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Abstract. We investigate the arithmetic formula complexity of the el-
ementary symmetric polynomials Skn. We show that every multilinear
homogeneous formula computing Skn has size at least kΩ(log k)n, and that
product-depth d multilinear homogeneous formulas for Skn have size at
least 2Ω(k1/d)n. Since Sn2n has a multilinear formula of size O(n2), we ob-
tain a superpolynomial separation between multilinear and multilinear
homogeneous formulas. We also show that Skn can be computed by ho-
mogeneous formulas of size kO(log k)n, answering a question of Nisan and
Wigderson. Finally, we present a superpolynomial separation between
monotone and non-monotone formulas in the noncommutative setting,
answering a question of Nisan.
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1. Introduction

We address two basic topics in arithmetic complexity: the power of homogene-
ity and computation of the symmetric polynomials. A basic structural result
in arithmetic complexity (e.g., (Strassen 1973)) asserts that

(?) if a homogeneous polynomial has a formula of size s, then it has a
homogeneous formula of size at most sO(log s).

A natural question is whether the upper bound given by (?) is tight, or
whether formulas can be simulated by polynomial size homogeneous formulas.
With our current techniques, this question is unfortunately out of reach. Most
importantly, superpolynomial lower bounds on homogeneous formula complex-
ity (for low degree polynomials) are not known. Still, we can investigate this
question in restricted models of computation; we investigate the multilinear
setting.



2 Hrubeš & Yehudayoff

The elementary symmetric polynomials Skn (formally defined below) seem
to be good candidates for a separation in (?). Over an infinite field, they have
non-homogeneous formulas of size O(n2), but the best known homogeneous
formulas computing Skn are of a quasipolynomial size. Nisan & Wigderson
(1996) made a stronger conjecture, that Skn require homogeneous formulas of
size at least nΩ(log k). This, however, is not the case – we show that Skn have
homogeneous formulas of size kO(log k)n, which is linear for a fixed k. In fact,
the conjecture does not even hold for monotone formulas – Skn have monotone
formulas of size n1+o(1), if k is fixed. The conjecture of Nisan & Wigderson
was based on the assumption that in general, in order to simulate a formula of
size s computing a polynomial of degree k, we need a homogeneous formula of
size sΩ(log k). We have learned about a recent result of Raz, who gave a more
efficient simulation, see (Raz 2009).

1.1. Results. Let us first give the usual definitions. An arithmetic circuit
Φ over the field F is a directed acyclic graph as follows. Every node in Φ of
in-degree 0 is labelled by either a variable or a field element in F. Every other
node in Φ has in-degree at least two and is labelled by either × or +. Nodes
labelled by × are product nodes, and nodes labelled by + are sum nodes. An
arithmetic circuit is called a formula, if the out-degree of every node in it is
one. A circuit Φ computes a polynomial Φ̂ in the obvious manner.

A polynomial f is homogeneous if the total degrees of all the monomials
that occur in f are the same. A polynomial f is multilinear if the degree of
each variable in f is at most one. A circuit Φ is homogeneous if every node in Φ
computes a homogeneous polynomial. A circuit Φ is multilinear if every node
in it computes a multilinear polynomial. A circuit Φ over the real numbers is
called monotone if every field element in Φ is a nonnegative real number.

We define the size of a formula as the number of leaves in it1. The depth of
a formula is the length of the longest directed path in it. The product-depth of
a formula Φ is the largest number of product nodes in a directed path in Φ.

The elementary symmetric polynomial Skn is the polynomial in variables
x1, . . . , xn defined as ∑

i1<i2<···<ik

xi1xi2 · · ·xik ;

it is a homogeneous multilinear polynomial of degree k.
We show the following lower bounds on the size of multilinear homogeneous

formulas computing Skn.

1The total number of nodes in a tree where each internal node has in-degree at least two
is at most twice the number of leaves.
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Theorem 1. Let n ≥ 2k and d be nonzero natural numbers.

(i). Every homogeneous multilinear formula computing Skn has size at least
kΩ(log k)n.

(ii). Every homogeneous multilinear formula of product-depth d computing

Skn has size at least 2Ω(k1/d)n.

