On the nonnegative rank of distance matrices

Pavel Hrubeš ${ }^{1}$

Abstract

For real numbers a_{1}, \ldots, a_{n}, let $Q\left(a_{1}, \ldots, a_{n}\right)$ be the $n \times n$ matrix whose i, j th entry is $\left(a_{i}-a_{j}\right)^{2}$. We show that $Q(1, \ldots, n)$ has nonnegative rank at most $2 \log _{2} n+2$. This refutes a conjecture from [1] (and contradicts a "theorem" from [5]). We give other examples of sequences a_{1}, \ldots, a_{n} for which $Q\left(a_{1}, \ldots, a_{n}\right)$ has logarithmic nonnegative rank, and pose the problem whether this is always the case. We also discuss examples of matrices based on hamming distances between inputs of a Boolean function, and note that a lower bound on their nonnegative rank implies lower bounds on Boolean formula size.

1. Introduction

The nonnegative rank ${ }^{2}$ of an $n \times m$ matrix M of nonnegative real numbers is the smallest k so that M can be written as $M=A \cdot B$, where A and B are nonnegative of dimensions $n \times k$ and $k \times m$. The notion of nonnegative rank was introduced in [12], where some of its computational applications were presented. Perhaps the most intriguing question is how much can the rank and the nonnegative rank of M differ. If M is a matrix of zeros and ones, a separation between nonnegative rank and rank is closely related to the so-called log-rank conjecture [12, 6]. For a general nonnegative matrix M, a separation between rank and nonnegative rank can potentially be used to separate noncommutative monotone and general branching programs [7]. In this paper we mention a connection with lower bounds on Boolean formula size.

Let us denote the rank and the nonnegative rank by rk and rk_{+}. One can easily construct a nonnegative 4×4 matrix with $\operatorname{rk}(M)<\mathrm{rk}_{+}(M)$. A stronger separation can be obtained using the distance matrix Q. For $a_{1}, \ldots, a_{n} \in \mathbb{R}$, the matrix $Q\left(a_{1}, \ldots, a_{n}\right)$ is an $n \times n$ matrix defined by

$$
Q\left(a_{1}, \ldots, a_{n}\right)_{i, j}=\left(a_{i}-a_{j}\right)^{2} \text { for } i, j \in\{1, \ldots, n\}
$$

In [1] it was shown that whenever a_{1}, \ldots, a_{n} are distinct and $n \geq 3$ then

$$
\operatorname{rk}\left(Q\left(a_{1}, \ldots, a_{n}\right)\right)=3 \text { but } \mathrm{rk}_{+} Q\left(a_{1}, \ldots, a_{n}\right)=\Omega(\log n)
$$

[^0]Comparing just rk and rk_{+}, this is the ultimate separation: we see that rk_{+} cannot be upper-bounded by any function of rk. On the other hand, one would like to have an $n \times n$ matrix such that the gap between rank and nonnegative rank is large in terms of n.

Question 1: Is there a nonnegative $n \times n$ matrix M with $r k_{+}(M)=n$ and $r k(M)=$ const? Or at least $r k_{+}(M) / r k(M)=n^{1-o(1)}$?

Some such estimate is indeed required in the branching program separation, mentioned above. In [1], it was conjectured that the distance matrix is again the right candidate: that $Q\left(a_{1}, \ldots, a_{n}\right)$ has nonnegative rank equal to n whenever a_{1}, \ldots, a_{n} are distinct. This result was later announced in [5]. However, here we show that this is not the case. The matrix $Q(1,2,3, \ldots, n)$ has nonnegative rank $O(\log n)$. We do not know whether $Q\left(a_{1}, \ldots, a_{n}\right)$ can have large nonnegative rank for some other choice of the points a_{1}, \ldots, a_{n}. However, we note that if $Q\left(a_{1}, \ldots, a_{n}\right)$ has linear nonnegative rank with integer a_{1}, \ldots, a_{n} then max $\left|a_{i}\right|$ must be exponential. Moreover, one can construct fast growing a_{1}, \ldots, a_{n} such that the nonnegative rank of the distance matrix is still logarithmic.

