
Timed Sets, Functional Complexity, and
Computability

Robin Cockett a,1,5 Joaqúın Dı́az-Böıls b,4,6

Jonathan Gallaghera,3,7 Pavel Hrubeš a,2,8

a Department of Computer Science
University of Calgary
Calgary, Canada

b Departamento de Lógica y Filosoph́ıa
Universidad de Valencia

Valencia, Spain

Abstract

The construction of various categories of “timed sets” is described in which the timing of maps is considered
modulo a “complexity order”. The properties of these categories are developed: under appropriate condi-
tions they form discrete, distributive restriction categories with an iteration. They provide a categorical
basis for modeling functional complexity classes and allow the development of computability within these
settings. Indeed, by considering “program objects” and the functions they compute, one can obtain models
of computability – i.e. Turing categories – in which the total maps belong to specific complexity classes.
Two examples of this are introduced in some detail which respectively have their total maps corresponding
to PTIME and LOGSPACE.

Keywords: Restriction categories, complexity measures, functional complexity, computability, Turing
categories

1 Introduction

The goal of this paper is to provide a general construction of categories of “timed

sets” which may be used as a categorical basis for modeling functional complexity

1 Supported by NSERC
2 Supported by PIMS
3 Supported by the University of Calgary
4 Universidad de Valencia
5 Email: robin@ucalgary.ca
6 Email: ximo104@hotmail.com
7 Email: jdgallag@ucalgary.ca
8 Email: pahrubes@gmail.com

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 286 (2012) 117–137

1571-0661/$ – see front matter © 2012 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2012.08.009

mailto:robin@ucalgary.ca
mailto:ximo104@hotmail.com
mailto:jdgallag@ucalgary.ca
pahrubes@gmail.com
mailto:robin@ucalgary.ca
mailto:ximo104@hotmail.com
mailto:jdgallag@ucalgary.ca
pahrubes@gmail.com
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2012.08.009
http://dx.doi.org/10.1016/j.entcs.2012.08.009
http://www.sciencedirect.com

classes. A motivating example concerns the modeling of polynomially timed func-

tions: this example is of additional interest as it is possible to show one obtains a

full model of computability – a Turing category [2,10] – in which the total func-

tions are precisely the PTIME functions in the usual complexity sense. One may

therefore identify the computability theory of this Turing category with the theory

of PTIME complexity.

To achieve such a modeling, a number of ingredients must be collected. The first

and simplest ingredient is a notion of “timing”: here we take a very basic approach

supposing that a (partial) map between sets is timed if for every input (on which

the map defined) there is a measurement of the “running time” of the function on

that input. Of course, “time” here could be replaced by any resource which one

might wish to measure. Indeed, at the end of the paper we include a discussion

using space as a resource in order to obtain a Turing category whose total functions

belong to LOGSPACE.

Formally, the measurement of the resources used by a partial function, f , when

applied to an element, x, in its domain, is given by associating to that element

a value in a size monoid. The canonical example of a size monoid is, of course,

the natural numbers, N , under addition. Thus, for measuring time complexity,

we associate to each x in the domain of f , a time |x|f ∈ N . If one had wished to

measure space, a natural size monoid might be the natural numbers under maximum

as the space usage of the composite of two functions is often 9 the maximum of the

individual space usages.

Sets with “timed maps” in this sense certainly form a category in which two

timed maps are considered to be equal if and only if they have exactly the same

timing. Typically, however, in complexity theory one wants to regard maps whose

timings are “similar” to be equal. So for example, if the functions have timings

which asymptotically differ only by a linear factor (e.g. as in “big O” notation),

one may want to regard them, from a complexity standpoint, to be equivalent. To

capture this idea, which is fundamental to complexity theory, it is clear that one

must pass to a quotient of the basic category of timed sets. However, there is a

technical problem: one must describe precisely when two timed maps should be

equivalent.

Unfortunately, one cannot simply use asymptotic behavior (e.g. “big O” no-

tation) as, a priori , it is only defined for maps from the natural numbers to the

real numbers. The timing functions in which we are interested have domain an

arbitrary set and codomain an arbitrary size monoid. Thus, some other mechanism

must be sought: we introduce here the notion of a complexity order to serve this

purpose. A complexity order is a set of monotone endomorphisms of a size monoid,

C ⊆ Mon(M,M) satisfying certain properties. Given a complexity order, C one can

preorder timed maps: one map, f , being of better C-complexity than another, g,

if it is defined whenever the latter is, and its cost is bounded by the latter’s cost

modified by a map from the order C, that is |x|f ≤ F (|x|g) for all x in the domain

9 For LOGSPACE it turns out (see later) that the appropriate size monoid is actually the natural numbers
under addition: however, for example for PSPACE it does seem that maximum is more appropriate.

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137118

of g and for some F ∈ C. The maps equivalent under this preorder are then taken

as being equal.

Of course, for this to make good sense, C must satisfy some basic properties: it

must certainly be closed to composition, but also, more technically, it must be “laxly

additive.” A canonical example of a complexity order is generated by the polynomial

maps, P ⊆ Mon(N ,N), on the natural numbers. Another important example,

closely related to “big O” notation, is generated by the linear maps, L ⊆ Mon(N ,N).

After the maps are quotiented by this C-equivalence, a category of timed sets is

obtained whose maps are partially ordered by their C-complexity. If the complexity

order, C, is closed to addition – which certainly implies that C is laxly additive –

something quite striking happens: the resulting category of timed sets naturally has

the structure of a restriction category. Restriction categories are important as they

provide a completely algebraic way of expressing partiality. The completeness the-

orem for restriction categories asserts that every restriction category is canonically

a full subcategory of a partial map category: the canonical partial map category is

actually formed by splitting the restriction idempotents.

In complexity theory, one always considers the running time of a function in

terms of the size of its input. Yet, in the development so far, no mention of input

size has been made. The effect of splitting the restriction idempotents elegantly

corrects this defect. When one considers a timed map whose starting point is an

idempotent the timing of that idempotent can be viewed as providing the “size” of its

input. One can view the restriction idempotents as giving the cost of “reproducing”

or “reading” the input both of which are, intuitively, measures of its size. In fact,

these idempotents can provide a surprisingly sophisticated interpretation of size as

witnessed by their use in modeling space complexity.

Splitting the idempotents has another remarkable effect. The total maps of this

split category become exactly the maps whose complexity belongs to the complexity

order, C. Thus, for example, if C = P, then one obtains, as the total maps of the

split category, exactly the polynomially timed maps.

This is striking: it is not at all obvious that there should be any relationship

between complexity, given in this very concrete manner, and partiality. Yet, in

a very straightforward way, one can exhibit a direct relationship. Of course, the

polynomially timed maps, obtained in this manner, are by no means the PTIME

maps as understood by complexity theorists. The category of timed sets allows all

possible timings for all partial maps given between sets whether they are realizable

by machine or not. To obtain the classical PTIME maps we need to link these ideas

up with computability: for to be a PTIME map, one must also be able to realize

the map by a computation on a machine.

