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Abstract

We give proofs of the effective monotone interpolation property for the system
of modal logic K, and others, and the system IL of intuitionistic propositional
logic. Hence we obtain exponential lower bounds on the number of proof-lines
in those systems. The main results have been given in [6] and [7]; here, we give
considerably simplified proofs, as well as some generalisations.

1 Introduction

When investigating a proof system S, after the questions of its soundness and
completeness have been settled, it is natural to consider the complexity of proofs
in S. For a particular set of S tautologies, we want to determine the sizes of their
shortest proofs, or to find examples of tautologies which require large proofs in
S (where ”large” depends on the nature of S). This problem can be interesting
for at least two reasons. First, there is a well known connection between the
complexity of propositional proof systems and some conjectures in computational
complexity. Namely, we know that NP 6= coNP iff for every propositional proof
system S there exist propositional tautologies requiring superpolynomial size
proofs in S. There is an analogous connection between NP 6= PSPACE and
the complexity of proof systems for intuitionistic logic and some modal logics,
like K. The second motivation can have both a practical and a philosophical
face, and it is the relative comparison of efficiency of proof systems. For we can
have two proof systems proving the same theorems (or at least equivalent with
respect to some set of formulas), the proofs in one being considerably shorter
than in the other. For example, in [7] have been given examples of intuitionistic
tautologies which require exponential size proofs in IL, but which have linear
size classical proofs. If sizes of proofs can be taken as a measure of how difficult
it is to prove theorems, this corresponds to the experience that many have had:
it is more difficult to work intuitionistically than classically. In this way, proof
complexity can study the function of concepts and tools used in mathematics and
perhaps even in the natural language. How does the application of the excluded
middle simplify arguments? Does the use of definitions simplify proofs? How
are natural numbers useful? These are the questions that we can interpret as
speed-up relations between proof systems.
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Another remarkable aspect of the study of complexity of intuitionistic proofs
is that of determining their computational content. It is well known that from
a proof of a formula ∀x∃yP (x, y) in intuitionistic predicate calculus one can ex-
tract a term s.t. ∀xP (x, t(x)) is a tautology, i.e., we can find a function which
to every x assigns a y s.t. P (x, y) is satisfied. This property is a basic aspect
of the intended constructive nature of intuitionistic logic. Moreover, the term t
may be understood as a programme for finding such a y. It has been shown in
[4] and [5] that there even exists a close quantitative connection between sizes
of intuitionistic propositional proofs and Boolean circuits1. They have shown
that that the system of intuitionistic logic enjoys effective interpolation property,
which in general means that for a tautology of a certain form and with a proof
of length n we can find a Boolean circuit of size polynomial in n which solves a
certain problem. In this paper, we show that the connection between circuits and
intuitionistic proofs is even tighter: we show that IL (and K) has even effective
monotone interpolation property, i.e., for a suitable choice of tautologies we can
guarantee that the circuit in question is monotone. Monotone Boolean circuits
are a well-studied class of Boolean circuits. In [13] and [1] there were given ex-
amples of functions in NP which require superpolynomial resp. exponential size
monotone circuits. This enables us to give examples of IL ( and K) tautolo-
gies A1, A2 . . . s.t. every IL resp. K proof of Ai has an exponetial number of
proof-lines (in terms of the size of Ai).

The main theorems were already given in [6] and [7]. The proofs presented
here are considerably simpler, more general, and use more elementary techniques.
The original proof for K was based on a model-theoretic construction. The
advantage, and, as it now appears, the only advantage, was in showing the affinity
between the proof of the lower bound for K, and the proof of lower bound for
monotone circuits (as formulated in [9]). The bound for IL was then obtained by
means of a translation to K. In this paper, we reduce the monotone interpolation
for both K and IL to the problem of satisfiability of a set of Horn clauses, which
is shown to be decidable by a quadratic size monotone circuit. Hence the proof
for IL is now direct and follows from the fact that in Gentzen style formalisation
of IL the inferences can be represented by Horn clauses. We even present a lower
bound on the sizes of generalisation axioms in K, the proof of which employs
the simple technique used in [8] (and similar to [4]). The motivation for stating
the proofs in a more standard fashion is, besides that of their simplification,
the following: when the lower bound was first reached, it was believed (by the
author at least) that it requires two components, the right choice of the hard
tautologies, and the model theoretic construction. It was also hoped that a
similar construction could be carried out in much stronger proof systems, perhaps
even in classical logic. However, it is now clear that the proof requires no such
extravagant approach, and that in fact the only non-trivial step is the choice
of the tautologies. When they are stated, the proof of their hardness naturally
follows.

Can some of the techniques be used to prove lower bounds for classical propo-
sitional logic? ’No’ is then the conclusion of this paper. On the other hand, we
can use intuitionistic logic as a background for the study of phenomena which
are beyond our reach, or which do not occur in classical logic. Emil Jeřábek

1A circuit may be conceived as a programme computing a function from set of 0, 1-strings of length
k to {0, 1}.
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has recently proved a separation between extended and substitution intuitionis-
tic calculi. In extended intuitionistic calculus we are allowed to use definitions in
a proof2. In substitution calculus we are allowed to use the rule

ψ(p)

ψ(ξ)
,

where p is a variable and ξ a formula substituted in place of p. Extended and sub-
stitution systems for classical logic are well-known to be polynomially equivalent.
In intuitionistic logic, the use of substitution rule has an exponential speed-up
over the extension rule. Hence, their equivalence in classical logic is, in a sense,
merely accidental. A more fundamental problem that we could attack is:

Does extended intuitionistic calculus have a superpolynomial speed-up over intu-
itionistic calculus?

