A subquadratic upper bound on sum-of-squares composition formulas

Pavel Hrubeš *

February 20, 2024

Abstract

For every n, we construct a sum-of-squares identitity

$$(\sum_{i=1}^{n} x_i^2)(\sum_{j=1}^{n} y_j^2) = \sum_{k=1}^{s} f_k^2$$

where f_k are bilinear forms with complex coefficients and $s = O(n^{1.62})$. Previously, such a construction was known with $s = O(n^2/\log n)$. The same bound holds over any field of positive characteristic.

1 Introduction

The problem of Hurwitz [8] asks for which integers n, m, s does there exist a sum-of-squares identity

$$(x_1^2 + \dots + x_n^2)(y_1^2 + \dots + y_m^2) = f_1^2 + \dots + f_s^2, \qquad (1)$$

where f_1, \ldots, f_s are bilinear forms in x and y with complex coefficients. Historically, the problem was motivated by existence of non-trivial identities with n = m = s. The first one is

$$(x_1^2 + x_2^2)(y_1^2 + y_2^2) = (x_1y_1 - x_2y_2)^2 + (x_1y_2 + x_2y_1)^2.$$

It can be interpreted as asserting multiplicativity of the norm on complex numbers. Euler's 4-square identity is an example with n, m, s = 4 which has later been interpreted as multiplicativity of the norm on quaternions. The final one is an 8-square identity which arises in connection to the algebra of octonions.

Let $\sigma(n)$ denote the smallest s such that an identity (1) with n = m exists. For every $n, \sigma(n) \ge n$. The above identities show that $\sigma(n) = n$ if $n \in \{1, 2, 4, 8\}$. A classical result of Hurwitz [8] shows that these are the only cases when equality holds: $\sigma(n) = n$ iff $n \in \{1, 2, 4, 8\}$. An extension of this

^{*}Institute of Mathematics of ASCR, pahrubes@gmail.com. This work was supported by Czech Science Foundation GAČR grant 19-27871X.

result is given by Hurwitz-Radon theorem [11]: an identity (1) exists with s = niff $m \le \rho(n)$, where $\rho(n)$ is the Hurwitz-Radon number. The value of $\rho(n)$ is known exactly; if n is a power of 2, $\rho(n)$ lies between $2\log_2 n$ and $2\log_2 n + 2$. As shown in [12], Hurwitz-Radon theorem remains valid over any field of characteristic different from two. Hurwitz's problem is an intriguing question with connections to several branches of mathematics. We recommend D. Shapiro's monograph [13] on this subject.

The asymptotic behavior of $\sigma(n)$ is not known. Trivial bounds are $n \leq \sigma(n) \leq n^2$. Hurwitz's theorem implies that the first inequality is strict if n is sufficiently large. Using Hurwitz-Radon theorem, the trivial upper bound can be improved to

$$\sigma(n) \le O(n^2 / \log n)$$

As far as we are aware, this was the best asymptotic upper bound previously known. In this paper, we will improve it to a truly subquadratic bound

$$\sigma(n) \le O(n^{1.62}) \,. \tag{2}$$

A specific motivation for this problem comes from arithmetic circuit complexity. In [6], Wigderson, Yehudayoff and the current author related the sumof-squares problem with complexity of non-commutative computations. Noncommutative arithmetic circuit is a model for computing polynomials whose variables do not multiplicatively commute. Since the seminal paper of Nisan [10], it has been an open problem to give a superpolynomial lower bound on circuit size in this model. In [6], it has been shown that a superlinear lower bound of $\Omega(n^{1+\epsilon})$ on $\sigma(n)$ translates to an exponential lower bound in the noncommutative setting. Hence, providing asymptotic lower bounds on Hurwitz's problem can be seen as a concrete approach towards answering Nisan's question. A more general result of this flavor was given by Carmosino et al. in [1]. In an attempt to implement the sum-of-squares approach, the authors from [6] gave an $\Omega(n^{6/5})$ lower bound for sum-of-squares composition formulas over integers [7]. However, the upper bound (2) goes in the opposite direction. Since it is superlinear, it does not immediately frustrate the approach from [6], it merely dampens its optimism.

