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We show that if a Boolean function f : {0,1}" — {0, 1} can be computed by a monotone
real circuit of size s using k-ary monotone gates then f can be computed by a monotone
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1. Introduction

In this note, we present some structural properties of
the computational model of monotone real circuits. Moti-
vated by proof complexity applications, monotone real cir-
cuits were introduced in [10] where an exponential lower
bound was obtained for this model; a similar lower bound
was independently obtained in [3]. The first issue we ad-
dress here is the arity of gates used in computation. Mono-
tone real circuits, in their usual definition, use binary (and
unary) gates over the reals. But if we allow, say, ternary
gates, can we significantly speed-up the computation? For
Boolean circuits, or circuits involving functions over a fi-
nite domain, the answer is obvious: every ternary gate can
be expressed as a composition of a constant number of bi-
nary gates, so using ternary gates can give an advantage
of at most a constant factor. In the case of computations
over the reals, or any infinite ordered set, an analogous
statement is far from obvious. In [2], the possibility of
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gate-by-gate by simulation was stated as an open prob-
lem. We don’t know how to solve this problem, but we
nevertheless show that ternary gates, or gates of not too
large an arity, indeed cannot substantially speed-up real
computations. We also show that the only gates needed
are monotone unary gates and binary additions. This is in-
teresting in comparison with Kolmogorov’'s superposition
theorem [1,8] which states that every k-ary continuous
function can be expressed using unary continuous func-
tions and addition.

Second, we give a correspondence between monotone
real circuits and real communication protocols. This re-
sembles a similar correspondence between Boolean cir-
cuits and PLS-based protocols of Razborov [12], and, more
closely, the construction of Krajicek [9] (see also [11,13]).
The motivation is the following. In [7], Karchmer and
Wigderson characterized Boolean circuit depth in terms of
deterministic complexity of certain communication games.
This game-theoretic viewpoint has been very useful both
in proving lower bounds and constructing upper bounds
on circuit depth. The constructions in [12,9] are intended to
give a similar interpretation of Boolean circuit size in terms
of games. This is useful especially when proving feasible
interpolation theorems in various proof systems. We now
give a similar characterization of monotone real circuits in
terms of real games. As in [9] or [11], such a characteriza-
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tion can be directly used to give a simple proof of feasible
interpolation in the Cutting Planes proof system, or applied
to the related notion of “unsatisfiability certificates” intro-
duced in [6].

2. Monotone real circuits of high fan-in

For x, y € R", we write x < y if x; < y; for every coordi-
nate i € [n]={1,...,n}. A function f:S CR" — R will be
called monotone, if for every x,y € S, x <y implies f(x) <
f(y). We remark that, assuming sup{|f(x)| : x € S} < o0,
f is monotone iff it is a restriction of some total mono-
tone function g:R" — R. Since we will usually deal with
a finite S, the distinction between partial/total functions is
hence quite unimportant.'

A k-ary monotone real circuit is a finite directed acyclic
graph with every node of in-degree at most k. It has one
output node of out-degree zero. Nodes of in-degree zero
are called input nodes and are labeled with variables. Ev-
ery other node v of in-degree p is labeled with a (total)
monotone function g, : RP — R. The size of the circuit
is the number of its gates. The circuit computes a func-
tion f:R" — R in the obvious way: an input label-led
with x; computes x;, otherwise a node label-led with g,
computes gy(f1,..., fp) where fi,..., fp are the func-
tions computed by its predecessors. We say that the circuit
computes a partial function, if the output node computes
some extension of it.

Our main result is:

Theorem 1. Assume that f : {0, 1}" — {0, 1} can be computed
by a k-ary monotone real circuit of size s. Then f can be com-
puted by a binary monotone real circuit of size O (sn*~2). More-
over, increasing the size to O (sn*~1), we can assume that the
circuit uses only unary gates and binary additions.

Here, binary addition is a fan-in 2 gate that adds the two
real numbers. In the rest of this section, we prove Theo-
rem 1. The main ingredient, Theorem 4, is to show that a
monotone function on a finite set S € R¥ can be computed
by a binary monotone real circuit of size O(log2(|5|)k‘2).
To conclude Theorem 1, we then note that in a mono-
tone real circuit computing f : {0,1}" — {0, 1}, the in-
termediary gates can be restricted to domain of size at
most 2". Theorem 4 itself is proved using two technical
lemmas. Lemma 2 in its simplest, but already nontrivial,
form states the following: a monotone two-valued function
f:So— {0, 1}, with Sg C R? finite, can be computed using
one binary addition and unary monotone gates. The lemma
is then extended to talk about an arbitrary k, as well as
about a finite union of two-valued functions, under the as-
sumption that their domains and ranges are appropriately
ordered. In Lemma 3, we take a monotone k-ary function
f and “stretch” its domain so that Lemma 2 becomes ap-
plicable. This allows to compute f using functions of arity
k — 1 and proceed inductively.