In other words, we ask whether the use of definitions can significantly shorten
intuitionistic proofs. This problem, as far as I am aware, had not been completely
solved for any proof system3, and perhaps even a reasonable conditional result
would give an insight into the usefulnes of abbreviations.

2 Modal logic

2.1 The system K

The system of modal logic K is obtained by adding the symbol 2 to propositional
logic. In addition to propositional rules and axioms, K contains the rule of
generalisation

A

2A
and the axiom of distributivity

2(A→ B) → (2A→ 2B).

The generalisation rule and distributivity axiom will be called modal rules of K.
We shall be interested in bounding the number of applications of modal rules in
proofs of K, and hence the specific axiomatisation of the underlying propositional
logic is immaterial.

2.2 Monotone interpolation for K

From the point of view of pure propositional logic, the symbol 2A is simply
a new propositional variable. The modal rules of K can be seen as imposing
additional structure on those variables. Let us ask what structure is imposed on
the variables by modal axioms in a proof. We will see that the relations between
those variables, as imposed by a K proof, can be represented in a simple way by
means of Horn clauses.

Let S be a K proof. We shall define the characteristic set of clauses for S,
CS , as follows:

2The so called extension rule has the form q ≡ ψ, where q occurs neither earlier in the proof nor
in ψ, nor in the conclusion.

3Even in classical predicate calculus where we are allowed to define new predicates and terms the
problem is tricky, see [2].
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1. if a generalisation rule
A

2A

occurs in S, we put the clause {2A} in CS ,

2. if a distributivity axiom 2C → (2A→ 2B) occurs in S, where C = A→ B,
we put the clause {¬2C,¬2A,2B} in CS .

We can see that CS is a set of Horn clauses and CS never contains a negative
clause (i.e. a clause of the form {¬p1, . . .¬pk}). |CS | is equal to the number of
applications of modal rules in S.

Let us first state a general property of a set of Horn clauses. For an assignment
σ to variables V , Vσ will denote the set of clauses {{v}; v ∈ V, σ(v) = 1}. The
total size of a set of clauses C is the sum of sizes of clauses in C.

Proposition 1 1. Let D be a set of Horn clauses s.t. in D occurs no negative
clause. Let Y be a set of negative singular clauses. Assume that D, Y is
not satisfiable. Then there exists C ∈ Y s.t. D, C is not satisfiable.

2. Let D be a set of Horn clauses of total size n and not containing a negative
clause. Let V be a set of variables and p a variable. Then there exists a
monotone circuit C in variables V of size O(n2) s.t. for every assignment
σ of V , C = 1 iff

D, Vσ, {¬p}
is not satisfiable.

Proof. (1). Let us have a resolution refutation of D∪Y ; it contains only Horn
clauses. It is easy to see that we can transform the refutation to a tree-like
refutation whose last step is a resolution of some clause in Y . I.e., the last step
has the form

{v}, {¬v}
∅ ,

for some {¬v} ∈ Y . When resolving a negative clause with a Horn clause, we
obtain a negative clause. Hence in the resolution proof of the clause {v} no clause
of Y could have been used and D ∪ {¬v} is not satisfiable.

(2). Without loss of generality we can assume that p 6∈ V . For the definition
of flowgraph and the relation between flowgraphs and monotone circuits see page
7. Let us represent a set of Horn clauses D, containing no negative clauses, as a
flowgraph F . (We stipulate that this implies that an empty clause is not in D.)
The vertices of F will be the variables in D. Assume that D does not contain
a clause of size one. If D is empty we let C := 0 . If D 6= ∅, for a clause
{¬q1, . . .¬qk, q} in D we shall put a gate from q1, . . . qk to q in F . Let σ be an
assignment to V . Clearly, Fσ(p) = 1 iff

D, Vσ, {¬p}

is unsatisfiable. By Proposition 5 there exists a monotone circuit C in variables V
of size O(n2) s.t. C(σ(V )) = Fσ(p). Then C = 1 iff D, Vσ, {¬p} is unsatisfiable.

If D contains clauses of size one, let V1 be the set of variables occurring as a
singular clause in D and let D>1 be the set of clauses of size > 1 in D. If p ∈ V1

we set C := 1. Otherwise, let C>1 be the circuit constructed from D>1 as above.
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The circuit C is then obtained from C>1 by setting the variables V1 to 1 in C>1.
QED

For a formula α, 2A will be called an immediate modal subformula of α, if 2A
has an occurrence in α not in a range of any modality. Then α can be uniquely
written as

β(2A1, . . .2Ak, s1, . . . sl),

where 2Ai are its immediate modal subformulas and s1, . . . sl are variables hav-
ing non-modalised occurrences in α, and β is a propositional formula. A truth
assignment σ to all the immediate modal subformulas and variables occurring in
α in a non-modal context induces a truth assignment Θσ to α. We define Θσ(α)
as the Boolean value of the formula

β(σ(2A1), . . . σ(2Ak), σ(s1), . . . σ(sl)).

Lemma 2 Let S = A1, . . . An be a K proof.

1. Let B1, . . . Bk, B be formulas. Assume that

CS , {2B1}, . . . {2Bk}, {¬2B}

is not satisfiable. Then ^
i=1,...k

2Bi → 2B

is a K tautology.

2. Assume that σ is an assignment to all immediate modal subformulas in S
and the non-modalised variables in S. Assume that σ satisfies CS. Then

Θσ(Ai) = 1

for every i = 1, . . . n.

