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Abstract

Khrapchenko’s classical lower bound n2 on the formula size of the parity function f can be inter-
preted as designing a suitable measure of sub-rectangles of the combinatorial rectangle f−1(0) ×
f−1(1). Trying to generalize this approach we arrived at the concept of convex measures. We prove
the negative result that convex measures are bounded by O(n2) and show that several measures
considered for proving lower bounds on the formula size are convex. We also prove quadratic upper
bounds on a class of measures that are not necessarily convex.
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1. Introduction

Most proofs of lower bounds on the formula size can be viewed as inventing suitable formal
complexity measures of boolean functions which can be non-trivially bounded from below at some
explicitly given boolean function f : {0, 1}n → {0, 1}. Such measures are real valued functions
defined on all boolean functions and satisfying certain conditions. Formal complexity measures
were introduced by Paterson. He showed that Khrapchenko’s n2 lower bound on the formula size
of the parity function [9] can be recast in this formalism (see e.g. [19], Sect. 8.8). Generalizing
Khrapchenko’s argument for the parity function, Rychkov [16] proved Ω(n2) lower bounds for error
correcting codes. All these results are for the de Morgan basis ¬,∨,∧. In principle this approach
should give lower bounds for every basis, but no results for other bases have been obtained in this
manner. In this paper we will only consider the de Morgan basis.

Apparently, Rychkov [16] was the first who explicitly related formulas with combinatorial rect-
angles. In order to obtain larger lower bounds, Razborov [14] proposed to look at rectangles as
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matrices over some field and introduce appropriate measures on sub-rectangles in terms of the
corresponding sub-matrices. Razborov studied the measures based on the rank of matrices. He
showed in [15] that the rank can only give linear lower bounds for the de Morgan basis, but it gives
super-polynomial lower bounds for the monotone basis ∨,∧.

More recently, a number of various matrix norms have been proposed for proving lower bounds
on communication complexity and formula size [10, 11, 13]. Unfortunately up to now none of the
proposed measures was able to prove more than quadratic lower bounds. Therefore it is necessary
to explain this failure before we attempt to break the n2 barrier for lower bounds based on formal
complexity measures.

In previous papers some limitations of the method used therein were proved. Here we will
introduce another general concept, convex measures. The reason for introducing this concept is to
capture a large class of measures that are defined using matrices on the rectangle f−1(0)× f−1(1).
We will prove that such measures are always at mostO(n2) and show that some measures considered
before are of this type, hence the upper bound also applies to them. Our upper bound on convex
measures is based on the upper bound on the fractional cover number of Karchmer, Kushilevitz,
and Nisan [7]. Using a different technique we will also prove quadratic, and even linear upper
bounds on some other measures related to convex measures.

The main message of this paper is that we must use non-convex measures in order to beat the
n2 bound. Non-convexity, however, is only necessary but not sufficient property: we show that the
measure based on matrix rank introduced by Razborov in [14] is not convex but still, as shown
by Razborov in [15], cannot even yield super-linear lower bounds. The only super-quadratic lower
bounds, the lower bound Ω(n2.5−o(1)) of Andreev [2] and the lower bound Ω(n3−o(1)) of H̊astad [4],
have not been translated into the formalism of measures yet; these bounds were obtained using
Subbotovskaya’s idea of random restrictions [18].

2. Basic concepts

Let n be a fixed positive integer, let Fn denote the set of all boolean functions f : {0, 1}n →
{0, 1}. Literals are boolean variables and their negations. We will consider boolean formulas with
tight negations over the de Morgan basis {∧,∨,¬}. That is, inputs are literals, and the gates are
∧ and ∨. The size of such a formula is the number of input literals. The formula size complexity,
L(f), of a boolean function f is the smallest size of a formula computing f . A function m : Fn → R
is called a formal complexity measure of boolean functions if it satisfies the following inequalities:

(a) Normalization: the measure of each literal is at most 1;
(b) Subadditivity : m(g ∨ h) ≤ m(g) +m(h) and m(g ∧ h) ≤ m(g) +m(h), for every g, h ∈ Fn.

It follows, by induction, that for every formal complexity measure m, we have that L(f) ≥ m(f)
for all boolean functions f . On the other hand, L is a formal complexity measure, hence we are not
losing anything by using formal complexity measures. The hope is that while it is hard to compute
L(f), we may be able to handle other complexity measures. With this goal in mind, the following
larger class of measures—so-called rectangle measures—were considered by many authors.

Let Un = {0, 1}n × {0, 1}n. In this paper we shall define an n-dimensional combinatorial
rectangle, or just a rectangle, to be a non-empty Cartesian product S = S0 × S1 such that S ⊆ Un
and S0∩S1 = ∅. (Note that Un itself is not a rectangle.) The sets S0 and S1 are called sides of the
rectangle S = S0×S1. A sub-rectangle of S is a subset R ⊆ S which itself forms a rectangle. Vector
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pairs e = (x, y) with x 6= y will be referred to as edges. A boolean function f : {0, 1}n → {0, 1}
separates the rectangle S = S0 × S1 if

f(x) =

{
0 for x ∈ S0,
1 for x ∈ S1.

If the sets S0 and S1 form a partition of {0, 1}n, then the rectangle S = S0 × S1 is called a full
rectangle. Note that there is a one-to-one correspondence between boolean functions f : {0, 1}n →
{0, 1} and full rectangles that have the form

Sf := f−1(0)× f−1(1) ;

but there are many more rectangles than boolean functions.
An important class of rectangles are monochromatic rectangles which are the rectangles that

can be separated by single literals. That is, a rectangle M = M0 ×M1 is monochromatic, if there
exists an i ∈ {1, . . . , n} and an ε ∈ {0, 1} such that for all (x, y) ∈ M , xi = ε and yi = 1− ε; here
xi is the i-th bit in x. The smallest monochromatic rectangles are single edges, i.e., rectangles of
the form M = {(x, y)} with x 6= y. The largest ones are the so-called canonical monochromatic
rectangles

Mi,ε = {(x, y) ∈ Un : xi = ε and yi = 1− ε} .

