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Abstract

For every n, we construct a sum-of-squares identitity

(

n∑
i=1

x2
i )(

n∑
j=1

y2
j ) =

s∑
k=1

f2
k ,

where fk are bilinear forms with complex coefficients and s = O(n1.62).
Previously, such a construction was known with s = O(n2/ logn). The
same bound holds over any field of positive characteristic.

1 Introduction

The problem of Hurwitz [8] asks for which integers n,m, s does there exist a
sum-of-squares identity

(x2
1 + · · ·+ x2

n)(y
2
1 + · · ·+ y2m) = f2

1 + · · ·+ f2
s , (1)

where f1, . . . , fs are bilinear forms in x and y with complex coefficients. His-
torically, the problem was motivated by existence of non-trivial identities with
n = m = s. The first one is

(x2
1 + x2

2)(y
2
1 + y22) = (x1y1 − x2y2)

2 + (x1y2 + x2y1)
2 .

It can be interpreted as asserting multiplicativity of the norm on complex num-
bers. Euler’s 4-square identity is an example with n,m, s = 4 which has later
been interpreted as multiplicativity of the norm on quaternions. The final one
is an 8-square identity which arises in connection to the algebra of octonions.

Let σ(n) denote the smallest s such that an identity (1) with n = m ex-
ists. For every n, σ(n) ≥ n. The above identities show that σ(n) = n if
n ∈ {1, 2, 4, 8}. A classical result of Hurwitz [8] shows that these are the only
cases when equality holds: σ(n) = n iff n ∈ {1, 2, 4, 8}. An extension of this
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result is given by Hurwitz-Radon theorem [11]: an identity (1) exists with s = n
iff m ≤ ρ(n), where ρ(n) is the Hurwitz-Radon number. The value of ρ(n) is
known exactly; if n is a power of 2, ρ(n) lies between 2 log2 n and 2 log2 n + 2.
As shown in [12], Hurwitz-Radon theorem remains valid over any field of char-
acteristic different from two. Hurwitz’s problem is an intriguing question with
connections to several branches of mathematics. We recommend D. Shapiro’s
monograph [13] on this subject.

The asymptotic behavior of σ(n) is not known. Trivial bounds are n ≤
σ(n) ≤ n2. Hurwitz’s theorem implies that the first inequality is strict if n is
sufficiently large. Using Hurwitz-Radon theorem, the trivial upper bound can
be improved to

σ(n) ≤ O(n2/ log n) .

As far as we are aware, this was the best asymptotic upper bound previously
known. In this paper, we will improve it to a truly subquadratic bound

σ(n) ≤ O(n1.62) . (2)

A specific motivation for this problem comes from arithmetic circuit com-
plexity. In [6], Wigderson, Yehudayoff and the current author related the sum-
of-squares problem with complexity of non-commutative computations. Non-
commutative arithmetic circuit is a model for computing polynomials whose
variables do not multiplicatively commute. Since the seminal paper of Nisan
[10], it has been an open problem to give a superpolynomial lower bound on
circuit size in this model. In [6], it has been shown that a superlinear lower
bound of Ω(n1+ϵ) on σ(n) translates to an exponential lower bound in the non-
commutative setting. Hence, providing asymptotic lower bounds on Hurwitz’s
problem can be seen as a concrete approach towards answering Nisan’s question.
A more general result of this flavor was given by Carmosino et al. in [1]. In an
attempt to implement the sum-of-squares approach, the authors from [6] gave
an Ω(n6/5) lower bound for sum-of-squares composition formulas over integers
[7]. However, the upper bound (2) goes in the opposite direction. Since it is
superlinear, it does not immediately frustrate the approach from [6], it merely
dampens its optimism.

2 The main result

Let F be a field. Define σF(n,m) as the smallest s such that there exist
bilienear1f1, . . . , fs ∈ F[x1, . . . , xn, y1, . . . ym] satisfying (1). Furthermore, let
σF(n) := σF(n, n).

Theorem 1. Let F be either C or a filed of positive characteristic. Then σF(n) ≤
O(nc) where c < 1.62.

This will be proved in Section 4. In Section 5.1, we will give a modification
of Theorem 1 that applies also to any field.

1I.e., of the form
∑

i,j ai,jxiyj .
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Remark 2. If F has characteristic two, the result is trivial. Since (
∑

i x
2
i )(

∑
j y

2
j ) =

(
∑

i,j xiyj)
2, we have σF(n,m) = 1.

