an n-bit monotone Boolean function and 
let P be a real protocol for f of degree k solving f . Then f can 
be solved by

(i). a protocol with the same graph as P such that for every 
v ∈ V , r0

v = r1
v is a monotone function,

(ii). a protocol of degree 2 and size O (snk−2).

4. Observations

In [2], the following open problem was posed: over R, 
can every monotone k-ary function be expressed as a com-
position of binary and unary monotone functions? Theo-
rem 4 is a small step towards answering the question. Here 
are some relevant observations:

Proposition 7.

(i). There exists a monotone function f : S × S → R with 
S ⊆ R of size 3 such that f cannot be written as f =
g(h1(x) +h2(y)) with g monotone (and h1, h2 arbitrary).

(ii). There exists a monotone function f : R2 → {0, 1} such 
that f cannot be written as a composition of unary mono-
tone functions and addition over R.
(iii). There exists a real closed field R ⊇ R such that for every 
monotone f : R2 → {0, 1}, there exist monotone3 func-
tions g : R → {0, 1}, h1, h2 : R → R such that f =
g(h1(x) + h2(y)).

Part (i) shows that in Lemma 2, some bound on range 
of f is necessary even for m = 0. Part (ii) shows that ad-
dition and unary monotone functions are not enough to 
capture general monotone functions over R. Part (iii) is 
problematic in a different way: it indicates that the ques-
tion “how can we express monotone functions in terms of 
simpler ones” may depend on which extension of R we 
have in mind.

Proof of Proposition 7. Part (ii). Recall that a function g :
R →R is Borel measurable, if for every open set its preim-
age under g is a Borel set. (For background on Borel sets 
see, e.g., [4].) We only need to know that every mono-
tone/anti-monotone g is Borel measurable (because it is 
continuous everywhere, up to countably many points), and 
that Borel functions are closed under composition and ad-
dition. Pick A ⊆ R which is not a Borel set and let χA be 
its characteristic function. For x, y ∈ R, define

f (x, y) :=
⎧⎨
⎩

0 if x + y < 1
χA(x) if x + y = 1
1 if x + y > 1 .

The function is monotone and χA(x) = f (x, 1 − x). Hence, 
f (x, 1 − x) is not a Borel function and so f cannot be ex-
pressed as a composition of unary monotone functions and 
addition.

To prove (i) and (iii), we first make quite a general 
observation. Suppose that 〈R, 0, +〉 is a linearly ordered 
Abelian group and that f : S × S →R is a monotone func-
tion with S ⊆R possibly infinite. With f we associate the 
following set of linear inequalities L( f ). For every a in S
introduce new constant symbols αa and βa , and let

L( f ) := {αa1 + βb1 < αa2 + βb2 : a1,b1,a2,b2 ∈ S ,

f (a1,b1) < f (a2,b2)} .

Furthermore, let

L+( f ) := L( f ) ∪ {αa1 ≤ αa2 , βa1 ≤ βa2 : a1 ≤ a2 ∈ S} .

It can be easily shown that:

Claim. f can be written as f = g(h1(x) + h2(y)) with g :
R → R monotone iff L( f ) has a solution over R. Similarly, 
for h1, h2 monotone and the system L+( f ).

In order to prove (i), let S := {1, 2, 3} and let the value 
of f (i, j) be given by the i, j-entry of the matrix⎛
⎝ 0 0 2

1 1 2
1 3 3

⎞
⎠ .

3 Here, we extend the definition of monotone function to any ordered 
set in an obvious way, as well as take R with its natural ordering.



P. Hrubeš, P. Pudlák / Information Processing Letters 131 (2018) 15–19 19
Then f is monotone, whereas L( f ) has no solution over R

(or any ordered extension of R). For, we can assume 
α1, β1 = 0, and the system then contains inequalities

β2 < α2 , α3 < β3 , α2 + β3 < α3 + β2

with no solution.
For (iii), fix f : R2 → {0, 1} monotone. By Lemma 2

with m = 0, every finite subset of L+( f ) has a solution 
over R. By compactness of first-order logic, L+( f ) has a 
solution over some extension R of R. Here, we can im-
pose any reasonable first-order properties on R, as well 
as to achieve the statement for all monotone f simulta-
neously. (Compactness of first-order logic is explained in, 
e.g., [5].) �
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