This introduces a further technical problem: one must explain what a reasonable

notion of computation is in timed sets. One approach to this is to view a computable

map as one obtained by iterating a basic (total) machine step. For this approach

to work requires that one can produce a well-defined notion of iteration – that is

a trace on the coproduct – for categories of timed sets. To achieve this requires

that the complexity order, C, which determines the notion of equivalence, satisfies

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137 119

an additional requirement: namely, that the order is generated by maps which are

“lax” with respect to addition. When this is the case there is a canonical notion

of iteration which allows one to talk about iterating the state change of a machine

(such as a Turing machine) which, in turn, allows one to “time” computations in a

natural way.

In this manner one can obtain a categorical model of computability – in the

sense of being a Turing category [2,10] – whose total maps are precisely the PTIME

maps as standardly understood by complexity theorists. In particular, this suggests

that one can identify the computability theory of this Turing category with the

theory of PTIME complexity.

These results are explained in the last section: the development relies on a

number of standard results from complexity theory and on a basic understanding

of Turing categories. A similar technique allows one to obtain models of Turing

categories of other low complexity classes such as ELEMENTARY, PRIM (prim-

itive recursive). These techniques can also be applied when space is taken as the

resource: to illustrate this we briefly discuss LOGSPACE computations which also

organize themselves into a Turing category. Finally, we illustrate the possibility

of interpreting complexity hierarchy problems as questions about functors between

these Turing categories.

2 Timed Maps

A size monoid, M = (U(M),+, 0,≤) is an ordered commutative monoid (thus

(U(M),+, 0) is a commutative monoid, where U(M) is the underlying set of M and

≤ a partial order on U(M)) such that

• 0 ≤ m for all m ∈ M ;

• if a ≤ a′ and b ≤ b′ then a+ b ≤ a′ + b′.

A basic example of a size monoid is the natural numbers under addition. Of

course, the natural numbers also form a size monoid under maximum and multipli-

cation. In general, given any commutative monoid M we may place a preorder on

it by setting x ≤ y if and only ∃a.x + a = y. The equivalence relation determined

by x ∼ y ⇔ x ≤ y&y ≤ x is then a congruence on the monoid: the quotient by this

congruence is the universal size monoid associated with that commutative monoid.

Formally this gives a left adjoint to the underlying functor, SzMon → CMon, from
size monoids to commutative monoids. Notice that under this adjunction the univer-

sal size monoid associated to a commutative group is always trivial: so size monoids

are, in this sense, orthogonal to groups. In addition, this is a Galois adjunction:

the category of size monoids such that x ≤ y ⇔ ∃a.x + a = y (one may think of

these as “positive cones”) forms a coreflective subcategory of sized monoids and a

reflective subcategory of commutative monoids.

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137120

Given a size monoid M we can form a category TSet(M) 10 , the category of

M -timed sets:

Objects: Sets;

Maps: A timed map f : X → Y is a pair f = (U(f), | |f) where U(f) : X → Y is

a partial function and | |f : X → M is the timing or cost of the map which is

defined precisely when U(f) is defined.

Composition: Given timed maps f : X → Y and g : Y → Z the composite fg

has U(fg) = U(f)U(g) and |x|fg = |x|f + |f(x)|g;
Identities: The timed identity 1X : X → X has U(1X) = 1X and |x|1X = 0 for all

x ∈ X.

This is clearly a category whose maps have attached timings in the size monoid

M . Two maps in this category are equal only if they have precisely the same timings.

Our objective is to now relax this latter constraint: to do this we introduce the

notion of a complexity order. A complexity order for a size monoid, M , is given

by a class C of monotone endomorphisms (i.e., satisfying P (x) ≤ P (y) whenever

x ≤ y), C ⊆ Mon(M,M), such that:

• C is down closed: if P ∈ C and Q ∈ Mon(M,M) with Q(m) ≤ P (m) for every

m ∈ M then Q ∈ C.
• C is closed to composition: the identity map, I(x) = x is in C and, if P,Q ∈ C
then PQ ∈ C (where PQ(x) = Q(P (x)) – as we are writing composition in

diagrammatic order rather than applicative order).

• C is laxly additive: if P1, P2 ∈ C then there is a Q ∈ C such that for all x and

y, P1(x) + P2(y) ≤ Q(x+ y).

We shall say a complexity order C is additive in case we replace the last axiom

by the requirement that whenever P,Q ∈ C then P +Q ∈ C. Clearly, being additive

implies being laxly additive as P1(x)+P2(y) ≤ P1(x+y)+P2(x+y) = (P1+P2)(x+y),

so with this modification, it is still a complexity order. It is not hard to see,

conversely, that a laxly additive order is additive if and only if it contains I + I.

Given a complexity order C and two M -timed partial maps maps f, g : X → Y

we shall say f has better C-complexity than g, denoted f ≤C g, in case as partial

maps U(f) ≥ U(g) (that is whenever U(g) is defined U(f) is defined and equal to

U(g)) and there is a F ∈ C such that for all x for which g is defined |x|f ≤ F (|x|g). 11
Intuitively, one should think that a map f has better complexity than g, when it

is not only as least as defined as g, but also its timing is no worse than g’s (up

to a C increment). We say f =C g, that is f and g have the same C-complexity if

f ≤C g and f ≥C g. This means that U(f) = U(g) and there are P,Q ∈ C such that

|x|f ≤ P (|x|g) and |x|g ≤ Q(|x|f).
10There is a monad involved in this construction for which TSet(M) is the Kleisli category. Using a monad
to model timing was described by Doug Gurr in his PhD thesis [7].
11 It would be more in the spirit of the asymptotic definition of order to require |x|f ≤ P (|x|g) holds almost
everywhere – that is it holds for all but a finite set of x. While the development certainly works with this
definition, as we shall see, most complexity orders already accommodate finitely many exceptions thus the
gain of this complication is limited.

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137 121

A complexity order C is said to be generated by a subset S of its maps, denoted

C = 〈S〉, when every map in the order is dominated by one in the subset. Here are

some examples of complexity orders:

(i) The smallest complexity order for any size monoid M is generated by the

identity map. In this case f ≤C g if and only if f is more defined than g and

|x|f ≤ |x|g whenever g(x) is defined.

(ii) Given any size monoid M there is always the constant complexity order gen-

erated by translations:

KM = 〈Km|Km = λx.x+m,m ∈ M〉.

Here f ≤KM
g if and only if f is more defined than g and there is an m ∈ M

such that for all x ∈ X with g(x) defined, |x|f ≤ |x|g +m.