Notation Given vectors u, v ∈ Fn, ⟨u, v⟩ :=
∑n

i=1 uivi is their inner product.

For a set S,
(
S
k

)
denotes the set of k-element subsets of S and

(
S
≤k

)
the set of

subsets with at most k elements.
(

n
≤k

)
:=

∑k
i=0

(
n
i

)
. [n] is the set {1, . . . , n}.

3 Hurwitz-Radon conditions

In this section, we give some well-known properties of σ that we will need later.
The definition immediately implies thet σF(n,m) is symmetric, subadditive,

and monotone:

σF(n,m) = σF(m,n) ,

σF(n,m1 +m2) ≤ σF(n,m1) + σF(n,m2) ,

σF(n,m) ≤ σF(n,m
′) , m ≤ m′ . (3)

The following lemma gives a characterization of σ in terms of Hurwitz-Radon
conditions (4). A proof can be found, e.g., in [13], but we present it for com-
pleteness.

Lemma 3. Let F be a field of characteristic different from two. Then σF(n.m)
equals the smallest s such that there exist matrices H1, . . . ,Hm ∈ Fn×s satisfying

HiH
t
i = In ,

HiH
t
j +HjH

t
i = 0 , i ̸= j ,

(4)

for every i, j ∈ [m].

Proof. Let f1, . . . , fs be bilinear polynomials in variables x1, . . . , xn and y1, . . . , ym.
Then the vector f̄ = (f1, . . . , fs) can be written as

f̄ =

n∑
i=1

x̄Hiyi ,

where x̄ = (x1, . . . , xn) and Hi ∈ Fn×s. Hence

s∑
k=1

f2
k = f̄ f̄ t =

∑
i

y2i x̄HiH
t
i x̄

t +
∑
i<j

yiyj x̄(HiH
t
j +HjH

t
i )x̄

t .

If the matrices satisfy (4), this equals
∑

i y
2
i x̄Inx̄

t = (y21 + · · · + y2m)(x2
1 +

· · · + x2
n), which gives a sum-of-squares identity with s squares. Conversely, if

(y21 + · · ·+ y2m)(x2
1 + · · ·+ x2

n) =
∑

f2
k , we must have x̄HiH

t
i x̄

t = x2
1 + · · ·+ x2

n

and x̄(HiH
t
j +HjH

t
i )x̄

t = 0. In characteristic different from 2, this is possible
only if the conditions (4) are satisfied.

3



Given a natural number of the form n = 2ka where a is odd, the Hurwitz-
Radon number is defined as

ρ(n) =


2k + 1 , if k = 0

2k , if k = 1

2k , if k = 2

2k + 2 , if k = 3

mod 4

Observe that
2 log2 n ≤ ρ(n) ≤ 2 log2(n) + 2 ,

whenever n is a power of two.
Square matrices A1, A2 anticommute if A1A2 = −A2A1. A family of square

matrices A1, . . . , At will be called anticommuting if Ai, Aj anticommute for
every i ̸= j.

The following lemma is a key ingredient in the proof of Hurwitz-Radon
theorem. A self-contained construction can be found in [2].

Lemma 4. For every n, there exists an anticommuting family of t = ρ(n)− 1
integer matrices e1, . . . , et ∈ Zn×n which are orthonormal and antisymmetric
(i.e., eie

t
i = In and ei = −eti).

Remark 5. A straightforward construction (see, e.g., [5]) gives an anticommut-
ing family of t = 2 log2 n+ 1 integer matrices e1, . . . , et ∈ Zn×n with e2i = ±In
whenever n is a power of two. With minor modifications, these matrices could
be used in the subsequent construction instead.

4 The construction

Let e1, . . . , et be a set of square matrices. Given A = {i1, . . . , ik} ⊆ [t] with

i1 < · · · < ik, let eA :=
∏k

j=1 eij .

Lemma 6. Let e1, . . . , et be a set of anticommuting matrices. If A,B ⊆ [t]
have even size (resp. odd size) then eA, eB anticommute assuming |A ∩ B| is
odd (resp. even).

Proof. Since ei anticommutes with every ej , j ̸= i, but commutes with itself,
we obtain

eAei = (−1)|A\{i}|eieA .