2 The main result

Let \mathbb{F} be a field. Define $\sigma_{\mathbb{F}}(n,m)$ as the smallest s such that there exist bilienear¹ $f_1, \ldots, f_s \in \mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_m]$ satisfying (1). Furthermore, let $\sigma_{\mathbb{F}}(n) := \sigma_{\mathbb{F}}(n, n)$.

Theorem 1. Let \mathbb{F} be either \mathbb{C} or a filed of positive characteristic. Then $\sigma_{\mathbb{F}}(n) \leq O(n^c)$ where c < 1.62.

This will be proved in Section 4. In Section 5.1, we will give a modification of Theorem 1 that applies also to any field.

¹I.e., of the form $\sum_{i,j} a_{i,j} x_i y_j$.

Remark 2. If \mathbb{F} has characteristic two, the result is trivial. Since $(\sum_i x_i^2)(\sum_j y_j^2) = (\sum_{i,j} x_i y_j)^2$, we have $\sigma_{\mathbb{F}}(n,m) = 1$.

Notation Given vectors $u, v \in \mathbb{F}^n$, $\langle u, v \rangle := \sum_{i=1}^n u_i v_i$ is their inner product. For a set S, $\binom{S}{k}$ denotes the set of k-element subsets of S and $\binom{S}{\leq k}$ the set of subsets with at most k elements. $\binom{n}{<k} := \sum_{i=0}^k \binom{n}{i}$. [n] is the set $\{1, \ldots, n\}$.

3 Hurwitz-Radon conditions

In this section, we give some well-known properties of σ that we will need later.

The definition immediately implies thet $\sigma_{\mathbb{F}}(n,m)$ is symmetric, subadditive, and monotone:

$$\sigma_{\mathbb{F}}(n,m) = \sigma_{\mathbb{F}}(m,n),$$

$$\sigma_{\mathbb{F}}(n,m_1+m_2) \le \sigma_{\mathbb{F}}(n,m_1) + \sigma_{\mathbb{F}}(n,m_2),$$

$$\sigma_{\mathbb{F}}(n,m) \le \sigma_{\mathbb{F}}(n,m'), \ m \le m'.$$
(3)

The following lemma gives a characterization of σ in terms of Hurwitz-Radon conditions (4). A proof can be found, e.g., in [13], but we present it for completeness.

Lemma 3. Let \mathbb{F} be a field of characteristic different from two. Then $\sigma_{\mathbb{F}}(n.m)$ equals the smallest s such that there exist matrices $H_1, \ldots, H_m \in \mathbb{F}^{n \times s}$ satisfying

$$H_i H_i^t = I_n ,$$

$$H_i H_j^t + H_j H_i^t = 0 , \ i \neq j ,$$
(4)

for every $i, j \in [m]$.

Proof. Let f_1, \ldots, f_s be bilinear polynomials in variables x_1, \ldots, x_n and y_1, \ldots, y_m . Then the vector $\overline{f} = (f_1, \ldots, f_s)$ can be written as

$$\bar{f} = \sum_{i=1}^{n} \bar{x} H_i y_i$$

where $\bar{x} = (x_1, \ldots, x_n)$ and $H_i \in \mathbb{F}^{n \times s}$. Hence

$$\sum_{k=1}^{5} f_k^2 = \bar{f}\bar{f}^t = \sum_i y_i^2 \bar{x}H_i H_i^t \bar{x}^t + \sum_{i< j} y_i y_j \bar{x}(H_i H_j^t + H_j H_i^t) \bar{x}^t.$$

If the matrices satisfy (4), this equals $\sum_i y_i^2 \bar{x} I_n \bar{x}^t = (y_1^2 + \dots + y_m^2)(x_1^2 + \dots + x_n^2)$, which gives a sum-of-squares identity with *s* squares. Conversely, if $(y_1^2 + \dots + y_m^2)(x_1^2 + \dots + x_n^2) = \sum f_k^2$, we must have $\bar{x} H_i H_i^t \bar{x}^t = x_1^2 + \dots + x_n^2$ and $\bar{x} (H_i H_j^t + H_j H_i^t) \bar{x}^t = 0$. In characteristic different from 2, this is possible only if the conditions (4) are satisfied.

Given a natural number of the form $n = 2^k a$ where a is odd, the Hurwitz-Radon number is defined as

$$\rho(n) = \begin{cases} 2k+1, & \text{if } k = 0\\ 2k, & \text{if } k = 1\\ 2k, & \text{if } k = 2\\ 2k+2, & \text{if } k = 3 \end{cases} \mod 4$$

Observe that

$$2\log_2 n \le \rho(n) \le 2\log_2(n) + 2,$$

whenever n is a power of two.