In the case of Sn2n, the first lower bound is superpolynomial and the latter
exponential. Since the symmetric polynomials have multilinear formulas of size
O(n2) and product-depth one (see Section 3.1), the theorem shows that homo-
geneous multilinear formulas are superpolynomially weaker than multilinear
formulas, and that constant depth homogeneous multilinear formulas are expo-
nentially weaker than their nonhomogeneous counterparts. Since monotone for-
mulas computing homogeneous multilinear polynomials are both homogeneous
and multilinear, we have a superpolynomial separation between monotone and
non-monotone formulas. This separation also holds in the noncommutative
case, which answers a question raised by Nisan (1991). The lower bounds are
based on counting the number of monomials that occur in a polynomial that is
computed by a homogeneous multilinear formula. We obtain essentially the
same bounds as Shamir & Snir (1979) get in the case of monotone formulas. In
fact, lower bound (i) from Theorem 1 can also be proved using the bound in
(Shamir & Snir 1979); see discussion at the end of Section 3.3. However, our
techniques are different and simpler.

We also provide upper bounds on the formula complexity of Skn.

Theorem 2. Let n, k be nonzero natural numbers.

(i). Skn has a homogeneous formula of size kO(log k)n.

(ii). Skn has a depth four (product-depth two) homogenous formula of size

2O(k1/2)n.

(iii). Skn has a monotone formula of size

2n · nlog( k−1
log(2n)

+1) ·
(

log(2n)

k − 1
+ 1

)k−1

= n·nO(log(1+ k
logn

)).

For a fixed k, all of the upper bounds given by Theorem 2 are essentially
linear in n (i.e., linear in the first two cases, and n1+o(1) in the last one).
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2. Lower bounds

In this section we prove the lower bounds given by Theorem 1.

2.1. Technical estimates. We need the following technical estimate.

Lemma 3. Let n ≥ 2k be nonzero natural numbers. Fix nonzero natural
numbers k1, . . . , kp such that k1 + · · ·+ kp = k. Then for every natural number
n1, . . . , np such that n1 + · · ·+ np = n,(

n1

k1

)
· · ·
(
np
kp

)
≤ 3k1/2(k1 · · · kp)−1/2

(
n

k

)
.

Proof. 1) We shall first prove the lemma using the additional assumption
that ki ≥ 2 for every i = 1, . . . , p. We estimate the maximum of

(
n1

k1

)
· · ·
(
np
kp

)
with respect to n1, . . . , np satisfying the given constraints.

First we show that we can assume 1.5ki ≤ ni for every i ∈ [p]. Let n1, . . . , np
be the integers where the maximum is attained. Assume without loss of gen-
erality that n1/k1 ≥ n/k ≥ 2. For every i ∈ {2, . . . , p}, the choice of n1, . . . , np
implies that

(
n1−1
k1

)(
ni+1
ki

)
≤
(
n1

k1

)(
ni
ki

)
. Hence (ni+1)/(ni+1−ki) ≤ n1/(n1−k1),

and so ni/ki ≥ n1/k1 − 1/ki ≥ 2− 1/2.

For i = 1, . . . , p and a real number z such that z > ki, define fi(z) =
zz

k
ki
i (z−ki)z−ki

. Thus ∂
∂z
fi = fi · ln(1/(1− ki/z)). Denote

F (z1, . . . , zp) = f1(z1)f2(z2) · · · fp(zp).

We shall determine the maximum of F on the set S ⊂ Rp defined by the
constraints z1 + · · · + zp = n and zi ≥ 1.5ki, i = 1, . . . , p. Since S is compact
and F continuous, F has a maximum on S. Let (z1, . . . , zp) ∈ S be the point at
which F attains its maximum. Our goal is to show that zi/ki = n/k for every
i ∈ {1, . . . , p}. Assume without loss of generality that z1/k1 ≤ zi/ki for every
i ∈ {2, . . . , p}. Assume towards a contradiction that there exists i ∈ {2, . . . , p}
with z1/k1 < zi/ki, and consider f1(z1 + x)fi(zi − x) as a function of x. Since

∂

∂x
f1(z1 + x)fi(zi − x)

