
Non-commutative arithmetic circuits with
division

P. Hrubeš
∗
, A. Wigderson

†
.

December 2, 2013

Abstract

We initiate the study of the complexity of arithmetic circuits with
division gates over non-commuting variables. Such circuits and formulas
compute non-commutative rational functions, which, despite their name,
can no longer be expressed as ratios of polynomials. We prove some lower
and upper bounds, completeness and simulation results, as follows.

If X is n×n matrix consisting of n2 distinct mutually non-commuting
variables, we show that:

(i). X−1 can be computed by a circuit of polynomial size,

(ii). every formula computing some entry of X−1 must have size at least
2Ω(n).

We also show that matrix inverse is complete in the following sense:

(i). Assume that a non-commutative rational function f can be com-
puted by a formula of size s. Then there exists an invertible 2s×2s-
matrix A whose entries are variables or field elements such that f is
an entry of A−1.

(ii). If f is a non-commutative polynomial computed by a formula with-
out inverse gates then A can be taken as an upper triangular matrix
with field elements on the diagonal.

We show how divisions can be eliminated from non-commutative cir-
cuits and formulae which compute polynomials, and we address the non-
commutative version of the “rational function identity testing” problem.
As it happens, the complexity of both of these procedures depends on a
single open problem in invariant theory.

∗Department of Computer Science and Engineering, University of Washington. Email:
pahrubes@gmail.com. Supported by the NSF under agreement CCF-1016565.

†School of Mathematics, Institute for Advanced Study. Email: avi@ias.edu. Research
partially supported by NSF grant CCF-0832797

1

1 Introduction

Arithmetic circuit complexity studies the computation of polynomials and ratio-
nal functions using the basic operations addition, multiplication, and division.
It is chiefly interested in commutative polynomials or rational functions, defined
over a set of multiplicatively commuting variables (see the survey [42], or the
book [6]). The dominant computational models are the arithmetic circuit and
its weakening, the arithmetic formula. The main open problem is to present an
explicit polynomial which cannot be computed by a circuit – or a formula – of
polynomial size.

The complexity of computing polynomials (not allowing division) in non-

commuting variables has also been considered, for example, in [35, 25]. This
was motivated partly by an apparent lack of progress in proving lower bounds
in the commutative setting, partly by an interest in computations in matrix
algebras1. And indeed, we do have nontrivial lower bounds in this setting.
Most notably, Nisan [35] has proved thirty years ago that any arithmetic for-

mula computing the non-commutative determinant or permanent must have an
exponential size, and also gave an exponential separation between the power
of circuits and formulae in this model. Despite much effort, a similar lower
bound for non-commutative arithmetic circuits has not been achieved – indeed,
the best known lower bounds for non-commutative circuits are as weak as the
commutative ones.

In this paper, we take the study of non-commutative computation one step
further and consider the complexity of non-commutative circuits which contain
division (equivalently, inverse) gates. Such a circuit computes a ”non-com-
mutative rational function” – a far more complicated object than its commu-
tative counterpart. Traditionally, arithmetic circuit complexity focuses on the
computation of polynomials, with rational functions receiving minor attention.
This is mainly because any commutative rational function can be expressed as
a pair of polynomials fg−1. Even on the computational level, commutative
rational functions do not substantially differ from polynomials – apart from
the omnipresent threat of dividing by zero. In contrast, the structure of non-
commutative rational functions is far more complex, giving rise to host of new
phenomena. It is not difficult to see that x−1 + y−1 or xy−1x can no longer be
expressed as fg−1 (or g−1f), if x, y do not commute. More importantly, non-
commutative rational functions may require nested inverses, as in (u+xy−1z)−1.
Indeed, any number of inverse operations, and nested inverse operations, may
be needed to represent a rational function. Moreover, there is no “canonical”
representation of non-commutative rational functions. Despite these facts, or
rather thanks to them, non-commutative rational functions posses quite a lot of
structure. They form a skew field2 which is equipped with invariants not present
in the standard commutative field of fractions. Our main hope is that this addi-

1Observe that Strassen’s (and all subsequent) fast matrix multiplication algorithms neces-
sarily work over non-commuting matrix entries

2A.k.a. “associative division algebra” – a field in which multiplication is not necessarily
commutative.

2

tional structure may be useful for proving lower bounds, even for polynomials.
We make initial steps in this direction.

Non-commutative rational functions arise naturally in a variety of settings,
beyond the abstract mathematical fields of non-commutative algebra and geom-
etry3. One area is linear system theory and control theory, where the order of
actions clearly matters, and the dynamics is often given by a rational function
and its iterates. The paper [28] surveys some of this work, and also demonstrates
situations where results in the commutative case were proven by ”lifting” them
to the non-commutative setting. Another area is formal language theory where
regular expressions and formal series play analogous role. Indeed, these two
areas are tightly connected, and the book [3] surveys some of the connections
between the algebraic and linguistic settings (and more).

Note that non-commutative rational functions can often be more natural
than non-commutative polynomials. For example, the determinant as a non-
commutative polynomial has no longer any relevance to solving linear equations
or a geometrical interpretation. In [20], it was argued that the correct analogy
of the commutative determinant is the quasideterminant, which is a set of non-
commutative rational functions sharing and extending many of the useful and
beautiful properties of the commutative determinant. This development has
important consequences in a variety of mathematics areas. The inverse of a
matrix is probably the best example of a notion that makes perfect sense in the
non-commutative setting, as a set of rational functions (and indeed the quasi-
determinant of a matrix may be naturally defined from the entries of its inverse).
Matrix inverse further plays a key role in one definition, due to Cohn [7], of the
universal skew field of non-commutative rational functions.

Matrix inverse turns out to be central from a computational perspective. In
this paper we will focus on the complexity of computing the inverse X−1 of an
n× n matrix X consisting of n2 non-commuting variables. We show that X−1

can be computed by a polynomial size circuit, but on the other hand, every
formula computing an entry of X−1 must have an exponential size. This pro-
vides a non-trivial example4 of an exponential gap between circuit and formula
size – a counterpart of the above mentioned result of Nisan. We also prove the
following completeness result: if a rational function f can be computed by a
formula of size s then f can be expressed as an entry of A−1, where A is a
2s × 2s-matrix whose entries are variables or field elements. This is an analog
of Valiant’s [45] theorem on completeness of determinant in the commutative,
division-free, setting.

To see the origins of the lower bounds, let us return to examples of rational
expressions. We noted that the expression (x + xy−1x)−1, which has nested

inversions, can be simplified by Hua’s identity to an equivalent expression with-
out nesting: (x + y)−1 − x−1. On the other hand, in the somewhat similar
expression (u + xy−1z)−1, the nested inversion cannot be eliminated. This new

3One of the best examples is the fact that the fundamental theorem of projective geometry
follows rather simply from the fact that the following rational expression, (x + xy−1x)−1 +
(x + y)−1 − x−1, is identically zero: this is called Hua’s identity.

4The trivial example would be x2n
.

3

phenomenon of nested inversion provides a new invariant not present in the
commutative setting - the height of a rational function. The height is the mini-
mum number of nested inversions in a formula computing this rational function.
For a long time, it was not even clear that the height is unbounded, and it was a
major result of C. Reutenauer [39] that it in fact is. Indeed, his result is much
more precise and informative: any entry of the inverse of the generic n × n

matrix X requires n nested inversions, namely has height n.
Our lower bound on formula size of matrix inverse is obtained by showing

that a formula of size s can compute a function of height at most logarithmic in
s. This is obtained via general balancing procedure of formulas, which is a bit
more involved than the usual one due to the non-commutativity and presence
of inversion gates. Combined with Reutenauer’s theorem, this implies that the
inverse of n × n matrix cannot be computed by a formula smaller than 2Ω(n).
In circuit complexity, one keeps searching for properties that would imply that
a function is hard to compute. For a polynomial f , there are not many such
invariants at hand: for example, the degree or the number of variables, which
both provide only very limited hardness results, and the more sophisticated rank
of the partial derivative matrix used in Nisan’s lower bound. In the context of
non-commutative rational functions, we can now see that the inverse height is
a new non-trivial invariant which can be successfully applied to obtain hard-
ness results. Other non-trivial invariants are known in this setting, and it is
quite possible that some of them can shed light on more classical problems of
arithmetic circuit complexity.

We also prove a different characterization of the inverse height. We show
that in a circuit, one never needs to use more inversion gates than the inversion
height of the rational function computed, without significantly increasing the
circuit size. Thus, e.g., the expression x

−1
1 + x

−1
2 + . . . x−1

n can be computed
using only one inverse gate by an O(n)-sized circuit, and n × n matrix inverse
can be computed by a polynomial size circuit with exactly n inverse gates.

We also consider the question of eliminating division from circuits or formu-
lae whose output is a polynomial. Again, in the commutative setting this can
be done with little overhead, as shown by Strassen [44]. His idea was to replace
an inverse gate with an infinite power series expansion, and eventually truncate
it according to the degree of the output polynomial. In the non-commutative
setting, this approach faces a significant obstacle. In order to express f−1 as a
power series, we need a point where f is non-zero, and so Strassen’s argument
hinges on the fact that a non-zero rational function does not vanish on some
substitution from the underlying field (at least when the field is infinite). In
contrast, assume that a non-commutative computation inverts the polynomial
xy − yx. It is not identically zero, but vanishes on all inputs from any base
field. A natural idea, which we indeed employ, is to evaluate the circuit on
matrices instead of field elements. Extending relevant notions appropriately
(namely, polynomials and power series with matrix coefficients), we can imple-
ment Strassen’s idea and eliminate divisions, with the exception of one caveat
– we don’t know the size of matrices needed! As it turns out, it is a basic
open problem, arising in non-commutative algebra as well as in commutative

4

algebraic geometry, to determine any computable bound on the minimum size
of matrices on which a nonzero rational expression does not vanish (resp. is
invertible). Thus, our result is conditional: the simulation is polynomial in the
size of the given circuit and in the size of the smallest dimension of matrices on
which the given circuit can be correctly evaluated. Finally, we will see that this
problem is also related to the question of deciding whether a rational expres-
sion computes the zero function. In the case of formulas, the “rational identity
testing” problem can be decided by an efficient randomized algorithm, provided
that the above matrix dimension is small.

Organization

In Section 2 we formally define our computational models, arithmetic circuits
and formulae over non-commuting variables with division gates. We define
rational functions, the skew field they live in and the notion of inverse height.
Then we formally state our main results. In Section 3 we prove the circuit
size upper bound on matrix inverse, and in Section 4 the formula size lower
bound for it, via a general result about balancing formulae with division gates.
In Section 5 we show that circuits require only as many inverse gates as the
height, via an efficient simulation reducing the number of inverse gates to this
bare minimum. In Section 6 we present several completeness results, most
notably of matrix inverse for formulae. In Section 7 we define the identity
testing problems for non-commutative polynomial and rational function and
discuss their complexities. In Section 8 we explain how to eliminate divisions
when computing polynomials. In Section 9 we discuss some future directions
and open problems.

2 Background and main results

Let F be a (commutative) field and x̄ = x1, . . . , xn a set of variables. The ring
of non-commutative polynomials in variables x̄ will be denoted F�x̄�, and F<(x̄>)
denotes the free skew field of non-commutative rational functions. Two classical
approaches to defining this field will be outlined below. For more detail see for
example [8, 27]. The elements of F<(x̄>) are non-commutative rational functions,
which we call simply rational functions.

