Monotone separations for constant degree polynomials

Pavel Hrubeš* Amir Yehudayoff*

Abstract

We prove a separation between monotone and general arithmetic formulas for polynomials of constant degree. We give an example of a polynomial C in n variables and degree k which is computable by a homogeneous arithmetic formula of size $O\left(k^{2} n^{2}\right)$, but every monotone formula computing C requires size $\left(n / k^{c}\right)^{\Omega(\log k)}$, with $c \in(0,1)$. Since the upper bound is achieved by a homogeneous arithmetic formula, we also obtain a separation between monotone and homogeneous formulas, for polynomials of constant degree.

1 Introduction

Facing the unyielding challenge of proving lower bounds on arithmetic circuit or formula size, researchers have focused on several restricted models of computation. The first and most notable of such restrictions is the case of monotone computation. For example, lower bounds on monotone circuit size were proved in [2], and on monotone formula size in 4]. An exponential separation between monotone and general arithmetic circuits was given in [6]; this implies an exponential separation between monotone and general formulas as well.

An interesting class of polynomials is that of polynomials of constant degree. Proving nontrivial lower bounds for constant degree polynomials is, apparently, a harder task than for general polynomials. For example, super-linear lower bounds for the size of general arithmetic circuits are known for super-constant degree polynomials, whereas no superlinear lower bound is known for constant degree polynomials. See [3] for a longer discussion of constant degree polynomials.

[^0]Nevertheless, Shamir and Snir [4] proved a lower bound of $n^{\Omega(\log k)}$ on the monotone formula size of a polynomial of degree k - multiplication of $k n \times n$ matrices. It is not known whether this polynomial can be computed by a small arithmetic formula, and hence this result does not imply a separation. We note that Valiant's separation [6] involves a high (linear in the number of variables) degree polynomial, which is a 'variant' of the permanent.

The purpose of this note is to fill this gap, and to give a separation between monotone and general arithmetic formulas for constant degree polynomials. Our lower bound employs techniques presented in [1]. We note that the proofs of [1] are based on counting monomials, whereas here we need to use subtler properties of monotone formulas. Our upper bound uses an interpolation argument, in the spirit of Ben-Or (cf. 5]).

2 Counting polynomials

We are interested in arithmetic formulas with fan-in at most two over the field of real numbers (see, e.g., [1] for a formal definition). We define formula size as the number of leaves in the formula. A monotone polynomial is a polynomial with only non-negative coefficients. A monotone formula is a formula with only non-negative constants. A homogeneous formula is a formula in which every node computes a homogeneous polynomial (i.e., a polynomial whose monomials have the same degree.)

If $I=\left\langle i_{1}, \ldots i_{k}\right\rangle$ is a k-tuple of natural numbers, let x_{I} denote the monomial $x_{i_{1}} \cdot x_{i_{2}} \ldots x_{i_{k}}$. Let $n, k, \ell \in \mathbb{N}$ and let $S \subseteq[n]$, where $[n]=\{0,1, \ldots, n\}$. Denote by $\mathcal{I}(S, k, \ell)$ the set of k-tuples $\left\langle i_{1}, i_{2}, \ldots, i_{k}\right\rangle \in S^{k}$ such that $i_{1}+i_{2}+\cdots+i_{k}=\ell$. Let $C_{n, k, \ell}$ be a polynomial in variables x_{0}, \ldots, x_{n} defined as

$$
\begin{equation*}
C_{n, k, \ell}=\sum_{I \in \mathcal{I}([n], k, \ell)} x_{I} \tag{2.1}
\end{equation*}
$$

We call $C_{n, k, \ell}$ a counting polynomial. It is a homogeneous polynomial of degree k in $n+1$ variables.

The following theorem implies a superpolynomial separation between monotone and general formulas. In particular, it gives a separation for constant degree (constant k).
Theorem 1. Let $C=C_{n, k, n}$. Then
(i). every monotone formula for C has size at least $\left(n / k^{c}\right)^{\Omega(\log k)}$, where $0<c<1$ is a universal constant, and
(ii). there exists a formula of size $O\left(k^{2} n^{2}\right)$ for C; this formula is homogeneous.

2.1 Lower bound

We use some terminology from [1]. Let f be a homogeneous polynomial of degree k. We say that f is balanced if there exist p homogeneous polynomials f_{1}, \ldots, f_{p} such that $f=f_{1} f_{2} \cdots f_{p}$ with
(i). $(1 / 3)^{i} k<\operatorname{deg} f_{i} \leq(2 / 3)^{i} k, i=1, \ldots, p-1$, and
(ii). $\operatorname{deg}\left(f_{p}\right)=1$.