In sum, distance matrices are not the right candidate to answer Question 1, unless the points a_{1}, \ldots, a_{n} satisfy some extra property. In Section 3 , we suggest a different candidate, based on hamming distances between inputs of a Boolean function. We make a simple observation that for such matrices, a separation between $\operatorname{rk}(M)$ and $\mathrm{rk}_{+}(M)$ implies lower bounds on Boolean formula size. While finalising this manuscript, the author has learnt about recent results of Rothvoß 10] and Fiorini et al. 3. They present much stronger gap between rank and nonnegative rank, and hence a more satisfactory answer to Question 1. For example, in Theorem 12 of [3], an explicit $2^{n} \times 2^{n}$ matrix M is constructed with $\operatorname{rk}(M)=O\left(n^{2}\right)$ and $\mathrm{rk}_{+}(M)=2^{\Omega(n)}$.

2. Nonnegative rank and Euclidean distance matrices

We consider matrices over the field of real numbers ${ }^{3}$ A real matrix M will be called nonnegative, if every entry of M is nonnegative. The nonnegative rank of an $n \times m$ nonnegative matrix M is the smallest k such that there exist nonnegative matrices A and B of dimensions $n \times k, k \times m$ respectively and $M=A \cdot B$. We denote nonnegative rank by rk_{+}.

Let us state some elementary properties of the nonnegative rank. If M_{1}, M_{2} are nonnegative matrices then:
(i). Permuting rows or columns of M_{1}, or multiplying a row or column by $r>0$, does not change $\mathrm{rk}_{+}\left(M_{1}\right)$.
(ii). $\mathrm{rk}_{+}\left(M_{1}+M_{2}\right) \leq \mathrm{rk}_{+}\left(M_{1}\right)+\mathrm{rk}_{+}\left(M_{2}\right)$, if M_{1}, M_{2} have the same dimensions.
(iii). $\mathrm{rk}_{+}\left(M_{1}\right)$ is the smallest k such that M can be written as a sum of k nonnegative rank one matrices.

[^1](iv). If $\operatorname{rk}\left(M_{1}\right) \leq 2$ then $\operatorname{rk}_{+}\left(M_{1}\right)=\operatorname{rk}\left(M_{1}\right)$, see [2].

For a sequence of real numbers a_{1}, \ldots, a_{n}, let $Q\left(a_{1}, \ldots, a_{n}\right)$ be the $n \times n$ matrix

$$
Q\left(a_{1}, \ldots, a_{n}\right)=\left(\begin{array}{ccccc}
0 & \left(a_{1}-a_{2}\right)^{2} & \left(a_{1}-a_{3}\right)^{2} & \ldots & \left(a_{1}-a_{n}\right)^{2} \\
\left(a_{2}-a_{1}\right)^{2} & 0 & \left(a_{2}-a_{3}\right)^{2} & \ldots & \left(a_{2}-a_{n}\right)^{2} \\
\vdots & & & & \\
\left(a_{n}-a_{1}\right)^{2} & \left(a_{n}-a_{2}\right)^{2} & \left(a_{1}-a_{3}\right)^{2} & \ldots & 0
\end{array}\right)
$$

That is, the i, j-th entry is the square of the Euclidean distance between a_{i} and a_{j}. A well-known fact, see [1], is that the rank of $Q\left(a_{1}, \ldots, a_{n}\right)$ is at most three (and equals to three if $\left|\left\{a_{1}, \ldots, a_{n}\right\}\right| \geq 3$). In [1], it was also shown that whenever a_{1}, \ldots, a_{n} are distinct then the nonnegative rank of $Q\left(a_{1}, \ldots, a_{n}\right)$ is at least $\Omega(\log n)$.

In Section 4 , will show the following:
Theorem 1. $r k_{+} Q(1, \ldots, n) \leq 2 \log _{2} n+2$.
If one wonders whether such an upper bound can be achieved for a_{1}, \ldots, a_{n} not containing any long arithmetic progression, let us note that the relevant property is not that of containing an arithmetic progression, but rather being contained in an arithmetic progression. This observation gives:

Corollary 2. Let $a_{1} \leq \cdots \leq a_{n}$ be integers. Then

$$
r k_{+} Q\left(a_{1}, \ldots, a_{n}\right)=O\left(\log \left(a_{n}-a_{1}\right)\right)
$$

This implies that if there exist natural numbers $a_{1} \leq \cdots \leq a_{n}$ such that $\mathrm{rk}_{+} Q\left(a_{1}, \ldots, a_{n}\right)$ is linear in n then a_{n} must be exponential. In Section 5 we give an example of a distance matrix with small nonnegative rank for "exponentially growing" a_{1}, \ldots, a_{n}. We are left with the following question:

Question 2. Are there real numbers a_{1}, \ldots, a_{n} with $r k_{+} Q\left(a_{1}, \ldots, a_{n}\right)=\Omega(n)$?