(iii) Given any size monoid M there is always the linear complexity order:

LM = 〈λx.n · x|n · x = x+ . . .+ x︸ ︷︷ ︸
n times

, n ∈ N 〉.

When M = N , note that f ≤L g implies that, using “big O” notation, f ∈
O(g).

(iv) When M = N (or M = R≥0) then we may consider the orders:

P = 〈λx.
n∑

i=0

aix
i|ai, n ∈ N 〉 P∗ = 〈λx.

n∑
i=1

aix
i|ai, n ∈ N 〉.

These are the polynomial complexity orders. Note that the second does

not include the constant functions. If M = N , the sums are not nec-

essary as they are dominated by the largest power. Hence, for example,

P∗ =
〈
λx.axi|a, i ∈ N , i > 0

〉
.

We start by observing:

Lemma 2.1 Given any complexity order, C, on a size monoid M :

(i) Each homset of TSet(M)(X,Y) is preordered by f ≤C g;

(ii) If f ≤C g and h ≤C k in TSet(M) then , fh ≤C gk (i.e. this is a preorder

enrichment for TSet(M));

(iii) =C is a congruence on TSet(M).

Proof.

(i) It is immediate that f ≤C f the only difficulty is to show transitivity. So

suppose f ≤C g ≤C h then for P,Q ∈ C we have |x|f ≤ P (|x|g) and |x|g ≤
Q(|x|h) but this means |x|f ≤ P (|x|g) ≤ P (Q(|x|h)) as P is monotone. But

QP ∈ C so we are done.

(ii) Suppose |x|f ≤ P1(|x|g) and |y|h ≤ P2(|y|k) whenever they are defined. Then,

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137122

as C is laxly additive there is a Q ∈ C with P1(x) + P2(y) ≤ Q(x+ y) and we

have:

|x|fh = |x|f + |f(x)|h
≤P1(|x|g) + P2(|f(x)|k)
≤Q(|x|g + |f(x)|k)
=Q(|x|gk).

(iii) =C is a congruence on TSet(M) as this is so for the equivalences in any

preorder enriched category.

�

This means that we can pass to the category TSet(M)/C where partial map

equality is determined by f =C g. Thus, in TSet(N)/K two timed maps will be

counted as being equal if they are equal as partial maps and their timings differ by

at most a constant. Similarly, in TSet(N)/L two maps are counted to be equal if

their timings are linearly comparable.

3 Timed Sets and Partial Map Categories

In this section we consider TSet(M)/C, where C is an additive complexity order.

Some of the orders mentioned above are not additive: in particular, neither the

order generated by the identity map, nor the order KM generated by translations,

is additive. On the other hand, the linear and polynomial orders, L,P and P∗, are
additive.

The purpose of this section is to establish:

Proposition 3.1 When C is additive then TSet(M)/C is a discrete distributive

restriction category with the restriction given by:

f : X → Y

f = (U(f), | |f) : X → X

A distributive restriction category is a Cartesian restriction category – that

is it has finite products in an appropriate partial sense (explained below) – with

coproducts over which these products distribute (see [4]). It is discrete in case all

diagonal maps Δ : A → A×A have partial inverses 12 Δ(−1).

The significance of Proposition 3.1 lies in the fact that restriction categories are

abstract categories of partial maps. In particular, every restriction category is a full

subcategory of a (real) partial map category (see [3,11]). Furthermore, the canonical

partial map category, of which it is a full subcategory, is obtained by splitting the

“restriction” idempotents to obtain a larger restriction category. From this one can

extract the subcategory of total maps which can be used to form the partial map

category in which the original restriction category sits (see [3]).

12A map f : A → B in a restriction category has a partial inverse if there is a map f (−1) : B → A with

ff (−1) = f and f (−1)f = f (−1): partial inverses are unique.

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137 123

In section 5 we carry out these formal steps for TSet(M)/C. While abstractly

these steps are quite routine, their realization in this case is quite striking. As we

shall see, this allows the construction of a restriction category whose total maps are

precisely those with timings bounded by the complexity order C. This provides a

direct link between complexity and partiality.

A restriction category is a category with a restriction combinator which, to

any map, assigns an endomorphism of its domain:

f : A → B

f : A → A

This must satisfy just four identities:

[R.1] ff = f [R.2] f g = g f

[R.3] f g = g f [R.4] f g = fg f

As f f = f f = f , the restriction of a map is always an idempotent, called a

restriction idempotent, which should be thought of as a partial identity. In a

restriction category a map f : A → B is said to be total in case f = 1A: the total

maps always form a subcategory.

The proof of proposition 3.1 can be broken into parts: proving that it is a

restriction category, that it is Cartesian, distributive, and discrete. The verification

that it is a restriction category is straightforward: we shall prove [R.1] and [R.4]

as these show why the additive assumption is needed:

[R.1] We know already that the behavior at the level of partial maps is correct:

the problem is to provide a bounding function from C for ff in terms of f . We

have

|x|ff = |x|f + |x|f = |x|f + |x|f ≤ (I + I)(|x|f)
where we use the additivity to produce the bound.

[R.4] Again it is obtaining the bound for fgf in terms of that of fg which is the

only difficulty. We have:

|x|fgf = |x|fg + |x|f = |x|fg + |x|f = 2 · |x|f + |f(x)|g
≤ 2 · (|x|f + |f(x)|g) = (I + I)(|x|f + |f(x)|g)

Clearly, again, we have to use the fact that C is additive.

Thus, TSet(M)/C is a restriction category. A restriction category is Cartesian when

it has a restriction terminal object and restriction (binary) products. A restriction

terminal object is an object 1 with, for each object A, a unique total map !A :

A → 1 such that any map f : A → 1 has f = f !A.

In TSet(M)/C the terminal object is the one element set 1 = {()} and !A is

determined by setting U(!A)(a) = () for every a ∈ A and |a|!A = 0. One then has,

given an f : A → 1, that whenever f is defined on a that |a|f !A = |a|f + |a|!A = |a|f .
An object, A×B, with two total projections, π0 : A×B → A and π1 : A×B → B,

is a restriction product in case for any pair of maps f : X → A and g : X → B

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137124

there is a unique map 〈f, g〉 : X → A×B such that 〈f, g〉π0 = gf and 〈f, g〉π1 = fg.

In TSet(M)/C, the restriction product A×B is the Cartesian product of the sets,

where πi, i = 0 or 1, has U(πi) the appropriate projection in sets, and |(x, y)|πi = 0.