Square matrices A_1, A_2 anticommute if $A_1A_2 = -A_2A_1$. A family of square matrices A_1, \ldots, A_t will be called *anticommuting* if A_i, A_j anticommute for every $i \neq j$.

The following lemma is a key ingredient in the proof of Hurwitz-Radon theorem. A self-contained construction can be found in [2].

Lemma 4. For every n, there exists an anticommuting family of $t = \rho(n) - 1$ integer matrices $e_1, \ldots, e_t \in \mathbb{Z}^{n \times n}$ which are orthonormal and antisymmetric (i.e., $e_i e_i^t = I_n$ and $e_i = -e_i^t$).

Remark 5. A straightforward construction (see, e.g., [5]) gives an anticommuting family of $t = 2 \log_2 n + 1$ integer matrices $e_1, \ldots, e_t \in \mathbb{Z}^{n \times n}$ with $e_i^2 = \pm I_n$ whenever n is a power of two. With minor modifications, these matrices could be used in the subsequent construction instead.

4 The construction

Let e_1, \ldots, e_t be a set of square matrices. Given $A = \{i_1, \ldots, i_k\} \subseteq [t]$ with $i_1 < \cdots < i_k$, let $e_A := \prod_{j=1}^k e_{i_j}$.

Lemma 6. Let e_1, \ldots, e_t be a set of anticommuting matrices. If $A, B \subseteq [t]$ have even size (resp. odd size) then e_A, e_B anticommute assuming $|A \cap B|$ is odd (resp. even).

Proof. Since e_i anticommutes with every e_j , $j \neq i$, but commutes with itself, we obtain

$$e_A e_i = (-1)^{|A \setminus \{i\}|} e_i e_A \,.$$

This implies that

$$e_A e_B = (-1)^q e_B e_A \,,$$

where $q = |A| \cdot |B| - |A \cap B|$. Hence if A, B are even (resp. odd) and their intersection is odd (resp. even), q is odd and e_A, e_B anticommute.

Given integers $0 \le k \le t$, a (k, t)-parity representation of dimension s over a field \mathbb{F} is a map $\xi : {[t] \choose k} \to \mathbb{F}^s$ such that for every $A, B \in {[t] \choose k}$

$$\langle \xi(A), \xi(A) \rangle = 1, \langle \xi(A), \xi(B) \rangle = 0, \text{ if } A \neq B \text{ and } (|A \cap B| = k \operatorname{\mathsf{mod}} 2).$$
 (5)

Lemma 7. Let $0 \le k \le t$. Over \mathbb{C} , there exists a (k,t)-parity representation of dimension $\binom{t}{\le \lfloor k/2 \rfloor}$. If \mathbb{F} is a field of odd characteristic p, there exists a (k,t)-parity representation of dimension $(p-1)\binom{t}{\le \lfloor k/2 \rfloor}$.

The case of odd characteristic will be proved in the Appendix..

Proof of Lemma 7 over \mathbb{C} . Let $0 \leq k \leq t$ be given and $d := \lfloor k/2 \rfloor$.

For $a \in \{0, 1\}^t$, let |a| be the number of ones in a. Recall that a polynomial is multilinear, if every variable in it has individual degree at most one. We first observe:

Claim 8. There exists a multilinear polynomial $f \in \mathbb{Q}(x_1, \ldots, x_t)$ of degree $\leq d$ such that for every $a \in \{0, 1\}^t$

$$f(a) = \begin{cases} 1, & \text{if } |a| = k \\ 0, & \text{if } |a| < k \text{ and } (|a| = k \mod 2). \end{cases}$$
(6)

Proof of Claim. Consider the polynomial

$$g(x_1, \dots, x_t) := c \prod_{0 \le i < k, \ i=k \mod 2} (\sum_{j=1}^t x_j - i).$$

Then g has degree d and we can choose $c \in \mathbb{Q}$ so that g satisfies (6). Since we care about inputs from $\{0,1\}^t$, g can be rewritten as a multilinear polynomial f of degree at most d.