∣∣∣
x=0

= f1(z1)fi(zi) ln

(
1− ki/zi
1− k1/z1

)
> 0,

there exists ε > 0 such that (z1 + ε, . . . , zi− ε, . . . , zp) ∈ S and f1(z1 + ε)fi(zi−
ε) > f(z1)f(zi); a contradiction to the choice of z1, . . . , zp. Hence, since z1 +
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· · ·+ zp = n and k1 + · · ·+ kp = k, we have zi/ki = n/k for every i = 1, . . . , p.
So the maximum value of F on S is∏

i=1,...,p

nki

kki
nn−ki

(n− k)zi−ki
=

nn

kk(n− k)n−k

Stirling’s approximation tells us that for every nonzero N,K ∈ N with 1.5K ≤
N ,

(1/3)K−1/2 NN

KK(N −K)N−K
≤
(
N

K

)
≤ K−1/2 NN

KK(N −K)N−K
,

which implies (
n1

k1

)
· · ·
(
np
kp

)
≤ (k1 · · · kp)−1/2F (n1, . . . np)

≤ (k1 · · · kp)−1/2 nn

kk(n− k)n−k

≤ 3k1/2(k1 · · · kp)−1/2

(
n

k

)
.

2) Assume without loss of generality that k1, . . . , k` = 1, and denote k′ =
k1 + · · · + k` and n′ = n1 + · · · + n`. Since

(
n1

k1

)
· · ·
(
n`
k`

)
≤
(
n′

k′

)
and 3(k −

k′)1/2(k`+1 . . . kp)
−1/2 ≤ 3k1/2(k1, . . . kp)

−1/2, part 1) shows that(
n1

k1

)
· · ·
(
np
kp

)
≤ 3k1/2(k1 · · · kp)−1/2

(
n− n′

k − k′

)(
n′

k′

)
≤ 3k1/2(k1 · · · kp)−1/2

(
n

k

)
.

ut

2.2. In-degree two. Let f be a homogeneous polynomial of degree k. We
say that f is balanced if there exist p homogeneous polynomials f1, . . . , fp such
that f = f1f2 · · · fp with

(i). (1/3)ik < deg fi ≤ (2/3)ik, i = 1, . . . , p− 1, and

(ii). deg(fp) = 1 .

For a balanced polynomial f , let minv(f) be the smallest number q such that
f can be written as f = f1f2 · · · fp above, and fp contains q variables.

The following lemma shows that a small homogeneous formula can be writ-
ten as a short sum of balanced polynomials.
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Lemma 4. Let Φ be a homogeneous formula with in-degree at most two of size
s and deg(Φ̂) = k > 0. Then there exist balanced polynomials f1, . . . , fs′ such
that s′ ≤ s,

Φ̂ = f1 + · · ·+ fs′

and
∑

i=1,...,s′ minv(fi) ≤ s. If Φ is multilinear, so are f1, . . . , fs′ .

For a node w in a formula Φ, denote by Φw the sub-formula of Φ with output
node w, and by Φ(w=α) the formula obtained by deleting the edges going into
w and labeling w (which is now an input node) by the field element α. One
can see that

Φ̂ = h · Φ̂w + Φ̂(w=0) ,

for some polynomial h that depends on w.

Proof. Let us first note the following:

Claim 5. If Φ is a formula of degree k ≥ 2, then there exists a node w in Φ
such that (1/3)k ≤ deg(w) < (2/3)k, where deg(w) = deg(Φ̂w).

Proof. There exists a node v in Φ such that deg(v) ≥ (2/3)k, but for every
child w of v (i.e., the edge (w, v) occurs in Φ), deg(w) < (2/3)k. Hence v is a
product node v = w1 × w2. If deg(w1) ≥ deg(w2) then w = w1 has the correct
properties, otherwise set w = w2. ut

We prove the lemma by induction on s and k. If k = 1, Φ̂ is a balanced
polynomial and minv(Φ̂) ≤ s, since Φ contains at most s variables. Assume
that k ≥ 2. Let w be a node in Φ of degree k′ such that (1/3)k ≤ k′ < (2/3)k;
the node w exists by Claim 5. Homogeneity implies that we can write

Φ̂ = h · Φ̂w + Φ̂(w=0),

where h is a polynomial of degree k − k′. Let sw denote the size of Φw and
let s(w=0) denote the size of Φ(w=0). Thus sw + s(w=0) ≤ s. By the inductive

assumption, Φ̂w = h1 + · · ·+ hs′w and Φ̂w=0 = g1 + · · ·+ gs′
(w=0)

, where s′w ≤ sw,

s′w=0 ≤ sw=0, h1, . . . , hs′w are balanced polynomials such that
∑

i minv(hi) ≤ sw,
and g1, . . . , gs′

(w=0)
are balanced polynomials such that

∑
j minv(gj) ≤ s(w=0).