Non-commutative arithmetic circuits with inverse gates

Non-commutative rational functions will be computed by means of non-commu-

tative arithmetic circuits with inverse gates, which we call briefly circuits. This
is a natural extension of both the notion of a commutative circuit with division
gates, and the notion of a non-commutative circuit without divisions. We for-
mally define the circuits, and then discuss how they lead to a definition of the
free skew field.

5

A circuit Φ over a field F is a finite directed acyclic graph as follows. Nodes
of in-degree zero are labelled by either a variable or a field element in F. All the
other nodes have in-degree one or two. The gates of in-degree one are labelled
by −1 and the gates of in-degree two by either + or ×. The two edges going
into a gate labelled by × are labelled by left and right, to determine the order
of multiplication. The nodes are called input gates, inverse, sum and product
gates. The nodes of out-degree zero are output gates. For nodes v, v1, v2, we
write v = v1×v2 to indicate that v is a product gate with the two edges coming
from v1, v2, and similarly for v = v1 + v2 or v = v

−1
1 .

The size of a circuit Φ is the number of gates in Φ. Its depth is the length of
the longest path in Φ. A formula is a circuit where every node has out-degree
at most one.

For a node v in Φ, we denote Φv as the subcircuit of Φ rooted at v.
A node u in a circuit Φ in variables x1, . . . , xn is intended to compute a non-

commutative rational function �u ∈ F<(x1, . . . , xn>). However, the circuit may
also contain division by zero, in which case we say that �u is undefined. The
exact definition of �u ∈ F<(x1, . . . , xn>) is clear:

(i). If v is an input gate labelled by a (i.e., a is a variable or a field element),
let �v := a.

(ii). If v = v1 × v2 resp. v = v1 + v2, let �v = �v1 · �v2 resp. �v = �v1 + �v2, provided
that both �v1 and �v2 are defined.

(iii). If v = u−1, let �v := �u−1, provided �u is defined and �u �= 0.

We say that a circuit Φ is a correct circuit, if �u is defined for every node in
Φ. A correct circuit Φ computes a set of non-commutative rational functions
�Φ = {�u1, . . . , �um}, where u1, . . . , um are the output gates of Φ.

The free skew field – a computational definition

One classical definition of the field F<(x̄>) is through the computation of its
elements as above, with equivalence of elements defined through evaluating their
circuits on matrix algebras as we outline now.

Let R be a ring whose centre contains the field F (i.e., every element of F
commutes with every element of R). Let Φ be a circuit in variables x1, . . . , xn

with a single output node. Then Φ can be viewed as computing a partial function
�ΦR : Rn → R. That is, substitute a1, . . . , an for the variables x1,xn and
evaluate the circuit. �ΦR(a1, . . . , an) is undefined if we come across an inverse
gate whose input is not invertible in R. Note that

�ΦR(x1, . . . , xn) = �Φ

if we interpret x1, . . . , xn as elements of R = F<(x1, . . . , xn>).
Looking at rings of k × k matrices Mk×k(F), we can obtain the following

characterization of circuits and non-commutative rational functions (see [27] for
proof):

6

(a) Φ is a correct circuit iff the domain of �ΦR is non-empty for some R =
Mk×k(F).

(b) For correct circuits Φ1,Φ2, �Φ1 = �Φ2 iff �ΦR
1 and �ΦR

2 agree on the intersection
of their domains, for every R = Mk×k(F).

In fact, those conditions could be used to define the skew field F<(x1, . . . , xn>).
It can be constructed as the set of all correct circuits modulo the equivalence
class induced by (b).

Matrix inverse (and the quasi-determinant)

Let A ∈ Matn×n(R) be an n× n matrix whose entries are elements of a unital
ring R. Then A−1 ∈ Matn×n(R) is the n× n matrix such that

A · A−1 = A
−1 · A = In ,

where In is the identity matrix. The inverse A−1 does not always exists, but
if it does, it is unique. We will be specifically interested in the inverse of the
n×n generic matrix Xn ∈ Matn×n(F<(x̄>)), which is the matrix Xn = (xij)i,j∈[n]

consisting of n2 distinct variables.
Matrix inverse is a very close cousin of the quasi-determinant. In two influ-

ential papers, Gelfand and Retakh [21, 22] defined a non-commutative analog
to the determinant, called quasi-determinant, which they argued to be the ap-
propriate generalization of that fundamental polynomial. Its many beautiful
properties and applications are surveyed in [19]. The quasi-determinant of a
generic matrix is actually a set of n2 rational functions, which can be simply de-
fined from the entries of the matrix inverse. Indeed, the (i, j) quasi-determinant
of X is simply the inverse of the (i, j) entry of X−1. Thus, essentially everything
we say about matrix inverse holds for the quasi-determinant as well.

That X−1
n exists can be directly proved by induction on n, as in our con-

struction in Section 3. However, one can also invoke an interesting theorem due
to Cohn. Let R be a ring. A matrix A ∈ Matn×n(R) is called full in R if it
cannot be written as A = B · C with B ∈ Matn×k(R), C ∈ Matk×n(R) and
k < n.

Theorem 2.1 (Cohn, [8]). Let A ∈ Matn×n(F�x̄�) be a matrix of non-commuta-

tive polynomials. Then A is invertible in the skew field F<(x̄>) if and only if it is

full in F�x̄�. Moreover, if A is not full and its entries are polynomials of degree

≤ 1, then the entries of the factors B,C are without loss of generality degree

≤ 1 as well.

This characterization of invertible matrices was then used by Cohn to give
an alternative construction of the free field: we can identify an element of F<(x̄>)
with an element of A−1 for some full A ∈ Mn×n(F�x̄�) This is another indication
of the key role matrix inverse has in the study of non-commutative rational
functions. Note that in the commutative polynomial ring, there exist matrices
which are both full and singular.5

5E.g., consider a generic skew-symmetric 3x3 matrix, or indeed one of every odd size.

7

The height of a rational function

An important characteristic of a rational function is the number of nested inverse
operations necessary to express it. For a circuit Φ, we define the height of Φ
as the maximum number k such that there exists a path in Φ which contains k

inverse gates. For example, the formula xy−1 + zx−1y2 has height 1 and (1 +
xy−1x)−1 has height 2. For a rational function f , the height of f is the smallest
height of some circuit computing f (in this definition, one may equivalently
consider formulas). Naturally, the depth of a circuit computing f must be at
least the height of f .

In the commutative setting, every rational function can be written as fg−1

for some polynomials f, g and so has height at most 1. In the non-commutative
setting, there exist rational functions of an arbitrary height. This is in itself a
remarkable and non-trivial fact. However, we will use a stronger statement due
to C. Reutenauer:

Theorem 2.2 ([39]). The height of any entry of the generic inverse matrix

X−1
n is n.

In Section 5, we will give a different characterization of the inverse height
of f : in Corollary 5.3, we point out that a rational function of height k can be
computed by a circuit which altogether uses only k inverses. Hence the height of
f can also be defined as the smallest number of inverse gates needed to compute
f by means of a circuit.

Main results

We shall prove the following two theorems about the complexity of matrix in-
verse (recall that Xn is a matrix of n2 distinct variables):

Theorem 2.3. X−1
n can be computed by a circuit of size polynomial6 in n.

Theorem 2.4. Every formula computing some entry of X−1
n has size 2Ω(n).

Theorem 2.3 is an explicit construction. Theorem 2.4 is obtained by showing
that a formula of size s can be balanced to obtain an equivalent formula of depth
O(log s). This entails that if f can be computed by a formula of size s, then f

has height at most logarithmic in s. This gives Theorem 2.4 by Theorem 2.2.
Theorems 2.3 and 2.4 can be strengthened as follows:

(i). X−1
n can be computed by a polynomial size circuit which contains only n

inverse gates (cf. Proposition 5.2).

(ii). Every formula computing some entry of X−1
n has 2Ω(n) inverse gates. (cf.

Corollary 4.4)

6In fact, we show that X
−1
n can be computed by a circuit of size O(nω), where 2 ≤ ω < 3

is the exponent of matrix multiplication.

8

In his seminal paper [45], Valiant has shown that an arithmetic formula
can be expressed as the determinant of a linear size matrix whose entries are
variables or field elements. This result considers commutative formulas without
inverse gates. That commutativity is not essential was later shown in [24]. Here,
we show that a similar relationship holds between non-commutative arithmetic
formulas and the matrix inverse:

Theorem 2.5. Assume that a rational function f can be computed by a formula

Φ of size s. Then there exists s� ≤ 2s and an invertible s�× s�-matrix AΦ whose

entries are variables or field elements such that f is an entry of A
−1
Φ .

This is proved in Section 6. There, we also discuss some variants of the
theorem. Namely, if f is computed without the use of inverse gates then A

can be taken upper triangular, and we point out the connection with the non-
commutative determinant.

We present several other results about the number of inverse gates in non-
commutative circuits - how to minimize them when computing rational func-
tions, and how to eliminate them when computing polynomials. More specifi-
cally:

• If f can be computed by a circuit of size s and height k, then f can be
computed by a circuit of size O(s(k + 1)) which contains k inverse gates.

In other words, f can be computed by a circuit which contains at most k

inverses on any directed path, it can be computed by a circuit with k inverse
gates in total, with only a small increase in circuit size. (Proposition 5.2 in
Section 5).

• Let f ∈ F�x̄� be a polynomial of degree d which is computable by a circuit
with divisions of size s. Assume that there exist matrices a1, . . . , an ∈ R =
Matm×m(F) such that �ΦR(a1, . . . , an) is defined. Then f can be computed
by a division-free circuit of size O(sd3m3).

This is an analogy of the elimination of division gates from commutative
circuits. However, we do not know how large can the parameter m = m(s, d) be
for the worst such circuit, and hence we do not know whether our construction
is polynomial in s and d. (See Section 8).

A version of this parameter appears again in Section 7 in connection with
the rational identity testing problem.

• For a correct formula Φ of size s, one can decide whether �Φ = 0 by a
randomized algorithm which runs in time polynomial s · w(s).

Here, w(s) is defined as the smallest k so that every correct formula of
size s can be correctly evaluated on some p × p matrices with p ≤ k. Via the
completeness theorem above, an upper bound on w(s) can be obtained by solving
the following basic problem in invariant theory. This is also the most important
open problem our work suggests, and we conclude this section by stating it. In a

9

slightly different formulation, it is presented in Section 9 as Problem 4 (that the
formulations are equivalent follows from Proposition 7.3), and is also discussed
in Section 7.1. F can be any field, but it is especially interesting for algebraically
closed fields, and specifically for the complex numbers.

• Find an upper bound on the smallest k = k(s), such that for every
Q1, . . . , Qs ∈ Mats×s(F) if7

�s

i=1 Qi ⊗ ai is invertible for some m ∈ N
and a1, . . . , as ∈ Matm×m(F) then

�s

i=1 Qi ⊗ ai is invertible for some
a1, a2, · · · , as ∈ Matp×p(F) with p ≤ k.

In other words, we want to find k such that det(
�s

i=1 Qi ⊗ ai) does not
identically vanish on (≤ k) × (≤ k) matrices. Note that the vanishing of the
determinant is invariant to acting on the sequence Qi with left and right multipli-
cation by any two invertible matrices - this provides the connection to invariant
theory. This connection is further discussed in the Appendix.

3 A polynomial-size circuit for matrix inverse

In this section, we show that X−1
n can be computed by a polynomial size circuit,

thus proving Theorem 2.3. The algorithm is implicit in Strassen’s paper [43].