This implies that
eAeB = (−1)qeBeA ,

where q = |A| · |B| − |A ∩ B|. Hence if A,B are even (resp. odd) and their
intersection is odd (resp. even), q is odd and eA, eB anticommute.
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Given integers 0 ≤ k ≤ t, a (k, t)-parity representation of dimension s over

a field F is a map ξ :
(
[t]
k

)
→ Fs such that for every A,B ∈

(
[t]
k

)
⟨ξ(A), ξ(A)⟩ = 1 ,

⟨ξ(A), ξ(B)⟩ = 0 , if A ̸= B and (|A ∩B| = kmod 2) .
(5)

Lemma 7. Let 0 ≤ k ≤ t. Over C, there exists a (k, t)-parity representation
of dimension

(
t

≤⌊k/2⌋
)
. If F is a field of odd characteristic p, there exists a

(k, t)-parity representation of dimension (p− 1)
(

t
≤⌊k/2⌋

)
.

The case of odd characteristic will be proved in the Appendix..

Proof of Lemma 7 over C. Let 0 ≤ k ≤ t be given and d := ⌊k/2⌋.
For a ∈ {0, 1}t, let |a| be the number of ones in a. Recall that a polynomial

is multilinear, if every variable in it has individual degree at most one. We first
observe:

Claim 8. There exists a multilinear polynomial f ∈ Q(x1, . . . , xt) of degree ≤ d
such that for every a ∈ {0, 1}t

f(a) =

{
1 , if |a| = k

0 , if |a| < k and (|a| = kmod 2) .
(6)

Proof of Claim. Consider the polynomial

g(x1, . . . , xt) := c
∏

0≤i<k, i=kmod 2

(

t∑
j=1

xj − i) .

Then g has degree d and we can choose c ∈ Q so that g satisfies (6). Since we
care about inputs from {0, 1}t, g can be rewritten as a multilinear polynomial
f of degree at most d.

Since f is multilinear, we can write it as

f(x1, . . . , xt) =
∑

C∈( [t]
≤d)

αC

∏
i∈C

xi ,

where αC are rational coefficients. Identifying a subset A of [t] with its charac-
teristic vector in {0, 1}t, we have

f(A) =
∑
C⊆A

αC .

Let s :=
(

t
≤d

)
. Given A ∈

(
[t]
k

)
, let ξ(A) ∈ Cs be the vector whose coordinates

are indexed by subsets C ∈
(
[t]
≤d

)
such that

ξ(A)C =

{
(αC)

1/2 , if C ⊆ A

0 , if C ̸⊆ A .
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This guarantees

⟨ξ(A), ξ(B)⟩ =
∑
C

ξ(A)Cξ(B)C =
∑

C⊆A∩B

αC = f(A ∩B) .

Hence conditions (6) translate to the desired properties of the map ξ.

Combining Lemma 6 and 7, we obtain the following bound on σ:

Theorem 9. Let n be a non-negative integer. Let 0 ≤ k ≤ ρ(n) − 1 and

m :=
(
ρ(n)−1

k

)
Then

σC(n,m) ≤ n ·
(
ρ(n)− 1

≤ ⌊k/2⌋

)
.

If F is a field of odd characteristic p then

σF(n,m) ≤ (p− 1)n ·
(
ρ(n)− 1

≤ ⌊k/2⌋

)
.

Proof. Let n, k,m be as in the assumption. Let e1, . . . , et be the matrices from
Lemma 4 with t = ρ(n) − 1. Let ξ be the (k, t)-parity representation given by

the previous lemma. For A ∈
(
[t]
k

)
, let

HA := eA × ξ(A) ,

where eA is defined as in Lemma 6, and ξ(A) is viewed as a row vector.
Note that each HA has dimension n× (ns) where s is the dimension of the

parity representation, and there are m =
(
t
k

)
such matrices HA. By Lemma

3, it is sufficient to show that the system of matrices HA, A ∈
(
[t]
k

)
, satisfies

Hurwitz-Radon conditions (4).
We have

HAH
t
B = (eAe

t
B)× (ξ(A)ξ(B)t) = ⟨ξ(A), ξ(B)⟩ · eAetB .

Since every ei is orthonormal, we have eAe
t
A = In. From (5), we have ⟨ξ(A), ξ(A)⟩ =

1 and hence
HAH

t
A = In .