(It may happen that Φ̂(w=0) is the zero polynomial.) Hence

(2.1) Φ̂ = hh1 + · · ·+ hhsw + g1 + · · ·+ gs(w=0)
.

Since (1/3)k < deg h ≤ (2/3)k and (1/3)k ≤ k′ < (2/3)k, hhi is a balanced

polynomial of degree k. Hence (2.1) is an expression of Φ̂ in terms of balanced
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polynomials. Moreover, minv(hhi) = minv(hi), and hence
∑

i minv(hhi) +∑
j minv(gj) ≤ sw + s(w=0) ≤ s.
In the case that Φ is multilinear, we can assume without loss of generality

that Φ is in fact syntactically multilinear (see, for example, (Raz 2004)), that
is, for every product node v = v1 × v2 in Φ, the set of variables that occur in
Φv1 and the set of variables that occur in Φv2 are disjoint. This implies that the
polynomials hh1, . . . , hhs′w are multilinear. The lemma follows by induction.

ut

The following lemma bounds the number of monomials in a balanced poly-
nomial.

Lemma 6. Let f be a balanced multilinear polynomial of degree k with at
most n variables, 2k ≤ n. Then the number of monomials that occur in f is at
most

3k−c log k+3/2

(
n

k

)
minv(f)/n,

where c > 0 is a universal constant.

Proof. Assume that f = f1 · · · fp, where fi has degree ki and ni variables
(so np = minv(f)). Specifically, k1 + · · · + kp = k. Multilinearity implies
n1+· · ·+np ≤ n (without loss of generality we can assume that n1+· · ·+np = n).
Since each fi is also homogeneous and multilinear, it contains at most

(
ni
ki

)
monomials. Thus, since kp = 1, f contains at most

(
n1

k1

)
· · ·
(
np−1

kp−1

)
np monomials,

which, by Lemma 3, is at most 3k1/2(k1 · · · kp)−1/2
(
n−np
k−1

)
np. For every 1 ≤ i ≤

log k/(2 log 3), we have ki ≥ k1/2, and so

3(k1 · · · kp)−1/2 ≤ 3
∏

1≤i≤log k/(2 log 3)

k
−1/2
i ≤ 3k−c log k

with c > 0 a universal constant (when k = 1, the number of monomials is at
most np = minv(f), and the lemma holds). Since

(
n−np
k−1

)
≤
(
n−1
k−1

)
=
(
n
k

)
k
n
, the

number of monomials that occur in f is at most

3k−c log k+1/2

(
n− np
k − 1

)
np ≤ 3k−c log k+3/2

(
n

k

)
minv(f)

n
.

ut

We can now bound the number of monomials in a polynomial by its multi-
linear homogeneous formula complexity.
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Proposition 7. Let Φ be a multilinear homogeneous formula with in-degree
at most two. Assume that Φ has size s, degree k > 0 and at most n variables,
2k ≤ n. Then the number of monomials that occur in Φ̂ is at most

3k−c log k+3/2

(
n

k

)
s

n
,

where c is a universal constant.

Proof. By Lemma 4, there exist balanced multilinear polynomials f1, . . . , fs′
such that Φ̂ = f1 + · · · + fs′ and

∑
i=1,...,s′ minv(fi) ≤ s. By Lemma 6, there

exists a constant c > 0 such that for every i = 1, . . . , s′, the number of mono-
mials that occur in fi is at most 3k−c log k+3/2

(
n
k

)
minv(f)/n. The proposition

follows, since the number of monomials that occur in Φ̂ is at most the sum of
the number of monomials that occur in the fi’s. ut

Corollary 8. The first part of Theorem 1 holds.

Proof. The number of monomials in Skn is
(
n
k

)
. ut

2.3. Bounded depth. A homogeneous polynomial f has a (p, `)-form if
there exist homogeneous polynomials f1, . . . , fp such that f = f1f2 · · · fp and
every fi has degree at least `. Define minv(f) as the smallest q such that f
can be written as f1f2 · · · fp above and q = min{ni : i ∈ {1, . . . , p}}, where ni
is the number of variables that fi is defined over. This definition depends on
the choice of (p, `), which will be determined from context.

The following lemma shows that a small constant depth multilinear formula
can be written as a short sum of formed polynomials.

