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MACHINE LEARNING 3

It is not knowledge, but the act of learning ... which grants the greatest
enjoyment.

Carl Friedrich Gauss

Machine learning is an interdisciplinary field in the intersection of math-
ematical statistics and computer sciences. Machine learning studies sta-
tistical models and algorithms for deriving predictors or meaningful pat-
terns from empirical data. Machine learning techniques are applied in
search engine, speech recognition and natural language processing, image
detection, robotics etc.. In our course we address the following questions:
What is the mathematical model of learning? How to quantify the diffi-
culty/hardness/complexity of a learning problem? How to choose a learning
algorithm? How to measure success of machine learning?

The syllabus of our course:
1. Supervised learning and unsupervised learning.
2. Generalization ability of machine learning.
3. Fisher metric and stochastic gradient descend.
4. Support vector machine, Kernel machine and Neural network.
Recommended Literature.
1. F. Cucker and S. Smale, On mathematical foundations of learning,

Bulletin of AMS, 39(2001), 1-49.
2. K. P. Murphy, Machine learning: a probabilistic perspective (MIT

press, 2012).
3. M. Sugiyama, Introduction to Statistical Machine Learning, Elsevier,

2016.
4. S. Shalev-Shwartz, and S. Ben-David, Understanding Machine Learn-

ing: From Theory to Algorithms, Cambridge University Press, 2014.

1. Learning, machine learning and artificial intelligence

Machine learning is the foundation of countless important applications
including speech recognition, image detection, self-driving car and many
thing more which I shall discuss today in my lecture. Machine learning
techniques are developed using many mathematical theories. In my lecture
course I shall explain the mathematical model of machine learning and how
do we design a machine which shall learn successfully.

In my today lecture I shall discuss the following topics.
1. What are learning, inductive learning and machine learning.
2. History of machine learning and artificial intelligence.
3. Current tasks and main types of machine learning.
4. Basic questions in mathematical foundation of machine learning.

1.1. Learning, inductive learning and machine learning. To start our
discussion on machine learning let us begin first with the notion of learning.
Every one from us know what is learning from our experiences at the very
early age.
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(a) Small children learn to speak by observing, repeating and mimicking
adults’ phrases. At the beginning their language is very simple and often er-
roneous. Gradually they speak freely with less and less mistakes. Their way
of learning is inductive learning: from examples of words and phrases they
learn the rules of combinations of these words and phrases into meaningful
sentences.

(b) In school we learn mathematics, physics, biology, chemistry by fol-
lowing the instructions of our teachers and those in textbooks. We learn
general rules and apply them to particular cases. This type of learning is
deductive learning. Of course we also learn inductively in school by search-
ing similar patterns in new problems and then apply the most appropriate
methods possibly with modifications for solving the problem.

(c) Experimental physicists design experiments and observe the outcomes
of the experiments to validate/support or dispute/refute a statement/conjecture
on the nature of the observables. In other words experimental physicists
learn about the dependence of certain features of the observables from em-
pirical data which are outcomes of the experiments. This type of learning
is inductive learning.

In mathematical theory of machine learning, or more general, in mathe-
matical theory of learning we consider only inductive learning. Deductive
learning is not very interesting; essentially it is equivalent to performing a set
of computations using a finite set of rules and a knowledge database. Clas-
sical computer programs learn or gain some new information by deductive
learning.

Let me suggest a definition of learning, that will be updated later to be
more and more precise.

Definition 1.1. A learning is a process of gaining new knowledge, more
precisely, new correlations of features of observable by examination of em-
pirical data of the observable. Furthermore a learning is successful if the
correlations can be tested in examination of new data and will be more
precise with the increase of data.

The above definition is an expansion of Vapnik’s mathematical postula-
tion: “Learning is a problem of function estimation on the basis of empirical
data”.

Example 1.2. A classical example of learning is that of learning a physical
law by curve fitting to data. In mathematical terms, a physical law is
expressed by a function f , and data are the value yi of f at observable
points xi. Usually we also know that (or assume that) the desired function
belongs to a finite dimensional space. The goal of learning in this case is
to estimate the unknown f from a set of pairs (x1, y1), · · · , (xm, ym). For
instance, if f is assumed to be a polynomial of degree d over R, then f
belongs to a N -dimensional linear space RN , where N = d + 1, and to
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estimate f is the same as to estimate the unknown coefficients w0, · · · , wd
of monomial components in f , observing the data (xi, yi).