The construction of X−1

Let X = Xn = (xij)i,j∈[n] be a matrix consisting of n2 distinct variables. We
define the matrix X−1 recursively. If n = 1, let X−1 := (x−1

11). If n > 1, divide
X into blocks as

X =
�

a1 a2

a3 a4

�
, (1)

where a1, a4 are square matrices of dimensions p × p and (n − p) × (n − p),
respectively, and a2, a3 are in general rectangular matrices of dimension p ×
(n− p) and (n− p)× p, respectively. (Later, we will choose p as roughly n/2.)
Assume we have already constructed the matrix a

−1
1 . Let

z := a4 − a3a
−1
1 a2 ,

and

X
−1 :=

�
a
−1
1 (I + a2z

−1a3a
−1
1) − a

−1
1 a2z

−1

−z−1a3a
−1
1 z−1

�
. (2)

Here, we should argue that z−1 exists, which is however apparent from the fact
that z = a4 if we set a3 = 0.

7⊗ is the Kronecker product.

10

Correctness

We must show that X−1, as constructed above, indeed satisfies X · X−1 = I

and X−1 · X = I.
For n = 1, we have x11 · x−1

11 = x
−1
11 · x11 = 1. Otherwise let n > 1 and let X

be as in (1).
Using some rearrangements and the definition of z, we obtain

X · X−1 =
�

a1 a2

a3 a4

� �
a
−1
1 (1 + a2z

−1a3a
−1
1) − a

−1
1 a2z

−1

−z−1a3a
−1
1 z−1

�
=

=
�

I + a2z
−1a3a

−1
1 − a2z

−1a3a
−1
1 −a2z

−1 + a2z
−1

a3a
−1
1 + (a3a

−1
1 a2 − a4)z−1a3a

−1
1 (a4 − a3a

−1
1 a2)z−1

�
=

=
�

I 0
a3a

−1
1 − zz−1a3a

−1
1 zz−1

�
=

�
I 0
0 I

�

The proof of X−1 · X = I is constructed in a similar fashion.

Complexity

Assume first that n is a power of two. Then X in (1) can be partitioned into
four matrices of dimensions n/2 × n/2. This shows that in order to compute
the inverse of an n × n matrix, it is sufficient to compute the inverse of two
n/2 × n/2 matrices (a1 and z), and add or multiply a constant number of
n/2× n/2 matrices. Let M(n) be the size of a smallest circuit which computes
the product of two matrices and C(n) the size of a smallest circuit computing
X−1

n . Then we obtain

C(n) ≤ 2C(n/2) + c1M(n/2) + c2n
2
,

for some constants c1, c2. If M(n) = O(nω), with 2 ≤ ω, this implies that
C(n) = O(nω).

If n is not a power of two, at each step partition X as evenly as possible, i.e.,
set p := �n/2�. This gives that C(n) ≤ C(2k), where k is the smallest integer
such that 2k ≥ n. Since 2k ≤ 2n, this amounts to a loss of at most a constant
factor.

Moreover, it is easy to see that the constructed circuit has height n.

4 Matrix inverse has exponential formula size

In this section, we prove Theorem 2.4. For this purpose, we show that a formula
of size s can be balanced to obtain an equivalent formula of depth O(log s). Both
the statement and its proof are analogous to the commutative version given by
Brent in [5]. On the other hand, the fact that this statement does hold for
non-commutative rational functions is in itself slightly surprising.

Proposition 4.1. Assume that a non-commutative rational function f can be

computed by a formula of size s. Then f can be computed by a formula of depth

O(log s).

11

This immediately implies:

Corollary 4.2. If f can be computed by a formula of size s then f has height

O(log s).

This, together with Theorem 2.2, implies Theorem 2.4.

Let us first prove Proposition 4.1:

of Proposition 4.1. The proof is almost identical to Brent’s commutative ver-
sion. Hence we just outline the argument and point out the peculiarities arising
in the non-commutative setting.

The idea is to simultaneously prove the following two statements by induc-
tion on s. Let Φ be a correct formula of size s then, for sufficiently large s and
suitable constant c1, c2 > 0, the following hold:

(i). �Φ can be computed by a formula of depth c1 log s,

(ii). if z is a variable occurring at most once in Φ then

�Φ = (Az + B)(Cz + D)−1
,

where A, B,C, D are non-commutative rational functions which do not
depend on z and each is computable by a formula of depth ≤ c2 log s.
Moreover, C �Ψ + D �= 0 for any Ψ such that Φ(z/Ψ) is correct.

Here Φ(z/Ψ) means that Ψ is substituted for z in Φ. Furthermore, for a node v

in Φ, Φv will stand for the subformula of Φ with the output v and Φv:=z is the
formula obtained by replacing Φv in Φ by the variable z.

On the inductive step, (i) is obtained roughly as follows. Find a node v

in Φ such that both Φv and Φv:=z are small (of size at most 2s/3). Apply
part (i) of the inductive assumption to bound the depth of �Φv. Apply (ii) to
write �Φv:=z = (Az + B)(Cz + D)−1, with A, B, C,D having small depth, which
altogether gives a small depth formula for �Φ = (A�Φv + B)(C�Φv + D)−1. To
prove (ii), find an appropriate node v on the path between z and the output of
Φ. (An “appropriate v” is a node v such that Φv:=z1 is small and Φu1 is small,
where either v = u

−1
1 , v = u1 + u2, v = u1 × u2, or v = u2 × u1, where u2 does

not depend on z.) Use the inductive assumptions to write

�Φv:=z1 = (A1z1 + B1)(C1z1 + D1)−1
,

�Φv = (A2z + B2)(C2z + D2)−1
,

and compose these expressions to obtain (ii).
The main point that needs to be checked is that the representation

f = (Az + B)(Cz + D)−1 (3)

is well-behaved in the non-commutative setting. If A, B,C, D do not depend on
z, we will say that f in (3) has z-normal form. It is not immediately clear that

12

if Φ is as in (ii), then �Φ has a z-normal form (even if we require nothing about
the complexity of A, B,C, D). To see this, it is sufficient to show that if f has
z-normal form and E does not depend on z, then f + E, f ·E,E · f and f−1 (if
f �= 0) have a z-normal form. This follows from the following identities, where
we use that (fg)−1 = g−1f−1:

((Az + B)(Cz + D)−1)−1 = (Cz + D)(Az + B)−1
,

(Az + B)(Cz + D)−1 + E = ((A + EC)z + (B + ED))(Cz + D)−1
,

(Az + B)(Cz + D)−1 · E = (Az + B)(E−1
Cz + E

−1
D)−1

, if E �= 0 ,

E(Az + B)(Cz + D)−1 = (EAz + EB)(Cz + D)−1
.

However, it is more important that normal forms can be composed in the fol-
lowing sense. If

f = (A1z1 + B1)(C1z1 + D1)−1
, z1 = (A2z + B2)(C2z + D2)−1

,

then
f = (Az + B)(Cz + D)−1

,

where A = A1A2 + B1C2, B = A1B2 + B1D2, C = C1A2 + D1C2 and D =
C1B2 + D1D2. To see this, let h1 := A2z + B2 and h2 := C2z + D2 so that
z1 = h1h

−1
2 . Then

f = (A1h1h
−1
2 + B1)(C1h1h

−1
2 + D1)−1 =

= (A1h1 + B1h2)h−1
2 ((C1h1 + D1h2)h−1

2)−1 =
= (A1h1 + B1h2)h−1

2 h2(C1h1 + D1h2)−1 =
= (A1h1 + B1h2)(C1h1 + D1h2)−1

,

and substitute for h1, h2.
The outlined properties of z-normal forms are quite sufficient to reconstruct

Brent’s proof.

Let us note that the proof of Proposition 4.1 does not rely on the fact that
the formula computes an element of a free skew field, and the proposition can
be generalized as follows (recall the definition of �ΦR from Section 2):

Proposition 4.3. Let F be a field and R a skew field whose centre contains

F. Assume that Ψ(x1, . . . , xn) is a formula of size s and a1, . . . , an ∈ R are

such that �ΨR(a1, . . . , an) is defined. Then there exists a formula Φ(x1, . . . , xn)
of depth O(log s) such that

�ΦR(a1, . . . , an) = �ΨR(a1, . . . , an) .

This, together with Lemma 4.5 below, implies that Corollary 4.2 can be
rephrased in terms of the number of inverse gates only:

Corollary 4.4. Assume that f can be computed by a formula with k inverse

gates. Then f has height O(log k).

13

Consequently, any formula computing an entry of X−1
n must have an expo-

nential number of inverse gates. Corollary 4.4 follows from the following lemma,
when we apply Proposition 4.3 to the formula Ψ(z1, . . . , zm).

Lemma 4.5. Assume that a rational function f ∈ R = F<(x̄>) can be computed

by a formula with k inverse gates. Then there exists a formula Ψ(z1, . . . , zm)
such that

(i). Ψ has size O(k),

(ii). f = �ΨR(h1, . . . , hm) for some polynomials h1, . . . , hm ∈ F�x̄�.

Proof. Let us call a gate u in a formula Φ trivial, if Φu does not contain any
inverse gate. Let us call u maximal, if it is trivial and for every trivial v �= u, u

is not a gate in Φv.
Assume that f can be computed by a formula with k inverse gates. It is

sufficient to show that f can be computed by a formula Φ with m = O(k)
maximal gates. For let u1, . . . , um be the maximal gates in Φ. Introduce new
variables z1, . . . , zm, and let Ψ be the formula obtained replacing every ui by
zi in Φ. Clearly, f = �ΨR(h1, . . . , hm), where hi is the polynomial computed by
Φui . Moreover, Ψ is a formula with m leaves. If we assume that Ψ does not
contain redundant inverse gates (u−1)−1, then Ψ has size O(m).

To construct a formula with O(k) maximal gates computing f , assume that
k > 0. First, show that any formula with k inverses can be transformed to an
equivalent formula Φ with k inverses such that every maximal gate u occurs in
Φ in one of the following contexts:

(i). u−1,

(ii). u× v−1 × u� or u� × v−1 × u, where u� is itself maximal,

(iii). v1 × v2 + u, where v1 × v2 is non-trivial.

This is easily proved by induction on k. If k = 1, we are supposed to compute
f by a formula of the form u1×v−1×u2 +u3, where v, u1, u2, u3 do not contain
inverse gates.

Finally, let us argue that Φ contains O(k) maximal gates. For every inverse
gate, there are at most 3 maximal gates corresponding to the conditions (i) and
(ii). This also means that the number of non-trivial product gates v1 × v2 in
Ψ is O(k) and so there are O(k) maximal gates corresponding to the condition
(iii).

5 Height versus the number of inverse gates

Recall that the height of a circuit is the maximum number of inverse gates along
some directed path in the circuit. Here we show that a circuit of height k can be
transformed to an equivalent circuit which altogether uses only k inverse gates.

14

This means that the height of f can be equivalently defined as the smallest
number of inverse gates needed to compute f by a circuit.

This is based on the observation that x
−1
1 , . . . , x−1

n can be simultaneously
computed using one inverse gate only:

Lemma 5.1. The rational functions x
−1
1 , . . . , x−1

n can be simultaneously com-

puted by a circuit of size O(n) which contains only one inverse gate.

Proof. Let z := x1x2 . . . xn. As z−1 = x−1
n x

−1
n−1 . . . x

−1
1 , we have for every

j ∈ {1, . . . , n}

x
−1
j

= (xj+1xj+2 . . . xn)z−1(x1x2 . . . xj−1) .

Hence x
−1
1 , . . . , x−1

n can all be computed using just the inverse z−1. To see
that this gives a linear size circuit, it is sufficient to construct a linear size
circuit simultaneously computing the polynomials fi = xixi+1 . . . xn and gi =
x1x2 . . . xi, for i ∈ {1, . . . , n}. This is clear because fi+1 = xi+1fi and gi+1 =
gixi+1.