Since f is multilinear, we can write it as

$$f(x_1,\ldots,x_t) = \sum_{C \in \binom{[t]}{\leq d}} \alpha_C \prod_{i \in C} x_i,$$

where α_C are rational coefficients. Identifying a subset A of [t] with its characteristic vector in $\{0, 1\}^t$, we have

$$f(A) = \sum_{C \subseteq A} \alpha_C \,.$$

Let $s := {t \choose \leq d}$. Given $A \in {[t] \choose k}$, let $\xi(A) \in \mathbb{C}^s$ be the vector whose coordinates are indexed by subsets $C \in {[t] \choose \leq d}$ such that

$$\xi(A)_C = \begin{cases} (\alpha_C)^{1/2}, & \text{if } C \subseteq A \\ 0, & \text{if } C \not\subseteq A. \end{cases}$$

This guarantees

$$\langle \xi(A), \xi(B) \rangle = \sum_C \xi(A)_C \xi(B)_C = \sum_{C \subseteq A \cap B} \alpha_C = f(A \cap B) \,.$$

Hence conditions (6) translate to the desired properties of the map ξ .

Combining Lemma 6 and 7, we obtain the following bound on σ :

Theorem 9. Let n be a non-negative integer. Let $0 \le k \le \rho(n) - 1$ and $m := \binom{\rho(n)-1}{k}$ Then

$$\sigma_{\mathbb{C}}(n,m) \le n \cdot \begin{pmatrix} \rho(n) - 1 \\ \le \lfloor k/2 \rfloor \end{pmatrix}.$$

If \mathbb{F} is a field of odd characteristic p then

$$\sigma_{\mathbb{F}}(n,m) \le (p-1)n \cdot \begin{pmatrix} \rho(n) - 1 \\ \le \lfloor k/2 \rfloor \end{pmatrix}$$

Proof. Let n, k, m be as in the assumption. Let e_1, \ldots, e_t be the matrices from Lemma 4 with $t = \rho(n) - 1$. Let ξ be the (k, t)-parity representation given by the previous lemma. For $A \in {[t] \choose k}$, let

$$H_A := e_A \times \xi(A)$$

where e_A is defined as in Lemma 6, and $\xi(A)$ is viewed as a row vector.

Note that each H_A has dimension $n \times (ns)$ where s is the dimension of the parity representation, and there are $m = {t \choose k}$ such matrices H_A . By Lemma 3, it is sufficient to show that the system of matrices $H_A, A \in {[t] \choose k}$, satisfies Hurwitz-Radon conditions (4).

We have

$$H_A H_B^t = (e_A e_B^t) \times (\xi(A)\xi(B)^t) = \langle \xi(A), \xi(B) \rangle \cdot e_A e_B^t$$

Since every e_i is orthonormal, we have $e_A e_A^t = I_n$. From (5), we have $\langle \xi(A), \xi(A) \rangle = 1$ and hence

$$H_A H_A^t = I_n$$
.

If $A \neq B$ then

$$H_A H_B^t + H_B H_A^t = \langle \xi(A), \xi(B) \rangle \cdot (e_A e_B^t + e_B e_A^t) \,. \tag{7}$$

If $|A \cap B| = k \mod 2$ then $\langle \xi(A), \xi(B) \rangle = 0$ by (5) and hence (7) equals zero. If $|A \cap B| \neq k \mod 2$ then $e_A e_B^t + e_B e_A^t = 0$. This is because $e_A e_B = -e_B e_A$ by Lemma 6 and that, since e_i are antisymmetric, e_A, e_B are either both symmetric or both antisymmetric. Therefore (7) equals zero for every $A \neq B \in {[t] \choose k}$. \Box

Theorem 1 is an application of Theorem 9.

Proof of Theorem 1. Assume first that n is a power of 16. This gives $\rho(n) = 2\log_2(n) + 1$. Let k be the smallest integer with $n \leq \binom{2\log_2 n}{k} =: m$. From the previous theorem and monotonicity of σ (cf. (3)), we obtain

$$\sigma_{\mathbb{F}}(n) \le \sigma_{\mathbb{F}}(n,m) \le cns\,,$$

where the constant c depends on the field only and $s := \binom{2 \log_2 n}{\leq \lfloor k/2 \rfloor}$.