The most popular method of curve fitting is the least square method
which quantifies the error of the estimation of the coefficients (w0, · · · , wd)
in terms of the value

(1.1)

m∑
i=1

(fw(xi)− yi)2 with fw(x) =

d∑
j=0

wjx
j

which the desired function f should minimize. If the measurements gener-
ating the data (xi, yi) were exact, then f(xi) would be equal to yi and the
learning problem is an interpolation problem. But in general one expects
the values yi to be affected by noise.

The least square technique, going back to Gauss and Legendre 1, which
is computational efficient and relies on numerical linear algebra, solves this
minimization problem.

In the case of measurement noise, which is the reality according to quan-
tum physics, we need to use the language of probability theory to model
the noise and therefore to use tools of mathematical statistics in learning
theory. That is why statistical learning theory is important part of machine
learning theory.

1.2. A brief history of machine learning. Machine learning was born
as a domain of artificial intelligence and it was reorganized as a separated
field only in the 1990s. Below I recall several important events when the
concept of machine learning has been discussed by famous mathematicians
and computer scientists.
• In 1948 John von Neumann suggested that machine can do any thing

that peoples are able to do.
• In 1950 Alan Turing asked “Can machines think?” in “Computing Ma-

chine and Intelligence” and proposed the famous Turing test. The Turing
test is carried out as imitation game. On one side of a computer screen sits
a human judge, whose job is to chat to an unknown gamer on the other
side. Most of those gamers will be humans; one will be a chatbot with the
purpose of tricking the judge into thinking that it is the real human.
• In 1956 John McCarthy coined the term “artificial intelligence”.
• In 1959, Arthur Samuel, the American pioneer in the field of com-

puter gaming and artificial intelligence, defined machine learning as a field
of study that gives computers the ability to learn without being explicitly
programmed. The Samuel Checkers-playing Program appears to be the
world’s first self-learning program, and as such a very early demonstration
of the fundamental concept of artificial intelligence (AI).

1The least-squares method is usually credited to Carl Friedrich Gauss (1809), but it
was first published by Adrien-Marie Legendre (1805)
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In the early days of AI, statistical and probabilistic methods were em-
ployed. Perceptrons which are simple models used in statistics were used
for classification problems in machine learning. Perceptrons were later de-
veloped into more complicated neural networks. Because of many theoret-
ical problems and because of small capacity of hardware memory and slow
speed of computers statistical methods were out of favour. By 1980, ex-
pert systems, which were based on knowledge database, and inductive logic
programming had come to dominate AI. Neural networks returned back to
machine learning with success in the mid-1980s with the reinvention of a
new algorithm and thanks to increasing speed of computers and increasing
hardware memory.

Machine learning, reorganized as a separate field, started to flourish in
the 1990s. The current trend is benefited from Internet.

In the book by Russel and Norvig “Artificial Intelligence a modern Ap-
proach” (2010) AI encompass the following domains:
- natural language processing,
- knowledge representation,
- automated reasoning to use the stored information to answer questions
and to draw new conclusions;
- machine learning to adapt to new circumstances and to detect and extrap-
olate patterns,
- computer vision to perceive objects,
- robotics.

All the listed above domains of artificial intelligence except knowledge
representation and robotics are now considered domains of machine learning.
Pattern detection and recognition were and are still considered to be domain
of data mining but they become more and more part of machine learning.
Thus AI = knowledge representation + ML + robotics.
• representation learning, a new word for knowledge representation but

with a different flavor, is a part of machine learning.
• Robotics = ML + hardware.
Why did such a move from artificial intelligence to machine learning hap-

pen?
The answer is that we are able to formalize most concepts and model

problems of artificial intelligence using mathematical language and represent
as well as unify them in such a way that we can apply mathematical methods
to solve many problems in terms of algorithms that machine are able to
perform.

As a final remark on the history of machine learning I would like to
note that data science, much hyped in 2018, has the same goal as machine
learning: Data science seeks actionable and consistent pattern for predictive
uses. 2.

2according to Dhar, V. (2013). “Data science and prediction”. Communications of the
ACM. 56 (12): 64. doi:10.1145/2500499, see also wiki site on data science
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1.3. Current tasks and types of machine learning. Now I shall de-
scribe what current machine learning can perform and how they do it.

1.3.1. Main tasks of current machine learning. Let us give a short descrip-
tion of current applications of machine learning.