We set U(〈f, g〉) to be the pairing map, which, on x ∈ X, is only defined when

both f and g are defined, and set |x|〈f,g〉 = |x|f + |x|g. To show that this is well-

defined, that is that if f =C f ′ and g =C g′ that 〈f, g〉 =C 〈f ′, g′〉, it suffices to show

that if f ≤C f ′ and g ≤C g′ then 〈f, g〉 ≤C 〈f ′, g′〉. So suppose P1, P2 ∈ C with

|x|f ≤ P1(|x|f ′) and |x|g ≤ P2(|x|g′) then

|x|〈f,g〉 = |x|f + |x|g ≤ P1(|x|f ′) + P2(|x|g′) ≤ Q(|x|f ′ + |x|g′) ,

where we are using the fact that C is laxly additive.

To verify that 〈f, g〉π0 = gf , first recall that this is so for the underlying partial

maps between sets, so we need only check the bounds. However, for this we have:

|x|〈f,g〉π0
= |x|〈f,g〉 + |(f(x), g(x))|π0 = |x|〈f,g〉 = |x|f + |x|g = |x|g + |x|f = |x|gf .

To establish uniqueness, suppose h : X → A × B satisfies these conditions, then

certainly U(h) = U(〈f, g〉); so that it remains to show that there are P,Q ∈ C with

|x|〈f,g〉 ≤ P (|x|h) and |x|h ≤ Q(|x|〈f,g〉). We have hπ0 = gf so we have a P and Q

such that |x|hπ0 ≤ P (|x|gf) and |x|gf ≤ Q(|x|hπ0). Now observe |x|gf = |x|f + |x|g =

|x|〈f,g〉 and |x|hπ0 = |x|h + |h(x)|π0 = |x|h, so that these bounds suffice.

We have now established that TSet(M)/C is a Cartesian restriction category.

Given this structure, the diagonal map Δ = 〈1A, 1A〉 : A → A × A is clearly a

zero cost map and so has a zero cost partial inverse whose domain of definition is

exactly the diagonal elements and which has Δ(−1)(x, x) = x.

Finally, we must show that TSet(M)/C has coproducts: the empty set is clearly

the initial object. The binary coproduct A+B is just the disjoint union of the sets:

the injections σ0 and σ1 are the inclusion maps in sets with a zero timing. The

copairing map for f : A → X and g : B → X is the map 〈f |g〉 : A+B → X, where

U(〈f |g〉) is the usual copairing for sets and partial functions (U(〈f |g〉)(a) = f(a)

for a ∈ A and U 〈f |g〉 (b) = g(b) for b ∈ B) with timing |a|〈f |g〉 = |a|f for a ∈ A and

|b|〈f |g〉 = |b|g for b ∈ B. As before we must show this is well-defined: this requires

finding a bounding function which works for both components 13 – and the sum of

the bounding functions of the individual components will clearly work. It is now

routine to show one has a coproduct. Furthermore, as the canonical map

〈1A × σ0|1A × σ1〉 : A×B +A× C → A× (B +A)

has zero cost and is an isomorphism in sets, it follows easily that TSet(M)/C is

distributive.

This completes the proof of proposition 3.1.

13 In order to make the product and coproduct well-defined, a simultaneous bound for all the components
is required. While for finite products and coproducts this is simply given by adding the individual bounds,
this technique does not work for infinite products or coproducts and, indeed, TSet(M)/C does not have
these limits.

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137 125

It should be noted that in TSet(M)/C, the total maps are (up to equivalence)

zero cost maps. Thus, even when C = P this allows only maps with timings which

are bounded by a constant to be total. Furthermore, these maps take no account of

the size of their inputs (or outputs for that matter). These are major defects from

the complexity perspective: however, as we shall see shortly, they are all corrected

by the formal construction of splitting idempotents (see section 5).

4 Joins, Ranges, and Iteration

Given any restriction category there is always an induced restriction partial order on

parallel maps; it is defined by f ≤ g if and only if fg = f . This makes any restric-

tion category a partial order enriched category. Observe first that this restriction

ordering is actually the converse of the complexity ordering:

Lemma 4.1 In TSet(M)/C, for additive C, f ≤ g in the restriction order if and

only if g ≤C f in the complexity order.

Proof. For suppose f ≤ g then fg = f so U(g) is at least as defined as U(f) but,

furthermore, on the timing we have a P ∈ C such that

|x|g ≤ |x|f + |x|g = |x|fg ≤ P (|x|f)

it follows that g has better C-complexity than f (i.e. g ≤C f). Conversely, suppose

g ≤C f then U(f) ≤ U(g) and there is a P ′ ∈ C such that |x|g ≤ P ′(|x|f). It follows
then that

|x|fg = |x|f + |x|g ≤ |x|f + P ′(|x|f) = (I + P ′)(|x|f)
where the desired bound is I + P ′ which, as C is additive, is certainly in C. �

In any restriction category we say that two parallel maps f and g are compati-

ble, f � g, in case fg = gf . In sets and partial maps this means that they take the

same value when they are both defined: thus, clearly, the join of the partial maps

in sets, f ∨ g, exists. It is not the case that in TSet(M)/C, for an arbitrary M , that

one can join maps in this manner. Technically a restriction category has joins if

whenever f and g are parallel maps with f � g then there is a parallel map f ∨ g

such that, with respect to the restriction order, it is the join – that is f ≤ f ∨ g,

g ≤ f ∨ g, and if f ≤ h and g ≤ h then f ∨ g ≤ h – and that join is stable – that

is h(f ∨ g) = (hf) ∨ (hg): in a restriction category this then implies universality,

(f ∨ g)k = (fk) ∨ (gk).

In fact, from the general theory [4], any distributive restriction category is an

“extensive” restriction category. Extensive restriction categories always have dis-

joint joins of partial maps. This provides:

Proposition 4.2 When C is additive, TSet(M)/C has finite disjoint joins of par-

allel maps.

This means that when f, g : A → B are parallel maps with disjoint domains, that

is fg = ∅ = gf , where ∅ is the empty partial map then the join of f and g exists: it

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137126

is written f�g to emphasize the disjointness. For a general M it will not be the case

that joins of compatible maps exist, however, if we assume M has binary infima,

which are preserved by addition (in the sense that (x ∧ y) + z = (x+ z) ∧ (y + z)),

then we have:

Proposition 4.3 When M has binary infima which are preserved by addition and

C is additive, then TSet(M)/C has finite joins of all compatible maps.

Proof. We define f ∨ g to have U(f ∨ g) = U(f) ∨ U(g) and

|x|f∨g =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|x|f f(x) ↓ and g(x) ↑
|x|g f(x) ↑ and g(x) ↓
|x|f ∧ |x|g f(x) ↓ and g(x) ↓

It is left to the reader to check this is well-defined. That it has all the required

properties is also straightforward to check. �

Certainly when M = N the requirements 14 of Proposition 4.3 are satisfied so,

in this case, we have finite joins of compatible maps. As N is well ordered, we may

also form “ranges” [10,5]: the range associates to each map f : A → B a restriction

idempotent f̂ : B → B such that ff̂ = f , f̂ g =
̂̂
fg, and f̂g = f̂g. A range operator

provides an algebraic description of the image of a map. Sets and partial maps have

ranges because every map has a partial section. For an additive C, TSet(N)/C, also
has partial sections for every map: however, the section must be chosen carefully!