We have $k = 2(\alpha + \epsilon_n) \log_2 n$ where $\alpha \in (0, \frac{1}{2})$ is such that $H(\alpha) = 1/2$ (*H* is the binary entropy function) and $\epsilon_n \to 0$ as *n* approaches infinity. We also have

$$s < 2^{2H(\frac{\alpha+\epsilon_n}{2})\log_2 n} = n^{2H(\frac{\alpha}{2})+\epsilon'_n}$$

where $\epsilon'_n \to 0$. Hence

$$\sigma_{\mathbb{F}}(n) \le cn^{1+2H(\frac{\alpha}{2})+\epsilon'_n}.$$

The numerical value of α is 0.11... which leads to $\sigma_{\mathbb{F}}(n) \leq cn^{1.615 + \epsilon'_n} \leq O(n^{1.616}).$

If n is not a power of 16, take n' with n < n' < 16n which is. By monotonicity of σ , we have $\sigma_{\mathbb{F}}(n) \leq \sigma_{\mathbb{F}}(n')$.

4.1 Comments

- **Remark 10.** (i). Instead of \mathbb{C} , Theorems 9 and 1 apply to any field of characteristic zero where all rationals have a square root.
- (ii). In positive characteristic, the bounds in Lemma 7 and Theorem 9 can sometimes be improved: if $\mathbb{F} \supseteq \mathbb{F}_{p^2}$, the factor (p-1) can be dropped. For certain values of k, $\binom{t}{\leq \lfloor k/2 \rfloor}$ can be replaced with $\binom{n}{\lfloor k/2 \rfloor}$ (cf. Remark 18).

An improvement on the dimension of parity representation in Lemma 7, if possible, will lead to an improvement in Theorem 1. However, this dimension cannot be too small:

Remark 11. If k is even, every (k, t)-parity representation must have dimension at least $s = \binom{\lfloor t/2 \rfloor}{k/2}$ over any field. This is because there exists a family \mathcal{A} of k-element subsets of [t] whose pairwise intersection is even, and $|\mathcal{A}| = s$. The map ξ must assign linearly independent vectors to elements of \mathcal{A} . Similarly for k odd.

On the other hand, $\binom{t}{\leq \lfloor k/2 \rfloor}$ in Lemma 7 can be replaced with $\binom{t}{\leq \lfloor t-k/2 \rfloor}$ which gives a smaller bound if if k > t/2. This is because we can apply the construction of parity representation to complements of $A \in \binom{[t]}{k}$.

The notion of (k, t)-parity representation can be restated in the language of *orthonormal representations* of graphs of Lovász [9]. Given a graph G with vertex set V, its orthonormal representation is a map $\xi(V) :\to \mathbb{F}^s$ such that for every $u, v \in V$

$$\begin{array}{lll} \langle \xi(u),\xi(u)\rangle &=& 1\,,\\ \langle \xi(u),\xi(v)\rangle &=& 0\,, \mbox{ if } u\neq v \mbox{ are not adjacent in } G. \end{array}$$

In this language, (k, t)-parity representation is an orthonormal representation of the following combinatorial Knesser-type graph $G_{k,t}$: vertices of $G_{k,t}$ are kelement subsets of [t]. There is an edge between u and v iff $|u \cap v| \neq k \mod 2$. Orthogonal representations of related graphs have been studied by Haviv in [4, 3].

5 Modifications and extensions

5.1 A sum of bilinear products

Define $\beta_{\mathbb{F}}(n)$ as the smallest s such there exists an identity

$$(x_1^2 + \dots + x_n^2)(y_1^2 + \dots + y_n^2) = f_1 f_1' + \dots + f_s f_s',$$

where f_1, \ldots, f_s and f'_1, \ldots, f'_s are bilinear forms with coefficients from \mathbb{F} .

In some contexts, β is a more natural quantity than σ . In this section, we give a modification of Theorem 1 in terms of β :

Theorem 12. Over any field, $\beta_{\mathbb{F}}(n) \leq O(n^c)$ where c < 1.62.

Note that $\beta_{\mathbb{F}}(n) \leq \sigma_{\mathbb{F}}(n)$ over any field. Furthermore, it is easy to see that

 $\begin{array}{rcl} \sigma_{\mathbb{C}}(n) & \leq & 2\beta_{\mathbb{C}}(n) \,, \\ \sigma_{\mathbb{F}}(n) & \leq & 2(p-1)\beta_{\mathbb{F}}(n) \,, \ \, \text{if} \ \mathbb{F} \ \text{has characteristic} \ p > 0 \,. \end{array}$

This means that Theorem 1 can be seen as a consequence of Theorem 12.