Proof. (1). Let FS be the set of distributivity axioms and the conclusions 2A
of generalisation rules used in S. The definition of CS and Θσ directly implies
the following:

(?) Let σ be an assignment to the immediate modal subformulas in FS. Then σ
satisfies CS iff the formulas in FS are true in the assignment Θσ.

The proof is then immediate. If CS , {2B1}, . . . {2Bk}, {¬2B} is not satisfiable
then the formula

(
^
FS ∧

^
i=1,...k

2Bi) → 2B

is a tautology which is provable merely by propositional logic. Moreover, the
formulas FS are K tautologies and hence^

i=1,...k

2Bi → 2B

is a K tautology.
(2). By (?) the formulas in FS are satisfied by Θσ. Hence the modal rules in

S are satisfied by Θσ. Since the definition of Θσ commutes with the definition of
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logical connectives, also the propositional axioms and rules are satisfied by Θσ.
QED

Let 2A1, . . .2Ak be the immediate modal subformulas of α. An assignment
σ to the variables V = 2A1, . . .2Ak will be called consistent with respect to α,
if there exists a K model M s.t. M |= α and M |= 2Ai iff σ(2Ai) = 1.

Lemma 3 Let 2A1, . . .2Ak be the immediate modal subformulas of α. Let S be
a K proof of

α→ (2β1 ∨ 2β2).

Let V = 2A1, . . .2Ak. Let σ be a consistent assignment to V with respect to α.
Then the set of clauses

CS , Vσ, {¬2β1}, {¬2β2}
is not satisfiable.

Proof. Let Yσ := {{¬v}; v ∈ V, σ(v) = 0}. Let us first show that

D := CS , Vσ, Yσ, {¬2β1}, {¬2β2}

is not satisfiable. Assume, for the sake of contradiction, that ρ is an assignment
satisfying D. Then σ ⊆ ρ. Let M be a model s.t. M |= α and M |= 2Ai iff
σ(2Ai) = 1. Let s be the list of variables occurring in a non-modal context in
S. Let ρ′ be the assignment to s s.t. ρ′(s) = 1 iff M |= s. Let σ′ := ρ ∪ ρ′.
We can assume that σ′ is defined on all immediate modal subformulas and non-
modalised variables in S. By Lemma 2, the assignment Θσ′ satisfies all the steps
in S. Moreover, we can see that Θσ′(α) = 1, Θσ′(2β1) = Θσ′(2β2) = 0, and
hence Θσ′(α→ (2β1 ∨ 2β2)) = 0, which is a contradiction.

Let us show that also CS , Vσ, {¬2β1}, {¬2β2} is not satisfiable. The clauses
from Yσ, {¬2β1}, {¬2β2} are the only negative clauses in D. Hence, by Proposi-
tion 1, there exists C ∈ Yσ, {¬2β1}, {¬2β2} s.t. CS , X,C is not satisfiable. Let
us show it is one of {¬2β1}, {¬2β2}. Assume the contrary. Then C = {¬2Aj}
for some Aj , j ∈ 1, . . . k. Then, by part (1) of Lemma 2,

K `
^

2Ai∈Vσ

2Ai → 2Aj .

But M |=
V

2Ai∈Vσ
2Ai and M |= 2Aj which is a contradiction. QED

For a circuit C, [C] will denote an equivalent Boolean formula, i.e., some
formula defining the same Boolean function.

Theorem 4 Let S be a K proof of the formula

α→ (2β1 ∨ 2β2).

Let 2A1, . . .2Ak be the immediate modal subformulas of α. Assume that S con-
tains n modal rules. Then there exist monotone circuits C1 and C2 of size O(n2)
in k variables s.t. the following are K tautologies:

1. α(2A1, . . .2Ak, s) → [C1](2A1, . . .2Ak) ∨ [C2](2A1, . . .2Ak),
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2. [C1](2A1, . . .2Ak) → 2β1, and [C2](2A1, . . .2Ak) → 2β2.

Proof. Let CS be the characteristic set of clauses for S. The total size of CS

is ≤ 3n, since every clause in CS has size at most three. Let V = 2A1, . . .2Ak.
Let C1 be the circuit of size O(n2) in variables V from Proposition 1 s.t. for any
assignment σ to V , C1 = 1 iff CS , Vσ, {¬2β1} is unsatisfiable. Similarly for C2

and β2.
Let us show that α(2A1, . . .2Ak, s) → [C1](2A1, . . .2Ak)∨[C2](2A1, . . .2Ak)

is a K tautology. Let M be a K model s.t. M |= α and let σ be an assignment to
V s.t. σ(2Ai) = 1 iff M |= 2Ai. By Lemma 3, CS , Vσ, {¬2β1}, {¬2β2} is unsat-
isfiable. Hence C1(σ(V )) = 1 or C2(σ(V )) = 1 and henceM |= [C1](2A1, . . .2Ak)
or M |= [C2](2A1, . . .2Ak).

Let us show that (1) is a K tautology. Assume that M |= [C1](2A1, . . .2Ak)
and let σ be as above. Then, by definition of C1, CS , Vσ, {¬2β1} is unsatisfiable.
Hence, by Lemma 2 part (1) ^

σ(2Ai)=1

2Ai → 2β1

is a K tautology. But the conjunction on the left hand side contains the formulas
true in M and hence also M |= 2β1. QED

Remark. Note that we do not restrict the formulas α, β1 and β2 in any way. In
particular, α is allowed to contain non-modalised variables, negations of modal
subformulas, and nested modalities. However, the important applications of the
Theorem are in the case when the formulas have quite a simple form.