These 2n rectangles cover every rectangle.
Instead of rectangles within the whole set Un, one can work only with rectangles R ⊆ S within

some fixed rectangle S, say, within the full rectangle Sf = f−1(0) × f−1(1) of a given boolean
function f .

For the rest of this paper we shall assume that the dimension n and a rectangle S are fixed.
We shall call S the ambient rectangle. In what follows, R = R(S) will denote the set of all
sub-rectangles and M =M(S) the set of all monochromatic sub-rectangles of S.

2.1. Rectangle measures and communication complexity
A rectangle function is a real-valued function µ : R → R. Such a function is:

(i) Normalized, if µ(M) ≤ 1 for every monochromatic rectangle M ∈M.
(ii) Subadditive, if µ(R) ≤ µ(R1) + µ(R2), for every rectangle R ∈ R and for every its partition

into disjoint union of rectangles R1, R2 ∈ R.

Rectangle functions satisfying both these conditions (normalization and subadditivity) are called
rectangle measures. Note that we do not require such a measure be monotone, in the sense that
R ⊆ S must imply µ(R) ≤ µ(S). The first condition is usually achieved by normalization. That is,
if a rectangle function ν is subadditive and ν(M) > 0 for some monochromatic rectangle M ∈M,
we obtain a measure by defining

µ(R) =
ν(R)

maxM ν(M)
,

where M ranges over all monochromatic rectangles.
These two conditions already suffice for lower-bounding the formula size. Notice that rectangles

can be decomposed into disjoint unions of two rectangles in two ways—vertically and horizontally.
Subadditivity of rectangle measures corresponds to the two conditions of subadditivity (b) in the
definition of formal complexity measures of boolean functions.
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The connection between rectangle measures and formula size can be best seen in the framework
of communication games, as introduced by Karchmer and Wigderson [8]: having a rectangle R,
one of the players decomposes R either row-wise or column-wise, and the players continue the
game on one of the sub-rectangles R1 or R2. Let Γ(R) denote the minimal number of leaves in
a communication protocol tree for a rectangle R in a Karchmer-Wigderson game. Then L(f) =
Γ(Sf ) [8]. The measure Γ(R) itself is a rectangle measure. Moreover, by induction on Γ(R), it can
be easily shown that Γ(R) ≥ µ(R) holds for any rectangle measure µ. Hence, subadditive rectangle
measures can reach L(f) as well. The advantage, however, is that now we have a larger class of
measures, and the subadditivity condition for rectangle measures is weaker requirement than that
for boolean functions.

We keep this important observation as

Proposition 2.1. For every boolean function f and every subadditive rectangle measure µ we have
that L(f) = Γ(Sf ) ≥ µ(Sf ).

The two concepts—rectangle measures and formal complexity measures—are related as follows.

Observation 2.2. If m(f) is a formal complexity measure of boolean functions, then the rectangle
function µ(R), defined by µ(R) := min{m(f) : f separates R}, is a rectangle measure.

2.2. Strongly subadditive measures and the partition number
A stronger condition than (ii) has also been considered:

(iii) Strong subadditivity : µ(R) ≤
∑m

i=1 µ(Ri), for every rectangle R and every its partition into
disjoint union of rectangles Ri ⊆ R.

In order to obtain a lower bound on L(f) it suffices to require this property only for R = Sf .
Note, however, that rectangle measures, satisfying the strong subadditivity condition (iii) may
not achieve L(f), because they lower bound a different quantity, namely, the partition number of
rectangles defined by:

D(R) = min{k : R can be decomposed into k disjoint monochromatic rectangles} .

As observed by Rychkov [16], this measure was implicitly used already in Khrapchenko’s proof [9].
Since D(R) is strongly subadditive, it is also subadditive. Hence, L(f) ≥ D(Sf ) for any boolean
function f . But in the opposite direction we only know that log2 L(f) ≤ (log2 D(Sf ))2 [1]. Still,
the latter inequality implies that boolean functions f in n variables such that D(Sf ) ≥ 2(1−o(1))

√
n

exist. Hence, in principle, the partition number D(S) can also achieve super-polynomial lower
bounds on the formula size. The problem how large the gap L(f)/D(Sf ) can actually be remains
still open.

The measure D(R) has several nice properties.

Proposition 2.3. D(R) is the largest strongly subadditive measure, i.e., D(R) is strongly subad-
ditive and for every strongly subadditive measure µ, µ(R) ≤ D(R) for all rectangles R.

We leave the proof to the reader as an easy exercise. Although D(R) is the largest strongly
subadditive measure, it makes sense to study other strongly subadditive measures, because it is
very difficult to compute D(R) for specific functions.
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Other nice properties of D(R) include the following: it is defined independently of a particular
boolean function, can be naturally extended from rectangles to all subsets X ⊆ S and is monotonic
with respect to set-inclusion. A consequence for lower bounds based on measures is that one can
use measures with all these nice properties and still obtain exponential lower bounds.

However, we cannot stretch the good properties too far. In particular, it is essential that in the
subadditivity conditions the rectangles in the partitions must be pairwise disjoint. Would we not
require them to be disjoint, then µ(S) ≤ 2n would hold for any n-dimensional rectangle S, just
because each such rectangle can be covered by 2n canonical monochromatic rectangles. In the next
section we will show another property, the convexity, that limits the values of measures satisfying
it.

3. Convex measures and the fractional partition number

For a rectangle R, let χR be its indicator function, that is, χR(e) = 1 for e ∈ R, and χR(e) = 0
for e 6∈ R. Let R be a rectangle, R1, . . . , Rm its sub-rectangles and r1, . . . , rm weights from [0, 1]
such that

χR =
m∑
i=1

ri · χRi , (1)

Then we say that the rectangles R1, . . . , Rm with the weights r1, . . . , rm are a fractional partition
of the rectangle R. This is equivalent to the condition that for every edge e ∈ R,∑

i:e∈Ri

ri = 1 .