3. Nonnegative rank and hamming distance

We now discuss examples of matrices based on hamming distances between Boolean vectors. For $x, y \in\{0,1\}^{n}$, let $h(x, y)$ be the number of bits where x, y differ. That is, if $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, we have

$$
h(x, y)=\sum_{i \in\{1, \ldots, n\}} x_{i}\left(1-y_{i}\right)+\sum_{i \in\{1, \ldots, n\}}\left(1-x_{i}\right) y_{i}
$$

For two sets $A, B \subseteq\{0,1\}^{n}$, consider the matrix $H(A, B)$ whose columns are labelled with elements of A and rows with elements of B such that

$$
H(A, B)_{x, y}=h(x, y) \text { for } x \in A, y \in B
$$

First, we observe that the nonnegative rank of $H(A, B)$ - and hence also the rank - is always small:

Lemma 3. Let $A, B \subseteq\{0,1\}^{n}$. Then $r k_{+} H(A, B) \leq 2 n$.
Proof. Let $H:=H(A, B)$. It is sufficient to consider the case $A=B=\{0,1\}^{n}$. For vectors $u, v \in \mathbb{R}^{k}$, let (u, v) be their inner product. First, note that a $p \times q$ matrix M has nonnegative rank $\leq k$ iff there exist nonnegative vectors $u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{q} \in \mathbb{R}^{k}$ such that $M_{i, j}=\left(u_{i}, v_{j}\right)$ for every i, j. For $x=$ $\left(x_{1}, \ldots, x_{n}\right)$, define $x^{\star}:=\left(1-x_{1}, \ldots, 1-x_{n}\right)$. Then

$$
h(x, y)=\left(x, y^{\star}\right)+\left(x^{\star}, y\right)=\left(x x^{\star}, y^{\star} y\right),
$$

where the last inner product is in $\mathbb{R}^{2 n}$ and $x x^{\star}$ is the concatenation of x and x^{\star}. Hence $H_{x, y}=\left(x x^{\star}, y^{\star} y\right)$ for every $x, y \in\{0,1\}^{n}$ and so $\mathrm{rk}_{+} H \leq 2 n$.

Second, assume that A, B are disjoint. This means that for every $x \in A$ and $y \in B, h(x, y) \geq 1$. Hence if we consider the $|A| \times|B|$ matrix $J(A, B)$ whose every entry is equal to one, the matrix

$$
H(A, B)-J(A, B)
$$

is nonnegative. The rank of $H(A, B)-J(A, B)$ is at most $2 n+1$, but for its nonnegative rank, no upper bound is apparent.

Question 3. Let $A, B \subseteq\{0,1\}^{n}$ be disjoint. How large can be the nonnegative rank of $H(A, B)-J(A, B)$?

Let us point out one connection between this question and Boolean complexity. For a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and $e \in\{0,1\}$, let $f^{-1}(e):=\{x:$ $f(x)=e\}$. The sets $f^{-1}(1)$ and $f^{-1}(0)$ are disjoint, and let us define

$$
H(f):=H\left(f^{-1}(1), f^{-1}(0)\right), J(f):=J\left(f^{-1}(1), f^{-1}(0)\right) .
$$

The following proposition shows that a lower bound on $\mathrm{rk}_{+}(H(f)-J(f))$ gives a lower bound on the formula complexity of f. Hence a strong enough separation between rank and nonnegative rank, as anticipated in Question 3, implies that nonnegative rank can give nontrivial Boolean lower bounds.

For a Boolean function f, let $L(f)$ denote the size of a smallest Boolean formula computing f (in the de Morgan basis). We refer the reader to, e.g., 11 for background.