We briefly outline these ideas. Given a partial map f : A → B a partial section

is a map g : B → A such that gf = g and fgf = f : if a map has a partial section

g then f̂ = g. Given f : A → B in TSet(N)/C we may define a zero cost section g

so that g(y) is defined only if y = f(x) for some x ∈ X, further, when it is defined,

f(g(y)) = y and |g(y)|f = min{|x|f | f(x) = y} (here we use the well-ordering of N).

This is last requirement is necessary as can be seen from the proof that fgf = f .

The key steps in the bounding argument are

|x|fgf = |x|f + |f(x)|g + |g(f(x))|f = |x|f + 0 + |g(f(x))|f ≤ |x|f + |x|f

where the last step is possible because of the way we chose g(y) to have |g(y)|f
minimal. We state without further justification – because it is quite remarkable

that these categories are so well-structured:

Proposition 4.4 When C is additive, TSet(N)/C is a discrete range restriction

category with finite joins.

The last aspect of structure we require from these categories is that it should

be possible to iterate maps. A category has iteration precisely when it is traced on

14 In this case, as N is well-ordered, it may be tempting to think that as we have arbitrary non-empty
infima that we will have arbitrary joins for any set of compatible parallel maps (i.e. not just for finite sets).
However, this is not the case: the join of an infinite collection will in general not be well-defined as finding
uniform bounds is only possible for finite families.

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137 127

the coproduct [8,9]. The iteration combinator has the following form:

h : A → A+B

h† : A → B
Iteration

However, in an extensive restriction category any map h : A → A+B can be broken

down into two disjoint maps h = f �g : A → A+B where f : A → A and g : A → B

allowing the iteration to be re-expressed as a “Kleene wand”:

f : A → A g : A → B f ⊥ g

f |�g : A → B
Kleene Wand

where f ⊥ g means f g = ∅. Intuitively f is iterated until the guard g is encountered

at which point an output is produced. In sets and partial functions the canonical

Kleene wand may be expressed as f |�g =
⊔∞

i=0 f
ig. Of course, as both f and g are

partial f |�g will certainly be partial. However, note that there is an added source of

partiality as the iteration of f may never hit the guard.

The Kleene wand, in order to correspond to a well-behaved trace, must satisfy

some basic equations:

[W.1] When f ⊥ h then (fg)|�h = h � f((gf)|�(gh));
[W.2] When f ⊥ g, g ⊥ h, and f ⊥ h then (f � g)|�h = (f |�g)|�(f |�h);
[W.3] When f ⊥ g then (f |�g)h = f |�(gh);
[W.4] When f ⊥ g then 1A × (f |�g) = (1A × f)|�(1A × g);

[W.5] When f ≤ f ′, g ≤ g′, and f ′ ⊥ g′ then f |�g ≤ f ′|�g′.
The first identity allows finite unwindings of the iteration:

f |�g = g � (f |�fg) = g � fg � (f |�ffg) = ...

Note that the third identity tells us that f |�g = (f |�g)g where f |�g provides a more

primitive form in which g may be regarded as implementing a predicate guard. The

fourth identity allows one to trace in a context A.

Sets and partial maps satisfy all these identities and we shall use this to es-

tablish that TSet(M)/C also has iteration which is defined in the obvious manner:

f |�g(x) := g(fn(x)) when this is defined for some n (at most one n will work) and

|x|f |�g := (
∑n−1

i=0 |f i(x)|f) + |fn(x)|g. The only technical problem is then to show

that iteration, as we have defined it, is actually well-defined with respect to the

equivalence on maps. For this it is necessary to demand more of the complexity

order C.
We say that a complexity order is lax if it generated by a class of functions which

are lax in the sense that P (m)+P (n) ≤ P (m+n) (we always have 0 ≤ P (0)). Note

that sums and composites of lax functions are lax.

Proposition 4.5 When C is additive and lax TSet(N)/C has iteration.

Proof. The equations all follow easily from the fact that sets and partial maps

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137128

satisfy the equations. The only difficulty is to prove that if f ≤C f ′ and g ≤C g′

then f |�g ≤C f ′|�g′. Because of these inequalities we have:

f ′(x) ↓⇒ |x|f ≤ P (|x|f ′)
g′(x) ↓⇒ |x|g ≤ Q(|x|g′)

Suppose now that f ′|�g′(x) is defined then clearly f |�g(x) will be defined and in fact

their evaluations on this element will be the same. That is there is a unique n so

that g(fn(x)) = g′(f ′n(x)) and they are both defined. Consider the cost of these:

|x|f |�g = |x|fng

= |x|f + |f(x)|f + ...+ |fn(x)|g
≤P (|x|f ′) + P (|f ′(x)|f ′) + ...+Q(|f ′n(x)|g′
≤ (P +Q)(|x|f ′) + (P +Q)(|f ′(x)|f ′) + ...+ (P +Q)(|f ′n(x)|g′
≤ (P +Q)(|x|f ′ + |f ′(x)|f ′ + ...+ |f ′n(x)|g′)
≤ (P +Q)(|x|f ′|�g′).

�

The class L (linear time) is lax. Significantly the class P is not lax: the problem

is that constant functions are not lax. However, the class P∗ is lax as we removed

the constant functions! Recall that constant functions are only important when the

input sizes can be zero: we shall remove this possibility shortly.

It is worth remarking that categories of timed sets often have more than one

trace. Consider, for example, TSet/L where L is the linear order on the natural

numbers with addition. As described above L is lax so that there is a trace as

defined above. However, on any size monoid (such as N) which has a maximum L
is also an order for that monoid where addition is replaced by the maximum (e.g.

for N regarded as size monoid with addition given by max(x, y)). Furthermore, the

two categories of timed sets are then actually isomorphic. However, significantly,

the traces given by the above, with respect to addition and maximum, are not the

same. This not only demonstrates that a category can have more than one trace

but also is a reminder that when one wishes to talk of iteration one may have a

choice of iteration!

5 Splitting Restriction Idempotents

Our next objective is to split the restriction idempotents of TSet(M)/C to produce

Split(TSet(M)/C). This is a standard construction (also – for all idempotents –

known as the Karoubi envelope or Cauchy completion) which turns the idempo-

tents e and e′ into objects and takes as the maps f : e → e′ those maps in the

original category such that efe′ = f . The construction is remarkable as it pre-

serves almost all the properties of the original category. In particular, if one starts

with a distributive restriction category then the result will be a distributive restric-

tion category. Furthermore, ranges, joins, and iteration are all transferred onto the

splitting.