Notice that if all ri ∈ {0, 1} then a fractional partition is a partition. Instead of (1) we shall use
the following simpler notation

R =
∑
i

riRi .

In this paper we are mainly interested in the following strengthening of the strong subadditivity
condition (iii) for rectangle measures µ:

(iv) Convexity : A rectangle function µ is convex if, for every rectangle R and every fractional
partition R =

∑
i riRi,

µ(R) ≤
m∑
i=1

ri · µ(Ri) . (2)

Note that in results about convex measures it often suffices to assume condition (2) only for frac-
tional partitions consisting of monochromatic rectangles. In particular this concerns Proposition 3.1
and Theorem 3.5.

Karchmer, Kushilevitz and Nisan in [7] introduced a modification of the partition number which
they called deterministic fractional cover number. In this paper we will call it fractional partition
number and denote it by D∗(R). To call it ‘cover number’ would be misleading, because it is
important that one uses partitions, not general coverings. This measure is defined by:

D∗(R) = min
∑
i

ri ,
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such that R has a fractional partition with monochromatic rectangles M1, . . . ,Mm and weights
r1, . . . , rm.

The following is a fractional version of Proposition 2.3.

Proposition 3.1. D∗ is the largest convex measure, i.e., D∗ is convex and for every convex measure
µ, µ(R) ≤ D∗(R) for all rectangles R.

Proof. First we will show that D∗ is convex. Let R =
∑

j∈J rjRj be a fractional partition
of R and, for every j, let Rj =

∑
i∈Ij sijMij be a fractional partition of Rj such that Mij are

monochromatic and D∗(Rj) =
∑

i sij (such fractional partitions exist by definition). Then, clearly,
R =

∑
ij rjsijMij is a fractional partition of R into monochromatic rectangles. Hence

D∗(R) ≤
∑
ij

rjsij =
∑
j

rjD
∗(Rj) .

Now we will show the second part. Let µ be a convex measure. Let R =
∑

i riMi be a
fractional partition of R into monochromatic rectangles such that D∗(R) =

∑
i ri. Using convexity

and normality of µ we get

µ(R) ≤
∑
i

riµ(Mi) ≤
∑
i

ri = D∗(R) .

�

Theorem 3.2 ([7]). For every n-dimensional rectangle S, D∗(S) ≤ 4n2.

Consequently every convex measure is bounded by 4n2. For the sake of completeness we will
reproduce their proof. By more careful computation we will get the constant 9

8 instead of 4. We
will state and prove the bound for all convex measures.

Following Karchmer [6], and Karchmer, Kushilevitz and Nisan [7], associate with each subset
I ⊆ [n] = {1, . . . , n} the following two parity rectangles.

PI,ε = {x ∈ {0, 1}n : ⊕i∈I xi = ε} × {y ∈ {0, 1}n : ⊕i∈I yi = 1− ε} , ε = 0, 1 .

Hence, monochromatic rectangles correspond to the case when |I| = 1. There are exactly 2n+1

parity rectangles (including the empty one).

Lemma 3.3. Every edge (x, y) ∈ {0, 1}n × {0, 1}n such that x 6= y belongs to exactly 2n−1 parity
rectangles.

Proof. For I ⊆ [n], let vI ∈ {0, 1}n be its incidence vector. Let e = (x, y) ∈ S. Since x 6= y, the
vector x ⊕ y is not a zero vector. Since each nonzero vector is orthogonal over GF (2) to exactly
half of the vectors in {0, 1}n, this implies that precisely 2n−1 of the vectors vI are non-orthogonal
to x⊕ y. This means that each edge e belongs to precisely 2n−1 of the sets PI = PI,0 ∪ PI,1. Since
PI,0 ∩ PI,1 = ∅, we are done. �

Lemma 3.4. Let µ be a rectangle measure defined on S. Then for every I ⊆ [n], ε = 0, 1, we have
µ(PI,ε ∩ S) ≤ 9

8 |I|
2.
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Proof. A parity rectangle PI,ε can be viewed as a rectangle corresponding to the parity function
in |I| variables, or its negation. As shown in [17, 12], parity of n = 2l+k variables can be computed
by a formula of size c(n) = 2l(2l+3k). This gives c(n) ≤ 9

8n
2. To see that, observe that the function

y(y+ 3x)/(y+x)2 for x ∈ (0, y) reaches maximum at the point x = y/3, and it has then value 9/8.
Hence µ(S ∩ PI,ε) ≤ 9

8 |I|
2, since µ is a lower bound to the formula size. �

Theorem 3.5. If µ is a convex rectangle measure then, for every n-dimensional rectangle S,

µ(S) ≤ 9
8

(n2 + n) .

Proof. Let S be a rectangle and µ a convex measure. For i = 1, . . . n, ε = 0, 1, let

Ri,ε := {PI,ε ∩ S : I ⊆ [n], |I| = i}

and let Rpar be the union of all these 2n families of parity sub-rectangles of S. For counting
reasons, we shall understand Rpar as a multi-set, elements of Rpar corresponding to different parity
rectangles are considered different. Under this provision, Lemma 3.3 implies that every edge in S
is contained in exactly 2n−1 elements of Rpar. Hence Rpar form a fractional partition of S with
each rectangle R ∈ Rpar of weight rR = 2−(n−1). By the previous lemma, we know that µ(R) ≤ ci2
for every R ∈ Ri,ε, where c = 9/8. The convexity of µ implies that

µ(S) ≤
∑

R∈Rpar

rR · µ(R) = 2−(n−1)
∑

R∈Rpar

µ(R) = 2−(n−1)
∑
i,ε

∑
R∈Ri,ε

µ(R)

≤ 2−(n−1)
n∑
i=1

∑
ε=0,1

(
n

i

)
ci2 = 2−(n−1)2c

n∑
i=1

(
n

i

)
i2 = 2−(n−2)c

n∑
i=1

(
n

i

)
i2 .