Proposition 5.2. Assume that a rational function f can be computed by a

circuit of size s and height k. Then f can be computed by a circuit of size

O(s(k + 1)) which contains k inverse gates.

Proof. Assume that Φ is a circuit of size s, inverse height k, which computes
f . We construct the new circuit by induction on k. If k = 0, the statement is
trivial, and so assume that k > 0. Let u

−1
1 , . . . , u−1

n be the inverse gates in Φ
such that Φui does not contain any inverse gate. By the previous lemma, the
rational functions computed by u

−1
1 , . . . , u−1

n can be computed by a circuit Ψ
of size c.s which contains only one inverse gate. Let Φ� be the circuit obtained
from Φ by replacing the gate u

−1
i

by a fresh variable zi, for every i ∈ {1, . . . , n}.
The circuit Φ� has inverse height k− 1 and size ≤ s, and so we can construct an
equivalent circuit of size csk with only k−1 division gates. Feeding the outputs
of Ψ into the circuit Φ�, we obtain a circuit computing f which has k inverse
gates and size csk + cs = cs(k + 1).

Corollary 5.3. The following are equivalent

(i). f has inverse height ≤ k,

(ii). f can be computed by a circuit with ≤ k inverse gates.

As follows from Corollary 4.4, the proposition or its corollary do not hold
for formulas. Moreover, every formula computing x

−1
1 + · · ·+ x−1

n must contain
a linear number of inverse gates (cf. Corollary 6.2 and Proposition 7.7.7 of [7]).

6 Formula completeness of matrix inverse

Here we prove Theorem 2.5. Our construction of matrices from formulae is
similar to Malcolmson’s approach for the construction of the skew field [31].

15

After this proof, we proceed in the following subsections to discuss the special
case of formulae without inverse gates, in which the computation produces a
non-commutative polynomial, and compare with the commutative case.

of Theorem 2.5. The matrix A is constructed by induction on s. We retain the
property that f is the entry in the upper-right corner of A−1. This entry will
be denoted RA−1.

Let A, B be invertible matrices of dimension p× p and q× q. For k ∈ {p, q},
let uk resp. vk be the 1 × k vector whose first resp. last component is 1 and
the others are zero. Furthermore, let at be the first column of A. The key
observation are the following equalities (the unspecified entries are zero):

RA
−1 · RB

−1 = R
�

A −vt
p · uq

B

�−1

(4)

RA
−1 + RB

−1 = R

A at · uq −vt

p

B vt
q

1

−1

(5)

(RA
−1)−1 = R

�
vt

p A

0 −up

�−1

, if RA
−1 �= 0 (6)

To prove (4) and (5), note that
�

a1 a2

0 a4

�−1

=
�

a
−1
1 −a

−1
1 a2a

−1
4

0 a
−1
4

�
,

whenever the right hand side makes sense. This follows from (2), noting that
(2) holds whenever X is a matrix such that the right hand side makes sense.
This gives

R
�

A −vt
puq

B

�−1

= R
�

A−1 A−1vt
puqB

−1

B−1

�

= R(A−1
v

t

puqB
−1) = (RA

−1)(RB
−1) .

Similarly, one can verify that the entry in the upper-right corner of the matrix
in (5) is the first entry of the p× 1-vector

w = A
−1

v
t

p + A
−1

a
t
uqB

−1
v

t

q = A
−1

v
t

p + u
t

puqB
−1

v
t

q = A
−1

v
t

p + (RB
−1)ut

p ,

where we used that A−1at = ut
p. The first entry of w is therefore RA−1+RB−1.

To prove (6), apply (2), with X1 = A and X4 = 0, to show that the entry in
lower -right corner of �

A vt
p

−up 0

�−1

is (upA
−1vt

p)−1 = −(RA−1)−1. We have
�

vt
p A

0 −up

�−1

=
��

A vt
p

−up 0

� �
I

1

��−1

=
�

1
I

� �
A vt

p

−up 0

�−1

16

and so R
�

vt
p A

0 −up

�
= (RA−1)−1.

Equipped with (4)-(6), the statement of the theorem is directly proved by
induction. If s = 1, f is either a variable or a field element and we have

f = R
�

1 f

0 −1

�
.

If s > 1, consider the output node of the size-s formula computing f and apply
(4)-(6) accordingly.

The matrix AΦ can be written as Q0 + x1Q1 + · · · + xnQn, where Q0 is a
matrix in F and Q1, . . . Qn are 0, 1-matrices. In general, if A is a matrix of the
form

Q0 + x1Q1 + · · · + xnQn , with Q0, . . . , Qn ∈ Mats�×s�(F)

R is a ring with R ⊇ F, and a1, . . . , an ∈ R, we define

A(a1, . . . , an) := Q0 + a1Q1 + · · · + anQn ;

it is a matrix in Mats�×s�(R). Theorem 2.5 can be generalized in the following
manner:

Proposition 6.1. Let F be a field and R a ring whose centre contains F. As-

sume that Φ(x1, . . . , xn) is a formula of size s and a1, . . . , an ∈ R are such that

�ΦR(a1, . . . , an) is defined. Then AΦ(a1, . . . , an) is invertible in Ms�×s�(R), and

�ΦR(a1, . . . , an) is an entry in A
−1
Φ .

The proof is almost identical to that of Theorem 2.5. The only difference
is that we do not assume that R is a skew field, and we must check that the
constructed matrix A is indeed invertible. This follows from the assumption
that �ΦR(a1, . . . , an) is defined.

By means of Lemma 4.5, Proposition 6.1 implies:

Corollary 6.2. Assume that a rational function f can be computed by a formula

with k inverses. Then there exists an O(k) × O(k) invertible matrix A whose

entries are polynomials such that f is an entry of A−1.

The matrix inverse representation of rational functions will be directly used
in the next section, on the rational identity testing problem. Before that we
take a detour to discuss the special case of formulae without inverse gates.

6.1 Triangular matrices

As remarked in the “Main results” section, commutatively or not, the determi-
nant is complete for formulas without inverse gates. That is, a polynomial f

can be written as f = det(A), where A is a matrix of variables or field elements
whose dimension is linear in the formula size of f . One difference between com-
mutative and non-commutative setting is the following: the commutative deter-
minant can be computed by a formula of size nO(log n), but non-commutatively,

17

it requires formula of exponential size (see [35]). However, let us remark here
that this gulf is by no means necessary. Inspecting the construction presented
in [24], one can see that it uses only matrices A of a specific form, and one can
show the determinant of such matrices can be computed by a non-commutative
formula of quasipolynomial size.

Let us first see what happens with our construction in Theorem 2.5, if we
assume that f is a non-commutative polynomial computed by a formula without
inverse gates. The constructed matrix A is then upper triangular with field
elements on the diagonal. We summarize the properties of such matrices this in
the following proposition:

Proposition 6.3. (i). Let A be an n × n-upper triangular matrix whose en-

tries are variables or field elements such that A has non-zero field elements

on the diagonal. Then the entries of A−1 are polynomials. Moreover, every

entry can be computed by a formula without inverse gates of size nO(log n).

(ii). Assume that a polynomial f can be computed by a formula without inverse

gates of size s. Then there exists a 2s×2s-upper triangular matrix A whose

entries are variables or field elements, A has 1 or −1 on the diagonal, and

f is the entry in the upper-right corner of A−1.

Proof. (i) Without loss of generality assume that A has the constant 1 on the
diagonal, and write A = I−J , where J is an upper triangular matrix with zeros
on the diagonal. This implies that Jn = 0 and therefore

A
−1 = (I − J)−1 = I + J + J

2 + . . . J
n−1

.

In general, if B is n × n matrix then every entry of Bk can be computed by a
formula of size nO(log k). This means that A−1 has formula size nO(log n).

(ii) Inspect the construction in the proof of Theorem 2.5. The equation (6)
is never applied since f is computed without inverse gates. Equations (4) and
(5) convert upper-triangular matrices A, B to an upper triangular matrix.

One may wonder whether Proposition 6.3 can be improved to show that
A−1 can be computed by a polynomial size formula, if A is upper triangular.
However, this problem is – up to a polynomial – equivalent to the problem of
computing the product A1A2 . . . Ak of n×n matrices A1, . . . , Ak. We have seen
one half of this statement in the proof of Proposition 6.3: in order to compute
A−1, it is sufficient to compute J, J2, . . . , Jn−1. Conversely, suppose that we
want to compute the product of n × n matrices A1A2 . . . Ak. Let A be the
((k + 1)n)× ((k + 1)n)- matrix

A :=

I −A1

I −A2

. . .
I −Ak

I

. (7)

18

One can check that the n × n-block in the upper right corner of A−1 equals
A1A2 . . . Ak. This means that the inverse of an upper triangular matrix has
a polynomial size formula iff the power of a matrix can be computed by a
polynomial size formula, which is believed to be unlikely.

This observation can be used to strengthen Proposition 6.3 to apply to alge-
braic branching programs instead of formulas. An algebraic branching program,
ABP, is a directed acyclic graph without multiple edges and with exactly one
source and one sink such that every edge is labelled by a (not necessarily ho-
mogeneous) linear function

�
i
aixi + b. An ABP computes a polynomial which

is the sum, over all paths from the source to the sink, of products of the linear
functions on that path. We are considering non-commutative computation, and
the order of multiplication is taken from the source to the sink. The size of an
ABP is the number of vertices.

Algebraic branching programs can simulate formulas (without inverse gates),
and are believed to be more powerful. This is because the product A1A2 . . . Ak

of n × n matrices can be computed by an ABP of size O(kn2), but the best-
known formula has size nO(log k). In fact, algebraic branching programs can be
characterized in terms of matrix product:

Lemma 6.4. Assume that a polynomial f in n variables can be computed by

an ABP of size s. Then there exist k× k matrices A1, . . . , A2s with k = O(ns2)
such that their entries are variables or field elements and f is the entry in the

upper-right corner of the product A1A2 . . . A2s.

Proof. Let f have n variables and let C be an ABP of size s computing f . First,
show that f can be computed by an ABP B with the following properties:

(i). Every edge is labelled by a variable or a field element.

(ii). B has 2s + 1 levels: the vertices can be partitioned into disjoint sets
B0, B1, . . . B2s with every edge going from Bi to Bi+1 , and with B0 and
B2s containing only the source and the sink, respectively.

(iii). For every i ∈ {1, . . . , 2s− 1}, Bi has size k = O(ns2).

(i) is obtained by taking every edge in C labelled by a1x1 + . . . anxn + b and
replacing it by n new vertices and 2n + 1 edges, labelled by a1, x1, . . . , an, xn

and b respectively. Since C has at most
�

s

2

�
edges, the new ABP has k = O(ns2)

vertices. Moreover, since C had depth at most s, the new ABP has depth at
most 2s. The conditions (ii) and (iii) will be guaranteed by adding a copy of
every vertex to every level B1, . . . , B2s−1, with appropriate labels of edges.

For i ∈ 1, . . . , 2s− 1, let vi be the vector of the k polynomials computed by
the nodes in Bi and let v0 := (1, 0, . . . , 0) and v2s := (0, . . . , 0, f). The condition
(i) guarantees that we can find, for every i ∈ {1, . . . , 2s}, a k × k matrix Ai of
variables or field elements such that

vi = vi−1Ai .

Hence v2s = v0A1A2 . . . A2s, which implies that f is the entry in the upper-right
corner of A1A2 . . . A2s.

19

Proposition 6.5. (i). Let A be an n × n-upper triangular matrix whose en-

tries are variables or field elements such that A has non-zero field elements

on the diagonal. Then every entry of A−1 can be computed by a polynomial

size ABP.