The following lemma shows that a small monotone formula can be written as a short sum of balanced polynomials. It is a straightforward adaptation of the lemma from [1] to the case of monotone formulas.

Lemma 2. Let Φ be a monotone formula of size s computing a homogeneous polynomial f of degree $k>0$. Then there exist balanced monotone polynomials $f_{1}, \ldots, f_{s^{\prime}}$ of degree k such that $s^{\prime} \leq s$ and $f=f_{1}+\cdots+f_{s^{\prime}}$.

The following proposition and Lemma 2 imply part (i) of Theorem 1.
Proposition 3. Let $n, k \in \mathbb{N}$ and let $C=C_{n, k, n}$. If $C=f_{1}+\cdots+f_{s}$ with f_{1}, \ldots, f_{s} balanced monotone polynomials of degree k, then $s \geq\left(n / k^{c}\right)^{\Omega(\log k)}$, where $0<c<1$ is a universal constant.

Before proving the proposition we recall the following estimate from [1].
Lemma 4. Let $n \geq 2 k$ and k_{1}, \ldots, k_{p} be non-zero natural numbers such that $k_{1}+\cdots+k_{p}=$ k. Then for every natural numbers n_{1}, \ldots, n_{p} such that $n_{1}+\cdots+n_{p}=n$,

$$
\binom{n_{1}}{k_{1}} \cdots\binom{n_{p}}{k_{p}} \leq 3 k^{1 / 2}\left(k_{1} \cdots k_{p}\right)^{-1 / 2}\binom{n}{k} .
$$

Proof of Proposition 3. Since C is homogeneous of degree k and f_{1}, \ldots, f_{s} are monotone, f_{1}, \ldots, f_{s} are homogeneous polynomials of degree k. Fix $t \in\{1, \ldots, s\}$ and denote f_{t} by f. Since f is a balanced polynomial, we can write $f=g_{1} g_{2} \cdots g_{p}$.
Claim 5. There exist natural numbers $n_{1}, n_{2}, \ldots, n_{p}, k_{1}, k_{2}, \ldots, k_{p}$ such that $n_{1}+\cdots+n_{p}=$ n and $k_{1}+\cdots+k_{p}=k$ and for every $j=1, \ldots p$, all the monomials that occur in g_{j} are of the form x_{I} with $I \in \mathcal{I}\left(\left[n_{j}\right], k_{j}, n_{j}\right)$.

Proof. Define k_{j} to be the degree of g_{j}. Since f is homogeneous of degree $k, k_{1}+\cdots+k_{p}=k$ and each g_{j} is homogeneous. Hence if a monomial x_{I} occurs in g_{j} then $|I|=k_{j}$. Let us fix n_{j} as some natural number such that there exists a monomial x_{I} which occurs in g_{j} and $\sum_{i \in I} i=n_{j}$. Monotonicity implies that for every monomial x_{L} occurring in $g_{j}, \sum_{i \in L} i=$ n_{j}. For assume otherwise, and let x_{M} be a monomial that occurs in $g_{1} \cdots g_{j-1} g_{j+1}, \ldots g_{p}$. Then both the monomials $x_{I} x_{M}, x_{L} x_{M}$ occur in C, which is impossible since $\sum_{i \in I \cup M} i \neq$ $\sum_{i \in L \cup M} i$. For a similar reason, $n_{1}+\cdots+n_{p}=n$. Finally, since $\sum_{i \in L} i=n_{j}$ implies that, as a set, $L \subseteq\left[n_{j}\right]$, we have $L \in \mathcal{I}\left(\left[n_{j}\right], k_{j}, n_{j}\right)$ for every x_{L} occurring in g_{j}.

Claim 5 shows that for every $j=1, \ldots, p$, the number of monomials that occur in g_{j} is at $\operatorname{most}\left|\underset{\mathcal{I}}{ }\left(\left[n_{j}\right], k_{j}, n_{j}\right)\right|$. The size of $\mathcal{I}\left(\left[n_{j}\right], k_{j}, n_{j}\right)$ is

$$
\binom{n_{j}+k_{j}-1}{k_{j}-1} .
$$

If $k_{j}=1, g_{j}$ contains exactly one monomial. Setting q to be the maximal j such that $k_{j} \geq 2$, Lemma 4 shows that the number of monomials in f is at most

$$
\begin{array}{r}
\binom{n_{1}+k_{1}-1}{k_{1}-1} \cdots\binom{n_{q}+k_{q}-1}{k_{q}-1} \leq 3 k^{1 / 2} \prod_{i=1, \ldots, q}\left(k_{i}-1\right)^{-1 / 2}\binom{n+k-q}{k-q} \\
=3 k^{1 / 2} \prod_{i=1, \ldots, q}\left(k_{i}-1\right)^{-1 / 2} \prod_{i=1, \ldots, q-1} \frac{k-i}{n+k-i} \cdot\binom{n+k-1}{k-1} .
\end{array}
$$