Corollary . Let α(2p1, . . .2pk, s) → (2β1(p, r1)∨2β2(p, r2)) be a K tautology,
where α(p1, . . . pk, s), β1 and β2 do not contain any modalities. Assume that S is
a proof of the tautology with n modal rules. Then there exist monotone circuits
C1 and C2 of size O(n2) in variables p with the following properties: for any
assignment σ to the variables p

1. if α(p, s) is true (for some assignment to s) then C1(p) = 1 or C2(p) = 1,

2. if C1(p) = 1 resp. C2(p) = 1 then β1 resp. β2 is true (for any assignment
to r1 resp. r2.)

Proof. Follows from the previous theorem and the fact that if A is a K tau-
tology then the propositional formula A0, obtained from A by deleting all the
boxes, is a classical tautology. QED

Flowgraphs and monotone circuits

A flowgraph F is a directed graph with edges uniquely labelled by subsets of
vertices in the following fashion. For a vertex a of F , Pred(a) will denote the set
of vertices b s.t. there is an edge from b to a. We than require that there exists
a disjoint partition of Pred(a) into sets X1, . . . Xk s.t. for every i = 1, . . . k and
b ∈ Xi the edge from b to a is labelled by Xi. The set of edges from Xi to a will
be called a gate from Xi to a. The intended meaning of a gate from Xi to a is:
if all the vertices in X are ”true” then the vertex a is also ”true”.

Let us have a fixed subset V of the vertices of F . Let σ be a 0, 1-assignment
to the vertices V . A possible solution of a flowgraph G is a 0, 1-assignment ρ to
the vertices of G s.t.

7



1. if σ(v) = 1 then ρ(v) = 1, for v ∈ V ,

2. for every a and a gate from X to a , if ρ(b) = 1 for every b ∈ X then
ρ(a) = 1.

The solution of F for σ is the 0, 1 - assignment Fσ to vertices of F s.t. for
every vertex a, Fσ(a) = 0 iff there exists a possible solution ρ s.t. ρ(a) = 0. We
can see that a vertex a is assigned 1 in Fσ iff there exists at least one gate from
X to b s.t. Fσ(b) = 1 for all b ∈ X. Hence Fσ is the minimum possible solution
of F for σ.

The following proposition shows that flowgraphs can be simulated by mono-
tone circuits.

Proposition 5 Let F be a flowgraph with n edges. Let a be a vertex in F . Then
there exists a monotone circuit C in variables V of size O(n2) s.t. for every
assignment σ to V

C(σ(V )) = Fσ(a).

Proof. We will first show that we can find an acyclic flowgraph F ? of size O(n2)
s.t. for any assignment σ to V , Fσ(a) = F ?

σ (a). Assume that F has k vertices
a1, . . . ak. Hence k ≤ 2n, as we can assume that F does not contain isolated
vertices.

The construction is straightforward: for every vertex a of F , we introduce k
copies a1, . . . ak. The flowgraph F ? will have k2 vertices aj , a ∈ F , j = 1 . . . k
and the gates will be defined as follows:

1. For every j = 1, . . . k − 1 and for every a ∈ F we put in F ? a gate from aj

to aj+1.

2. For every j = 1, . . . k − 1 and a gate from X to a in F , we add a gate from
Xj := {bj , b ∈ X} to aj+1 in F ?.

Finally, we identify the vertices v1 of F ? with v for v ∈ V and we identify the
vertex a of M with its copy ak in F ?. Clearly, F ? contains O(n2) edges and
Fσ(a) = F ?

σ (a) for any assignment.
The construction gives an acyclic flowgraph s.t. there are no edges leading to

the vertices in V . It is now sufficient to prove that for such a flowgraph F with
n edges and a vertex a of F there exists a monotone circuit C of size O(n) s.t.
C(σ(V )) = Fσ(a) for any σ. To a vertex v ∈ V we will assign the circuit v, and
to a leaf of a different kind the constant 0. Assume that for a vertex b ∈ F we
have assigned circuits Cd to all d ∈ Pred(b). For a gate from X ⊆ Pred(b) to b,
let CX be the circuit

V
d∈X Cd. Then we assign to b the disjunction of CX , for all

gates from X to b. Such a circuit has size O(n) and has the required property.
QED

2.3 Extension to other modal systems

In the proof of Theorem 4 we used only the fact that the characteristic set of
clauses of a proof is a set of Horn clauses not containing negative clauses, and
the clauses have a bounded size. These assumptions are equally satisfied in the
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systems K4, Gödel-Löb’s logic and some others (like the NP system K+22 ⊥).
For example, the K4 axiom

2A→ 22A

receives the clause
{¬2A,22A}.

The characteristic set of clauses of S or S4 proof would be defined by transforming
the proof into K resp. K4 proof by means of the translation 2A→ 2A ∧A.

The theorem and its corollary4 hold also for those systems without modifi-
cation. Extending the result to S5 is impossible, as observed in [6]. A deeper
explanation follows from the fact there exists a kind of simulation between ex-
tended S5 and classical extended Frege systems. This, we hope, will one day
appear in a paper by Emil Jeřábek.

2.4 Counting the number of distributivity axioms and
the number of generalisation rules in K

It will be noted that Theorem 4 is true also if we count only the number of
distributivity axioms in a K proof. This would be achieved by assigning all
singular clauses in the characteristic set of clauses of a proof (corresponding
exactly to the conclusions of generalisation rules) to 1, and applying the argument
to such a restricted characteristic set. This fact corresponds to the intuition that
it is the distributivity axiom which is responsible for complexity of modal proofs.
It may therefore be surprising that the same is true when the size of generalisation
rules is considered, as we will show here.

Let A be a set of formulas. cl(A) will denote the smallest set s.t.