The identity
(
n
k

)
· k = n ·

(
n−1
k−1

)
gives

n∑
i=1

(
n

i

)
i2 = n ·

n∑
i=1

(
n− 1
i− 1

)
i = n ·

n∑
i=1

(
n− 1
i− 1

)
+ n ·

n∑
i=1

(
n− 1
i− 1

)
(i− 1)

= n ·
n∑
i=1

(
n− 1
i− 1

)
+ n ·

n∑
i=2

(
n− 1
i− 1

)
(i− 1)

= n ·
n∑
i=1

(
n− 1
i− 1

)
+ n(n− 1) ·

n∑
i=2

(
n− 2
i− 2

)
= n2n−1 + n(n− 1)2n−2 = (n2 + n)2n−2 .

Hence, µ(S) ≤ 2−(n−2)c(n2 + n)2n−2 = c(n2 + n). �

4. General construction of convex measures

In his seminal paper [9], Khrapchenko proved a general lower bound on formula size complexity
of the form

L(f) ≥ |{(x, y) ∈ R : dist(x, y) = 1}|2

|R|
,
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where R is a sub-rectangle of Sf . Paterson (see, e.g., [19]) interpreted this formula as a formal
complexity measure and reproved Khrapchenko’s n2 lower bound on the parity function in this
formalism. We will call the measure

κ(R) =
|R ∩ Y |2

|R|
, (3)

where Y = {(x, y) : dist(x, y) = 1} is the set of all vector pairs of Hamming distance 1, the
Khrapchenko measure. One can also understand Rychkov’s lower bounds on error correcting codes
as lower bounds based on the Khrapchenko measure. There one uses pairs of distance at most
d+ 1 instead of 1 for codes of the minimal distance 2d+ 1.

We can interpret Khrapchenko’s lower bound as follows. One starts with rectangle functions
s(R) = |R|, w(R) = |Y ∩ R|, which themselves do not give better than linear lower bounds. We
define a new rectangle function µ(R) = F (w(R), s(R)) by means of a real function F (x, y) = x2/y,
and it is this measure that allows us to prove quadratic lower bounds. In this scenario, subadditivity
is guaranteed by properties of F . This suggests the possibility of obtaining a new rectangle measure
from a set of rectangle measures by means of a function F : Rm → R in the hope that the new
measure will be more apt to prove lower bounds. In this section, we observe that if F has nice
properties then F will produce a subadditive function, but if F has too nice properties, it will
produce a convex function.

Notice that the Khrapchenko measure has the form

κ(R) = s(R) · ϕ
(
w(R)
s(R)

)
with w(R) = |R ∩ Y |, s(R) = |R| and ϕ(x) = x2. Subadditivity of κ stems from the fact that the
used real function ϕ is convex. As will be stated in Corollary 4.3, convexity of ϕ implies that µ
is a convex rectangle measure (if w(R), s(R) satisfy certain conditions), and hence µ cannot give
better than quadratic lower bounds.

We will need another condition (stronger than convexity):

(vi) Additivity : α(R) = α(R1) +α(R2), for all rectangles R,R1, R2 ∈ R such that R is the disjoint
union of R1 and R2.

Observe that, for every additive rectangle function α,

α(R) =
∑
e∈R

α(e). (4)

Thus an additive rectangle function is defined by a matrix on the ambient rectangle S. Examples
of such rectangle functions are |R| and |R ∩ Y | that appear in the definition of the Khrapchenko
measure. The convexity of additive measures is a consequence of the following stronger property:

α(R) =
m∑
i=1

ri · α(Ri) , (5)

for every fractional partition R =
∑m

i=1 riRi, which is an immediate consequence of (4).
The fractional partition number D∗ was introduced in [7] in order to apply the linear program-

ming duality for obtaining lower bounds on communication complexity of relations, in particular
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for proving lower bounds on formula size complexity. Applying the duality for linear programs,
one can write this measure as

D∗(S) = max
w

∑
e∈S

w(e),

where the maximum is over all functions w : S → R satisfying the constraint
∑

e∈M w(e) ≤ 1 for
all monochromatic rectangles M . Hence, in order to prove a lower bound D∗(S) ≥ t it is enough
to find at least one weight function w : S → R such that

∑
e∈S w(e) ≥ t, and the weight of each

monochromatic rectangle does not exceed 1. In our terminology this means to find an additive
measure w such that w(S) ≥ t.

In other words, whenever a lower bound can be proved using a convex measure, it can be proved
using an additive measure. However, in practice it may be easier to work with convex measures
rather than additive ones. Karchmer, Kushilevitz, and Nisan found a surprisingly new proof of
Khrapchenko’s n2 lower bound based on an additive measure. Their measure uses positive and
negative values. As we will see, it is necessary to use negative values in order to obtain superlinear
lower bounds. (This implies that D∗ is not additive.)

We start with a simple observation.

Proposition 4.1. Any non-negative linear combination of convex rectangle functions is a convex
rectangle function.

Proof. Let µ1, . . . , µn be convex rectangle functions. Let µ(R) =
∑n

i=1 ai · µi(R) be their linear
combination with all ai ≥ 0. Let R =

∑m
j=1 rjRj be a fractional partition of R. The convexity of

µi’s implies that µi(R) ≤
∑m

j=1 rj · µi(Rj), for all i = 1, . . . , n. Then

µ(R) =
n∑
i=1

ai · µi(R) ≤
n∑
i=1

ai

m∑
j=1

rj · µi(Rj) =
m∑
j=1

rj

n∑
i=1

ai · µi(Rj) =
m∑
j=1

rj · µ(Rj) .

�

Let F : Rm → R be a real function in m variables. We shall think of m-tuples of real numbers
as vectors in Rm. The results below can be extended to functions whose domain is a subset of Rm

closed w.r.t. addition of vectors, and multiplication by positive real numbers. We say that F is
subadditive, if any two non-negative numbers a and b, and any two vectors ~x and ~y in Rm,

F (a~x+ b~y) ≤ aF (~x) + bF (~y) . (6)

If this only holds for a = b = 1, then F is called weakly subadditive. What makes weakly subadditive
function subadditive is the condition F (a~x) ≤ aF (~x) for every a > 0.