1 Also, the assumption sup{|f(x)| : x € S} < oo could be removed, had
we decided to work over R U {£o00}.

Lemma 2. Let Sq, ..., Sy be finite subsets of R¥, k > 1, such
that S; € (i,i 4+ 1)* for every i and let S := UL, Si. Assume
that f : S — R is a monotone function such that f(S;) €
{2i, 2i + 1} for every i. Then there exist monotone functions g, h
such that for all (x1,...,xx) €S,

F&a, .. %) =gx1 +h(xa, ..., x)).

Proof. We identify R x R¥~1 with R¥. Let X; ;= {x e R :
Jy eRF1 (x, y)eS;}and Yi:={y e RK-"1:3x e R, (x,y) €
Si} be the projections of S; to first coordinate, and the last
k — 1 coordinates, respectively. Let Y := U',-“:O Yi.ForyeY,
let

a(y):=min({xe X;: f(x,y)=2i+1}U{i+1}),
ify eY;.

This guarantees that, for every (x,y) € S;, f(x,y) =2i+1
iff x> a(y). Since |x —a(y)| < 1, we can write

fx,y)=1Qi+1+x—a(y))],forevery (x,y) €S;.

Since f was a monotone function, —« is a monotone func-
tion on each of the sets Y;. Define

h(y):=2i+1—-a(y), ifyeyY;.

The function is monotone on every set Y;. Moreover, since
h(S;) € [i,i + 1], h is monotone on the whole of Y. This
gives the expression f(x,y)=|x+h(y)| as required. O

Lemma3. Let f : S — T be a monotone function where S C R¥
and T C R are finite sets. Let t := [log, |T|]. Then f can be
computed by a monotone real circuit of size O (k(t — 1)) such
that the circuit uses only unary gates, binary addition gates, and
t gates of arity k — 1.

Proof. W.l.o.g., we can assume that S C (0, 1)" and T =
{0,1,...,2" — 1}. The circuit is constructed by induction
with respect to t. For t = 0, the function is constant. If
t =1, this is simply Lemma 2 (with m = 0). Assume that
t>1and let f':=[3f]. Hence, f':S—{0,...,2"1 — 1}
and assume we have constructed a circuit for f’. For
X=(X1,...,X), define i +x:= (i +x1,...,i 4+ x;), and let
S;:={i+x:xeS). Define h:UiZ:OI’1 Si—{0,...,2t =1}
by putting, for z € S; of the form z=1i +x,

h(z) .= 2i if f(x) <2i
2i4+1 iff(x)>2i+1.

The function is monotone on each of the sets S;, and since

t—1
h(S;) C {2i, 2i+ 1}, it is monotone on the whole U,‘2:o -1 Si
The definition guarantees that, for all x € S,

fx)=h(f'(x) +x). (1)

By Lemma 2, h can be computed by a circuit with 3
non-input gates, such that the circuit uses one binary ad-
dition, one unary gate, and one gate of arity k — 1. Hence,
by (1), f can be computed from f’ using one additional
(k—1)-ary gate and k+ 2 binary addition/unary gates. This
gives the required circuit for f. O
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Theorem 4.Let f : S — R be a monotone function where
S C Rk is q finite set. Then f can be computed by a binary
monotone real circuit of size O(log2(|S|)k‘2). Moreover, in-
creasing the size to O(10g2(|5|)k‘1), we can assume that the
circuit uses only unary gates and binary additions.

Proof. We prove the “moreover” part, the rest is simi-
lar. Let A(k, m) denote the minimum s, such that for ev-
ery S C Rk with |S| <2™ and every monotone function
f:S— R, f can be computed by a circuit of size <s
with only unary gates and binary additions. If m <1, it
is easy to show that A(k,m) = 2. (For then S consists of at
most two points x, y. If f is non-constant, we can assume
f(x) < f(y), hence for some coordinate x; < y;, and we
can write f as a function of this coordinate only.) Hence
we assume m > 2.

If k=1, A(k,m) =2. If k > 1, the previous lemma gives

Atk,m) <ckm+mi(k—1,m), (2)

for a suitable constant ¢ > 2. This is seen as follows: given
f:S — R, its range has size at most |S|. The lemma then
shows that f can be computed using cmk additions, unary
gates, and m gates of arity k — 1. The latter gates can be
restricted to domain of size at most |S|, as only that many
values can appear in the computation of f. (2) has a solu-
tion Ak, m) <cym*1—cy(k+1) withcy >0 a sufficiently
large constant. Setting ¢ > O to satisfy the initial condition
A(1,m) =2 gives A(k,m) <cym*~1. 0O

Proof of Theorem 1. Given a monotone real circuit com-
puting f:{0,1}" — {0, 1}, we can assume that every gate
in the circuit has domain of size at most |{0, 1}"| =2", and
apply the previous theorem. 0O

3. Simulation of monotone real protocols by circuits

We now give a characterization of monotone real cir-
cuits in terms of games. We first define the notion of real
protocol, which is a modification of a definition in [9].