The proof of Theorem 12 is a straightforward modification of that of Theorem 1 and we give only a sketch.

The following is an analogy of Lemma 3; we omit the proof.

Lemma 13. Assume that there are matrices $H_1, \ldots, H_m, \tilde{H}_1, \ldots, \tilde{H}_m \in \mathbb{F}^{n \times s}$ satisfying

$$H_i H_i^t = I_n , H_{i_1} H_{i_2}^t + H_{i_2} H_{i_1}^t = 0$$

for every $i \in [m]$ and $i_1 \neq i_2 \in [m]$. Then $\beta_{\mathbb{F}}(n,m) \leq s$.

Lemma 14. For $0 \le k \le t$ and any field \mathbb{F} of characteristic different from two, there exists a pair of maps $\xi, \tilde{\xi} : {t \choose k} \to \mathbb{F}^s$ with $s \le {t \choose \le \lfloor k/2 \rfloor}$ such that for every for every $A, B \in {t \choose k}$

$$\begin{split} &\langle \xi(A), \tilde{\xi}(A) \rangle &= 1 \,, \\ &\langle \xi(A), \tilde{\xi}(B) \rangle &= 0 \,, \ \textit{if} \ A \neq B \ \textit{and} \ (|A \cap B| = k \operatorname{mod} 2) \,. \end{split}$$

Proof. The proof is almost the same as that of Lemma 7. Equipped with the polynomial f from Claim 8 or Lemma 16, it is sufficient to modify the definition of ξ as follows:

$$\xi(A)_C = \begin{cases} \alpha_C, & \text{if } C \subseteq A \\ 0, & \text{if } C \not\subseteq A. \end{cases}, \ \tilde{\xi}(A)_C = \begin{cases} 1, & \text{if } C \subseteq A \\ 0, & \text{if } C \not\subseteq A. \end{cases}$$

Proof sketch of Thoreom 12. In Theorem 9, replace the matrices H_A by the pair

$$H_A := e_A \times \xi(A), \ \tilde{H}_A = e_A \times \tilde{\xi}(A).$$

They satisfy the conditions from Lemma 13 and we can proceed as in Theorem 1. $\hfill \Box$

5.2 A tensor product construction

We now outline an alternative construction of non-trivial sum-of-squares identities. While it gives different types of identities, it does not seem to give better bounds asymptotically.

Instead of the products of anticommuting matrices e_A , one can take the *tensor* product of matrices satisfying Hurwitz-Radon conditions (4). Namely, given such matrices $H_1, \ldots, H_m \in \mathbb{F}^{n \times s}$, and $a \in [m]^{\ell}$, let

$$H_a := H_{a_1} \times H_{a_2} \cdots \times H_{a_\ell}.$$

Observe that every H_a satisfies $H_a H_a^t = I$ and that

$$H_a H_b^t + H_b H_a^t = 0 \,,$$

whenever a and b have odd Hamming distance (i.e., they differ in an odd number of coordinates). As in Lemma 7, we can find a map $\xi : [m]^{\ell} \to \mathbb{C}^s$ with $s \leq (4m)^{\ell/2}$ such that

 $\begin{array}{lll} \langle \xi(a),\xi(a)\rangle &=& 1\,,\\ \langle \xi(a),\xi(b)\rangle &=& 0\,\,, \mbox{ if } a\neq b \mbox{ have even Hamming distance.} \end{array}$

This gives for every ℓ

$$\sigma_{\mathbb{C}}(n^{\ell}, m^{\ell}) \le \sigma_{\mathbb{C}}(n, m)^{\ell} (4m)^{\ell/2}$$

For example, starting with $\sigma_{\mathbb{C}}(8,8) = 8$, we have

$$\sigma_{\mathbb{C}}(8^{\ell}, 8^{\ell}) \le 8^{11\ell/6} \,.$$

6 Open problems

Let Even_t denote the set of even-sized subsets of [t]. A map $\xi : \operatorname{Even}_t \to \mathbb{F}^s$ will be called a *t*-parity representation of dimension s if for every $A, B \in \operatorname{Even}_t$

$$\begin{array}{lll} \langle \xi(A),\xi(A)\rangle &=& 1\,,\\ \langle \xi(A),\xi(B)\rangle &=& 0\,, \mbox{ if } A\neq B \mbox{ and } |A\cap B| \mbox{ is even}. \end{array}$$

Problem 1. Over \mathbb{C} , does there exist a t-parity representation of dimension at most $2^{(0.5+o(1))t}$?