Proposition 4. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Then

$$
L(f) \geq \frac{r k_{+}(H(f)-J(f))}{2 n}
$$

Proof. This is an adaptation of a theorem in [8, the reader may also use the expository paper [4].

A set $A \times B \subseteq f^{-1}(1) \times f^{-1}(0)$, will be called a rectangle. A rectangle is monochromatic, if there exists $i \in\{1, \ldots, n\}$ and $e \in\{0,1\}$ such that for every $x \in A, y \in B$ we have $x_{i}=e$ and $y_{i}=1-e$ (where x_{i} is the i-th bit
in x). Denote \mathcal{R} the set of all rectangles and \mathcal{R}_{m} the set of all monochromatic rectangles. Let $\mu: \mathcal{R} \rightarrow \mathbb{R}$ be a nonnegative function. We call it a subadditive measure, if for every rectangles $R_{1}, R_{2}, R \in \mathcal{R}$ such that R is a disjoint union of R_{1} and R_{2}, we have

$$
\mu(R) \leq \mu\left(R_{1}\right)+\mu\left(R_{2}\right)
$$

A general fact is that every subadditive measure μ gives a lower bound on $L(f)$:

$$
L(f) \geq \frac{\mu\left(f^{-1}(1) \times f^{-1}(0)\right)}{\max _{R \in \mathcal{R}_{m}} \mu(R)}
$$

For a rectangle $A \times B$, define

$$
\mu(A \times B):=\operatorname{rk}_{+}(H(A, B)-J(A, B))
$$

Clearly, μ is a subadditive measure. Since $\mu\left(f^{-1}(1) \times f^{-1}(0)\right)=\mathrm{rk}_{+}(H(f)-$ $J(f)$), it is sufficient to show that for every monochromatic rectangle $R, \mu(R)$ is at most $2 n$.

Let $R=A \times B$ be such a rectangle. Without loss of generality, we can assume that $x_{1}=1$ and $y_{1}=0$ for every $x \in A$ and $y \in B$. For $z=\left(z_{1}, \ldots, z_{n}\right) \in$ $\{0,1\}^{n}$, let $z^{\prime}:=\left(z_{2}, \ldots, z_{n}\right) \in\{0,1\}^{n-1}$. Let $A^{\prime}:=\left\{x^{\prime}: x \in A\right\}$ and $B^{\prime}:=$ $\left\{y^{\prime}: y \in B\right\}$. For every $x \in A$ and $y \in B$ we have $h(x, y)=1+h\left(x^{\prime}, y^{\prime}\right)$, and therefore

$$
H(A, B)=H\left(A^{\prime}, B^{\prime}\right)+J(A, B)
$$

This implies

$$
\mu(A \times B)=\operatorname{rk}_{+}(H(A, B)-J(A, B))=\mathrm{rk}_{+} H\left(A^{\prime}, B^{\prime}\right) .
$$

By Lemma 3, we have $\mathrm{rk}_{+} H\left(A^{\prime}, B^{\prime}\right) \leq 2(n-1)$, which completes the proof.
Let us add few remarks:
(i). In order to answer Question 3, we would need the converse of Proposition 4. That is: can we lower bound $\mathrm{rk}_{+}(H(f)-J(f))$ in terms of $L(f)$?
(ii). In view of 9, one should note that rk_{+}is not a submodular function in the sense of matroid theory. Identifying a matrix with the set of its rows, we can find nonnegative 4×4 matrices M_{1}, M_{2} such that rk $\left(M_{1} \cap M_{2}\right)+$ $\mathrm{rk}_{+}\left(M_{1} \cup M_{2}\right)>\mathrm{rk}_{+}\left(M_{1}\right)+\mathrm{rk}_{+}\left(M_{2}\right)$. Namely,

$$
\begin{aligned}
& M_{1}=\{(0,0,1,1),(0,1,1,0),(1,1,1,1),(1,1,0,0)\} \\
& M_{2}=\{(0,0,1,1),(0,1,1,0),(1,1,1,1),(1,0,0,1)\}
\end{aligned}
$$