Let now s(R) and w(R) be two rectangle functions. Having such rectangle functions and a real-
valued function F (x, y), we can consider induced rectangle functions. This can be easily extended
to m-tuples of rectangle functions and for functions F on more than two variables.

Proposition 4.2. Let F (x, y) be a subadditive function, and s(R) an additive rectangle function.
Then the induced rectangle function µF (R) = F (w(R), s(R)) is convex if

1. either w(R) is additive,
2. or w(R) is convex and F (x, y) is nondecreasing in x.
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Proof. To prove the first claim, assume that both w(R) and s(R) are additive, and let
∑

i riRi be
a fractional partition of R. Set wi = w(Ri) and si = s(Ri). By (5), we have that w(R) =

∑
i ri ·wi

and s(R) =
∑

i ri · si. Since F is a subadditive function, this yields

µF (R) = F (w(R), s(R)) = F

(∑
i

riwi,
∑
i

risi

)
≤ ri

∑
i

F (wi, si) =
∑
i

µF (Ri) .

If w(R) is only convex (not necessarily additive) but F (x, y) is nondecreasing in x, then we can
replace the second equality by inequality. �

Note that subadditivity of F guarantees subadditivity of µF , and hence µF can be (after
appropriate normalization) used as a rectangle measure for proving lower bounds. But if F is also
a subadditive function, µF will be convex and the lower bounds given by µF cannot exceed O(n2).
However, there are many weakly subadditive real functions that are not subadditive function. It
is not clear whether the function F can be chosen in such a way that µF will give better than
quadratic lower bounds.

Say that a rectangle function s(R) is positive if s(R) > 0 for every nonempty rectangle R (of
our ambient rectangle).

Corollary 4.3. Let a rectangle function µ be defined as follows:

µ(R) = s(R) · ϕ
(
w(R)
s(R)

)
, (7)

where ϕ : R→ R is a convex real function and s(R) is additive and positive rectangle function.

1. If w(R) is additive, then µ is convex.
2. If ϕ is nondecreasing and w(R) is subadditive then µ is subadditive.
3. If ϕ is nondecreasing and w(R) is convex then µ is convex.

Proof. It is sufficient to prove that the function F (x, y) = y · ϕ(x/y) is a subadditive function.
The condition F (ax, ay) ≤ aF (x, y) is immediate. (This is in fact equality and F is a norm.)
Subadditivity of F is an application of Jensen’s inequality:

ϕ

(
y1z1 + y2z2
y1 + y2

)
≤ y1ϕ(z1) + y2ϕ(z2)

y1 + y2
. (8)

Assume y1, y2 > 0. Setting zi = xi/yi, we obtain that

ϕ

(
x1 + x2

y1 + y2

)
≤
y1ϕ(x1

y1
) + y2ϕ(x2

y2
)

y1 + y2
.

Hence

(y1 + y2) · ϕ
(
x1 + x2

y1 + y2

)
≤ y1 · ϕ

(
x1

y1

)
+ y2 · ϕ

(
x2

y2

)
.

�
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5. Polynomial rectangle measures

An important special case of measures considered above are rectangle measures µ of the form
(7) based on functions ϕ(x) = xk, k ≥ 1. That is, rectangle measures

µ(R) =
w(R)k

|R|k−1
, (9)

where w(R) is subadditive. Such a measure µ(R) will be called polynomial measure of degree k.
Note that ϕ(x) = xk, k ≥ 1, is a nondecreasing convex function for x ≥ 0, and ϕ(x) is a convex

function on R, if k is an even natural number. Hence Corollary 4.3 implies that the rectangle
function µ(R) in (9) is subadditive, if

(i) w(R) is subadditive and non-negative, or
(ii) w(R) is additive and k = a/b for integers a ≥ b > 0 and a even.

If µ(R) is normalized, the condition (i) or (ii) guarantees that µ(R) is a rectangle measure. In
the case (ii), µ(R) is also convex. In the case (i), µ(R) is convex if w(R) is convex. Therefore, by
Theorem 3.5, such polynomial measures can yield at most quadratic lower bounds.

On the other hand, every rectangle measure is a polynomial measure of degree one. This shows
that polynomial measures can in principle give exponential lower bounds.

Quadratic lower bounds were proved by Khrapchenko [9] using polynomial measures of degree
k = 2 with w(R) additive and positive, as well as by Karchmer, Kushilevitz and Nisan [7] using
polynomial measures of degree k = 1 with w(R) additive but not non-negative.

5.1. Small degree: 1 ≤ k < 2 and additive weight
For 1 ≤ k < 2, polynomial measures with w(R) subadditive and non-negative can give ex-

ponential lower bounds. To see this, consider the rectangle function µ(R) = w(R)k/|R|k−1 with
w(R) = L(R) being the smallest size of a formula separating R. Hence, this weight function w(R)
is subadditive and non-negative, and µ(R) is normalized since L(R) is normalized. Most boolean
functions in n variables, and hence, most n-dimensional rectangles R require L(R) ≥ 2n(1−o(1)).
For such rectangles R, measure µ(R) gets asymptotically close to the values

2kn

22n(k−1)
= 2n(2−k) .

On the other hand, small degree measures are useless, if we require the weight function w(R) be
non-negative and additive.

Proposition 5.1. Let k ≥ 1 and µ(R) = w(R)k/s(R)k−1 be a rectangle measure, where s(R) is
a positive monotone rectangle function. If the weight function w(R) is additive and non-negative,
then µ(R) ≤ (2n)k for any n-dimensional rectangle R.

Proof. The normalization condition µ(M) ≤ 1, for a monochromatic rectangle M implies that

w(M) ≤ s(M)
k−1
k .