If this were the case, we could improve the upper bound of Theorem 1 to $\sigma_{\mathbb{C}}(n,n) \leq n^{1.5+o(1)}$. A more surprising consequence would be that $\sigma_C(n,n^2) \leq n^{2+o(1)}$. The constant 0.5 in Problem 1 cannot be improved: since there exists a family of $2^{\lfloor t/2 \rfloor}$ subsets of [t] with pairwise even intersection, every t-parity representation must have dimension at least $2^{\lfloor t/2 \rfloor}$ (cf. Remark 11). On the other hand, Lemma 7 implies that there exists a t-parity representation of dimension at most $2^{H(0.25)+o(1))t} < 2^{0.82t}$.

Our results do not apply to sum-of-squares composition formulas over the real numbers. Since \mathbb{R} is one of the most natural choices of the underlying field in Hurwitz's problem, it is desirable to extend the construction in this direction. This motivates the following:

Problem 2. Over \mathbb{R} , does there exist a t-parity representation of dimension $O(2^{ct})$, where c < 1?

References

- Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. Hardness amplification for non-commutative arithmetic circuits. In Proceedings of the 33rd Computational Complexity Conference, CCC '18, Dagstuhl, DEU, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
- [2] A. Geramita and N. Pullman. A theorem of Hurwitz and Radon and orthogonal projective modules. *Proceedings of The American Mathematical Society - PROC AMER MATH SOC*, 42:51–51, 01 1974.
- [3] I. Haviv. On minrank and the Lovász Theta function. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2018.
- [4] I. Haviv. Topological bounds on the dimension of orthogonal representations of graphs. *European Journal of Combinatorics*, 81:84–97, 2019.
- [5] P. Hrubeš. On families of anticommuting matrices. *Electronic Colloquium* in Computational Complexity, 2014.
- [6] P. Hrubeš, A. Wigderson, and A. Yehudayoff. Non-commutative circuits and the sum of squares problem. In STOC' 10 Proceedings of the 42nd symposium on Theory of Computing, pages 667–676, 2010.
- [7] P. Hrubeš, A. Wigderson, and A. Yehudayoff. An asymptotic bound on the composition number of integer sums of squares formulas. *Canadian Mathematical Bulletin*, 56:70–79, 2013.
- [8] A. Hurwitz. Uber die Komposition der quadratischen Formen von beliebigvielen Variabeln. Nach. Ges. der Wiss. Göttingen, pages 309–316, 1898.

- [9] L. Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1-7, 1979.
- [10] N. Nisan. Lower bounds for non-commutative computation. In Proceeding of the 23th STOC, pages 410–418, 1991.
- [11] J. Radon. Lineare scharen orthogonalen Matrizen. Abh. Math. Sem. Univ. Hamburg, 1(2-14), 1922.
- [12] D. B. Shapiro. Quadratic forms and similarities. Bull. Amer. Math. Soc., 81(6), 1975.
- [13] D. B. Shapiro. *Compositions of quadratic forms*. De Gruyter expositions in mathematics 33, 2000.

A Proof of Lemma 7 in positive characteristic

Given non-negative integers $\bar{n} = (n_1, \ldots, n_d)$ let $B(\bar{n})$ be the $d \times d$ matrix $\{B(\bar{n})_{i,j}\}_{i,j \in [d]}$ with

$$B(\bar{n})_{i,j} = \binom{n_j}{i-1}.$$

We assume that $\binom{n}{k} = 0$ whenever n < k; this guarantees $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}$.

Lemma 15. If $\bar{n} = (r, r+2, \ldots, r+2(d-1))$ for some non-negative integer r then det $(B(\bar{n})) = 2^{\binom{d}{2}}$.