for then $\operatorname{rk}_{+}\left(M_{1}\right)=\operatorname{rk}_{+}\left(M_{2}\right)=\operatorname{rk}_{+}\left(M_{1} \cap M_{2}\right)=3$ but $\mathrm{rk}_{+}\left(M_{1} \cup M_{2}\right)=4$.
(iii). In the case of a monotone Boolean function f, one can replace $h(x, y)$ by the quantity $h^{1}(x, y):=\sum_{i} x_{i}\left(1-y_{i}\right)$, and consider the matrix $H^{1}(f)$ defined by $H^{1}(f)_{x, y}:=h^{1}(x, y)$. Proposition 4 remains valid if we replace $H(f)$ by $H^{1}(f)$ and $L(f)$ by monotone formula size. Again, one can ask how large can $\mathrm{rk}_{+}\left(H^{1}(f)-J(f)\right)$ be, hoping to gain some insight from the known lower bounds on monotone formula size.

4. Proof of Theorem 1

Lemma 5. Let M_{1} and M_{2} be nonnegative matrices and $M_{1} \times M_{2}$ their Kronecker product. Then $r k_{+}\left(M_{1} \times M_{2}\right) \leq r k_{+}\left(M_{1}\right) \cdot r k_{+}\left(M_{2}\right)$.
Proof. Assume $\mathrm{rk}_{+}\left(M_{1}\right)=p$ and $\mathrm{rk}_{+}\left(M_{2}\right)=q$. Then $M_{1}=U_{1}+\cdots+U_{p}$ and $M_{2}=V_{1}+\cdots+V_{q}$, where U_{i}, V_{j} are nonnegative matrices of rank one. (Note that for rank one matrices, there is no difference between rank and nonnegative rank). Hence

$$
M_{1} \times M_{2}=\sum_{(i, j) \in\{1, \ldots, p\} \times\{1, \ldots, q\}} U_{i} \times V_{j} .
$$

Every $U_{i} \times V_{j}$ is a nonnegative matrix of rank one, and hence of nonnegative rank one. Hence $\mathrm{rk}_{+}\left(M_{1} \times M_{2}\right) \leq p q$.

For real numbers $a_{1}, \ldots, a_{n}, b_{1}, \ldots b_{n}$, let $Q\left(a_{1}, \ldots, a_{n} \| b_{1}, \ldots, b_{n}\right)$ be the $n \times$ n matrix with

$$
Q\left(a_{1}, \ldots, a_{n} \| b_{1}, \ldots b_{n}\right)_{i, j}=\left(a_{i}-b_{j}\right)^{2} \text { for } i, j \in\{1, \ldots, n\}
$$

Lemma 6. $r k_{+} Q(1,2, \ldots, 2 n) \leq r k_{+} Q(1,2, \ldots, n)+2$.
Proof. The nonnegative rank of $Q\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ does not change if we permute a_{1}, \ldots, a_{n}. So let us consider the matrix $Q(1, \ldots, n, 2 n, 2 n-1, \ldots, n+1)$. We can divide this matrix into four $n \times n$ blocks in the following manner:

$$
\begin{aligned}
& Q(1, \ldots, n, 2 n, \ldots, n+1)= \\
& \quad=\left(\begin{array}{lr}
Q(1, \ldots, n) & Q(1, \ldots, n \| 2 n, \ldots, n+1) \\
Q(2 n, \ldots, n+1 \| 1, \ldots, n) & Q(2 n, \ldots, n+1)
\end{array}\right) .
\end{aligned}
$$

For $i, j \in\{1, \ldots, n\}$ we have

$$
\begin{align*}
Q(1, . ., n)_{i, j} & =(i-j)^{2}, \tag{1}\\
Q(2 n, \ldots, n+1)_{i, j} & =((2 n-i+1)-(2 n-j+1))^{2} \\
& =(i-j)^{2}, \\
Q(1, \ldots, n| | 2 n, \ldots, n+1)_{i, j} & =(i-(2 n-j+1))^{2} \\
& =(2 n-i-j+1)^{2}, \tag{2}\\
Q(2 n, \ldots, n+1 \| 1, \ldots, n)_{i, j} & =((2 n-i+1)-j)^{2} \\
& =(2 n-i-j+1)^{2} .
\end{align*}
$$