Classification task assigns a “category” 3 to each item. In mathematical
language, a category is an element in a countable set. For example, docu-
ment classification may assign items with categories such as politics, email
spam, sports, or weather while image classification may assign items with
categories such as landscape, portrait, or animal. The number of categories
in such tasks can be unbounded as in OCR, text classification, or speech
recognition. In short, a classification task is a construction of a function on
the set of items that takes value in a countable set of categories.

As we have remarked in the classical example of learning (Example 1.2),
usually we have ambiguous/incorrect measurement and we have to add a
“noise” to our measurement. If every thing would be exact, the classification
task is the classical interpolation function problem in mathematics.

Regression task predicts a real value, i.e., a value in R, for each item.
Examples of regression tasks include learning physical law by curve fitting
to data (Example 1.2) with application to predictions of stock values or
variations of economic variables. In this problem, the error of the prediction,
which is also called estimation in Example 1.2, depends on the magnitude
of the distance between the true and predicted values, in contrast with the
classification problem, where there is typically no notion of closeness between
various categories. In short, a regression task is a construction of a function
on the set of items that takes value in R. As in the classification task,
in regression problems we also need to take into account a “noise” from
incorrect measurement for the regression problem. 4

Density estimation task finds the distribution of inputs in some space.
Over one hundred year ago Karl Pearson (1980-1962), the founder of the
modern statistics, 5 proposed that all observations come from some proba-
bility distribution and the purpose of sciences is to estimate the parameter

3the term “category” used in machine learning has another meaning than the term
“category” in mathematics. In what follows we use the term “category” accepted in ML
community without bracket.

4The term “regression” was coined by Francis Galton in the nineteenth century to
describe a biological phenomenon. The phenomenon was that the heights of descendants
of tall ancestors tend to regress down towards a normal average (a phenomenon also
known as regression toward the mean of population). For Galton, regression had only this
biological meaning, but his work was later extended by Udny Yule and Karl Pearson to a
more general statistical context: movement toward the mean of a statistical population.
Galton’s method of investigation is non-standard at that time: first he collected the data,
then he guessed the relationship model of the events.

5 He founded the world’s first university statistics department at University College
London in 1911, the Biometrical Society and Biometrika, the first journal of mathematical
statistics and biometry.
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of these distributions. A particular case of parameter estimation is den-
sity estimation problem. Density estimation problem has been proposed
by Ronald Fisher (1980-1962), the father of modern statistics and experi-
ment designs, 6 as a key element of his simplification of statistical theory,
namely he assumed the existence of a density function p(ξ) that governs the
randomness (the noise) of a problem of interest.

Digression. The measure ν is called dominated by µ (or absolutely contin-
uous with respect to µ), if ν(A) = 0 for every set A with µ(A) = 0. Notation:
ν << µ. By Radon-Nykodym theorem, see Appendix, Subsection A.1, we
can write

ν = f · µ
and f is the density function of ν w.r.t. µ.

For example, the Gaussian distribution on the real line is dominated by
the canonical measure dx and we express the standard normal distribution
in terms of its density

f(x) =
1√
2π

exp(−1

2
x2).

The classical problem of density estimation is formulated as follows. Let
a statistical model A be a class of densities subjected to a given dominant
measure. Let the unknown density p(x, ξ) we need to estimate belong to
the statistical model A, which is parameterized by ξ. The problem is to
estimate the parameter ξ of p(x, ξ) using i.i.d. data X1, · · · , Xl distributed
according to this unknown density.

Ranking task orders items according to some criterion. Web search, e.g.,
returning web pages relevant to a search query, is the canonical ranking
example. If the number of ranking is finite, then this task is close to the
classification problem, but not the same, since in the ranking task we need
to specify each rank during the task and not before the task as in the clas-
sification problem.

Clustering task partitions items into (homogeneous) regions. Clustering
is often performed to analyze very large data sets. Clustering is one of the
most widely used techniques for exploratory data analysis. In all disciplines,
from social sciences to biology to computer science, people try to get a
first intuition about their data by identifying meaningful groups among the
data points. For example, computational biologists cluster genes on the
basis of similarities in their expression in different experiments; retailers
cluster customers, on the basis of their customer profiles, for the purpose
of targeted marketing; and astronomers cluster stars on the basis of their
spacial proximity.

6Fisher introduced the main models of statistical inference in the unified framework of
parametric statistics. He described different problems of estimating functions from given
data (the problems of discriminant analysis, regression analysis, and density estimation)
as the problems of parameter estimation of specific (parametric) models and suggested the
maximum likelihood method for estimating the unknown parameters in all these models.
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Dimensionality reduction or manifold learning transforms an initial repre-
sentation of items in high dimensional space into a space of lower dimension
while preserving some properties of the initial representation. A common
example involves pre-processing digital images in computer vision tasks.
Many of dimensional reduction techniques are linear. When the technique
is non-linear we speak about manifold learning technique. We can regard
clustering as dimension reduction too.