Proof. We claim that

$$\det(B(\bar{n})) = (\prod_{i=0}^{d-1} i!)^{-1} \det(V(\bar{n})),$$

where $V(\bar{n})$ is the Vandermonde matrix with entries $V(\bar{n})_{i,j} = n_j^{i-1}$. To see this, multiply every *i*-th row of $B(\bar{n})$ by (i-1)! to obtain the matrix $B'(\bar{n})$. An *i*-th row r_i of $B'(\bar{n})$ is of the form $(n_1^i + g_i(n_1), \ldots, n_d^i + g_i(n_d))$ where g_i is a polynomial of degree $\langle i$. This means that r_i equals the *i*-th row of $V(\bar{n})$ plus a suitable linear of combination of the first i-1 rows of $V(\bar{n})$. Therefore, $\det(B'(\bar{n})) = \det(V(\bar{n}))$.

Given \bar{n} as in the assumption, we obtain

$$\det(V(\bar{n})) = \prod_{1 \le j_1 < j_2 \le d} (n_{j_2} - n_{j_1}) = \prod_{1 \le j_1 < j_2 \le d} (2j_2 - 2j_1)$$
$$= 2^{\binom{d}{2}} \prod_{1 \le j_1 < j_2 \le d} (j_2 - j_1) = \prod_{i=1}^{d-1} \prod_{j_1=1}^{d-i} i = \prod_{i=1}^{d-1} i^{(d-i)} =$$
$$= \prod_{i=1}^{d-1} i!.$$

This shows that $\det(B(\bar{n})) = 2^{\binom{d}{2}}$.

Lemma 16. Let p be an odd prime. Given $0 \le k \le t$, there exists a multilinear polynomial $f \in \mathbb{F}_p(x_1, \ldots, x_t)$ of degree at most $d = \lfloor k/2 \rfloor$ such that for every $a \in \{0, 1\}^t$

$$f(a) = \begin{cases} 1, & \text{if } |a| = k \\ 0, & \text{if } |a| < k \text{ and } (|a| = k \mod 2). \end{cases}$$

Proof. We look for f of the form $f = \sum_{j=0}^{d} c_j S_t^j$ where S_t^j is the elementary symmetric polynomial $S_t^j = \sum_{|A|=j} \prod_{i \in A} x_i$. Given $a \in \{0, 1\}^t$,

$$f(a) = \sum_{j=0}^d c_j \binom{|a|}{j} \bmod p$$

We are therefore looking for a solution of the linear system

$$B(\bar{n})(c_0...,c_d)^t = (0,...,0,1)^t$$

where $\bar{n} = (0, 2, ..., 2d)$, if k is even, and $\bar{n} = (1, 3, ..., 2d + 1)$, if k is odd. By the previous lemma, $B(\bar{n})$ is invertible over \mathbb{F}_p and such a solution exists. \Box

Lemma 17. If \mathbb{F} is a field of odd characteristic p, there exists a (k, t)-parity representation of dimension $(p-1)\binom{t}{<|k/2|}$.

Proof. If every element of \mathbb{F}_p has a square root in \mathbb{F} , the proof is the same as over \mathbb{C} . In general, proceed as follows. Since every element of \mathbb{F}_p is a sum of at most (p-1) ones, we can write

$$f(x_1,\ldots,x_t) = \sum_{C \in \mathcal{C}} \prod_{i \in C} x_i \,,$$

where \mathcal{C} is a multiset of $s = (p-1) {t \choose \leq d}$ subsets of [t]. For $A \in {\binom{[t]}{k}}$, let $\xi(A) \in \mathbb{F}^s$ be a vector whose coordinates are indexed by elements C of \mathcal{C} so that

$$\xi(A)_C = \begin{cases} 1, & \text{if } C \subseteq A \\ 0, & \text{if } C \not\subseteq A. \end{cases}$$

- **Remark 18.** (i). Over \mathbb{F}_{p^2} or a larger field, the factor of (p-1) in Lemma 17 can be dropped. This is because every element of \mathbb{F}_p has a square root in \mathbb{F}_{p^2} .
- (ii). For specific values of k, a stronger bound is possible. For example, if $k = 2p^{\ell} 1$, there is a (k, t)-parity representation of dimension $\binom{t}{\lfloor k/2 \rfloor}$. It follows from Lucas' theorem that in this case, f in Lemma 16 can be taken simply as the elementary symmetric polynomial of degree $\lfloor k/2 \rfloor$. This polynomial has only $\binom{t}{\lfloor k/2 \rfloor}$ non-zero monomials.