Lemma 9. Let Φ be a multilinear homogeneous formula of size s and product-
depth d computing a polynomial of degree k. Let q > 1 be a natural num-
ber such that k(2q)−d > 1. Then there exist (q, k(2q)−d)-form polynomials
f1, . . . , fs′ such that

Φ̂ = f1 + · · ·+ fs′

and
∑

i=1,...,s′ minv(fi) ≤ s.

Proof. First let us note the following:

Claim 10. Let r > 1 be a real number such that kr−d > 1. Then there exists
a product node w in Φ such that deg(w) ≥ kr−d+1 and deg(v) < deg(w)/r for

every child v of w. Moreover, if r = 2q with q ∈ N, then Φ̂w is in (q, k(2q)−d)-
form.
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Proof. The proof is by induction on d. If d = 1 and u = u1 × u2 · · · × uj is
a product node in Φ, then deg(u) = k and deg(ui) ≤ 1 < k/r. So we can set
w = u. Assume that d > 1, and let u = u1 × u2 · · · × uj be a product node in
Φ with deg(u) = k. If for every i = 1, . . . , j, deg(ui) < k/r, then we can set
w = u. Otherwise there exists ui such that deg(ui) ≥ k/r. In this case, Φui is
of product-depth d′ < d and degree at least k/r. By the inductive assumption,
there exists a product node w in Φui such that deg(w) ≥ deg(ui)r

−d′+1 ≥ kr−d+1

with the desired property.
Let f be a polynomial of degree at least m. If f = f1f2 · · · fn with deg(fi) <

m/t, t ∈ N, for every i = 1, . . . , n, then f is of (bt/2c,m/t)-form; this is achieved
by an appropriate grouping of f1, . . . , fn. Hence if r = 2q, the node w defines
a polynomial of (q, k(2q)−d)-form. ut

We proceed by induction. Let w be a node given by Claim 10. As in the
proof of Lemma 4, we can write

Φ̂ = h · Φ̂w + Φ̂(w=0).

Let sw denote the size of Φw and let s(w=0) denote the size of Φ(w=0). The

polynomial Φ̂(w=0) is either zero or of degree k. In the latter case, by in-
ductive assumption, it can be written as

∑
i=1,...,s′

(w=0)
gi with s′(w=0) ≤ s(w=0),

where the gi’s are in (q, k(2q)−d)-form and
∑

i=1,...,s′
(w=0)

minv(gi) ≤ s(w=0). The

polynomial Φ̂w is in (q, k(2q)−d)-form. Moreover, if it is written as f1 · · · fq,
then every fi contains at most sw variables. Since q > 1 and by multilin-
earity, the polynomial f = (hf1)f2 · · · fq is a polynomial of (q, k(2q)−d)-form

with minv(f) ≤ sw. Altogether, Φ̂ can be written as f +
∑

i=1,...,s′
(w=0)

gi where

minv(f) +
∑

i=1,...,s′
(w=0)

minv(gi) ≤ sw + s(w=0) ≤ s. ut

The following lemma bounds the number of monomials in a formed poly-
nomial.

Lemma 11. Let f be a homogeneous multilinear polynomial of (p, `)-form of
degree k with at most n variables, where 2k ≤ n and p, ` ≥ 2. Then the number
of monomials that occur in f is at most 3k3/2`−(p−1)/2

(
n
k

)
minv(f)/n.

Proof. Assume that f = f1 · · · fp, where fi has degree ki and ni variables,
assume without loss of generality that np = minv(f). Homogeneity implies
k1 + · · ·+ kp = k and multilinearity implies n1 + · · ·+ np ≤ n (without loss of
generality n1+· · ·+np = n). Since each fi is also homogeneous and multilinear,
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it contains at most
(
ni
ki

)
monomials. Thus, f contains at most

(
n1

k1

)
· · ·
(
np−1

kp−1

)(
np
kp

)
monomials, which, by Lemma 3, is at most 3k1/2(k1 · · · kp−1)−1/2

(
n−np
k−kp

)(
np
kp

)
. We

have(
n− np
k − kp

)(
np
kp

)
=
k − kp + 1

n− np + 1

(
n− np + 1

k − kp + 1

)
np
kp

(
np − 1

kp − 1

)
≤ (k − kp + 1)np

(n− np + 1)kp

(
n

k

)
.

The minimality of np implies np ≤ n/p. Hence

k − kp + 1

(n− np + 1)kp
≤ k

(n− np)kp
≤ k

n(1− 1/p)kp
≤ k

n
,

where the last inequality follows from the assumption p, kp ≥ 2. Therefore(
n−np
k−kp

)(
np
kp

)
≤ k

n

(
n
k

)
np and the lemma follows. ut

The following proposition bounds the number of monomials in a polynomial
that has a small multilinear homogeneous formula of constant depth.