In particular, we see that

$$
\begin{aligned}
Q(1, \ldots, n) & =Q(2 n, \ldots, n+1) \\
Q(1, \ldots, n \| 2 n, \ldots, n+1) & =Q(2 n, \ldots, n+1 \| 1, \ldots, n)
\end{aligned}
$$

Next, we want to show that we can write

$$
Q(1, \ldots, n \| 2 n, \ldots, n+1)=Q(1, \ldots, n)+V
$$

where V is a matrix of nonnegative rank one. Let $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=$ $\left(v_{1}, \ldots, v_{n}\right)$, where $u_{i}=(2 n-2 i+1)$ and $v_{j}=(2 n-2 j+1)$. Then

$$
\begin{equation*}
(2 n-i-j+1)^{2}=(i-j)^{2}+u_{i} v_{j} \tag{3}
\end{equation*}
$$

This follows from the identity

$$
\left(\frac{1}{2}\left(u_{i}+v_{j}\right)\right)^{2}=\left(\frac{1}{2}\left(u_{i}-v_{j}\right)\right)^{2}+u_{i} v_{j}
$$

noting that $u_{i}+v_{j}=2(2 n-i-j+1)$ and $u_{i}-v_{j}=2(j-i)$, 1), (2) and (3) give

$$
Q(1, \ldots, n \| 2 n, \ldots, n+1)=Q(1, \ldots, n)+u^{t} \cdot v .
$$

The vectors u, v are nonnegative, and so $V:=u^{t} v$ is a nonnegative rank one matrix. Altogether, we have shown that

$$
\begin{aligned}
Q(1, \ldots, n, 2 n, \ldots, n+1) & =\left(\begin{array}{ll}
Q(1, \ldots, n) & Q(1, \ldots, n)+V \\
Q(1, \ldots, n)+V & Q(1, \ldots, n)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right) \times Q(1, \ldots, n)+\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \times V
\end{aligned}
$$

Hence, by Lemma 5 , $\mathrm{rk}_{+} Q(1, \ldots, n, 2 n, \ldots, n+1) \leq \mathrm{rk}_{+} Q(1, \ldots, n)+2$.
Theorem 1 follows from the last lemma. We have $\mathrm{rk}_{+} Q(1)=0$. If $n>1$ is a power of two then $\mathrm{rk}_{+} Q(1, \ldots, n) \leq \mathrm{rk}_{+} Q(1, \ldots, n / 2)+2$, which implies

$$
\mathrm{rk}_{+} Q(1, \ldots, n) \leq 2 \log _{2} n
$$

If n is not a power of two, $Q(1, \ldots, n)$ is a submatrix of $Q\left(1, \ldots, 2^{\left\lceil\log _{2} n\right\rceil}\right)$ and so $\mathrm{rk}_{+} Q(1, \ldots, n) \leq 2\left\lceil\log _{2} n\right\rceil \leq 2\left(\log _{2}(n)+1\right)$.

The Corollary follows by noting that for any $k, Q\left(a_{1}, \ldots, a_{n}\right)=Q\left(a_{1}+\right.$ $\left.k, \ldots, a_{n}+k\right)$. Hence we can without loss of generality assume that a_{1}, \ldots, a_{n} are nonnegative and that $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}$ with $m=a_{n}-a_{1}+1$. Hence $Q\left(a_{1}, \ldots, a_{n}\right)$ is a submatrix of the matrix $Q(1, \ldots, m)$, where the latter has rank $O(\log m)$.

5. Other rank deficient distance matrices

One can construct several other examples of points a_{1}, \ldots, a_{n} for which the distance matrix has logarithmic nonnegative rank. The innocuous Corollary 2 already applies to slowly growing sequences, such as $1^{2}, 2^{2}, \ldots, n^{2}$, but one can give more imaginative examples. However, they would hardly illuminate the question whether there exist some points for which the nonnegative rank is linear. We therefore give only one additional example. Lemma 8 is a general construction which is used in Proposition 9 to give a fast growing sequence whose distance matrix has a logarithmic nonnegative rank.

Lemma 7. Let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} be nonnegative real numbers such that $\min _{i \in\{1, \ldots, n\}} a_{i} \geq \max _{j \in\{1, \ldots, n\}} b_{j}$. Then the matrix $M_{i, j}=a_{i}-b_{j}, i, j \in$ $\{1, \ldots, n\}$ has nonnegative rank at most two.