If A ̸= B then

HAH
t
B +HBH

t
A = ⟨ξ(A), ξ(B)⟩ · (eAetB + eBe

t
A) . (7)

If |A ∩B| = kmod 2 then ⟨ξ(A), ξ(B)⟩ = 0 by (5) and hence (7) equals zero. If
|A ∩ B| ≠ kmod 2 then eAe

t
B + eBe

t
A = 0. This is because eAeB = −eBeA by

Lemma 6 and that, since ei are antisymmetric, eA, eB are either both symmetric
or both antisymmetric. Therefore (7) equals zero for every A ̸= B ∈

(
[t]
k

)
.

Theorem 1 is an application of Theorem 9.
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Proof of Theorem 1. Assume first that n is a power of 16. This gves ρ(n) =
2 log2(n) + 1. Let k be the smallest integer with n ≤

(
2 log2 n

k

)
=: m. From the

previous theorem and monotonicity of σ (cf. (3)), we obtain

σF(n) ≤ σF(n,m) ≤ cns ,

where the constant c depends on the field only and s :=
(2 log2 n
≤⌊k/2⌋

)
.

We have k = 2(α + ϵn) log2 n where α ∈ (0, 1
2 ) is such that H(α) = 1/2 (H

is the binary entropy function) and ϵn → 0 as n approaches infinity. We also
have

s ≤ 22H(α+ϵn
2 ) log2 n = n2H(α

2 )+ϵ′n ,

where ϵ′n → 0. Hence

σF(n) ≤ cn1+2H(α
2 )+ϵ′n .

The numerical value of α is 0.11 . . . which leads to σF(n) ≤ cn1.615+ϵ′n ≤
O(n1.616).

If n is not a power of 16, take n′ with n < n′ < 16n which is. By monotonicity
of σ, we have σF(n) ≤ σF(n

′).

4.1 Comments

Remark 10. (i). Instead of C, Theorems 9 and 1 apply to any field of char-
acteristic zero where all rationals have a square root.

(ii). In positive characteristic, the bounds in Lemma 7 and Theorem 9 can
sometimes be improved: if F ⊇ Fp2 , the factor (p− 1) can be dropped. For
certain values of k,

(
t

≤⌊k/2⌋
)
can be replaced with

(
n

⌊k/2⌋
)
(cf. Remark 18).

An improvement on the dimension of parity representation in Lemma 7, if
possible, will lead to an improvement in Theorem 1. However, this dimension
cannot be too small:

Remark 11. If k is even, every (k, t)-parity representation must have dimen-

sion at least s =
(⌊t/2⌋

k/2

)
over any field. This is because there exists a family A of

k-element subsets of [t] whose pairwise intersection is even, and |A| = s . The
map ξ must assign linearly independent vectors to elements of A. Similarly for
k odd.

On the other hand,
(

t
≤⌊k/2⌋

)
in Lemma 7 can be replaced with

(
t

≤⌊t−k/2⌋
)

which gives a smaller bound if if k > t/2. This is because we can apply the

construction of parity representation to complements of A ∈
(
[t]
k

)
.

The notion of (k, t)-parity representation can be restated in the language
of orthonormal representations of graphs of Lovász [9]. Given a graph G with
vertex set V , its orthonormal representation is a map ξ(V ) :→ Fs such that for
every u, v ∈ V

⟨ξ(u), ξ(u)⟩ = 1 ,

⟨ξ(u), ξ(v)⟩ = 0 , if u ̸= v are not adjacent in G.
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In this language, (k, t)-parity representation is an orthonormal representation
of the following combinatorial Knesser-type graph Gk,t: vertices of Gk,t are k-
element subsets of [t]. There is an edge between u and v iff |u ∩ v| ≠ kmod 2.
Orthogonal representations of related graphs have been studied by Haviv in
[4, 3].

5 Modifications and extensions

5.1 A sum of bilinear products

Define βF(n) as the smallest s such there exists an identity

(x2
1 + · · ·+ x2

n)(y
2
1 + · · ·+ y2n) = f1f

′
1 + · · ·+ fsf

′
s ,

where f1, . . . , fs and f ′
1, . . . , f

′
s are bilinear forms with coefficients from F.

In some contexts, β is a more natural quantity than σ. In this section, we
give a modification of Theorem 1 in terms of β:

Theorem 12. Over any field, βF(n) ≤ O(nc) where c < 1.62.