Proposition 12. Let Φ be a multilinear homogeneous formula of size s, de-
gree k, product-depth d, and over at most n variables, where n ≥ 2k and k1/d ≥
8. Then the number of monomials that occur in Φ̂ is at most 6k3/22−k

1/d/8
(
n
k

)
s/n.

Proof. Let q = bk1/d/4c ≥ 2 and let ` = k(2q)−d ≥ 2. Combining Lem-

mas 11 and 9, the polynomial Φ̂ contains at most 3k3/2`−(q−1)/2
(
n
k

)
s/n. Since

`−(q−1)/2 ≤ 2 · 2−k1/d/8, the proposition follows. ut

Corollary 13. The second part of Theorem 1 holds.

Proof. The number of monomials in Skn is
(
n
k

)
(when k1/d < 8 the lower

bound holds trivially). ut

3. Upper bounds and separations

In this section we show several upper bounds on the complexity of the sym-
metric polynomials. We consider four models of computation in the following
subsections.

3.1. Multilinear nonhomogeneous depth three. We now show that Skn
can be computed by multilinear formulas of depth three (and product-depth
one) of size O(n2). These formulas are of course not homogeneous, and we
obtain a separation between homogeneous multilinear and non-homogeneous
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multilinear formulas. The construction was first suggested by Ben-Or, see
(Shpilka & Wigderson 2001), and we give it here for completeness.

For t ∈ R, denote

ft = (x1t+ 1)(x2t+ 1) · · · (xnt+ 1) =
n∑
k=0

tkSkn.

Evaluating at t = 1, . . . , n+ 1,
f1

f2

. . .
fn+1

 = A


S0
n

S1
n

· · ·
Snn


with

A =


10 11 · · · 1n

20 21 · · · 2n

· · ·
(n+ 1)0 (n+ 1)1 · · · (n+ 1)n

 .
Since the matrix A is invertible, we can express every Skn as a linear combina-
tion of f1, . . . , fn+1. Since ft has a formula of depth two and size roughly n
computing it, we can compute the symmetric polynomials with a depth three
formula of size roughly n2. (The same argument holds whenever there are more
than n nonzero elements in the underlying field.)

3.2. Homogeneous non-multilinear. We now give an upper bound on the
homogeneous formula size of Skn. Let w be a weight function that assigns a
positive natural number w(x) to every variable x. The w-degree of a monomial
xi1xi2 · · · xik is defined as w(xi1) + w(xi2) + · · · + w(xik). A constant has w-
degree zero. We say that a polynomial f is w-homogeneous if all monomials in
f have the same w-degree. A circuit Φ is w-homogeneous if every node in Φ
computes a w-homogeneous polynomial.

Lemma 14. (i). Let Φ be a w-homogeneous formula in variables x1, . . . , xk,
and let φ1, . . . , φk be homogeneous formulas of degrees w(x1), . . . , w(xk).
Then the formula Φ(φ1, φ2, . . . , φk) is homogeneous of degree that is equal
to the w-degree of Φ; the formula Φ(φ1, φ2, . . . , φk) is obtained by substi-
tuting the formula φi instead of xi for every i = 1, . . . , k.

(ii). Let f be a polynomial of degree k that has a w-homogeneous circuit of
size s, then f has a w-homogeneous formula of size (sk)O(log k).
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Proof. (i) is by a straightforward induction on the size of Φ.

The proof of (ii) follows by the construction in (Hyafil 1979) – this con-
struction transforms a w-homogeneous circuit into a w-homogeneous formula
with the appropriate size. Here is a rough sketch of the construction. Let Φ be
the circuit computing f (assume without loss of generality that the in-degree
of Φ is at most two). Let V be the set of nodes v in Φ such that the w-degree
of v is at least k/2, and v = v1 × v2 with the w-degrees of both v1 and v2 less

than k/2. It can be shown that f =
∑

v∈V hvΦ̂v1Φ̂v2 with hv having a circuit of
size at most roughly the size of Φ. If we denote by L(s, k) the smallest formula
for a polynomial of degree k that has a circuit of size s, we have that L(s, k) is
at most roughly sL(s, k/2). Thus L(s, k) is at most roughly slog k. ut

Theorem 15. Skn has a homogeneous formula of size kO(log k)n, and a depth

four homogenous formula of size 2O(k1/2)n.