1. A ⊆ cl(A)

2. if A, A→ B ∈ cl(A) then also B ∈ cl(A).

In other words, cl(A) is the closure of A under modus ponens.
For a proof S, the set of generalised formulas of S, GS , will be the set of

formulas A s.t. the rule
A

2A

occurs in S. The generalisation size of S will be the total size of GS , i.e., the
sum of sizes of formulas in G. For a formula A let us introduce a fresh variable
〈A〉.

Lemma 6 Let G and A = {A1, . . . Ak} be sets of formulas, the total size of
G ∪ A being n. Let B be a formula. Then there exists a monotone circuit C in
variables V = 〈A1〉, . . . 〈Ak〉 of size O(n2) s.t. for any assignment σ of V , C = 1
iff

B ∈ cl(G,Vσ),

where Vσ := {Ai ∈ A;σ(〈Ai〉) = 1}.
4However, the proof of the corollary would need a modification in the case of Gödel-Löb’s logic

and K + 22 ⊥.
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Proof. Let us represent the set G ∪ A by a flowgraph F of size n. Its vertices
will be the subformulas of formulas in G and A. For a vertex of F of the form
A→ B we connect A and A→ B to B by a gate. Clearly, for an assignment σ to
V , B ∈ cl(G,Vσ) iff Fσ(B) = 1, and the statement then follows from Proposition
5. QED

Lemma 7 1. Let G be a finite set of K tautologies. Let A be a finite set of
formulas. Assume that B ∈ cl(G ∪ A). Then^

A ∈A

2A→ 2B

is a K tautology.

2. Let S = A1, . . . An be a K proof. Let A be a set of formulas. Let σ be a truth
assignment to all immediate modal subformulas and variables occurring in
non modal context in S s.t. σ(2A) = 1 iff A ∈ cl(A, GS). Then

Θσ(Ai) = 1,

for i = 1, . . . n (Θσ is defined as in Lemma 2).

Proof. (1). Let X be a finite set of formulas. Define cli(X), i ∈ ω as follows:
cl0(X) := X and cli+1(X) is the set of all formulas B for which there exists a
formula C s.t. C → B,C ∈ cli(X). Then cl(X) =

S
i∈ω cli(X). By induction

with respect to i one can prove that if B ∈ cli(X) then
V

A∈X 2A → 2B is a
tautology. For i = 0 it is trivial. If B ∈ cli+1(X) then there exists a C s.t.
C → B,C ∈ cli(X), and hence

V
A∈X 2A → 2C and

V
A∈X 2A → 2(C → B)

are tautologies. Hence
V

A∈X 2A → 2B is a tautology, using the axiom of
distributivity. If X = G ∪ A where G is a set of K tautologies we obtain that
also

V
A ∈A 2A→ 2B is a K tautology.

(2). It is easy to see that Θσ satisfies all the axioms and rules S. The general-
isation rule is satisfied trivially (all the conclusions are assigned 1 by definition).
Distributivity axioms are satisfied by the definition of cl. Propositional rules and
axioms are satisfied since Θσ commutes with propositional connectives. QED

Lemma 8 Let α be a formula and let A = A1, . . . Ak be its immediate modal
subformulas, let V = 〈A1〉, . . . 〈Ak〉. Let S be a K proof of

α→ (2β1 ∨ 2β2).

Let σ be a consistent assignment to V with respect to α. Then either β1 or β2 is
in cl(GS ∪ Vσ).

Proof. As in Lemma 3. QED

Theorem 9 Let S be a K proof of the formula

α→ (2β1 ∨ 2β2).

Let 2A1, . . .2Ak be the immediate modal subformulas of α, having total size k.
Assume that the total size of formulas generalised in S is n. Then there exist
monotone circuits C1 and C2 in variables v1, . . . vk of size O(n + k)2 s.t. the
following are K tautologies:
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1. α(2A1, . . .2Ak, s) → [C1](2A1, . . .2Ak) ∨ [C2](2A1, . . .2Ak),

2. [C1](2A1, . . .2Ak) → 2β1, and [C2](2A1, . . .2Ak) → 2β2.

Proof. As in Theorem 4. QED

2.5 Examples of hard K tautologies

We shall now use the corollary of Theorem 4 to give particular examples of hard
K tautologies.

Example 1. - α(2p, s)→ 2β.

Assume that α(p, s) and β(p, r) are formulas containing no 2. We will say that
a circuit C in variables p interpolates α and β, if for any assignment σ to p

1. if α(p, s) is true (for some assignment to s) then C(p) = 1,

2. if C(p) = 1 then β(p, r) is true (for any assignment to r.)

We will say that a formula α is monotone in p, if it can be transformed to a
DNF form where no negation is attached to a variable in p.

Proposition 10 Let α(p, r) be a propositional formula monotone in p and let
β(p, s) be a propositional formula.

(1) If α(p, r) → β(p, s) is a propositional tautology then α(2p, r) → 2β(p, s) is
a K-tautology.

(2) Assume that
α(2p, r) → 2β(p, s)

is provable in K with n distributivity axioms. Then there exists a monotone
circuit of size O(n2) which interpolates α(p, r) and β(p, s).

Proof. (1). Note that if α(p, s) → β(p, s) is a classical tautology then there
exists a monotone formula γ(p) s.t. i) α(p, s) → γ(p) and ii) γ(p) → β(p, s) are
propositional tautologies. Hence also α(2p, s) → γ(2p) and 2γ(p) → 2β(p, s)
are K tautologies, the former by substituting 2p for p in i) and the latter by
applying generalisation and distributivity to ii). On the other hand, since γ is a
monotone formula, then also γ(2p) → 2γ(p) can be proved in K by successive
use of K tautologies 2A ◦ 2B → 2(A ◦B), where ◦ = ∧,∨.