(ii). Assume that a polynomial f in n variables can be computed by an ABP of

size s. Then there exists a k×k-upper triangular matrix A with k = O(ns3)
whose entries are variables or field elements, A has 1 on the diagonal, and

f is the entry in the upper-right corner of A−1.

Proof. (i) is as in Proposition 6.3, where we note that Jk can be computed by
a polynomial-size ABP.

(ii). Let A1, . . . , A2s be the matrices from the previous lemma. Let

A :=

I A1

I A2

. . .
I A2s

I

.

be as in (7). Then the upper-right block in A−1 is A1 · · ·A2s and hence f is the
entry in the upper-right corner of A−1.

6.2 The determinant of nearly triangular matrices

We now discuss the connection between matrix inverse of triangular matrices
and the determinant of nearly triangular matrices. If Xn = (xi,j)i,j∈[n], let

det(X) =
�

σ∈Sn

sgn(σ)x1,σ(1) . . . xn,σ(n)

perm(X) =
�

σ∈Sn

x1,σ(1) . . . xn,σ(n).

A n× n-matrix A will be called nearly (upper) triangular, if for every i, j ∈
[n], Ai,j ∈ {1,−1}, if j = i − 1, and Ai,j = 0, if j < i − 1. That is, A is upper
triangular, except for a string of 1 and −1 below the main diagonal.

As an application of Propositions 6.3 and 6.5, we obtain:

Proposition 6.6. (i). Let A be a nearly triangular matrix consisting of vari-

ables or field elements. Then det(A) can be computed by a non-commutative

formula of size nO(log n) without inverse gates, and also by a polynomial

size ABP.

(ii). Let f be a polynomial in n variables which is computed by a) a formula of

size s without inverse gates, or b) an ABP of size s. Then f = det(A),
where A is a k× k-nearly triangular matrix whose entries are variables or

field elements where a) k = 2s, or b) k = O(ns3).

20

Proof. To prove (i), extend A to an upper triangular matrix

B =
�

ut A

0 v

�
with u = (1, 0, . . . , 0) , v = (0, . . . , 0, 1) .

Let g be the entry in the upper right corner of B−1. By Propositions 6.3 and
6.5, g can be computed by a quasipolynomial size formula and a polynomial-size
ABP. Commutatively, we would be done, since det(B) is either 1 or −1 and A

is the minor of Bn+1,1. Hence g is equal – up to a sign – to det(A). Non-
commutatively, one must check that the inverse of an upper triangular matrix
can indeed be expressed in terms of determinants of minors. This we leave as
an exercise. (Note that in the definition of the determinant, variables of X are
multiplied row by row.)

Similarly, if A is the matrix from Proposition 6.3 or 6.5, such that f is the
entry in the upper right corner of A−1, we can argue that f is – up to a sign –
equal to the determinant of the minor of A2s,1, and this minor is a nearly upper
triangular matrix. (The sign can be accounted for by adding an appropriate
row and column.)

A well-known, albeit not well-used, approach to lower-bounds on commuta-
tive formula size, is to try to bound the smallest s such that f = det(A), where
A is an s × s matrix of variables or field elements. The previous Proposition
shows that we can without loss of generality assume that A is nearly upper
triangular. This restricted problem may perhaps be easier to solve. Also, one
could hope to prove a lower bound even for the determinant itself: to ask what
is the smallest s such that det(X) = det(A), where A is a nearly triangular
matrix of variables or field elements.

However, the following shows that the modified problem is different only in
the non-commutative setting:

Corollary 6.7. (i). Assume that det(Xn) = det(A) or perm(Xn) = det(A),
where A is a nearly triangular matrix with entries variables or field ele-

ments, of dimension s× s. Then s ≥ 2Ω(n).

(ii). Assuming commutativity of variables, there exists a polynomial-size nearly

triangular matrix A of variables or field elements such that det(Xn) =
det(A).

Proof. (i) By [35], both det(Xn) and perm(Xn) require ABP of size 2Ω(n), but
det(A) can be computed by a polynomial-size ABP.

(ii) Commutatively, det(Xn) can be computed by a branching program of a
polynomial size, and use part (ii) of Proposition 6.6.

7 The rational identity testing problem

We will now address the following basic question: how can we decide whether
two rational expressions define the same rational function? This is equivalent

21

to testing whether a single rational expression defines the zero function. This
problem can take several forms, and we will focus on deciding whether a formula

computes the zero function, and refer to this question as the rational identity

testing problem. As we shall see, the complexity of this problem will depend on
a natural problem in (commutative) invariant theory of a simple linear-algebraic
flavor, which will appear again in the next section on the elimination of divisions.

In the commutative setting, the problem of rational identity testing can be
reduced to the well-known polynomial identity testing problem, which can be
solved quite efficiently by a polynomial time randomized algorithm, by means
of Schwarz-Zippel Lemma. The reduction is possible due to the fact that a
commutative rational function can be written as a ratio of two polynomials.

Given the complex structure of rational expressions, it is not even clear that
the rational identity testing problem is decidable. This was shown in [9]. The
algorithm eventually requires deciding whether a set of (commutative) polyno-
mial equations has a solution, which puts this problem in PSPACE. We will
outline a probabilistic algorithm whose efficiency depends on an extra parame-
ter w arising from the above mentioned invariant-theory problem, and assuming
the bound is polynomial in s will yield a BPP algorithm for the problem.

The parameter is defined as follows:

• w(s) is the smallest k so that for every correct formula Φ(x1, . . . , xn) of
size s there exists p ≤ k and a1, . . . , an ∈ R := Matp×p(F̄) such that
�ΦR(a1, . . . , an) is defined8.

We will sketch a randomized algorithm for rational identity testing which runs
in time polynomial in s and w(s). We will also consider a different version of
the parameter. Recall that a linear matrix is of the form

A = Q0 + x1Q1 + · · · + xnQn , with Q0, . . . , Qn ∈ Mats×s(F) . (8)

The second parameter is defined as:

• w̃(s) is the smallest k so that for every s × s matrix A of the form (8)
with Q0 = 0 and n = s, if A is invertible in F<(x1, . . . , xs>) then there
exists p ≤ k and a1, . . . , as ∈ Matp×p(F̄) such that Q1 ⊗ a1 + . . . Qs ⊗ as

is invertible in Matsp×sp(F̄).

That both w(s) and w̃(s) are finite essentially follows from (a) in Section 2. We
will prove this in Section 7.1 where the two parameters are further discussed.
Note that the absence of the constant term Q0 in w̃ is mostly cosmetic:

(a) Q0 +
�n

i=1 xiQi is invertible iff x0Q0 +
�n

i=1 xiQi is invertible,

(b) If Q0⊗a0 +
�n

i=1 Qi⊗ai is invertible for some a0, . . . , an ∈ Matp×p(F̄) then
a0 can be assumed invertible (F̄ is infinite) and so Q0⊗Ip+

�n

i=1 Qi⊗(a−1
0 ai)

is invertible.
8F̄ is the algebraic closure of F

22

Let us first observe that the rational identity problem is essentially equivalent
to the following problem: decide whether a formula Φ is a correct formula. For,
in order to see whether Φ is correct, we must only check that for every inverse
gate u−1 in Φ, Φu doesn’t compute the zero function. Conversely, a correct
formula Φ computes the zero function if and only if Φ−1 is not a correct formula.
Using the construction in Theorem 2.5, we can give the following criterion for
the correctness of a formula:

Proposition 7.1. Let F be a field and R a ring whose centre contains F. For

a formula Φ and a1, . . . , an ∈ R, the following are equivalent:

(i). �ΦR(a1, . . . , an) is defined.

(ii). For every gate u in Φ, AΦu(a1, . . . , an) is invertible in Mat(R).

Proof. (i)→(ii) follows from Proposition 6.1. To prove the converse, assume
that �ΦR(a1, . . . , an) is not defined. Then there exists a gate u−1 in Φ such that
�Φu(a1, . . . , an) is defined but b := �Φu(a1, . . . , an) is not invertible in R. Let
A := AΦu(a1, . . . , an). From Proposition 6.1, we know that A is invertible and
b = RA−1, where we invoke the notation from the proof Theorem 2.5. It is
sufficient to show that B := AΦu−1 (a1, . . . , an) is not invertible.

From the construction of AΦ, we have

B =
�

vt
p A

0 −up

�
.

We can multiply this matrix by invertible matrices to show that B is invertible
iff �

A 0
0 upA

−1vt
p

�
=

�
A 0
0 RA−1

�
=

�
A 0
0 b

�

is invertible. A block-diagonal matrix is invertible iff each of the blocks is
invertible. But b is not invertible and hence B is not invertible.

Specializing to the case R = F<(x1, . . . , xn>), we obtain:

Corollary 7.2. Φ is a correct formula iff for every gate u in Φ, AΦu is invert-

ible.

Hence, the problem of deciding whether Φ is a correct formula can be reduced
to the problem of deciding whether a matrix A, whose entries are degree one
polynomials, is invertible. The algorithm in [9] in fact solves this latter problem.
The essence of the algorithm is Theorem 2.1. By the second part of the theorem,
A of dimension m × m is invertible iff it cannot be written as B · C where
B,C consist of degree-one polynomials and have dimensions m × k and k ×
m, respectively, with k < m. Taking the coefficients of the polynomials in
B,C as unknows, the problem is expressible in terms of solvability of a set of
(commutative) polynomial equations over F.

However, we will use a different invertibility test:

23

Proposition 7.3. Let A be as in (8). Then A is invertible in Mats×s(F<(x̄>))
iff there exists k ∈ N and a1, . . . , an ∈ Matk×k(F) such that Q0⊗ Ik +Q1⊗a1 +
. . . Qn ⊗ an is invertible in Matsk×sk(F).

Proof. If A is invertible, there is A−1 ∈ Mats×s(F<(x̄>)) with A ·A−1 = A−1 ·A =
Is. The entries of A−1 are rational functions. By (a) in Section 2, there exist
k ∈ N and a1, . . . , an ∈ R := Matk×k(F̄) such that every A

−1
i,j

is defined on
a1, . . . , an. (To obtain a1, . . . , an which work for every i, j, it is enough to
consider a circuit in which every A

−1
i,j

is computed by some gate.) Evaluating
A−1 at this point gives a matrix B ∈ Mats×s(R) such that

A(a1, . . . , an) · B = B · A(a1, . . . , an) = Is ,

and so A(a1, . . . , an) is invertible in Mats×s(R). It is a s × s-matrix with
k × k-matrices as entries, and it can be identified with the sk × sk-matrix
A(a1, . . . , an)� = Q0 ⊗ Ik + Q1 ⊗ a1 + . . . Qn ⊗ an. Clearly, A(a1, . . . , an) is
invertible iff A(a1, . . . , an)� is invertible. Hence A(a1, . . . , an)� is invertible.

If A is not invertible then it is not full by Theorem 2.1. Hence A(a1, . . . , an) is
not full in R for every R = Matk×k(F) and every a1, . . . , an. Hence A(a1, . . . , an)
and A(a1, . . . , an)� is never invertible.

The quantity w̃ is utilized as follows. Let A be an s × s matrix as in
(8), and k a parameter. Introduce nk2 distinct commutative variables yi

p,q, i ∈
{1, . . . , n}, p, q ∈ {1, . . . , k}. For every variable xi, consider the k × k matrix

x
�

i := (yi

p,q)p,q∈{1,...,k} ,

and let
A

(k) := Q0 ⊗ Is + Q1 ⊗ x
�

1 + . . . Qn ⊗ x
�

n .