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137 129

Let us consider in detail what an object of Split(TSet(M)/C) looks like. Recall

that a restriction idempotent is just a timed partial identity: it is easy to see that

the elements which are not in the domain of the underlying partial identity will not

play any role. So it suffices to consider the objects whose underlying partial identity

is actually the identity: this makes the only important information the timing of the

idempotent. Thus, such an object is essentially a set A with a map which assigns

to each element a ∈ A a “size” ‖a‖e (these are called sized sets in [6]). A timed

map f : e → e′ between two sized sets, in this sense, is a partial map such that

‖x‖e + |x|f + ‖f(x)‖e′ ≤ P (|x|f) (P ∈ C)

(recall we must have efe′ =C f). We may think of this as requiring that the timing

of a map cannot be “faster” than what is required to read the input and produce

the output! Stated like this it seems to be a reasonable requirement, however, it

does mean that even “doing nothing”, in the sense of just passing on the input

unchanged involves actually reading the input and writing an output.

In particular, note that a map f : e → e′ is total in case f = e which means in

terms of timing that

|x|f ≤ P (‖x‖e) (P ∈ C) .
If this condition holds, we say that f has time complexity in C. (The other bounding
identity holds already from the requirement above.) To have time complexity in C
means that the timing of f is C-bounded by the size of its input: so, intuitively, f

“runs” in time P (n) where P ∈ C and n ∈ M is the size of the input.

Summarizing this discussion we have:

Proposition 5.1 When C is additive Split(TSet(M)/C) is a discrete distributive

restriction category in which the total maps are precisely the maps whose time com-

plexity lies in C. Furthermore, if TSet(M)/C has joins, ranges, or iteration then so

does Split(TSet(M)/C).
There is a technical move we must make at this stage to avoid elements with

zero size – which are undesirable in complexity calculations. Every object in

Split(TSet(M)/C) has a unique total map to the terminal object ! : X → 1;x �→ ()

and |x|! = ‖x‖. Now there is a subobject of the object 1 = {()} given by splitting

the total idempotent � : 1 → 1 where |()|� = 1. By slicing the category over the

object �, Split(TSet(M)/C)/� (note here the objects are total maps �X : X → e

with maps f : X → Y with f�Y ≤ �X) we make � the restriction final object.

We shall say that C is a pointed complexity order if P (0) = 0 for all P ∈ C.
Note that L and P∗ are pointed complexity orders. We observe:

Lemma 5.2 If C is a pointed and additive complexity order then an object Y ∈
Split(TSet(M)/C) has a total map to � (it must be unique) if and only if each

element of Y has a non-zero size.

From now on we shall avoid zero size elements by working in Split(TSet(M)/C)/�
for a pointed complexity order C.

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137130

6 Computability in Timed Sets

The total maps in PTSet := Split(TSet(N)/P∗)/� are by no means the standard

PTIME maps of complexity theory as there was no requirement that these maps be

realizable by a computation. We have only managed, by construction, to arrange

that the “timings” – which are quite arbitrarily given – of all total maps must be

polynomially bounded on their input sizes. To obtain, for example, the standard

notion of PTIME we must restrict to those timed maps which can be realized by a

Turing machine (or some variant thereof – possibly with input and output tapes)

in a number of steps which is P-equivalent to the given timing.

Our objective, however, is not merely to cut out the PTIME maps from PTSet
but to show how they can be seen to sit in a model of computability in which the total

maps are the PTIME maps. More precisely we shall show that the “computable”

maps in PTSet form a Turing category in which the total maps are exactly the

PTIME maps.

A Turing category may be described as a Cartesian restriction category with an

special object T , called a Turing object, such that:

• Every object in the category is a retract of T .

• There is an application map, also called a Turing morphism, • : T × T → T

such that for every (partial) map f : T × T → T there is a total map f̃ : A → T ,

called an index of f , such that:

T × T • �� T

T × T

˜f×1T

��

f

��

Turing categories provide a unifying formulation of abstract computability (see [2]),

and when the category has joins and is discrete, one can obtain many standard

results from computability theory.

We show how to obtain a Turing category in two stages: first, we shall view

Turing machines (in the standard sense) as providing a “program object” which

acts on lists of bits. Second, we shall describe when a program object makes its

values a Turing object so that the programmable maps form a Turing category.

Thus, our discussion starts by introducing how the set of Turing machines may be

viewed as a “program object”, P . Programs can be evaluated on values (inputs),

A, to produce new values (outputs), thus, associated with a program object is an

evaluation (partial) map ev : P ×A → A: we then refer to P as being an A-program

object. We say a map is “P -programmable” if it is of the form f : A → A;x �→
ev(�f�, x), where �f� : 1 → P is an element of P , that is a program. Clearly we

would like the programmable maps to form a Cartesian restriction category: to

achieve this, however, requires more structure.

In order, for an A-program object to be able to describe maps from An → Am

it suffices to describe programmable maps An → A (and when m = 0 the total

map An → 1 must be programmable). To describe programmable maps An → A it

suffices to be able to encode A2 in A in a programmable way and this leads us to

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137 131

demanding that the values themselves have a special property.

In a Cartesian restriction category X an object A is a powerful in case there

are total maps s× : A× A → A, s1 : 1 → A and partial maps P0, P1 : A → A such

that s× 〈P0, P1〉 = 1A×A (and s1!A = 11). The terminal object 1 is always a trivial

example of a powerful object. A more interesting example, which we shall use below,

is List(Bool) (lists of Booleans) in LTSet, with size given by ‖x‖ = 2 · (1 + len(x))
(i.e., twice the length of the list plus one). The map s1 : 1 → List(Bool) picks out

the empty list. There are then linear time maps s×, P0, and P1 which code and

decode pairs:

s×(b : bs, b′ : bs′) = 1 : b : 1 : b′ : s×(bs, bs′) P0(1 : b : : : rs) = b : P0(rs)

s×([], b′ : bs′) = 0 : 0 : 1 : b′ : s×([], bs′) P0(0 : 0 : : : rs) = []

s×(b : bs, []) = 1 : b : 0 : 0 : s×(bs, []) P1(: : 1 : b′ : rs) = b′ : P1(rs)

P1(: : 0 : 0 : rs) = []

Given a powerful object A, an A-program object is an object P which has

total operations comp, pair : P ×P → P together with total points I0, I1, I, J : 1 → P

and a partial evaluation map ev : P ×A → A such that:

A
〈I,1〉 ��P ×A

ev
��
A

A

〈Ii,1A〉
��

Pi

��

i = 0, 1

P ×A ev
��A

P × P ×A

1×ev
��

comp×1��P ×A

ev
��

P ×A ev
��A

A

!
��

〈J,1〉 ��P ×A

ev
��

1 s1
��A

P × P ×A

〈π0,π2,π1,π2〉
��

pair×1 ��P ×A

ev

��

P ×A× P ×A

ev×ev
��

A×A s×
��A

Program object requirements can be explained as follows. The first diagram

states that there must be an identity program. The second says that one must

be able to compose programs. The third says that there is an operation, pair, for
combining two programs which you wish to apply to a single input in order to

produce a pair of answers encoded. The last three diagrams require that there are

programs for projecting from an encoded pair and to the terminal object. Clearly

the codes of a Turing object include these required elements and can be combined in

these ways: so every Turing object is automatically a program object. The converse,

of course, is not true.