(2) is an immediate application of Corollary of Theorem 4 for β1 := β, β2 :=⊥.
QED

Let
Cliquek

n(p, r)

be the proposition asserting that r is a clique of size k on the graph represented
by p. Let

Colork
n(p, s)

be the proposition asserting that s is a k-coloring of the graph represented by p.

11



Theorem 11 Let Θk
n be the formula

Cliquek+1
n (2p, r) → 2(¬Colork

n(p, s)).

Then Θk
n is K tautology. Moreover, if k :=

√
n then every K-proof of the tautol-

ogy Θk
n contains at least

2Ω(n
1
4 )

modal rules.

Proof. That Θk
n is a tautology follows from part (1) of the previous proposition.

Let k :=
√
n. Assume that Θk

n has a K-proof with m modal rules. By the
previous proposition, there is a monotone interpolant C of Cliquek

n(p, r) and

¬Colork
n(p, s) of size O(m2). By [1], every such circuit has size at least 2Ω(n

1
4 ).

Hence m ∼
q

2Ω(n
1
4 )) ∼ 2Ω(n

1
4 ). QED

Example 2-
∧

(2p ∨2q)→ (2β1 ∨2β2).

If β is a propositional formula in variables and p = p1, . . . pn, q = q1, . . . qn then
β(p/¬q) will denote the formula obtained by substituting ¬qi for pi, i = 1, . . . n,
in β. We may also write simply β(¬q) if the meaning is clear.

Lemma 12 Let β1 = β1(p, r1) and β2 = β2(q, r2) be propositional formulas,
p, q, r1, r2 disjoint. Let p = p1, . . . pn and q = q1, . . . qn. Assume that β1 is
monotone in p or β2 is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology.

(1) Then
V

i=1,...n(pi ∨ qi) → β1(p, r1) ∨ β2(q, r2) is a classical tautology.

(2) Let M,N be subsets of {1, . . . n} s.t. M ∪N = {1, . . . n}. Then one of the
following is a classical tautology:^

i∈M

pi → β1(p, r1), or
^
i∈N

qi → β2(q, r2).

Proof. (1). Assume that, for example, β2 is monotone in q. Then^
i=1,...n

(pi → qi) → (β2(p, r2) → β2(q, r2))

is a tautology. Hence also^
i=1,...n

(¬pi ∨ qi) → (β2(p, r2) → β2(q, r2)),

^
i=1,...n

(pi ∨ qi) → (β2(¬p, r2) → β2(q, r2))

12



are tautologies. From the assumption that β1(p, r1) ∨ β2(¬p, r2) is a tautology
we obtain that also ^

i=1,...n

(pi ∨ qi) → (β1(p, r1) ∨ β2(q, r2))

is a tautology.
(2). Let M and N be fixed. Clearly,^

i∈M

pi ∧
^
i∈N

qi →
^

i=1,...n

(pi ∨ qi)

is a tautology and, by (1),^
i∈M

pi ∧
^
i∈N

qi → (β1(p, r1) ∨ β2(q, r2))

is a tautology. Since β1 and β2 contain no common variables, and β1, resp. β2

does not contain the variables q, resp. p then either
V

i∈M pi → β1(p, r1) orV
i∈N qi → β2(q, r2) is a tautology. QED

Proposition 13 Let β1 = β1(p, r1) and β2 = β2(q, r2) be propositional formulas,
p, q, r1, r2 disjoint. Let p = p1, . . . pk and q = q1, . . . qk. Assume that β1 is
monotone in p or β2 is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology.

1. Then ^
i=1,...k

(2pi ∨ 2qi) → (2β1(p, r1) ∨ 2β2(q, r2))

is K- tautology.

2. Moreover, if the tautology has a K-proof with n distributivity axioms then
there exists a monotone circuit C(p) of size O(n2) which interpolates ¬β2(¬p, r2)
and β1(p, r1).

Proof. Let us first show that the formula is a tautology. The assumptionV
i=1,...k(2pi ∨ 2qi) can be transformed to a disjunction of conjunctions of the

form ^
i∈M

2pi ∧
^
i∈N

2qi

such that M ∪N = {1, . . . k}. Hence it is sufficient to show that for such M and
N

(?)
^

i∈M

2pi ∧
^
i∈N

2qi → (2β1 ∨ 2β2)

is a tautology. By the previous Lemma either
V

i∈M pi → β1 or
V

i∈N qi → β2 is
a classical tautology. In the first case

V
i∈M 2pi → 2β1 is a tautology and hence

also (?) is. Similarly in the latter case.
By the corollary of Theorem 4 there exist monotone circuits D1 and D2 in

variables p, q of size O(n2) s.t. for any assignment

13



(1)
(D1(p, q) = 1) → β1, (2) (D2(p, q) = 1) → β2

and if the assignment satisfies
V

i=1,...k(pi ∨ qi) then

D1(p, q) = 1 ∨D2(p, q) = 1.

This in particular gives

(3) D1(p,¬p) = 1 ∨D2(p,¬p) = 1.

Let C(p) := D1(p, 1, . . . 1) and C′(q) := D2(1, . . . 1, q). Since in (1) β1 does not
contain q, we have

(4) (C(p) = 1) → β1(p, r1).

Similarly, by replacing q by ¬p in (2) we have

(5) (C′(¬p) = 1) → β2(¬p, r2).
Since D1 and D2 are monotone, (3) gives

D1(p, 1, . . . 1) = 1 ∨D2(1, . . . 1,¬p) = 1

and hence

(6) C(p) = 1 ∨ C′(¬p) = 1.