Proof. We apply Newton’s identities. Let P k
n be the polynomial

∑
i=1,...,n x

k
i .

Let Zk be a polynomial in the variables y1, . . . , yk defined inductively as Z0 = 1,
and for k ≥ 0,

Zk+1 =
1

k + 1

(
y1 · Zk − y2 · Zk−1 + y3 · Zk−2 − · · ·+ (−1)k+1yk+1 · Z0

)
.

Newton’s identities assert that

Skn = Zk(P
1
n , . . . , P

k
n ).

Define the weight w as w(yi) = i. Thus Zk is a w-homogeneous polynomial
of w-degree k and degree k (this follows by induction on k). The definition of
Zk shows that it has a w-homogeneous circuit of size O(k2). By Lemma 14,
there exists a w-homogeneous formula of size kO(log k) computing Zk. Since the
degree of P i

n is i and it has a homogeneous formula of size kn, the polynomial
Skn = Zk(P

1
n , . . . , P

k
n ) has a homogenous formula of size kO(log k)n.

Since Zk is w-homogeneous of w-degree k, the only monomials that occur
in it are of the form yi1yi2 · · · yit with i1 + i2 + · · · + it = k. The number of
i1 ≥ i2 ≥ · · · ≥ it that sum up to k is known as the partition function of k. A
classical result of Hardy and Ramanujan says that the partition function of k
is at most 2O(k1/2). Thus Zk has 2O(k1/2) monomials, and so it has a depth two
formula of size 2O(k1/2), which implies that Skn has a depth four homogeneous
formula of the appropriate size. ut
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3.3. Monotone. Let L(k, n) denote the size of a smallest monotone formula
computing Skn. We present an elementary upper bound on L(k, n). The main
features of the estimate are the following:

(i). L(k, n) is polynomial, if k ≤ log n. Moreover, L(log n, n) = O(n3).

(ii). L(k, n) = nO(log(n)), if k ≥
√
n.

(iii). L(k, n) = O(n logk−1 n), for a constant k. More precisely, L(k, n) ≤
3n
(
e logn
k−1

)k−1
, if k is fixed and n sufficiently large.

Theorem 16. If k ≥ 2 then

L(k, n) ≤ 2n · nlog( k−1
log(2n)

+1) ·
(

log(2n)

k − 1
+ 1

)k−1

Hence L(k, n) can be written as nO(log( k
logn

)).

Proof. Let us assume that n is power of two. Otherwise choose n′ which is
a power of two such that n < n′ < 2n. Recall that we define formula size as
the number of leaves. Hence L(1, n) = n. Since

Sk2n(x1, . . . , x2n) =
∑

i=0,...,k

Sin(x1, . . . , xn)Sk−in (xn+1, . . . , x2n),

we obtain L(k, 2n) ≤ 2
∑

i=1,...,k L(i, n). Hence in order to upper bound L(k, n),
it is sufficient to find a nonnegative function g s.t.

(3.1) g(k, 2n) ≥ 2
∑

i=1,...,k

g(i, n), g(1, n) ≥ n,

for every n, k ≥ 1.

Let us first show the following:

Claim 17. Let α > 0 be a fixed parameter. Then g(k, n) = n1+α

(1−2−α)k−1 satisfies

(3.1).
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Proof. Consider g(k, n) = n1+αβk−1. Then g(1, n) ≥ n if n ≥ 1 and α ≥ 0.
In order to satisfy (3.1), it suffices to have

(2n)1+αβk−1 ≥ 2n1+αβk−1 + 2n1+α
∑

i=1,...,k−1

βi−1, resp.

βk−1 ≥ (2α − 1)−1
∑

i=1,...,k−1

βi−1.

This holds if β = 1 + (2α − 1)−1 = (1− 2−α)−1. ut

The claim shows that for every α > 0, L(k, n) ≤ n1+α

(1−2−α)k−1 . Let z := k−1
logn

and α := log(1 + z). Then

n1+α

(1− 2−α)k−1
=

n1+α

(z/(1 + z))k−1

= n1+log(1+z)
(
1 + z−1

)k−1
.