A map f : A → A is said to be P -programmable in case there is an element

�f� : 1 → P such that P ×A ev ��A

A

〈�f�,1A〉
��

f

��

We shall indicate that X is retract of A by writing X �r
s A, where sr = 1X and

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137132

rs is an idempotent of A. A retract of A, X �r
s A, is a P -programmable retract

in case the idempotent rs : A → A is P -programmable. If X �r
s A and Y �v

u A are

P -programmable retracts of A then a map h : X → Y is P -programmable if the

map A →r X →h Y →u A is P -programmable.

Note that the conditions of P being an A-program object ensure that 1A is com-

putable and if f and g are computable fg is computable: 〈〈�g�, �f�〉 comp, 1A〉 ev =

〈�g�, 〈�f�, 1A〉 ev〉 ev = f 〈�g�, 1A〉 ev = fg Furthermore, these conditions ensure

that all powers An are P -programmable retracts of A (including when n = 0) and,

thus, we may form a category, ProgP/A(X), of P -programmable maps in X whose

objects are just the powers of A. In fact, it is not hard to prove:

Proposition 6.1 If A is a powerful object and P is an A-program object in a Carte-

sian restriction category then the subcategory of P -programmable maps, ProgP/A(X),

forms a Cartesian restriction subcategory.

One thing which is perhaps less obvious concerns how the restriction is defined:

one uses the fact that f = 〈1, f〉π0: if f is programmable then f = 〈1, f〉π0 =

〈〈〈I, �f�〉 pair, I0〉 comp, 1A〉 ev.
Finally, in order to obtain a model of computability, we wish to understand

when an A-program P object turns A into a Turing object in the subcategory of

P -programmable maps. The following is the main formal observation of this section:

Proposition 6.2 If X is a Cartesian restriction category with a powerful object A

and an A-program object P such that P is a P -programmable retract of A and comp,
pair, ev, I0, I1, and I are all P -programmable then ProgP/A(X) is a Turing category.

Proof. Define the program Q := �〈P0, P1〉 f� then

A×A
〈P0,P1〉×1��A×A×A

1×s×
��

rP×s×

��
A×A×A

s××1

��

1×s×
��A×A

rp×1 ��P ×A
ev

		
P ×A

sP×1

��

ev ��A

A×A s×
��

(QsP)×1×1

��

A

Q×1

��

〈P0,P1〉
��A×A

f

��

where (Q × 1)sP s× is the required total map and the Turing morphism is • :=

(〈P0, P1〉 × 1)(rP × s×)ev. �

Notice that the proof uses all the structure of a programming object and the

powerfulness of A. In particular, the definitions of the Turing morphism and of the

index use pairing and composition non-trivially.

Our aim is to apply this to the set of Turing machines regarded as List(Bool)-
program object in PTSet with the usual timing of evaluation. First note that

regarding the program object, P , as the set of specifications of Turing machines

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137 133

certainly means that P may be viewed a programmable retract of A = List(Bool).
Some bit strings may not be legal specifications of a Turing machine but recognizing

the legal specifications can certainly be achieved in polynomial time – indeed in

linear time as the legal specification can be given by a regular language. The

composition and pairing function must take in two specifications of Turing machines

and modify them to produce, respectively, the composite or the interleaved pairing.

Composition is clearly programmable map on pairs of programs: it basically involves

identifying the starting state of the second machine with the final state of the first.

Thus, it can be done in linear time. Somewhat trickier is to see that pairing is

programmable: the trick is to view pairing as a composite of duplicating the input

(onto “odd” and “even” positions on the tape) modifying the first program to act

on only “even” bits and composing it with the second program modified to only act

on “odd” bits. This can be done in linear time and is certainly programmable and

total.

The only remaining difficulty is to show that the map ev is programmable.

Recall that the way we defined evaluation was to run the specified Turing machine

on the input: now we are asking that there be a universal Turing machine which

can interpret any Turing machine specification in a manner so as to make the two

maps equivalent with respect to the complexity order (here P∗). Fortunately, that
any Turing machine can be simulated by a universal Turing machine with only a

loss of an O(log n) factor in performance is well-known (see [1] Theorem 1.9 or [12]

in the proof of the “Time Hierarchy Theorem” 9.10). This tells us that evaluation

is programmable.

This discussion shows that the conditions of Proposition 6.2 are satisfied and

yields:

Corollary 6.3 The maps which are programmable by a Turing machine in polyno-

mial time in PTSet form a Turing category, Tptime, whose total maps are precisely

the PTIME maps.

As the best known simulation of a Turing machine by a universal Turing machine

has an order log n overhead, one cannot quite make the argument (as presented)

work for linear time computations. However, for any additive complexity order

which contains n log n the argument works verbatim. Hence, this provides a number

of examples of Turing categories whose total maps have low time complexity.

We have in these arguments relied on having a priori a grasp of how a Turing

machine is timed. However, it is worth remarking that this too can be explained

within this formalism using the trace. A Turing machine has the property that its

evaluation map is given by iterating a total transition map, that is ev = step|�halt
where step∨halt = 1P×A. The existence of a total transition map is a key ingredient

of being a (deterministic) machine. By modeling the machine steps in PTSet one
adds timing. Notice, however, that to arrange that each step has unit cost we

are essentially forced to assume that the input has unit cost. This makes step|�halt
exceedingly partial. This means these maps do not live in Tptime. On the other hand,

Tptime does inherit the trace of PTSet and, in fact, the evaluation map – the Turing

morphism we consider above – is given by such an iteration (up to the equivalence

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137134

determined by P∗). However, now a single step must have a timing that dominates

the cost of “reading” its input (i.e. the size of the tape), so this internal machine,

while present, does not reflect well the usual step-counting intuition for measuring

time complexity. Thus, it seems that the usual intuition is better served by using

the iteration in PTSet with unit timing (as above) together with input and output

functions that restore the usual sizing of the input and output. Specifically, taking

step|�halt to be the iteration that counts steps, and ein,eout to be the restriction

idempotents whose timing measures the size of lists of bits correctly, the evalution

map we actually require in PTSet is

List(Bool)2
ein;step|�halt;eout �� List(Bool) .