Let us show that the circuit C interpolates ¬β2(¬p, r2) and β1(p, r1). By (4) it is
sufficient to prove that if for some assignment ¬β2(¬p, r2) is true then C(p) = 1.
But if ¬β2(¬p, r2) is true then by (5) C′(¬p) = 0 and, by (6), C(p) = 1. QED

Theorem 14 Let

Θk
n :=

^
i=1,...n

(2pi ∨ 2qi) → 2¬Colork
n(p, s) ∨ 2¬Cliquek+1

n (¬q, r).

If k :=
√
n then very K-proof of the tautology Θk

n contains at least

2Ω(n
1
4 )

modal rules.

Proof. We shall apply Proposition 13 to the formulas β1 := ¬Colork
n(p, s) and

β2 := ¬Cliquek+1
n (¬q, r). First, β2 is monotone in q since Clique(p, r) is monotone

in p. Second, β1(p, s) ∨ β2(q/¬p, r) is a classical tautology, since β2(q/¬p, r) =
¬Cliquek+1

n (p/¬¬p, r) is classically equivalent to ¬Cliquek+1
n (p, r) and

¬Colork
n(p, s) ∨ ¬Cliquek+1

n (p, r)

is a classical tautology. Hence Θk
n is a K tautology. Assume that it has a K proof

with m modal rules. Then there exists a monotone circuit C in variables p of size
O(m2) which interpolates ¬β2(q/¬p, r) and β1. Since ¬β2(q/¬p, r) is classically
equivalent to Cliquek+1

n (p, r), C interpolates Cliquek+1
n (p, r) and ¬Colork

n(p, s).

By the result in [1] every such circuit must have size at least 2Ω(n
1
4 ). Hence

m ≥
q

2Ω(n
1
4 ) ∼ 2Ω(n

1
4 ). QED
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3 Intuitionistic logic

3.1 The system IL

We will use a Gentzen style axiomatisation of intuitionistic logic. In a sequent
Γ ⇒ ∆, Γ and ∆ are understood as sets of formulas. The axioms are A⇒ A and
⊥⇒ A. The inferences will be the cut

Γ ⇒ ∆, A, Γ, A⇒ ∆

Γ ⇒ ∆
,

the weakening
Γ ⇒ ∆

Γ,Σ ⇒ ∆,Π
,

and the inferences

LEFT RIGHT

Γ, A⇒ ∆

Γ, A ∧B ⇒ ∆
,

Γ, B ⇒ ∆

Γ, A ∧B ⇒ ∆

Γ ⇒ A

Γ ⇒ A ∨B ,
Γ ⇒ B

Γ ⇒ A ∨B

Γ, A⇒ C, Γ, B ⇒ C

Γ, A ∨B ⇒ C

Γ ⇒ A, Γ ⇒ B

Γ ⇒ A ∧B ,

Γ ⇒ A,∆, Γ, B ⇒ ∆

Γ, A→ B ⇒ ∆

Γ, A⇒ B

Γ ⇒ A→ B
,

An IL proof of a formula A is a proof of the sequent ⇒ A. The sequent size of
a proof S is the sum of |Γ|+ |∆| for sequents Γ ⇒ ∆ in S. The sizes of formulas
in S are not considered in the sequent size of S. The sequent size of a proof of
A corresponds to the number of proof-lines in a Hilbert style proof of A.

3.2 Monotone interpolation for IL

As before, we shall now define a characteristic set of clauses CS for an IL proof
S. We shall consider only the right introduction rules of S. Recall that for a
formula A, 〈A〉 denotes a new propositional variable. For any use of a right rule
in S whose conclusion has the form

A1, . . . Ak ⇒ B

we put in CS the clause
{¬〈A1〉, . . .¬〈Ak〉, 〈B〉}.

We can see that CS is a set of Horn clauses, containing no negative clause. |CS | is
equal to the number of right inferences in S, and the total size of CS is bounded
by the sequent size of S.

We will now show that a truth assignment satisfying the set of characteristic
clauses of a proof can be extended to a truth assignment satisfying the sequents
in S. Let A be a formula. For the logical connectives ◦ = ∧,∨,→ the respective
Boolean operations will be denoted ◦B = ∧B ,∨B ,→B . Assume that σ is a truth
assignment to variables 〈B〉 for all subformulas B of A. Then the assignment
Θσ(A) will be defined as follows:
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1. Θσ(p) = σ〈p〉, for p a variable, Θσ(⊥) = 0,

2. Θσ(B ◦ C) = σ〈B ◦ C〉 ∧B (Θσ(B) ◦B Θσ(C))

We can see that for any σ

i). Θσ(⊥) = 0,

ii). Θσ(A) = σ〈A〉 ∧B Θσ(A), and

iii). Θσ(A ◦B) ≤ Θσ(A) ◦B Θσ(B)

Moreover, from ii) we obtain that if σ satisfies the clause {¬〈A1〉, . . .¬〈Ak〉, 〈A〉}
then

iv) mini=1,...k Θσ(Ai) ≤ σ〈A〉.

We shall say that a sequent Γ ⇒ ∆ is satisfied by Θσ iff minA∈Γ Θσ(A) ≤
maxA∈∆ Θσ(A), where minimum of empty set is one and the maximum zero.

Lemma 15 Let S = Π1, . . .Πn be an IL proof.

1. Let B1, . . . Bk and B be formulas. Let CS , {〈B1〉}, . . . {〈Bk〉}, {¬〈B〉} be
unsatisfiable. Then ^

i=1,...k

Bi → B

is an IL tautology.