Proof. Let $m:=\min _{i \in\{1, \ldots, n\}} a_{i}$. Then $M_{i, j}=\left(a_{i}-m\right)+\left(m-b_{j}\right)$. This means that M can be written as the sum of two nonnegative rank one matrices.

Lemma 8. Let $a_{1} \leq \cdots \leq a_{n}$ be positive real numbers and let r be such that $r \geq\left(a_{n} / a_{1}\right)^{2}$. Then

$$
r k_{+} Q\left(a_{1}, \ldots, a_{n}, r a_{1}, \ldots, r a_{n}\right) \leq r k_{+} Q\left(a_{1}, \ldots, a_{n}\right)+4
$$

Proof. Write
$Q\left(a_{1}, \ldots, a_{n}, r a_{1}, \ldots, r a_{n}\right)=$

$$
=\left(\begin{array}{lr}
Q\left(a_{1}, \ldots, a_{n}\right) & Q\left(a_{1}, \ldots, a_{n} \| r a_{1}, \ldots, r a_{n}\right) \\
Q\left(r a_{1}, \ldots, r a_{n} \| a_{1}, \ldots, a_{n}\right) & Q\left(r a_{1}, \ldots, r a_{n}\right)
\end{array}\right) .
$$

One can see that

$$
Q\left(r a_{1}, \ldots, r a_{n}\right)=r^{2} Q\left(a_{1}, \ldots, a_{n}\right)
$$

We want to show that for some nonnegative matrix V with $\mathrm{rk}_{+} V \leq 2$,

$$
\begin{equation*}
Q\left(r a_{1}, \ldots, r a_{n} \| a_{1}, \ldots, a_{n}\right)=r Q\left(a_{1}, \ldots, a_{n}\right)+V \tag{4}
\end{equation*}
$$

We have

$$
\begin{aligned}
Q\left(r a_{1}, \ldots, r a_{n} \| a_{1}, \ldots, a_{n}\right)_{i, j} & =\left(r a_{i}-a_{j}\right)^{2} \\
Q\left(a_{1}, \ldots, a_{n}\right)_{i, j} & =\left(a_{i}-a_{j}\right)^{2}
\end{aligned}
$$

Note that

$$
\begin{align*}
\left(r a_{i}-a_{j}\right)^{2} & =r\left(a_{i}-a_{j}\right)^{2}+\left(r^{2}-r\right) a_{i}^{2}-a_{j}^{2}(r-1) \\
& =r\left(a_{i}-a_{j}\right)^{2}+(r-1)\left(r a_{i}^{2}-a_{j}^{2}\right) \tag{5}
\end{align*}
$$

Let V be the matrix $V_{i, j}=(r-1)\left(r a_{i}^{2}-a_{j}^{2}\right), i, j \in\{1, \ldots, n\}$. By the assumption on r, we have $r \geq 1$ and $\min _{i \in\{1, \ldots, n\}} r a_{i}^{2}=r a_{1}^{2} \geq a_{n}^{2}=\max _{j \in\{1, \ldots, n\}} a_{j}^{2}$. Hence by the previous lemma, V is a nonnegative matrix with $\mathrm{rk}_{+} V \leq 2$ and by (5), it is such that (4) holds. Similarly, we can construct a V^{\prime} of nonnegative rank ≤ 2 such that

$$
Q\left(a_{1}, \ldots, a_{n} \| r a_{1}, \ldots, r a_{n}\right)=r Q\left(a_{1}, \ldots, a_{n}\right)+V^{\prime}
$$

Altogether, we have shown that

$$
\begin{aligned}
& Q\left(a_{1}, \ldots, a_{n}, r a_{1}, \ldots, r a_{n}\right)= \\
& \quad=\left(\begin{array}{ll}
Q\left(a_{1}, \ldots, a_{n}\right) & r Q\left(a_{1}, \ldots, a_{n}\right)+V^{\prime} \\
r Q\left(a_{1}, \ldots, a_{n}\right)+V & r^{2} Q\left(a_{1}, \ldots, a_{n}\right)
\end{array}\right) \\
& \\
& =\left(\begin{array}{rr}
1 & r \\
r & r^{2}
\end{array}\right) \times Q\left(a_{1}, \ldots a_{n}\right)+\left(\begin{array}{ll}
0 & V^{\prime} \\
V & 0
\end{array}\right)
\end{aligned}
$$

Hence, by Lemma5, we have $\mathrm{rk}_{+} Q\left(a_{1}, \ldots, a_{n}, r a_{1}, \ldots, r a_{n}\right) \leq \mathrm{rk}_{+} Q\left(a_{1}, \ldots, a_{n}\right)+$ 4.