11



Since every n-dimensional rectangle can be (non-disjointly) covered by at most 2n canonical
monochromatic rectangles Mi,ε, we have

w(R) ≤
∑
i,ε

w(Mi,ε) ≤
∑
i,ε

s(Mi,ε)
k−1
k ≤ 2n · s(R)

k−1
k .

Dividing by s(R)
k−1
k and raising to the power k we get the inequality. �

Hence, if the used additive weight function w(R) is non-negative, then no polynomial measure
of degree k < 2 can even reach the n2 lower bound (even if the function s(S) is not necessarily
additive). Note however that w(R) being non-negative is here essential: for k = 1, additive
measures can give quadratic lower bounds, if some edges are assigned negative weights [7].

5.2. Large degree: k ≥ 2 and subadditive weight
We now show that every polynomial measure of degree k > 2, with w(R) subadditive can give

at most linear lower bounds.

Theorem 5.2. Let k ≥ 2 and let w(R) be a subadditive rectangle function. Suppose that either
w(R) is nonnegative, or k is an integer. Suppose that the rectangle function defined by

µ(R) =
w(R)k

|R|k−1

is normalized. Then, for any n-dimensional rectangle S, we have

1. µ(S) ≤ n2 if k = 2;
2. µ(S) = O(n) if k > 2.

In the proof we will need the following technical lemma (whose proof is given an Appendix).

Lemma 5.3. Let a ≥ 1 and α ∈ [0, 1), and let ξ(a) be the maximum, over all x, y ∈ [0, 1], of

ha(x, y) = (xy)α + ((1− x)(1− y))α + a(x(1− y))α + a((1− x)y)α .

Then

(i) ξ(a) = max
{
a(1 + a

1
α−1 )1−α, 21−2α(1 + a)

}
.

(ii) If α = 1
2 then for every d ≥ 1

d+ 1 ≥ ξ(d) . (10)

(iii) If α > 1
2 then there exists a constant c such that for every d ≥ 1,

c · (d+ 1)1−α ≥ ξ(c · d1−α) . (11)

We now turn to the actual proof of Theorem 5.2. Let S = S0 × S1. Since µ is normalized, we
have that

w(M) ≤ |M |1−1/k (12)

for every monochromatic rectangle M .
12



Claim 5.4.

1. If k = 2 then w(S) ≤ n · |S|1/2.
2. If k > 2 then w(S) ≤ cn1/k|S|1−1/k, for a constant c.

Note that Theorem 5.2 is a direct consequence of this claim. In the case k = 2,

µ(S) =
w(S)2

|S|
≤ (n|S|1/2)2

|S|
= n2 ,

and in the case k > 2,

µ(S) =
w(S)k

|S|k−1
≤ (c · n1/k|S|1−1/k)k

|S|k−1
= ckn = O(n) .

Hence, it remains to prove Claim 5.4. Let dimR = |{i : ∃(x, y) ∈ R : xi 6= yi}|, and let

w(m, d) = max{w(R) : dimR ≤ d and |R| = m} .

Given a rectangle R with dimR = d+1, we can split it into four disjoint rectangles, two monochro-
matic ones and two remaining ones of a smaller dimension. More exactly, if R is an a × b rect-
angle then, for some x, y ∈ [0, 1], the monochromatic rectangles will be of sizes ax × by and
a(1− x)× b(1− y), and the two remaining rectangles of size ax× (1− y)b and a(1− x)× by. By
(12), we have that

w(m, 1) ≤ mα where α := 1− 1/k.

Since w(R) is subadditive, we have a recurrent inequality

w(m, d+ 1) ≤ sup
x,y∈[0,1]

((xym)α + ((1− x)(1− y)m)α + w(x(1− y)m, d) + w((1− x)ym, d)) .

We want to upper bound w(m, d). For this, it is sufficient to find a function g which satisfies
g(m, 1) ≥ mα and

g(m, d+ 1) ≥ sup
x,y∈[0,1]

((xym)α + ((1− x)(1− y)m)α + g(x(1− y)m, d) + g((1− x)ym, d)) .

We look for a solution of the form

g(m, d) = mα · h(d) .

Hence h(d) needs to satisfy the inequalities h(1) ≥ 1 and

h(d+ 1) ≥ sup
x,y∈[0,1]

((xy)α + ((1− x)(1− y))α + h(d)(x(1− y))α + h(d)((1− x)y)α) .

Using the definition from Lemma 5.3, it is sufficient to have h(d) ≥ 1 and

h(d+ 1) ≥ ξ(h(d)) .

Lemma 5.3 then asserts that for α = 1/2 (i.e., k = 2) h(d) = d is a solution, and for α ≥ 1/2 (i.e.,
k > 2), h(d) = c · d1−α is a solution. This completes the proof of Claim 5.4, and thus, the proof of
Theorem 5.2. �
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6. More examples of measures

In this section we shall survey rectangle measures and show that several of the proposed mea-
sures are convex. Most rectangle measures are based on some matrix defined on S, i.e., a mapping
A : S → F , for some field. The idea of studying matrix parameters for proving lower bounds on
formula size complexity is due to Razborov [14].

6.1. Khrapchenko-type measures
Khrapchenko’s bound can be viewed as based on the matrix

A[x, y] = 1 if d(x, y) = 1 and 0 otherwise. (13)

Similarly Rychkov’s lower bounds on codes of distance 2d + 1 are based on matrices that have 1
for pairs of distance at most d+ 1 and 0 otherwise.

There are several n2 lower bounds for parity based on convex measures. One is the original
Khrapchenko’s bound, the other is the bound of Karchmer, Kushilevitz and Nisan that uses an
additive measure. There is yet another convex measure that gives the same bound. Namely, let A
be a real matrix defined on S. Then the rectangle function defined by

φA(R0 ×R1) :=
∑
x∈R0

(
∑

y∈R1 A[x, y])2

|R1|

is convex. Indeed, since the measure of a rectangle is the sum of the measures of its rows, it suffices
to show convexity for rows. This follows from Corollary 4.3.3.