2. Let σ be an assignment to all variables 〈B〉 s.t. B is a subformula of some
formula in S. Assume that σ satisfies CS. Then every Πi in S is satisfied
by Θσ.

Proof. (1) is clear. (Compare with Lemma 2.)
(2). The axiom A ⇒ A is satisfied trivially, and ⊥⇒ A is satisfied because

of the condition i). Let us show that for a rule in S if its premiss is satisfied
by Θσ then so is its conclusion. For weakening and cut rule the statement holds
trivially. As remarked in iii), we have Θσ(A◦B) ≤ Θσ(A)◦B Θσ(B). This implies
that the left introduction rules are satisfied by Θσ, for any σ. Assume that σ
satisfies CS and let us have an instance of a right introduction rule in S. For
example, let us take the rule

Γ, A⇒ B

Γ ⇒ A→ B
.

Let a := minγ∈Γ Θσ(γ). By the assumption we have

(?) min(a,Θσ(A)) ≤ Θσ(B)

and we want to show that

(??) a ≤ Θσ(A→ B) = σ〈A→ B〉 ∧B (Θσ(A) →B Θσ(B)).

From (?) we have a ≤ Θσ(A) →B Θσ(B). Since σ satisfies CS , it also satisfies
the clause {¬〈γ〉, γ ∈ Γ, 〈A → B〉} and from iv) we obtain that a ≤ σ〈A → B〉,
which implies (??). The other rules are analogous. QED

A formula α will be called monotone, if it contains only the connectives ∧
and ∨.
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Lemma 16 Let S be an IL proof of the formula α → (β1 ∨ β2), where α is a
monotone formula in variables p. Let σ be a 0, 1-assignment to p s.t. α is true
under σ. Let Vσ be the set of clauses of the form {〈γ〉}, where γ is a subformula
of α true under the assignment σ. Then

CS , Vσ, {¬〈β1〉}, {¬〈β2〉}

is not satisfiable.

Proof. Assume that ρ is an assignment which satisfies CS , Vσ, {¬〈β1〉}, {¬〈β2〉}.
We can assume that ρ is defined on all subformulas of formulas in S. From
the definition of Θρ we obtain that Θρ(α) = 1, Θρ(β1) = Θρ(β2) = 0 and
Θρ(α→ (β1 ∨ β2)) = 0. But that contradicts the previous Lemma. QED

Theorem 17 Let α be a monotone formula in variables p and of size k. Assume
that S is an IL proof of the tautology

α→ β1 ∨ β2.

Assume that the sequent size of S is n. Then there exist monotone circuits C1

and C2 of size O(n2 + k) in variables p s.t. the following are IL tautologies:

1. α→ [C1] ∨ [C2],

2. [C1] → β1, and [C2] → β2.

Proof. Let V be the set of variables of the form 〈γ〉, where γ is a subformula
of α. Let q := 〈β1〉, r := 〈β2〉. The total size of CS is ≤ n. Let Cq be a monotone
circuit in variables V of size O(n2) s.t. for any assignment σ to V , Cq = 1 iff
C, Vσ, {¬q} is unsatisfiable, where Vσ = {{v} ∈ V ;σ(v) = 1}. Let C1 be the
circuit obtained by substituting γ for 〈γ〉 in Cq. It is a monotone circuit in
variables p, and we can assume that it has size O(n2 + k). Similarly for Cr and
C2. The proof then proceeds like that of Theorem 4. QED

3.3 A hard IL tautology.

As in Section 2.5 we now use Theorem 17 to obtain hard IL tautologies.

Proposition 18 Let β1 = β1(p, r1) and β2 = β2(q, r2) be propositional formulas,
p, q, r1, r2 disjoint. Let p = p1, . . . pk and q = q1, . . . qk. Assume that β1 is
monotone in p or β2 is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology.

1. Then ^
i=1,...k

(pi ∨ qi) → (¬¬β1 ∨ ¬¬β2)

is IL-tautology.

2. If the tautology has IL proof of sequent size n then there exists a monotone
circuit C(p) of size O((n2 +k) which interpolates ¬β2(¬p, r2) and β1(p, r1).
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Proof. Let us first show that the formula is a tautology. The assumptionV
i=1,...k(pi∨qi) can be transformed to an intuitionistically equivalent disjunction

of conjunctions of the form ^
i∈M

pi ∧
^
i∈N

qi

such that M ∪N = {1, . . . k}. Hence it is sufficient to show that for such M and
N

(?)
^

i∈M

pi ∧
^
i∈N

qi → (¬¬β1 ∨ ¬¬β2)

is an intuitionistic tautology. By Lemma 12 either
V

i∈M pi → β1 or
V

i∈N qi → β2

is a classical tautology. In the first case

(
^

i∈M

pi → ¬¬β1)

is an intuitionistic tautology, since the double negation enables to reproduce the
classical proof in IL. The latter case is similar.

Part (2) follows from Theorem 17 in a similar way to the proof of Proposition
13. QED

Corollary Let p = p1 . . . pn and q = q1, . . . qn and let p, q, r, s be disjoint.
Let

Θk
n :=

^
i=1,...n

(pi ∨ qi) → (¬Colork
n(p, s) ∨ ¬Cliquek+1

n (p/¬q, r)).

Then Θk
n is an IL-tautology. If k :=

√
n then every IL-proof of the tautology Θk

n

contains at least

2Ω(n
1
4 )

proof-lines.
Proof. As in Corollary of Proposition 14. Note that we omit the double nega-
tion infront of ¬Clique resp. ¬Color, since ¬A and ¬¬¬A are intuitionistically
equivalent. QED
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