It is sk × sk matrix whose entries are commutative (linear) polynomials in the
auxiliary variables Y .

Then we obtain the following invertibility test:

Proposition 7.4. Let A be as (8) with n = s and Q0 = 0. Then A is invertible

iff there exists k ≤ w̃(s) such that det(A(k)) �= 0 (as a polynomial in F[Y]).

Proof. By the definition of w̃, A is invertible (over the free skew field) iff there
exists k ≤ w̃(s) such that A(k) is invertible (over the field of fractions F(Y)).
The matrix A(k) has entries from the commutative ring F[Y] ⊆ F(Y) and so it
is invertible iff det(A(k)) �= 0 .

Setting m := sw̃(s), each A(k) has dimension at most m × m, and each
entry is a linear polynomial in the commuting variables Y . Hence det(A(k)) is
a polynomial of degree at most m, and it can be computed by a commutative
arithmetic circuit of size polynomial in m. This allows to test invertibility of A

by a randomized algorithm running in time polynomial in m.
By means of Proposition 7.1, this also gives an algorithm for rational identity

testing whose complexity depends on w̃. However, such an algorithm can also
be obtained using the parameter w instead. Proposition 7.1 gives:

24

Proposition 7.5. For a formula Φ of size s, the following are equivalent:

(i). Φ is a correct formula.

(ii). There exists k ≤ w(s) such that for every gate u in Φ, det(A(k)
Φu

) �= 0.

By Theorem 2.5, each of the matrices A
(k)
Φu

has size at most 2sw(s)× 2sw(s)
and each entry is again a linear polynomial in the commuting variables Y . This
allows to reduce the non-commutative rational identity testing problem to s

instances of the commutative polynomial identity testing problem.

Non-commutative polynomial identity testing

Let us add some comments about the special case of rational identity testing:
decide whether a formula or a circuit without inverse gates computes the zero
polynomial. In [37], Raz and Shpilka show that the problem can be decided by
a polynomial time deterministic algorithm for a formula or even an arithmetic
branching program. For a non-commutative circuit, no such deterministic al-
gorithm is known. In [4], Bogdanov and Wee show it can be decided by a
polynomial time randomized algorithm.

The main point is given by the celebrated Amitsur-Levitzki theorem ([2],
discussed in a greater detail in Section 9): if a polynomial f vanishes on all
k×k matrices over an infinite field then f must have degree at least 2k. Hence,
assume that we are given a division free circuit Φ computing a polynomial
f(x1, . . . , xn) of degree < 2k. To check whether f(x1, . . . , xn) = 0, it is now
sufficient to check whether f(a1, . . . , an) = 0 for all k × k matrices a1, . . . , an,
over an infinite field. As above, we can interpret f(a1, . . . , an) as a matrix of k2

polynomials in nk2 commuting variables, each of degree < 2k, and hence reduce
the non-commutative identity testing problem to k2 instances of the commu-
tative identity testing. This yields a polynomial time randomized algorithm,
whenever we focus on a class of circuits computing polynomials of a polynomial
degree.

7.1 The two parameters

Proposition 7.5 shows that in order to obtain an efficient rational identity testing
algorithm, it is enough to show that w(s) is small. The other parameter w̃ is
designed to solve the more general problem of deciding whether a linear matrix
is invertible. We now show a simple upper bound on w in terms of w̃ (and that
the definitions of the parameters are indeed correct):

Proposition 7.6. Both w and w̃ are well-defined non-decreasing functions and

w(s) ≤ w̃(s2 + s).

Proof. We first show that for every s, w̃(s) is well-defined, i.e., finite. Let T

be the set of non-invertible linear matrices of the form A =
�s

i=1 xiQi with
Q1, . . . , Qs ∈ Mats×s(F). Proposition 7.3 asserts that A ∈ T iff det(

�s

i=1 Qi ⊗
ai) = 0 for every k ∈ N and a1, . . . , as ∈ Matk×k(F). We can view A as the

25

s-tuple of the s× s matrices Q1, . . . , Qs and T as a subset of Fs
3
. Then we see

that T is an algebraic set defined by the equations det(
�s

i=1 Qi ⊗ ai) = 0, for
all possible ai’s. By Hilbert’s basis theorem, a finite subsets of the equations is
enough to define T . Switching to the complement of T , this means that there
exists k ∈ N such that A is invertible iff there exists p ≤ k and a1, . . . , as ∈
Matk×k(F) such that

�s

i=1 Qi ⊗ ai is invertible – and w̃(s) is the smallest such
k.

w̃ is non-decreasing because an invertible matrix A can be enlarged to a
block-diagonal (s+1)× (s+1) invertible matrix A�, the blocks being A and x1.

We now prove the inequality w(s) ≤ w̃(s2 + s). Let Φ be a correct formula
of size s in variables x1, . . . , xn. We can assume that n < s for otherwise
n = s = 1 and both w(s) = w̃(s) = 1. For a gate v in Φ, let sv be the size of
Φv and let AΦv be of dimension kv × kv. Let k :=

�
v
kv. It is easy to see that�

v
sv ≤ (s2 +s)/2. Since kv ≤ 2sv (Theorem 2.5), we have that k ≤ s2 +s. Let

A be a k× k-matrix which is block-diagonal with the blocks being the matrices
AΦv , for all gates v. Then A is invertible and of the form Q0 +

�n

i=1 xiQi with
Q1, . . . , Qn ∈ Matk×k(F). Hence also x0Q0 +

�n

i=1 xiQi is invertible, where
x0 is a fresh variable. Since n + 1 ≤ k, there exist p ≤ w̃(k) and a0, . . . , an ∈
R := Matp×p(F̄) so that Q0 ⊗ a0 +

�n

i=1 Qi ⊗ ai is invertible. As in (b) above,
we conclude that there exist b1, . . . , bn ∈ R so that Q0 ⊗ Ip +

�n

i=1 Qi ⊗ bi is
invertible. That is, A(b1, . . . , bn) is invertible in Matk×k(R) – and hence all the
blocks AΦv are. This shows that ΦR(b1, . . . , bn) is defined by Proposition 7.1
and so w(s) ≤ w̃(k) = w̃(s2 + s).

This entails that w is well-defined. It is non-decreasing because a correct
formula Φ of size s can be modified to a correct formula of size s + 1 which
contains all the inverse gates of Φ. (Hint: Φ−1 works whenever �Φ �= 0.)

We do not have a reason to believe that the inequality in Proposition 7.6
is even close to being tight. Hence, estimating w in terms of w̃ can turn out
to be far too generous. However, the main appeal of w̃ is the simplicity of
its definition. By means of Proposition 7.3, w̃ can be introduced without any
reference to computations or even the skew field: in the definition of w̃, the
assumption “A is invertible over F<(x̄>)” can be replaced by the assumption
“
�s

i=1 Qi ⊗ ai is invertible for some m ∈ N and a1, . . . , as ∈ Matm×m(F)”. We
also note that the suspected gap between w and w̃ disappears if in the definition
of w̃, we consider only matrices A which come from a representation of some
formula Φ as in Theorem 2.5 – i.e., A = AΦ for some Φ.

8 How to eliminate divisions

A classical result of Strassen [44], see also [6] Chapter 7.1, asserts that divi-
sion gates are not very helpful when computing commutative polynomials. If
a commutative polynomial f of degree k can be computed by a circuit with
divisions of size s then it can be computed by a circuit without divisions of size
O(sk2). (The original argument assumes that the underlying field is infinite. It

26

was noted in [26] that a similar statement holds over any field.) However, when
dealing with non-commutative computations, the situation seems to be much
more complicated. To outline the main issue, assume that we have computed a
polynomial f using only one inverse g−1 for a polynomial g. Commutatively, if
g �= 0 and F is infinite, there must exist a ∈ Fn such that g(a) �= 0. We can then
rewrite g−1 as a power series around the point a. Supposing f has degree k, it is
enough to truncate the series up to terms of degree k, obtaining a computation
of f without divisions. Non-commutatively, no such substitution from F may
exist. For example, g = xy − yx is a non-zero polynomial which vanishes on
every substitution from F. An obvious remedy is to allow substitutions which
are m ×m matrices over F, and then to work with power series in this matrix
algebra. In the example xy − yx, it is easy to find 2× 2 matrices a, b such that
ab− ba is invertible, and the power series argument yields a satisfactory answer.
However, as g gets more complicated, we must substitute m×m matrices with
a larger m. Computations with m × m matrices have cost roughly m3 and in
order to eliminate divisions efficiently, we want m to have polynomial size. The
question now becomes: what is the dimension of matrices we need to make g

invertible? We do not know how to answer this question and state it as Problem
3 in Section 9. As opposed to the running example, we cannot in general assume
that g is a polynomial: it may itself contain inverses, and nested inverses. This
makes the bound on m quite challenging; see Section 9 for further discussion.
In Proposition 8.3, we will prove only a conditional result: if a polynomial f is
computed by a circuit with divisions Φ such that �Φ is defined for some matrices
of small size, then f can be computed by a small circuit without division gates.

We now proceed towards proving Proposition 8.3. This requires introducing
some definitions as well as extending definitions from Section 2. Let R be an
arbitrary (unital) ring and let x̄ = {x1, . . . , xn} a set of variables. R�x̄� will
denote the set of polynomials in variables x̄ with coefficients from R. The
ring R is not in general commutative, and the variables do not multiplicatively
commute, but we will assume that variables commute with elements of R. More
exactly, a polynomial in R�x̄� is a sum

�

α

cαα ,

where α ranges over products of variables from x̄ and cα ∈ R, with only finitely
many cα’s being non-zero . Addition and multiplication are given by
�

α

cαα +
�

α

c
�
αα =

�

α

(cα + c
�
α)α ,

�

α

cαα ·
�

α

c
�
αα =

�

α,β

(cαc
�
β)(αβ) .

We will extend R�x̄� to the ring of power-series9 R{x̄}. A power series f ∈ R{x}
is an infinite sum

f
(0) + f

(1) + f
(2) + . . . ,

9This ring is sometimes denoted R��x̄��

27

where every f (k) ∈ R�x̄� is a homogeneous polynomial of degree k. Addition
and multiplication is defined in the obvious way:

(f + g)(k) = f
(k) + g

(k)
, (f · g)(k) =

�

i+j=k

f
(i) · g(j)

.

If f (0) = a ∈ R is invertible in R than f is invertible in R{x̄}. Its inverse is
given by

f
−1 = (a− (a− f))−1 = a

−1(1− (1− fa
−1))−1 = a

−1
∞�

i=0

(1− fa
−1)i

.

If we denote the partial sum f (0) + f (1) + · · ·+ f (k) by f (≤k) this can be written
as

(f−1)(≤k) = a
−1

� k�

i=0

(1− f
(≤k)

a
−1)i

�(≤k)
, (9)

We also need to extend the definition of a circuit so that it can compute
power series over R: this is achieved by taking circuits as introduced in Section
2, but allowing them to use elements of R in the computation (in the same way
elements of the fields were). Such a circuit will be called an R-circuit. All other
notions are generalized in an obvious manner. Mainly, an R-circuit computes
an element of R{x̄}: evaluate the circuit gate-by-gate over R{x̄}. This either
produces an element of R{x̄}, or the evaluation fails due to attempting invasion
of a non-invertible elements in R{x̄}.

Lemma 8.1. Assume that f ∈ R{x̄} can be computed by an R-circuit of size

s and depth d. Then for every k ∈ N, f (≤k) ∈ R�x̄� can be computed by an

R-circuit without division gates of size O(sk3) and depth O(d log2
k).