For every $1 \leq i \leq \log k /(2 \log 3)-1$, we have $k_{i} \geq 3 k^{1 / 2}$, and so $k_{i}-1 \geq k^{1 / 2}$. Hence

$$
k^{1 / 2} \prod_{i=1, \ldots, q}\left(k_{i}-1\right)^{-1 / 2} \leq k^{-c_{1} \log k+1}
$$

with a constant $c_{1}>0$. Since $q \leq k$, we have

$$
\prod_{i=1, \ldots, q-1} \frac{k-i}{n+k-i} \leq\left(\frac{k}{n}\right)^{q-1}
$$

Since f is balanced, q is at least $c_{2} \log k-2$ with $c_{2}>0$ a universal constant. Hence the number of monomials in $f=f_{t}$ is at most

$$
3 k^{-c_{1} \log k+1}\left(\frac{k}{n}\right)^{c_{2} \log k-3}\binom{n+k-1}{k-1} \leq\left(\frac{k^{c}}{n}\right)^{-\Omega(\log k)}\binom{n+k-1}{k-1},
$$

with an adequate constant $c \in(0,1)$. Since this holds for every t and since the number of monomials in C is $\binom{n+k-1}{k-1}$, we have that s is at least $\left(n / k^{c}\right)^{\Omega(\log k)}$.

2.2 Upper bound

We now construct polynomial size formulas for $C_{n, k, \ell}$.
Proof of part (ii) of Theorem 1. Fix $n, k \in \mathbb{N}$. Let Z be the polynomial

$$
Z(t)=\left(x_{0} t^{0}+x_{1} t^{1}+\cdots+x_{n} t^{n}\right)^{k},
$$

where t is an auxiliary variable. Observe that

$$
Z(t)=\sum_{0 \leq \ell \leq n k} t^{\ell} C_{n, k, \ell} .
$$

Evaluating at $t=0, \ldots, n k$,

$$
\left[\begin{array}{c}
Z(0) \\
Z(1) \\
\ldots \\
Z(n k)
\end{array}\right]=A\left[\begin{array}{c}
C_{n, k, 0} \\
C_{n, k, 1} \\
\cdots \\
C_{n, k, n k}
\end{array}\right]
$$

with

$$
A=\left[\begin{array}{cccc}
1 & 0^{1} & \cdots & 0^{n k} \\
1^{0} & 1^{1} & \cdots & 1^{n k} \\
& & \cdots & \\
(n k)^{0} & (n k)^{1} & \cdots & (n k)^{n k}
\end{array}\right]
$$

Since the matrix A is invertible, we can express every $C_{n, k, \ell}$ as a linear combination of $Z(0), \ldots, Z(n k)$. For a particular number $a, Z(a)$ has a homogeneous formula of size roughly $k n$ computing it, hence we can compute $C_{n, k, \ell}$ by a homogeneous formula of size roughly $k^{2} n^{2}$.

References

[1] P. Hrubeš and A. Yehudayoff. Homogeneous formulas and symmetric polynomials. arXiv: 0907.2621v1.
[2] M. Jerrum and M. Snir. Some exact complexity results for straight-line computations over semirings. Journal of the ACM 29 (3), pp. 874-897, 1982.
[3] R. Raz. Elusive functions and lower bounds for arithmetic circuits. Proceeding of the 40th STOC, pp. 711-720, 2008.
[4] E. Shamir and M. Snir. On the depth complexity of formulas. Journal Theory of Computing Systems 13 (1), pp. 301-322, 1979.
[5] A. Shpilka and A. Wigderson. Depth-3 arithmetic formulae over fields of characteristic zero. Journal of Computational Complexity 10 (1), pp. 1-27, 2001.
[6] L. G. Valiant. Negation can be exponentially powerful. Theoretical Computer Science 12, pp. 303-314, 1980.

[^0]: *School of Mathematics, Institute for Advanced Study, Princeton NJ. Emails: pahrubes@centrum.cz and amir.yehudayoff@gmail.com. Partially supported by NSF grant CCF 0832797.