Proposition 9. There exists an infinite sequence of natural numbers $b_{1}<b_{2}<$ \ldots such that for every $n, r k_{+} Q\left(2^{b_{1}}, \ldots, 2^{b_{n}}\right) \leq 4 \log _{2} n+2$.

Proof. We are supposed to give an increasing sequence of natural numbers a_{1}, a_{2}, \ldots such that every a_{i} is a power of two and $Q\left(a_{1}, \ldots, a_{n}\right)$ has a logarithmic nonnegative rank. Construct the sequence recursively by means of the previous lemma. Let $a_{1}:=1$ and $a_{2}:=2$. Assume that $n \geq 2$ is a power of two and that we have already constructed a_{1}, \ldots, a_{n}. Let $r:=\left(a_{n} / a_{1}\right)^{2}=a_{n}^{2}$ and for $i \in\{1, \ldots, n\}$, define $a_{n+i}:=r a_{i}$.

By construction, every a_{i} is a power of two and the sequence a_{1}, a_{2}, \ldots is increasing. Since $\mathrm{rk}_{+} Q\left(a_{1}, a_{2}\right)=2$, Lemma 8 implies that whenever $n \geq 2$ is a power of two then $\mathrm{rk}_{+} Q\left(a_{1}, \ldots, a_{n}\right) \leq 4 \log _{2}(n)-2$. Hence $\mathrm{rk}_{+} Q\left(a_{1}, \ldots, a_{n}\right) \leq$ $4 \log _{2}(n)+2$ for any n.

Acknowledgement. I thank Daniel Yang Li and Ankur Moitra for helpful conversations.

References

[1] L. Beasley and T. Laffey. Real rank versus nonnegative rank. Linear Algebra and its Applications, 431(12):2330-2335, 2009.
[2] J. E. Cohen and U. G. Rothblum. Nonnegative ranks, decompositions, and factorisations of nonnegative matrices. Linear Algebra and its Applications, 190:149-167, 1993.
[3] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf. Linear vs. semidefinite extended formulations: Exponential separation and strong lower bounds. CoRR, abs/1111.0837, 2011.
[4] P. Hrubeš, S. Jukna, A. Kulikov, and P. Pudlák. On convex complexity measures. Theoretical Computer Science, 411(16):1842-1854, 2010.
[5] M. Lin and M. Chu. On the nonnegative rank of euclidean distance matrices. Linear Algebra and its Applications, 433(3):681-689, 2010.
[6] L. Lovasz and M. Saks. Lattices, mobius functions and communications complexity. In 29th Annual Symposium on Foundations of Computer Science (FOCS 1988), pages 81-90, 1988.
[7] N. Nisan. Lower bounds for non-commutative computation. In Proceeding of the 23th STOC, pages 410-418, 1991.
[8] A. Razborov. Applications of matrix methods to the theory of lower bounds in computational complexity. Combinatorica, 10:81-93, 1990.
[9] A. Razborov. On submodular complexity measures. In Boolean functions complexity, pages 76-83. Cambridge University Press, 1992.
[10] Thomas Rothvoß. Some 0/1 polytopes need exponential size extended formulations. CoRR, abs/1105.0036, 2011.
[11] I. Wegener. The complexity of boolean functions, 1987.
[12] Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs. Journal of Computer and System Sciences, 43(3):441466, 1991.

[^0]: ${ }^{1}$ pahrubes@gmail.com, Department of Computer Science, University of Calgary, Canada.
 ${ }^{2}$ A.k.a. "monotone rank", "positive rank", or "rank over the semiring of nonnegative real numbers".

[^1]: ${ }^{3}$ However, one can note that the presented upper bounds work also over integers.