Proof. We divide the proof into two steps.
Step 1. Let Φ be the circuit computing f , and let us fix k. We will construct

a division-free circuit Φ� of size O(sk) and depth O(d log k) computing a polyno-
mial g ∈ R�x̄� such that f (≤k) = g(≤k). Let λ(z) be the univariate polynomial�k

i=0(1− z)i. Clearly, it can be computed by a division free circuit Λ(z) of size
O(k) and depth O(log k) (actually, even of size O(log k)). For any inverse gate
u−1 in Φ, u computes an invertible element �u ∈ R{x̄} and so a := �u(0) ∈ R

is invertible. Then Φ� is obtained by simultaneously replacing every inverse
gate u−1 by the circuit a−1Λ(ua−1) and appropriately rewiring the inputs and
outputs.

Since a−1 ∈ R, Φ� is an R-circuit without divisions, and it computes a poly-
nomial g ∈ R�x̄�. That g satisfies g(≤k) = f (≤k) is easily proved by induction on
the size s. Note that for every f1, f2, (f1 ◦ f2)(≤k) = (f (≤k)

1 ◦ f
(≤k)
2)(≤k), where

◦ ∈ {+, ·}, and (9) gives (f−1
1)(≤k) = a−1(λ(f (≤k)

1 a−1))(≤k), where a = f
(0)
1 .

Step 2. Given a division-free Φ� of size s� and depth d� computing a poly-
nomial g, g(≤k) can be computed by a division-free circuit of size O(s�k2) and
depth O(d� log k). This is a standard homogenization argument.

28

Altogether we have obtained a circuit of size O(sk3) and depth O(d log2
k)

computing f (≤k).

Next, we consider the ring of m×m matrices

R := Matm×m(F) .

We want to interpret a polynomial f ∈ R�x̄� as an m × m matrix f� whose
entries are polynomials in F�x̄�. Let f ∈ R�x̄� be written as f =

�
α

cαα, where
cα ∈ R and α ranges over products of the variables x̄. Then f� ∈ Matm×m(F�x̄�)
is the matrix with

f
�

i,j =
�

α

(cα)i,jα , i, j ∈ {1, . . . ,m} .

Lemma 8.2. Assume that f ∈ R�x̄� can be computed by an R-circuit without

divisions of size s and depth d. Then f� can be computed by a circuit over F
without divisions of size O(sm3) and depth O(d log m).

Proof. Note that (f1 + f2)� = f�
1 + f�

2 and (f1 · f2)� = f�
1 · f�

2 , where on the
right hand side we see a sum resp. product of m × m matrices. This means
that a sum and a product gate in an R-circuit can be simulated by a sum resp.
a product of m×m matrices over F. This gives an increase in size of factor at
most O(m3) and depth by a factor of O(log m).

Proposition 8.3. Let f ∈ F�x̄� be a polynomial of degree k which is com-

putable by a circuit Φ of size s and depth d. Assume that there exist matri-

ces a1, . . . , an ∈ R = Matm×m(F) such that �ΦR(a1, . . . , an) is defined. Then

f can be computed by a circuit without divisions of size O(sk3m3) and depth

O(d log2
k log m).

Proof. F can be embedded into R via the map a ∈ F → aIm ∈ R. Similarly,
each variable xi is mapped to xiIm. So we can view f as en element of R�x̄�
and Φ as an R-circuit. Consider g := f(x1 + a1, . . . , xn + an) and the R-circuit
Φ� := Φ(x1 + a1, . . . , xn + an). The assumption that �ΦR(a1, . . . , an) is defined
guarantees that Φ� is a correct R-circuit computing g ∈ R�x̄� ⊆ R{x̄}. By
Lemma 8.1, g(≤k) can be computed by a division-free R-circuit Φ�� of size O(sk3)
and depth O(d log2

k). Since g has degree k, we have g(≤k) = g and Ψ�� computes
g. Moreover, f = g(x1−a1, . . . , xn−an) and so Φ��(x1−a1, . . . , xn−an) computes
f . Lemma 8.2 gives that f� can be computed by a division-free circuit over F
of size O(sk3m3) and depth O(d log2

k log m). But f� is simply the diagonal
matrix with f on the diagonal and the statement of the proposition follows.

Corollary 8.4. Let f ∈ F�x̄� be a polynomial of degree k which is computable by

a formula Φ of size s. Assume that there exist matrices a1, . . . , an ∈ Matm×m(F)
such that �Φ(a1, . . . , an) is defined. Then f can be computed by a formula without

divisions of size sO(log2
k log m).

Recalling the definition of w(s) from Section 7, the corollary implies that

29

• if F is algebraically closed then f can be computed by a formula without
divisions of size sO(log2

k log w(s)).

The bounds presented in Proposition 8.3, and Corollary 8.4, are not intended
to be optimal. A more careful calculation would show

• a size upper bound O(sk2 log k · mω), where ω < 3 is the (hitherto un-
known) exponent of matrix multiplication

• depth upper bound O(d log k log m) assuming that F is infinite (owing to
savings in Step 2 in the proof of Lemma 8.1).

9 Open problems

Problem 1. Give an explicit polynomial f ∈ F�x̄� which cannot be computed

by a polynomial size formula with divisions.

Nisan’s result [35] gives the solution for formulas without division gates. An
obvious approach to Problem 1 is to show that division gates can be elimi-
nated without increasing the formula size too much. This leads to the following
question:

Problem 2. Assume that a polynomial f ∈ F�x̄� of degree k can be computed by

a circuit Φ with divisions of size s. Give a non-trivial upper bound on the size

of a circuit without divisions computing f . Similarly for some other complexity

measure of f , such as formula size.

A conditional answer to Problem 2 was given in Proposition 8.3. There,
we constructed a circuit without divisions computing f under the assumption
that there exist matrices of small dimension for which the original circuit Φ is
defined. (That is, matrices in R = Matm×m(F) such that, when we evaluate Φ
in R, we never come across an inverse gate computing a non-invertible matrix.)
Hence:

Problem 3. Assume that Φ(x1, . . . , xn) is a correct circuit of size s. What

is the smallest m so that there exist a1, . . . , an ∈ R = Matm×m(F) for which

ΦR(a1, . . . , an) is defined? Similarly, for some other complexity measure, such

as formula size.

As was explained in Section 7, the question is also relevant in the rational
identity testing problem: to decide whether a formula computes the zero rational
function. There, we also mentioned a related version of the question:

Problem 4. Find an upper bound on the smallest k = k(s), such that for

all Q1, . . . , Qs ∈ Mats×s(F) if
�s

i=1 xiQi is invertible in F<(x1, . . . , xs>) then�s

i=1 Qi ⊗ ai is invertible for some a1, a2, . . . , as ∈ Matp×p(F) with p ≤ k.

30

Problems 3 and 4 are interesting from a purely algebraic perspective. The
connection between them is explained in Section 7.1. Here, let us give few
comments about Problem 3. First, such an m always exists, and can be bounded
by a function of s. This is shown in Proposition 2.2 of [27] (cf. Proposition 7.1).
Second, let us recall the celebrated Amitsur-Levitzki theorem [2]: for every p

there exists a non-zero polynomial fp ∈ F�x1, . . . , x2p� of degree 2p such that fp

vanishes on all p× p matrices. Conversely, every non-zero polynomial vanishing
on all p × p matrices over an infinite field must have degree at least 2p. The
converse can be strengthened to show that if 0 �= f ∈ F�x1, . . . , xn� has degree
< 2p, there exist p × p matrices a1, . . . , an such that the matrix f(a1, . . . , an)
is invertible - indeed most tuples (a1, . . . , an) will satisfy this property. This
follows from another theorem of Amitsur (see [40] Theorem 3.2.6 and Exercise
2.4.2, as well as [30], Proposition 2.4). To apply this to Problem 3, suppose
that the circuit Φ in Problem 3 contains a gate computing f−1

p , where fp is the
Amitsur-Levitzki polynomial of degree 2p. Then m must be at least p+1, which
shows that m grows with s. On the other hand, assume that Φ contains only
one inverse gate computing g−1, for some polynomial g of degree k. Then m

can be taken ≤ k/2 + 1. A similar bound can be obtained for any Φ of inverse
height one. However, we do not know how to compose this argument, and what
happens for circuits of general height – even the case of circuits of height two is
far from clear.

Acknowledgement We thank Susan Durst, Peter Malcolmson and Aidan
Schofield for useful references, Amir Yehudayoff and Klim Efremenko for com-
ments on an earlier version of the paper.

References

[1] B. Adsul, S. Nayak, and K. V. Subrahmanyam. A geometric approach to
the Kronecker problem II: Invariants of matrices for simultaneous left-right
actions. Manuscript, available in http://www.cmi.ac.in/ kv/ANS10.pdf,
2010.

[2] A. S. Amitsur and J. Levitzki. Minimal identities for algebras. Proc.

American Math Society, 1:449–463, 1950.

[3] J. Berstel and C. Reutenauer. Rational series and their applications.
Springer-Verlag, 1988.

[4] A. Bogdanov and H. Wee. More on noncommutative polynomial identity
testing. In IEEE Conference on Computational Complexity, pages 92–99,
2005.

[5] R. P. Brent. The parallel evaluation of general arithmetic expressions. J.

ACM, 21:201–206, 1974.

31

[6] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity

theory, volume 315 of A series of comprehensive studies in mathematics.
Springer, 1997.

[7] P. M. Cohn. Free rings and their relations. Academic Press, 1985.

[8] P. M. Cohn. Skew Fields, volume 57 of Encyclopedia of Mathematics. Cam-
bridge University Press, 1995.

[9] P. M. Cohn and C. Reutenauer. On the construction of the free field.
International Journal of Algebra and Computation, 9(3-4):307–323, 1999.

[10] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Under-
graduate Texts in Mathematics. Springer, New York, third edition, 2007.

[11] H. Derksen. Polynomial bounds for rings of invariants. Proc. Amer. Math.

Soc., 129:955–963, 2001.

[12] H. Derksen and G. Kemper. Computational Invariant Theory, volume 130
of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2002.

[13] H. Derksen and J. Weyman. Semi-invariants of quivers and saturation for
Littlewood-Richardson coefficients. J. Amer. Math. Soc., 13:467–479, 2000.

[14] M. Domokos and A. N. Zubkov. Semi-invariants of quivers as determinants.
Transform. Groups, 6(1):9–24, 2001.

[15] S. Donkin. Invariants of several matrices. Invent. Math., 110(2):389–401,
1992.

[16] Michael Forbes and Amir Shpilka. Explicit noether normalization for si-
multaneous conjugation via polynomial identity testing. RANDOM, 2013.

[17] E. Formanek. Invariants and the ring of generic matrices. J. Algebra,
89:178–223, 1984.

[18] Peter Gabriel. Unzerlegbare darstellungen I. Manuscripta Mathematica,
6:72–103, 1972.

[19] I. Gelfand, S. Gelfand, V. Retakh, and R.L. Wilson. Quasideterminants.
Adv. Math., 193(1):56–141, 2005.

[20] I. Gelfand and V. Retakh. Determinants of matrices over noncommutative
rings. Funct. Anal. Appl., 25(2), 1991.

[21] I. Gelfand and V. Retakh. Determinants of matrices over noncommutative
rings. Funct. Anal. Appl., 25(2), 1991.

[22] I. Gelfand and V. Retakh. Theory of noncommutative determinants, and
characteristic functions of graphs. Funct. Anal. Appl., 26(4), 1992.

32

[23] D. Hilbert. Über die vollen invariantensysteme. Math. Ann., 42:313–370,
1893.