The arguments above all rely, mimicking the approach taken in complexity the-

ory, heavily on the machine model and the way resources are measured. Changing

the machine model, of course, changes what can be computed and also the overhead

of simulation. To illustrate this we briefly discuss LOGSPACE computations. Re-

call that a transducer is a Turing machine with a read only input tape (on which

one can go backward and forward), a read/write working tape, and a write only out-

put tape (on which one can only write and move right): the maximum length that

the work tape attains during a computation is the space resource which is measured

– this is abstractly now to be the “timing” of the map. The manner of composing

transducers is crucial: this, in particular, determines how we set the “timing” of

the identity on a list of bits. A transducer thinks of its input as being generated

“by need”: if it requires the nth bit it simply runs the transducer which generates

its input, throwing away all the bits it generates, until the required bit is produced.

It then proceeds with its calculation having obtained the required bit. This is ex-

tremely time inefficient but it is space efficient. Minimally to do this one must be

able to actually count the bits one must throw away and, for this, one needs roughly

O(log n) space. Therefore, the cost of the “reading” the input (the idempotent) on

a list of bits is set to be the logarithm (base 2) of the length of the list (rounded

away from zero). Furthermore, somewhat surprisingly, the “timing” of composition

is given by addition under the linear complexity order, L. Thus, the category of

LOGSPACE computations is carved out from LTSet := Split(TSet(N)/L)/�. Fur-

thermore, the program object we use this time is the set of transducer specifications

on lists of bits.

Again we wish to use Proposition 6.2 to show this category is a Turing category.

For this we need to check the requirements. Clearly legal transducer specifications,

represented as list of bits, can be recognized using a log space computation so P is

a programmable retract of A. Clearly, also, A is still a powerful object with respect

to the same maps as above which are all clearly log space. It is less obvious how

composition and pairing of transducers can be performed in log space. Composition

is implemented by the second program calling on the first program whenever it

moves the input head, the first program provides the input required by running itself

until the required output is generated. This is achieved by modifying the second

program’s read instructions to call the first program and to record a position and can

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137 135

be achieved in log space. Once one has composition the pairing is straightforward

using the technique described above: one expresses it as a composite of duplicating

the input, modifying the first program to work on “odd” bits and the second to work

on “even” bits. Clearly, these modifications can all be managed in LOGSPACE. For

the program evaluation map itself we recall that it is well-known that a universal

Turing machine (or transducer) can simulate a specified transducer with only a

constant factor of degradation in space efficiency (see exercises in [12,1]).

We therefore have:

Corollary 6.4 The maps which are programmable by transducers in logarithmic

time in LTSet form a Turing category, Tlogspace, whose total maps are precisely the

LOGSPACE maps.

It is also worth remarking that there is a functor V : Tlogspace → Tptime which

takes a LOGSPACE computation to a PTIME computation using the fact that a

computation in space s can be performed in time 2O(s)(using [1] Theorem 4.2 for

example): the only subtlety is that one must actually “slow down” space compu-

tations which do not use the full exponential time so that equivalent programs are

taken to equivalent programs. Clearly, this functor preserves the meaning in sets

and partial maps:

Tlogspace

V ��Tptime

��
Par

This shows how relationships between functional complexity classes give rise to

functorial relationships between their Turing categories. Whether there exists an

isomorphism between Tlogspace and Tptime is, of course, an intriguing question equiv-

alent 15 to the open problem whether PTIME = LOGSPACE.

7 Conclusion

The objective of this work was to provide concrete models of computability, as em-

bodied in Turing categories, in which the total maps belong to a specific functional

complexity class (such as PTIME and LOGSPACE). The constructions we have

provided do achieve this. Furthermore, they closely mimic the standard approach

taken in complexity theory. This suggests that the results of complexity theory may

be mapped fairly directly into categorical facts.

15 It is immediately clear that if this functor is an isomorphism then PTIME = LOGSPACE. The converse
not obvious but, nonetheless, is true. From the assumption that PTIME = LOGSPACE, one can prove
that this V must be an isomorphism for all “computable” functions. Here is a sketch of the proof: the idea
is to view an arbitrary computation, f , as a function which has a time bound provided by an additional
argument, so that f(x) = a ⇔ ∃t.f ′(x, t) = a + 1. The computation f ′(x, t) is total: one interprets
f ′(x, t) = 0 as meaning that the computation had not completed by time t. One can further assume that,
when it has completed, so that f ′(x, t) = a+ 1, then for every t′ ≥ t one has f ′(x, t′) = a+ 1. In fact, f ′ is
not only total and runs in polynomial time but, when t is represented in unary, it can actually be arranged
to run in linear time. This means, by assumption, the program f ′ can be transformed into a LOGSPACE
program. However one can then iteratively search over the time, t, using the program f ′ to show that f(x)
can be implemented in LOGSPACE.

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137136

References

[1] S. Aurora and B. Barak, Computational Complexity: a modern approach. Cambridge University Press
(2009).

[2] J.R.B Cockett and P. Hofstra, Introduction to Turing Categories. Annals of Pure and Applied Logic,
Vol. 156 (2008) 183–209.

[3] J. R. B. Cockett and S. Lack, Restriction Categories I: Categories of partial maps. Theoretical
Computer Science, Vol 270 (2002) 223-259.

[4] J.R.B. Cockett and S. Lack, Restriction categories III: colimits, partial limits and extensivity.
Mathematical Structures in Computer Science, Vol 17- 4 (2007) 775-817.

[5] J.R.B. Cockett and E. Manes, Boolean and Classical Restriction Categories. Mathematical Structures
in Computer Science, Vol 19-2 (2009) 357-416.

[6] J. R. B. Cockett and B. F. Redmond A Categorical Setting for Lower Complexity. Electronic Notes in
Theoretical Computer Science, Vol. 265 (2010) 277 300.

[7] D. Gurr, Semantic frameworks for complexity. PhD Thesis, University of Edinburgh (1991).

[8] M. Hasegawa, On traced monoidal closed categories. Mathematical Structures in Computer Science,
Vol 19-2 (2009):217-244.

[9] A. Joyal, R. Street, and D. Verity, Traced monoidal categories. Math. Proc. Cambridge Philos. Soc.
Vol. 119-3 (1996) 447468.

[10] R.A. Di Paola and A. Heller, Dominical categories: recursion theory without elements. Journal of
Symbolic Logic, Vol. 52 (1987), 595-635.

[11] E. Robinson and G. Rosolini Categories of partial maps. Information and Computation, vol. 79 (1988)
94–130.

[12] M. Sipser Introduction to the theory of computation. PWS Publishing Company (1996)

R. Cockett et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 117–137 137

	Introduction
	Timed Maps
	Timed Sets and Partial Map Categories
	Joins, Ranges, and Iteration
	Splitting Restriction Idempotents
	Computability in Timed Sets
	Conclusion
	References