1.3.2. Main types of machine learning. The type of a machine learning task
is defined by the type of interaction between the learner and the environment.
More precisely we consider types of training data, i.e., the data available to
the learner before making decision and prediction, the outcomes and the test
data that are used to evaluate and apply the learning algorithm.

Main types of machine learning are supervised, unsupervised and rein-
forcement.
• In supervised learning a learning machine is a device that receives labeled

training data, i.e., the pair of a known instance and its feature, also called
label. Examples of labeled data are emails that are labeled “spam” or “no
spam” and medical histories that are labeled with the occurrence or absence
of a certain disease. In these cases the learners output would be a spam
filter and a diagnostic program, respectively. Most of classification and
regression problems of machine learning belong to supervised learning. We
also interpret a learning machine in supervised learning as a student who
gives his supervisor a known instance and the supervisor answers with the
known feature.
• In unsupervised learning there is no additional label attached to the

data and the task is to describe structure of data. Since the examples (the
available data) given to the learning algorithm are unlabeled, there is no
straightforward way to evaluate the accuracy of the structure that is pro-
duced by the algorithm. Density estimation, clustering and dimensionality
reduction are examples of unsupervised learning problems. Most important
applications of unsupervised learning are finding association rules that are
important in market analysis, banking security and consists of important
part of pattern recognition, which is important for understand advanced AI.
Regarding a learning machine in unsupervised learning as a student, then
the student has to learn by himself without teacher. This learning is harder
but happens more often in life. At the current time, except few tasks, which
I shall consider in the next lecture, unsupervised learning is primarily de-
scriptive and experimental whereas supervised learning is more predictive
(and has deeper theoretical foundation).
• Reinforcement learning is the type of machine learning where a learner

actively interacts with the environment to achieve a certain goal. More
precisely, the learner collects information through a course of actions by
interacting with the environment. This active interaction justifies the ter-
minology of an agent used to refer to the learner. The achievement of the
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agent’s goal is typically measured by the reward he receives from the en-
vironment and which he seeks to maximize. For examples, reinforcement
learning is used in self-driving car. Reinforcement learning is aimed at ac-
quiring the generalization ability in the same way as supervised learning,
but the supervisor does not directly give answers to the students questions.
Instead, the supervisor evaluates the students behavior and gives feedback
about it.

1.4. Basic questions in mathematical foundations of machine learn-
ing. Let me recall that a learning is a process of gaining knowledge on a
feature of observables by examination of partially available data. The learn-
ing is successful if we can make a prediction on unseen data, which improves
when we have more data. For example, in classification problem, the learn-
ing machine has to predict the category of a new item from a specific set,
after seeing a lot of labeled data consisting of items and their categories.
The classification task is a typical task in supervised learning where we can
explain how and why a learning machine works and how and why machine
learns successfully. Mathematical foundations of machine learning aim to
answer these questions in mathematical language.

Question 1.3. What is the mathematical model of learning?

To answer Question 1.3 we need to specify our definition of learning in a
mathematical language which can be used to build instructions for machines.

Question 1.4. How to quantify the difficulty/complexity of a learning prob-
lem?

We quantify the difficulty of a problem in terms of its time complexity,
which is the minimum time needed for performing computer program to
solve a problem, and in term of its resource complexity which measure the
capacity of data storage and energy resource needed to solve the problem.
If the complexity of a problem is very large then we cannot not learn it. So
Question 1.4 contains the sub-question “ why can we learn a problem?”

Question 1.5. How to choose a learning algorithm?

Clearly we want to have a best learning algorithm, once we know a model
of a machine learning which specifies the set of possible predictors (decisions)
and the associated error/reward function.

By Definition 1.1, a learning process is successful, if its prediction/estimation
improves with the increase of data. Thus the notion of success of learn-
ing process requires a mathematical treatment of asymptotic rate of er-
ror/reward in the presence of complexity of the problem.

Question 1.6. Is there a mathematical theory underlying intelligence?