[24] P. Hrubeš, A. Wigderson, and A. Yehudayoff. Relationless completeness
and separations. In IEEE Conference on Computational Complexity, pages
280–290, 2010.

[25] P. Hrubeš, A. Wigderson, and A. Yehudayoff. Non-commutative circuits
and the sum of squares problem. J. Amer. Math. Soc., 24:871–898, 2011.

[26] P. Hrubeš and A. Yehudayoff. Arithmetic complexity in ring extensions.
Theory of Computing, 7:119–129, 2011.

[27] D. Kaliuzhnyi-Verbovetskyi and V. Vinnikov. Noncommutative rational
functions, their difference-differential calculus and realizations. Multidi-

mensional Systems and Signal Processing, 2010.

[28] D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov. Singularities of noncom-
mutative rational functions and minimal factorizations. Lin. Alg. Appl,
430:869–889, 2009.

[29] H. Kraft and C. Procesi. Classical Invariant Theory. A Primer,
http://jones.math.unibas.ch/ kraft/Papers/KP-Primer.pdf, 1996.

[30] T. Lee and Y. Zhou. Right ideals generated by an idempotent of finite
rank. Linear Algebra and its Applications, 431:2118–2126, 2009.

[31] P. Malcolmson. A prime matrix ideal yields a skew field. Journal of the

London Mathematical Society, 18:221–233, 1978.

[32] K.D. Mulmuley. On P vs. NP and geometric complexity theory. J. ACM,
58(2), 2011.

[33] K.D. Mulmuley. The GCT program toward the P vs. NP problem. Com-

munications of the ACM, 55(6):98–107, 2012.

[34] Ketan Mulmuley. Geometric complexity theory V: Equivalence between
blackbox derandomization of polynomial identity testing and derandom-
ization of noether’s normalization lemma. CoRR, abs/1209.5993, 2012.

[35] N. Nisan. Lower bounds for non-commutative computation. In Proceeding

of the 23th STOC, pages 410–418, 1991.

[36] C. Procesi. The invariant theory of n×n matrices. Adv. Math., 19:306–381,
1976.

[37] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in
non commutative models. Computational Complexity, 14(1):1–19, 2005.

[38] Yu.P. Razmyslov. Trace identities of full matrix algebras over a field of
characteristic zero. Izv. Akad. Nauk SSSR Ser. Mat., 38:723–760, 1974.

33

[39] C. Reutenauer. Inversion height in free fields. Selecta Mathematica, 2(1):93–
109, 1996.

[40] L. H. Rowen. Polynomial identities in ring theory, volume 84. Academic
Press, 1980.

[41] A. Schofield and M. Van den Bergh. Semi-invariants of quivers for arbitrary
dimension vectors. Indag. Math, 12:125–138, 2001.

[42] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of re-
cent results and open questions. Foundations and Trends in Theoretical

Computer Science, 5(3):207–388, 2010.

[43] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–
356, 1969.

[44] V. Strassen. Vermeidung von divisionen. J. of Reine Angew. Math.,
264:182–202, 1973.

[45] L. G. Valiant. Completeness classes in algebra. In STOC, pages 249–261,
1979.

Appendix: The Invariant Theory angle

In this section we give the necessary background from Invariant Theory to ex-
plain how our main open problem arises there (and mention a few other compu-
tational complexity questions which have recently been cast in this language).
We will present only, in high level, the fragment of the theory which is relevant
to us. Often, the stated results are known in greater generality. One can find
much more in the books [10, 12, 29]. We stress that in this section all variables
commute!

Fix a field F (while problems are interesting in every field, results mostly work
for infinite fields only, and sometimes just for characteristic zero or algebraically
closed ones). Let G be a group, and V a representation of G, namely a vector
space on which G acts; for every g, h ∈ G and v ∈ V we have gv ∈ V and g(hv) =
(gh)v. When G acts on V , it also acts on F[V], the polynomial functions on V ,
also called the coordinate ring of V . We will denote gp the action of a group
element g on a polynomial p ∈ F[X]. In our setting V will have finite dimension
(say m), and so F[V] is simply F[x1, x2, · · · , xm] = F[X], the polynomial ring
over F in m variables.

A polynomial p(X) ∈ F[X] is invariant if it is unchanged by this action,
namely for every g ∈ G we have gp = p. All invariant polynomials clearly form
a subring of F[X], denoted F[X]G, called the ring of invariants of this action.
Understanding the invariants of group actions is the main subject of Invariant
Theory. In our setting, all these rings will be finitely generated, namely there will
be a finite set of polynomials {q1, q2, · · · qt} in F[X]G so that for every polynomial
p ∈ F[X]G there is a t-variate polynomial r over F so that p = r(q1, q2, · · · , qt).
The following example must be familiar to the reader.

34

Example 9.1. Let G = Sm, the symmetric group on m letters, acting on

the set of m formal variables X (and hence the vector space they generate)

by simply permuting them. Then the set of invariant polynomials are simply

all symmetric polynomials. As is well known, they are generated in the sense

above by the m elementary symmetric polynomials (namely q1 =
�

i
xi, q2 =�

i<j
xixj , · · · , qm =

�
i
xi). Another generating set of the same size is provided

by the sums-of-powers (namely q�1 =
�

i
xi, q

�
2 =

�
i
x2

i
, · · · , q�m =

�
i
xm

i
).

This example demonstrates a nearly perfect understanding of the ring of
invariants. The first basic requirement is a finite set of generators of the ring of
invariants. Establishing this for a group action is often called “First Fundamen-
tal Theorem”, or FFT. The second requirement (naturally called the “Second
Fundamental Theorem”, or SFT, when established) is describing all algebraic
relations between the given generating invariants. In the case of symmetric
polynomials above, they are algebraically independent. Hence, we know FFT
and SFT in this example.

Further requirements have to do with the explicitness and constructivity of
the given invariants, their number, as a function of natural parameters like the
dimension of the space V , size (when finite) or “dimension” of the group G.
Finally, a more modern request is that the given invariants would be easy to
compute. For the action of the symmetric group above, we are in an “opti-
mal” situation. There are exactly m generating invariants (the dimension of
V), explicitly given and very easy to compute. Some of these explicitness and
computational notions are formally defined and discussed in [16], section 1.2.

This set of “computational” properties clearly directly related to the effi-
ciency of solving perhaps the most basic orbit problem of this setting: given
two points u, v ∈ V , are they in the same orbit under the group action? If they
are, clearly their evaluation every invariant is identical (and the converse can
be achieved with a somewhat more general notion of “separating invariants”).
Many basic problems in many mathematical disciplines can be viewed in this
way (e.g. Is a given knot unknotted? Can one turn a polygon into another
via (straight) cutting and pasting?). More recently, basic problems of computa-
tional complexity were cast in these terms. Valiant [45] showed that to separate
the arithmetic classes V P and V NP it suffices to show that the permanent poly-
nomial is not a linear projection of a determinant of a not much larger matrix.
While projection is not a group operation, the Geometric Complexity Theory
(GCT) project of Mulmuley and Sohoni (see e.g. [33, 32] for surveys) describes
it in similar terms, namely the intersection of the orbit closure of varieties de-
fined respectively by permanent and determinant. In this last motivation the
group acting are linear groups.

Most work and knowledge in Invariant Theory concerns linear groups10. The
first seminal results came from Hilbert [23], who proved11 the first and second

10While here we consider only actions on vector spaces, real interest of algebraic geometry
is their actions on general affine varieties

11Among many other foundational results - this paper and its 1890 non-constructive pre-
decessor contain in particular the Nullstellensatz theorem, the finite basis theorem and other

35

fundamental theorems for the natural actions of the general and special linear
groups, GL(V) and SL(V) on a vector space V . Again, a very familiar very
special case, in which knowledge is complete, is the following.

Example 9.2. Consider the action of the group SLn(F) on the vector space of

n × n matrices in Mn(F), simply by matrix multiplication. Namely, A ∈ SLn

acts on M ∈ Mn by AM . The entries of such a generic matrix M may be

viewed as m = n2 variables X = {xij}. In this case all polynomial invariants

are generated by the determinant det(X).

We shall be interested in invariants12 of actions of SLn on d-tuples of n× n

matrices. So now the number of variables m = dn2. The most well understood is
the action of a single copy of SLn by simultaneous conjugation of the d matrices,
and the one we care about the action of two copies, SLn×SLn, by simultaneous
multiplication on the left and right. We define both next and discuss what is
known, but first point out that these are very special cases of the general setting
of quivers and their representation [18] and many of the results generalize to
this setting.

Now a typical element of our vector space is a d-tuple of n × n matrices
(M1, M2, · · · , Md) and that the underlying variables X are now the m = dn2

entries. Consider the action of a matrix A ∈ SLn on this tuple by simultaneous
conjugation, by transforming it to the tuple (A−1M1A, A−1M2A, · · · , A−1MdA).
Which polynomials in X are invariant under this action? The first and second
fundamental theorem were proved by Procesi, Formanek and Razmyslov and
Donkin [36, 17, 38, 15]. More precisely, the invariants are generated by traces
of products of length at most n2 of the given matrices, namely by the set

{Tr(Mi1Mi2 · · ·Mit) : t ≤ n
2}.

These polynomials are explicit, have small degree and are easily computable.
The one possible shortcoming, the exponential size of this set (a serious im-
pediment to, e.g, solving the orbit problem above), was recently improved to
quasi-polynomial by [16], who ”derandomized” a probabilistic construction of
Mulmuley [34]. That last paper further connected the problem of finding few
invariants to solving the Polynomial Identity Testing problem (in the commu-
tative setting).

Finally, we get to the action we care about. Here a pair of matrices (A, B) ∈
SLn × SLn acts on (M1, M2, · · · , Md) to give (AM1B, AM2B, · · · , AMdB).
Note that whether the symbolic matrix of linear forms z1M1+z2M2+· · ·+zdMd

is full13 or not is unchanged by this action, which is the first relationship to the
body of our paper. But in this case we only know an infinite set of generating
invariants. They were determined (for arbitrary quivers) by [13, 41, 14] (and
also for this specific left-right action in [1]). The invariants can be described
in several ways. The papers [14, 13] describe them in terms of determinants of

cornerstones of commutative algebra and algebraic geometry.
12Often called semi-invariants, to distinguish them from invariants of GLn
13As in the definition before Theorem 2.1

36

block matrices. Let (X1, X2, · · · , Xd) be the generic matrices of our variables X.
For the left-right action the invariants are determinants of sums of the matrices
Xi ⊗ Ti for some arbitrary d-tuple of k × k matrices (T1, T2, · · · , Td). Namely,
this is the set

{det(
d�

i=1

Xi ⊗ Ti) : k ∈ N, Ti ∈ Matk×k(F)}

These are precisely the polynomials we care about in the body of this paper,
in both the non-commutative PIT problem, as well as in eliminating divisions
from non-commutative circuits. By Hilbert’s basis theorem, we know that a
finite subset of this set generates all invariants, and hence in particular we can
take them to be all invariants of degree below some finite bound (which puts
an upper bound on the dimension k of the auxiliary matrices Ti). Attempts of
giving an upper bound on the degree are surveyed in [11] who obtains the best
estimate we know of, which unfortunately (despite the title of the paper) seems
to be exponential in n. Note that a polynomial upper bound here implies one
for Problem 4, and vice versa.

37

	Introduction
	Background and main results
	A polynomial-size circuit for matrix inverse
	Matrix inverse has exponential formula size
	Height versus the number of inverse gates
	Formula completeness of matrix inverse
	Triangular matrices
	The determinant of nearly triangular matrices

	The rational identity testing problem
	The two parameters

	How to eliminate divisions
	Open problems