Note that βF(n) ≤ σF(n) over any field. Furthermore, it is easy to see that

σC(n) ≤ 2βC(n) ,

σF(n) ≤ 2(p− 1)βF(n) , if F has characteristic p > 0 .

This means that Theorem 1 can be seen as a consequence of Theorem 12.
The proof of Theorem 12 is a straightforward modification of that of Theo-

rem 1 and we give only a sketch.
The following is an analogy of Lemma 3; we omit the proof.

Lemma 13. Assume that there are matrices H1, . . . Hm, H̃1, . . . , H̃m ∈ Fn×s

satisfying
HiH̃

t
i = In , Hi1H̃

t
i2 +Hi2H̃

t
i1 = 0 ,

for every i ∈ [m] and i1 ̸= i2 ∈ [m]. Then βF(n,m) ≤ s.

Lemma 14. For 0 ≤ k ≤ t and any field F of characteristic different from two,
there exists a pair of maps ξ, ξ̃ :

(
[t]
k

)
→ Fs with s ≤

(
t

≤⌊k/2⌋
)
such that for every

for every A,B ∈
(
[t]
k

)
⟨ξ(A), ξ̃(A)⟩ = 1 ,

⟨ξ(A), ξ̃(B)⟩ = 0 , if A ̸= B and (|A ∩B| = kmod 2) .

Proof. The proof is almost the same as that of Lemma 7. Equipped with the
polynomial f from Claim 8 or Lemma 16, it is is sufficient to modify the defini-
tion of ξ as follows:

ξ(A)C =

{
αC , if C ⊆ A

0 , if C ̸⊆ A .
, ξ̃(A)C =

{
1 , if C ⊆ A

0 , if C ̸⊆ A .
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Proof sketch of Thoreom 12. In Theorem 9, replace the matrices HA by the pair

HA := eA × ξ(A) , H̃A = eA × ξ̃(A) .

They satisfy the conditions from Lemma 13 and we can proceed as in Theorem
1.

5.2 A tensor product construction

We now outline an alternative construction of non-trivial sum-of-squares iden-
tities. While it gives different types of identities, it does not seem to give better
bounds asymptotically.

Instead of the products of anticommuting matrices eA, one can take the
tensor product of matrices satisfying Hurwitz-Radon conditions (4). Namely,
given such matrices H1, . . . ,Hm ∈ Fn×s, and a ∈ [m]ℓ, let

Ha := Ha1
×Ha2

· · · ×Haℓ
.

Observe that every Ha satisfies HaH
t
a = I and that

HaH
t
b +HbH

t
a = 0 ,

whenever a and b have odd Hamming distance (i.e., they differ in an odd number
of coordinates). As in Lemma 7, we can find a map ξ : [m]ℓ → Cs with
s ≤ (4m)ℓ/2 such that

⟨ξ(a), ξ(a)⟩ = 1 ,

⟨ξ(a), ξ(b)⟩ = 0 , if a ̸= b have even Hamming distance.

This gives for every ℓ

σC(n
ℓ,mℓ) ≤ σC(n,m)ℓ(4m)ℓ/2

For example, starting with σC(8, 8) = 8, we have

σC(8
ℓ, 8ℓ) ≤ 811ℓ/6 .

6 Open problems

Let Event denote the set of even-sized subsets of [t]. A map ξ : Event → Fs will
be called a t-parity representation of dimension s if for every A,B ∈ Event

⟨ξ(A), ξ(A)⟩ = 1 ,

⟨ξ(A), ξ(B)⟩ = 0 , if A ̸= B and |A ∩B| is even.

Problem 1. Over C, does there exist a t-parity representation of dimension at
most 2(0.5+o(1))t?
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If this were the case, we could improve the upper bound of Theorem 1 to
σC(n, n) ≤ n1.5+o(1). A more surprising consequence would be that σC(n, n

2) ≤
n2+o(1). The constant 0.5 in Problem 1 cannot be improved: since there exists a
family of 2⌊t/2⌋ subsets of [t] with pairwise even intersection, every t-parity rep-
resentation must have dimension at least 2⌊t/2⌋ (cf. Remark 11). On the other
hand, Lemma 7 implies that there exists a t-parity representation of dimension
at most 2H(0.25)+o(1))t < 20.82t.