If S is the rectangle of the parity function and A as in (13), the function φA is normalized,
hence measure, and φA(S) = n2. The measure φA for this special matrix A was introduced by
Koutsoupias [10].

6.2. Matrix rank
Razborov in [14] used the rank of matrices to prove superpolynomial lower bounds on monotone

formula size. Given an n×n matrix A (over some field), he associates with it the following measure
for n-dimensional rectangles:

µA(R) =
rank(AR)

maxM rank(AM )
, (14)

where AR is the restriction of A to the rectangle R (obtained by setting to 0 all entries outside R),
and the maximum is over all monochromatic sub-rectangles of R (or over all canonical monochro-
matic rectangles of the ambient rectangle S, as originally defined in [14]; Proposition 6.1 below
holds under both definitions). If rank(AR) = 0 then we set µA(R) = 0.

Subadditivity of rank implies that these measures are subadditive. But it turns out that rank-
based measures are not convex.

Proposition 6.1. For any even integer n there is a (0, 1) matrix A such that the measure µA is
not convex.
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Proof. Let n be even. Take a rectangle R = R0 × R1 with R0 = {x1, . . . , xn} and R1 =
{y1, . . . , yn} where xi = ei, yi = ei + ei+1 and ei ∈ {0, 1}n+1 is the ith unit vector. Let A be
the complement of the n× n unit matrix. We define the fractional partition of the rectangle R as
follows.

For every i ∈ [n] we take the size-1 rectangle Ri = {(xi, yi)} and give it weight ri = 1. To cover
the rest of the rectangle R, we use rectangles RI = {(xi, yj) : i ∈ I, j 6∈ I} for all I ⊆ [n] of size
|I| = n/2, and give them weight

rI =
(

4− 4
n

)(
n

n/2

)−1

.

This is a fractional partition, because rectangle RI contains n2/4 of the n2−n ones in A and there
are

(
n
n/2

)
such rectangles.

For every i ∈ [n] we have that µA(Ri) = 0 since we have only 0’s on the diagonal of A. For
every subset I of [n] we have that µA(RI) = 1 since there are no 0’s outside the diagonal, implying
that ARI is an all-1 matrix. Hence, on the right hand side of the corresponding inequality (2) for
convexity we have the sum of n zeros (the ranks of the size one matrices on the diagonal) and

(
n
n/2

)
terms each being at most 4

(
n
n/2

)−1, implying that the right hand sums to at most 4. On the other
hand, since rank(A) is n or n−1 (which depends on n and the field), on the left hand side we have
µA(R) ≥ (n− 1)/2: by the construction of R, no monochromatic sub-rectangle M of R can hit the
diagonal in more than one entry, implying that rank(AM ) ≤ 2. �

We have shown that, for some measures µA, the convexity inequality (2) fails badly: the right
hand side is constant whereas the left had side is Ω(n). Since the measures µA based on the rank
are not convex, Theorem 3.5 does not apply for them. Still, Razborov in [15] proved that these
measures belong to the class of so-called submodular measures, and none of them can yield larger
than O(n) lower bound.

6.3. Matrix norms
Interesting measures can be obtained from matrix norms. A mapping A 7→ ‖A‖ is a matrix

norm if it satisfies all the properties of vector norms:

(i) ‖A‖ ≥ 0 with equality if and only if A = 0;
(ii) ‖rA‖ = |r| · ‖A‖ for all numbers r and all matrices A, and
(iii) ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all matrices A and B.

(Often, the sub-multiplicativity ‖A · B‖ ≤ ‖A‖ · ‖B‖ is also required, but we do not require this
here.) In particular, every matrix norm is a subadditive function in the sense of Section 4, and the
rectangle function µ(R) = ‖AR‖ is convex. By Corollary 4.3.3, if ϕ is a non-decreasing convex real
function and s is an additive rectangle function, then the rectangle function

µ(R) = s(R) · ϕ
(
‖AR‖
s(R)

)
, (15)

is also convex, and hence cannot give better than O(n2) lower bounds. We give two examples of
measures that appear in the literature.
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6.3.1. Factorization norm
Factorization norm γ2(A), is mainly used in Banach space theory. Linial and Shraibman used

this norm to prove lower bounds on the quantum communication complexity [13]. It has several
equivalent definitions one of which is:

γ2(A) = max
‖B‖2=1

‖A ◦B‖2,

where A ◦B is the Hadamard (i.e. component wise) product of matrices and

‖A‖2 = max
u,v 6=0

|utAv|
‖u‖ · ‖v‖

is the spectral norm of A; here, ‖u‖ = (
∑

i u
2
i )

1/2 is the Euclidean norm of vector u. Since γ2 is
a norm, any rectangle measure of the form (15) that uses γ2 can yield at most quadratic lower
bounds.

6.3.2. Spectral norm and its square
Recently, the spectral norm of matrices was used to introduce a number of rectangle measures.

They are based on the rectangle functions

σA(R) = ‖AR‖22

for particular matrices A. One can show that this function is subadditive, hence, if we normalize
it we obtain a measure.

Koutsoupias [10] first introduced this function for the “distance-one” matrix A defined by
(13), and showed that L(f) ≥ σA(Sf ) holds for this matrix. (Note that for these matrices σA is
normalized.)

Barnum, Saks and Szegedy [3] introduced a parameter of boolean functions defined by

SA(f) := max
A 6=0

‖A‖2
maxi ‖Ai‖2

,

where A ranges over all nonzero non-negative matrices on Sf and Ai[x, y] = A[x, y] if xi 6= yi and
0 otherwise. They used it for lower bounds on quantum query complexity. Laplante, Lee and
Szegedy [11] proved that SA(f)2 is a lower bound on formula size complexity. Høyer, Lee and
Špalek [5] proved that the non-negativity restriction can be removed both for lower bounds on
quantum query complexity and lower bounds on formula size.

Clearly, SA is connected with σA via the equality

SA(f)2 = max
A 6=0

σA(Sf )
maxM∈M(Sf ) σA(M)

.