This gives the statement of the theorem. ut

Weakly equivalent polynomials and Boolean complexity. We say that
two polynomials f and g are weakly equivalent if for every monomial α, the co-
efficient of α is nonzero in f iff its coefficient in g is nonzero. Results in Boolean
complexity yield better upper bounds for a monotone polynomial weakly equiv-
alent to Skn than the ones in Theorem 16. The k-threshold function Thkn is a
Boolean function on n inputs such that Thkn(e1, . . . , en) = 1 iff e1 + . . .+en ≥ k.
It is a natural counterpart of the elementary symmetric polynomial Skn. As
shown in (Friedman 1984; Khasin 1970), Thkn have monotone Boolean formu-
las of size O(n log n), if k is fixed. In fact, the construction gives a monotone
arithmetic formula computing a monotone polynomial weakly equivalent to Skn.
Our lower bounds apply to any polynomial weakly equivalent to Skn. This shows
that using our techniques we cannot hope to prove better lower bounds than
Ω(n log n), if k is fixed.

In the converse direction, a monotone arithmetic formula computing Skn,
or a weakly equivalent polynomial, can be interpreted as a monotone Boolean
formula computing Thkn. (Interpret +,× as ∨,∧, and every α > 0 as Boolean
1.) Since for k ≥ 2 such a formula must be of size Ω(n log n), see (Hansel 1964),
we have Ω(n log n) lower bound on the size of monotone formulas computing
Skn, or a weakly equivalent polynomial.

Finally, observe that if Skn has a multilinear homogeneous formula Φ of size
s, then there exists a monotone formula Φ′ of size s computing a monotone
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polynomial weakly equivalent to Skn. (The formula Φ′ is obtained by replacing
every constant a in Φ by |a|.) Hence the lower bound Ω(n log n) applies also
to homogeneous multilinear formulas computing Skn, k ≥ 2. This also shows
how to deduce lower bound (i) in Theorem 1 from the monotone lower bound
in (Shamir & Snir 1979).

3.4. Noncommutative. A noncommutative polynomial over a field F is a
polynomial in which the variables do not multiplicatively commute, for exam-
ple, x1x2 and x2x1 are two different polynomials. A noncommutative formula is
a formula which we understand as computing a noncommutative polynomial.
Exponential lower bounds on the size of noncommutative formulas comput-
ing determinant and permanent were given in Nisan (1991). In that paper,
Nisan posed the problem of separating monotone and general noncommutative
formulas. Let us define Skn as the noncommutative polynomial

∑
i1<i2<···<ik

xi1xi2 · · ·xik .

Results from previous sections imply:

Proposition 18. Sn2n has a noncommutative formula of size O(n2), but every
monotone noncommutative formula for it has size at least nO(logn).

Proof. The lower bound from Section 2.2 and the upper bound from Sec-
tion 3.1 apply also to noncommutative setting. The lower bound is immediate,
since noncommutative computation is weaker. For the upper bound, notice
that the variables in the construction in Section 3.1 are written in the correct
order. ut

4. Summary

Whereas Boolean complexity of threshold functions has been mapped quite ac-
curately, the arithmetic complexity of symmetric polynomials is folded in subtle
mist. Here we summarise the basic known results on the formula complexity
of Skn.
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Lower bound Upper bound

Depth three, infinite fields 3 Ω(n2), if k ∼ n O(n2)

Homogeneous kO(log k)n

Homogeneous multilinear kΩ(log k)n nO(log( k
logn

))

Homogeneous depth three 4
(

n
bk/2c

)
2−k

Homogeneous depth four 2O(k1/2)n

Homog. mult. product-depth d 2Ω(k1/d)n

Monotone bounds are the same as the multilinear homogeneous ones, and
in both cases we can add the lower bound Ω(n log n) taken from monotone
Boolean complexity of threshold functions (see Section 3.3).

Note that the lower bound and the upper bound on multilinear homoge-
neous complexity are both polynomial, if k = log n, both superpolynomial, if
k = n/2, but if k = log2 n, the lower bound is polynomial, whereas the up-
per bound is nO(log logn). The ‘match’ between multilinear homogeneous lower
bounds and homogeneous upper bounds is also slightly irritating. However, the
bounds cannot be exactly the same, for in the multilinear homogeneous case,
we need at least Ω(n log n) if k ≥ 2.

Let us end with the following two questions:

(i). Can Skn be computed by a monotone formula of size poly(n) · kO(log k)?

(ii). Does the central symmetric polynomial Sn2n have polynomial size homoge-
neous formula?
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