I shall discuss this speculative question in the last lecture.
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1.5. Conclusion. Machine learning is automatized learning, whose perfor-
mance is improves with increasing volume of empirical data. Machine learn-
ing uses mathematical statistics to model incomplete information and the
random nature of the observed data. Machine learning is the core part of ar-
tificial intelligence. Machine learning is very successful experimentally and
there are many open questions concerning its mathematical foundations.
Mathematical foundations of machine learning is necessary for building gen-
eral purpose artificial intelligence, also called Artificial General Intelligence
(AGI), or Universal Artificial Intelligence (UAI). The importance of math-
ematical foundations for AGI shall be clarified in the third lecture.

Finally I recommend some sources for further reading.

• F. Cucker and S. Smale, On mathematical foundations of learning,
Bulletin of AMS, 39(2001), 1-49.
• B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman,

Building machines that learn and think like people. Behavioral and
Brain Sciences,(2016) 24:1-101, arXiv:1604.00289.
• S. J. Russell and P. Norvig, Artificial Intelligence A Modern Ap-

proach, Prentice Hall, 2010.

2. Statistical models and frameworks for supervised learning

Last week we discussed the concept of learning and examined several
examples. Today I shall specify the concept of learning by presenting basic
mathematical models of supervised learning.

A model is simply a compact representation of possible data one could
observe. Modeling is central to the sciences. Models allow one to make
predictions, to understand phenomena, and to quantify, compare and falsify
hypotheses. A model for machine learning must be able to make predictions
and improves their ability to make predictions in light of new data.

The model of supervised learning I present today is based on Vapnik’s
statistical learning theory, which starts from the following concise concept
of learning.

Definition 2.1. ([Vapnik2000, p. 17]) Learning is a problem of function
estimation on the basis of empirical data.

There are two main model types for machine learning: discriminative
models and generative models. They are distinguished by the type of func-
tions we want to estimate for understanding the feature of observable.

2.1. Discriminative model of supervised learning. Let us consider a
toy example of a classification task, which like regression tasks (Example
1.2), is a typical example of supervised learning.

Example 2.2 (Toy example). A ML firm wants to estimate the potential
of applicants to new positions of developers of algorithms in ML of its firm
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based on its experience that the potential of a software developer depends on
three qualities of an applicant: his/her analytical mathematical skill rated
by the mark (from 1 to 20) in his/her graduate diploma, his/her computer
sciences skill, rated by the mark (from 1 to 20) in his/her graduate diploma,
and his/her communication skill rated by the firm test (scaled from 1 to 5).
The potential of an applicant for the open position is evaluated in scale 1-
10. Since the position of a developer of algorithm in ML will be periodically
re-opened and therefore they want to design a ML program to predict the
potential of applicants such that the program automatically will be improved
with time.

A discriminative model of supervised learning consists of the following
components.
• A domain set X (also called an input space) consists of elements, whose

features we like to learn. Elements x ∈ X are called random inputs (or ran-
dom instances) 7 which are distributed by an unknown probability measure
µX . In other words, the probability that x belongs to a subset A ⊂ X is
µX (A). The probability distribution µX models our incomplete information
about elements x ∈ X . In general we don’t know the distribution µX .

(In the toy example of a ML firm the domain set X is the set of all
applicants, more precisely, their representing features: the marks in math,
in CS, and in communication test. Hence X = [1, 20] × [1, 20] × [1, 5]. In
the regression example of learning a physical law (Example 1.2) the domain
set X is the set of all polynomials of degree at most d, hence X is identified
with Rd.)

• An output space Y, also called a label set, consists of possible features
(also called labels) y of inputs x ∈ X . We are interested in finding a predic-
tor/mapping h : X → Y such that a feature of x is h(x). If such a mapping
h exists and is measurable, the feature h(x) is distributed by the measure
h∗(µX ). In general such a function does not exist, and we assume that there
exists only a probability measure µX×Y on the space (X×Y) that defines the
probability that y is a feature of x, i.e., the probability of (x, y) ∈ A ⊂ X×Y
being a labeled pair is equal to µX×Y(A). In general we don’t know µX×Y .

(In the toy example the label set Y = [1, 10] is the set of all possible
potentials scaled from 1 to 10. In the example of learning a physical law
(Example 1.2) the label set is the set R of all possible value of f(x).)