Our results do not apply to sum-of-squares composition formulas over the
real numbers. Since R is one of the most natural choices of the underlying field
in Hurwitz’s problem, it is desirable to extend the construction in this direction.
This motivates the following:

Problem 2. Over R, does there exist a t-parity representation of dimension
O(2ct), where c < 1?
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A Proof of Lemma 7 in positive characteristic

Given non-negative integers n̄ = (n1, . . . , nd) let B(n̄) be the d × d matrix
{B(n̄)i,j}i,j∈[d] with

B(n̄)i,j =

(
nj

i− 1

)
.

We assume that
(
n
k

)
= 0 whenever n < k; this guarantees

(
n
k

)
= n(n−1)···(n−k+1)

k! .

Lemma 15. If n̄ = (r, r + 2, . . . , r + 2(d− 1)) for some non-negative integer r

then det(B(n̄)) = 2(
d
2).

Proof. We claim that

det(B(n̄)) = (

d−1∏
i=0

i!)−1 det(V (n̄)) ,

where V (n̄) is the Vandermonde matrix with entries V (n̄)i,j = ni−1
j . To see

this, multiply every i-th row of B(n̄) by (i − 1)! to obtain the matrix B′(n̄).
An i-th row ri of B′(n̄) is of the form (ni

1 + gi(n1), . . . , n
i
d + gi(nd)) where gi

is a polynomial of degree < i. This means that ri equals the i-th row of V (n̄)
plus a suitable linear of combination of the first i− 1 rows of V (n̄). Therefore,
det(B′(n̄)) = det(V (n̄)).

Given n̄ as in the assumption, we obtain

det(V (n̄)) =
∏

1≤j1<j2≤d

(nj2 − nj1) =
∏

1≤j1<j2≤d

(2j2 − 2j1)

= 2(
d
2)

∏
1≤j1<j2≤d

(j2 − j1) =

d−1∏
i=1

d−i∏
j1=1

i =

d−1∏
i=1

i(d−i) =

=

d−1∏
i=1

i! .
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This shows that det(B(n̄)) = 2(
d
2).

Lemma 16. Let p be an odd prime. Given 0 ≤ k ≤ t, there exists a multilinear
polynomial f ∈ Fp(x1, . . . , xt) of degree at most d = ⌊k/2⌋ such that for every
a ∈ {0, 1}t

f(a) =

{
1 , if |a| = k

0 , if |a| < k and (|a| = kmod 2) .

Proof. We look for f of the form f =
∑d

j=0 cjS
j
t where Sj

t is the elementary

symmetric polynomial Sj
t =

∑
|A|=j

∏
i∈A xi. Given a ∈ {0, 1}t,

f(a) =

d∑
j=0

cj

(
|a|
j

)
mod p .

We are therefore looking for a solution of the linear system

B(n̄) (c0 . . . , cd)
t
= (0, . . . , 0, 1)

t
,

where n̄ = (0, 2, . . . , 2d), if k is even, and n̄ = (1, 3, . . . , 2d+ 1), if k is odd. By
the previous lemma, B(n̄) is invertible over Fp and such a solution exists.

Lemma 17. If F is a field of odd characteristic p, there exists a (k, t)-parity
representation of dimension (p− 1)

(
t

≤⌊k/2⌋
)
.

Proof. If every element of Fp has a square root in F, the proof is the same as
over C. In general, proceed as follows. Since every element of Fp is a sum of at
most (p− 1) ones, we can write

f(x1, . . . , xt) =
∑
C∈C

∏
i∈C

xi ,

where C is a multiset of s = (p−1)
(

t
≤d

)
subsets of [t]. For A ∈

(
[t]
k

)
, let ξ(A) ∈ Fs

be a vector whose coordinates are indexed by elements C of C so that

ξ(A)C =

{
1 , if C ⊆ A

0 , if C ̸⊆ A .

Remark 18. (i). Over Fp2 or a larger field, the factor of (p − 1) in Lemma
17 can be dropped. This is because every element of Fp has a square root
in Fp2 .

(ii). For specific values of k, a stronger bound is possible. For example, if
k = 2pℓ − 1, there is a (k, t)-parity representation of dimension

(
t

⌊k/2⌋
)
.

It follows from Lucas’ theorem that in this case, f in Lemma 16 can be
taken simply as the elementary symmetric polynomial of degree ⌊k/2⌋.
This polynomial has only

(
t

⌊k/2⌋
)
non-zero monomials.
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