Definition. A real protocol of degree k is a directed acyclic
graph G = (V, E) and a set of functions r9,r! : {0,1}" — R
for every v € V, such that

(i). G has one source vy (a node of in-degree zero) and
the out-degree of every vertex is at most k,

(ii). for every sink ¢ (a node of out-degree zero) there ex-
ists a variable x; with r? = r} =Xj.

Let f be a partial monotone Boolean function in n vari-

ables. We say that the protocol solves the monotone KW

game for f (or simply solves f), if for every x € f~1(0) and

yef ',

(@) 19 (0 <1y, (),

(b) for every v € V with p > 1 children uq,...,up, if

r9(x) <rl(y) then there exists u; with ”3,- x) < rg,l_(y).

The size of a protocol is the number of vertices.

The monotone Karchmer-Wigderson game for f is de-
fined as follows. Player I has input x such that f(x) =0
and Player II an input y with f(y) = 1. They are sup-
posed to agree on some bit s.t. x; < y;. Given a real pro-
tocol solving f, we say that a vertex v is feasible for x, y,
if r9x) < rl(y) holds. Condition (a) says that vq is fea-
sible for every x € f~1(0), y € f~1(1). Condition (b) says
that if v is feasible for x, y then at least one of its children
is feasible for x,y. Given x € f~1(0) and y € f~1(1), we
can traverse the graph from the source to a sink ¢ using
only vertices feasible for x, y. Since £ is feasible, we have
xi =19(x) <rl(y) = yi, hence x; < y;. In this sense, the
protocol solves the KW game for f. To underline the game
perspective: assuming the two players are endowed with
the ability to decide whether r, (x) < r,(y) holds, they can
solve the KW game by traversing the protocol from the
source to a sink.?

In their seminal paper [7], Karchmer and Wigderson
characterized monotone circuit depth by the number of
bits needed to communicate in order to solve the mono-
tone game. In this paper we are interested in the cir-
cuit size, which cannot be characterized by communication
complexity of the game even in the case of monotone
Boolean circuits. Therefore we consider the size of pro-
tocols, rather than amount of communication needed to
solve the game.

Given a k-ary monotone real circuit computing f, we
can convert it to a protocol of degree k solving f: the un-
derlying graph will be the same (with reversed direction of
edges) and the functions re = r,l, can be set simply as the
functions computable by the subcircuit rooted at v. The-
orem 5 shows that the much less obvious converse also
holds. The theorem also provides one justification of the
legitimacy of our definition of real protocol. Another jus-
tification would come from proof complexity applications
mentioned in the introduction: from Cutting Planes refu-
tations, one can directly obtain real protocols, allowing to
reproduce the various interpolation theorems in [9,11,6].

Theorem 5. Given a real protocol P solving f, there exists a
monotone real circuit C computing f such that the underlying
graph of C is the same as the graph of P (with reversed direction
of edges).

Proof. Assume that f and a protocol P are as above. Sup-
pose w.lo.g. that r9(z),r}(z) >0 for all veV and z ¢
{0, 1}". For every v € V, define a function f,:{0,1}" > R
inductively as follows. Given z € {0, 1}",

(i). if ¢ is a sink, fe(z) :=1%(2) =1} (2),

(ii). for v € V with children uq, ..., up,
fv(@) = max{r‘],(w) Twe f’l(l),
Vielp) fu; (2) = 1y, (W)}, 3)

2 This could be formalized using the notion of “real game” from [9].
In this setting, players transmit real numbers rather than bits. In a given
round of communication, Player I generates a real number a; and Player II
a number ay. They privately send the numbers to a referee, who in turn
tells them whether a; < a; or not. Based on this information, the players
proceed to the next round.
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where we put f,(z) := 0 if the maximum is over the
empty set.

We now claim that for every x € f~1(0), y € f~1(1)
and veV

fo0 <), (4)
< fHo). (5)

This is proved by induction on depth. If v is a sink, both
statements are clear. Suppose that v is as in (ii) and (4),
(5) hold for the children of v. If y € f~1(1), we can set
w:=y in (3) to obtain f,(y) > r},(y), proving (5). In or-
der to prove (4), suppose that x € f~1(0) and, for the
sake of contradiction, f,(x) > re (x). Hence, (3) shows there
exists w € f~1(1) such that rl(w) > r%(x) and for ev-
ery uj, fu;(x) > r,ﬂi(w). On the other hand, condition (b)
of the Definition demands that there exists some u; with
ra. (0 <1y (w). This gives fy,(x) > r) (x), contrary to the
inductive assumption.