Hence one can derive some properties of SA from the properties of σA. In particular, Theorem 7 of
Lee’s paper [12] shows that σA(R) is a convex rectangle function in our sense. We will show that
this fact is a consequence of Corollary 4.3.

Proposition 6.2 ([12]). For every matrix A, the rectangle function σA(R) is convex.
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Proof. Let u, v be vectors such that utAv = ‖A‖2. For a rectangle R = X × Y , let uR denote u
restricted to X and let vR denote v restricted to Y . Then the measure σA(R) has the form

σA(R) = s(R) · ϕ
(
w(R)
s(R)

)
,

where ϕ(x) = x2, s(R) = ‖uR‖2 · ‖vR‖2 and w(R) = |utRARvR|. The rectangle function

s(R) = ‖uR‖2 · ‖vR‖2 =
(∑
x∈X

u[x]2
)
·
(∑
y∈Y

v[y]2
)

=
∑

(x,y)∈R

u[x]2v[y]2

is additive. So, by Corollary 4.3(3), it is enough to verify that w(R) = |utRARvR| is a convex
rectangle function. To do this, let R =

∑
k rkRk be a fractional partition of R. Then

|utRARvR| =
∣∣∣∣ ∑
(x,y)∈R

utR[x]AR[x, y]vR[y]
∣∣∣∣ =

∣∣∣∣∑
k

rk
∑

(x,y)∈Rk

utRk [x]ARk [x, y]vRk [y]
∣∣∣∣

≤
∑
k

rk

∣∣∣∣ ∑
(x,y)∈Rk

utRk [x]ARk [x, y]vRk [y]
∣∣∣∣ =

∑
k

rk|utRkARkvRk | .

Hence, w(R) is convex, and we are done. �

The convexity of σA(R) together with Theorem 3.5 implies that SA(f)2 ≤ 9/8n2. Note, how-
ever, that in [11] Laplante, Lee and Szegedy proved a little more: SA(f)2 ≤ n2.

7. Open problems

Problem 7.1. Can rectangle functions µF (R) = F (w(R), s(R)) with F (x, y) subadditive and both
w(R) and s(R) additive yield super-quadratic lower bounds?

Problem 7.2. Is it possible to generalize the quadratic upper bound of Theorem 5.2 to measures
of the form

µ(R) =
w(R)k

s(R)k−1
,

where s(R) is an arbitrary additive and positive measure?

We only have such upper bounds for w(R) subadditive and s(R) = |R|, or w(R) convex and
s(R) additive and positive. The problem is to find a common generalization of these two cases.

Problem 7.3. Is it possible to prove super-polynomial lower bounds on monotone formulas using
convex measures?

This is equivalent to the problem of [7] whether the monotone fractional covering number can
be super-polynomial.

Problem 7.4. Prove a super-quadratic lower bound using formal complexity measures.

Interpreting Andreev’s [2] or H̊astad’s [4] proof in terms of measures may be a way to make
progress in lower bounds on the formula size complexity.
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Appendix: Proof of Lemma 5.3

To prove the first claim (i), let a ≥ 1 and α ∈ [0, 1) be given. Our goal is to determine

ξ(a) = max
x,y∈[0,1]

ha(x, y) ,

where
ha(x, y) = (xy)α + ((1− x)(1− y))α + a(x(1− y))α + a((1− x)y)α .

The function h(x, y) := ha(x, y) is continuous and hence it attains maximum on the square P =
[0, 1] × [0, 1]. The maximum can be reached either in the interior of P , or on the boundary. The
boundary itself consists of the corners and the sides of P . We consider these cases separately.

The corners. We obtain

h(0, 0) = h(1, 1) = 1, h(0, 1) = h(1, 0) = a .
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The sides. Set y := 1 and let us determine critical points of h(x, 1) on (0, 1). Setting the
x-derivative of h(x, 1) to 0 gives

xα−1 − a(1− x)α−1 = 0 .

Hence the only critical point is at

x =
a

1
α−1

1 + a
1

α−1

,

and the value of h(x) is
a(1 + a

1
α−1 )1−α .

The other cases are symmetric.
The interior. Since h(x, y) = h(1− x, 1− y), h has a critical point at (x, y) = (1/2, 1/2). The

value of h(x, y) at this point is
21−2α(1 + a) .

There are no other critical points, since the x-partial derivative is strictly monotone in x and hence
it can have at most one zero.

Altogether we get

max
P

h(x, y) = max
{

1, a, a(1 + a
1

α−1 )1−α, 21−2α(1 + a)
}
. (16)

Since a ≥ 1, this gives maxP h(x, y) = max
{
a(1 + a

1
α−1 )1−α, 21−2α(1 + a)

}
.

To prove the second claim (ii), let α = 1
2 . Then ξ(a) = max

{
a(1 + a−2)

1
2 , (1 + a)

}
, and we

must show that
d+ 1 ≥ max

{
d(1 + d−2)

1
2 , 1 + d

}
,

which is immediate.
To prove the last claim (iii), let α > 1

2 . We must find c ≥ 1 such that

c · (d+ 1)1−α ≥ c · d1−α(1 + (c · d1−α)
1

α−1 )1−α ,
c · (d+ 1)1−α ≥ 21−2α(1 + c · d1−α) .

The first inequality is satisfied by any c ≥ 1. Since 1− α > 0, it is equivalent to

d+ 1 ≥ d · (1 + (c · d1−α)
1

α−1 )

and hence to d+ 1 ≥ d+ c
1

α−1 resp. to c
1

1−α ≥ 1, The second inequality will be satisfied, if

c · ((d+ 1)1−α − 21−2α · d1−α) ≥ 21−2α .

We have
c · ((d+ 1)1−α − 21−2α · d1−α) ≥ c · d1−α(1− 21−2α) .

Our assumption α > 1/2 implies 21−2α < 1, and it is sufficient to set

c =
21−2α

1− 21−2α
=

1
22α−1 − 1

.

If α ∈ (1
2 , 1) then c > 1. �
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