To conclude the theorem, note that by (3), fy(z) can
be computed from fy,(2),..., fu,(2) by a single p-ary
monotone gate. Hence, f,, can be computed by a k-ary
monotone real circuit whose underlying graph is the same
as that of P. Finally, (4), (5) and (a) of the Definition
give fy,(x) < fv,(y) for every x e f~10) and y € f~1(1).
Hence, we can compute f as

[0 iffy@) <t
f(z)‘{l if fo(2) > .

where ¢ := miny¢ 11y fv,(¥) (this does not require an ad-
ditional gate). O

Combined with Theorem 1, this implies:

Corollary 6. Let f be an n-bit monotone Boolean function and
let P be a real protocol for f of degree k solving f. Then f can
be solved by

(i). a protocol with the same graph as P such that for every
veV, re =r] is a monotone function,
(ii). a protocol of degree 2 and size O (snk=2).

4. Observations

In [2], the following open problem was posed: over R,
can every monotone k-ary function be expressed as a com-
position of binary and unary monotone functions? Theo-
rem 4 is a small step towards answering the question. Here
are some relevant observations:

Proposition 7.

(i). There exists a monotone function f : S x S — R with
S C R of size 3 such that f cannot be written as f =
g(h1(x) +ha(y)) with g monotone (and hy, hy arbitrary).

(ii). There exists a monotone function f : R? — {0, 1} such
that f cannot be written as a composition of unary mono-
tone functions and addition over R.

(iii). There exists a real closed field R 2 R such that for every
monotone f : R? — {0, 1}, there exist monotone> func-
tions g : R — {0,1}, hy,hy : R - R such that f =
g(h1(x) +ha ().

Part (i) shows that in Lemma 2, some bound on range
of f is necessary even for m = 0. Part (ii) shows that ad-
dition and unary monotone functions are not enough to
capture general monotone functions over R. Part (iii) is
problematic in a different way: it indicates that the ques-
tion “how can we express monotone functions in terms of
simpler ones” may depend on which extension of R we
have in mind.

Proof of Proposition 7. Part (ii). Recall that a function g :
R — R is Borel measurable, if for every open set its preim-
age under g is a Borel set. (For background on Borel sets
see, e.g., [4].) We only need to know that every mono-
tone/anti-monotone g is Borel measurable (because it is
continuous everywhere, up to countably many points), and
that Borel functions are closed under composition and ad-
dition. Pick A € R which is not a Borel set and let x4 be
its characteristic function. For x, y € R, define

0 ifx+y<1
fxy) =4 xa® ifx+y=1
1 ifx+y>1.

The function is monotone and x4(x) = f(x, 1 — x). Hence,
f(x,1—x) is not a Borel function and so f cannot be ex-
pressed as a composition of unary monotone functions and
addition.

To prove (i) and (iii), we first make quite a general
observation. Suppose that (R,0,+) is a linearly ordered
Abelian group and that f:S x S — R is a monotone func-
tion with S € R possibly infinite. With f we associate the
following set of linear inequalities £(f). For every a in S
introduce new constant symbols o, and f,, and let

L(f):={aq, + Bp, <0ay, + Pp, :a1,b1,a2,b2 €S,
f(ai,b1) < f(az, b2)}.

Furthermore, let

L (f):=L(f)VU{aa =, Bay < Pay 101 a2 €S}

It can be easily shown that:

Claim. f can be written as f = g(h1(x) + ha(y)) with g :

R — R monotone iff L(f) has a solution over R. Similarly,
for hq, hy monotone and the system L (f).

In order to prove (i), let S :={1, 2,3} and let the value
of f(i, j) be given by the i, j-entry of the matrix

0 0 2
11 2
1 3 3

3 Here, we extend the definition of monotone function to any ordered
set in an obvious way, as well as take R with its natural ordering.
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Then f is monotone, whereas £(f) has no solution over R
(or any ordered extension of R). For, we can assume
o1, B1 =0, and the system then contains inequalities

Pro<ay,a3<P3,02+p3<az+p

with no solution.

For (iii), fix f:R2? — {0,1} monotone. By Lemma 2
with m = 0, every finite subset of £, (f) has a solution
over R. By compactness of first-order logic, £, (f) has a
solution over some extension R of R. Here, we can im-
pose any reasonable first-order properties on R, as well
as to achieve the statement for all monotone f simulta-
neously. (Compactness of first-order logic is explained in,
eg,[5]) O
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