• A training data is a sequence S = {(x1, y1), · · · , (xn, yn)} ∈ (X ×Y)n of
observed labeled pairs, which are usually assumed to be i.i.d. (independently

7classically, elements of X are considered as (values of) random variables, where the
word “variable” means “unknown”. When X is an input space (resp. an output space)
its elements are also called independent (resp. dependent) variables. Since nowadays
the word variable has a different meaning, like [Ghahramani2013, p. 4], I would avoid
“random variable” in this situation. Some authors, e.g. [Billingsley1999, p.24] use the
terminology “random elements” for measurable mappings.
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identically distributed). In this case S is distributed by the product measure
µnX×Y on (X × Y)n. The number n is called the size of S. S is thought as
given by a “supervisor”.

• A hypothesis space H ⊂ YX of possible predictors h : X → Y.
(In Example 2.2 we may wish to choose

H := {h : X → Y|h(x, y, z) = ax+ by + cz for some a, b, c ∈ Z≥0}
and in Example 1.2 we choose
H := {h : R→ R| h is a polynomial of degree at most d } ∼= Rd+1

to simplify our search for a best prediction.)

• The aim of a learner is to find a best prediction rule A that assigns a
training data S to a prediction hS ∈ H. In other words the learner needs to
find a rule, more precisely, an algorithm

(2.1) A :
⋃
n∈N

(X × Y)n → H, S → hS

such that hS(x) predicts the label of (unseen) instance x with the less error.

• The error function, also called a risk function, measures the discrepancy
between a hypothesis h ∈ H and an ideal predictor. The error function is
a central notion in learning theory. This function should be defined as
the averaged discrepancy of h(x) and y, where (x, y) runs over X × Y.
The averaging is calculated using the probability measure µ := µX×Y that
governs the distribution of labeled pair (x, y). Thus a risk function R must
depend on µ, so we denote it by Rµ. It is accepted that the risk function
Rµ : H → R is defined as follows.

(2.2) RLµ(h) :=

∫
X×Y

L(x, y, h) dµ

where L : X × Y ×H → R is an instantaneous loss function that measures
the discrepancy between the value of a prediction/hypothesis h at x and the
possible feature y:

(2.3) L(x, y, h) := d(y, h(x)).

Here d : Y × Y is a non-negative function that vanishes at the diagonal
{(y, y)| y ∈ Y} of Y × Y. For example d(y, y′) = |y − y′|2. By taking
averaging over (X × Y) using µ, we effectively count only the points (x, y)
which are correlated as labeled pairs.

Note the expected risk function is well defined on H only if L(x, y, h) ∈
L1(X × Y, µ) for all h ∈ H.

• The main question of learning theory is to find necessary and sufficient
conditions for the existence of a prediction rule A in (2.1) such that the error
of hS converges to the error of an ideal predictor, or more precisely, to the
infimum of the error of h over h ∈ H, and then to construct such A.
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Remark 2.3. (1) In our discriminative model of supervised learning we
model the random nature of training data S ∈ (X × Y)n via a probability
measure µn on (X × Y)n, where µn = µn1 is the training data are i.i.d..
We don’t need a probability measure on X to model the random nature of
x ∈ X . The main difficulty in search for the best prediction rule A is that
we don’t know µn, we know only training data S distributed by µn.

(2) Note the expected risk function is well defined onH only if L(x, y, h) ∈
L1(X × Y, µ) for all h ∈ H. Since we don’t know µ, we should assume that
L ∈ L1(X×Y, ν) for any ν ∈ P0, where P0 is a family of probability measures
on X × Y that contains the unknown µ.

(3) The quasi-distance function d : Y × Y → R induces a quasi-distance
function dn : Yn × Yn → R as follows

(2.4) dn([y1, · · · , yn], [y′1, · · · , y′n]) =
n∑
i=1

d(yi, y
′
i),

and therefore it induces the expected loss function R
L(dn)
µn : H → R as follows

R
L(dn)
µn (h) =

∫
(X×Y)n

dn([y1, · · · , yn], [h(x1), · · · , h(xn)])dµn

= n

∫
X×Y

L(x, y, h)dµ.(2.5)

Thus it suffices to consider only Rµ(h), if S is a sequence of i.i.d. observables.
(4) Now we show that the classical case of learning a physical law by fitting

to data, assuming exact measurement, is a “classical limit” of our discrimi-
native model of supervised learning. In the classical learning problem, since
we know the exact position S := {(x1, y1), · · · , (xn, yn)} ∈ (X ×Y)n, we as-
sign the Dirac (probability measure) µS := δx1,y1 × · · · × δxn,yn to the space
(X × Y)n 8. Now let d(y, y′) = |y − y′|2, it is not hard to see that

(2.6) RL(dn)
µS

(h) =
n∑
i=1

|h(xi)− yi|2

coincides with the error of estimation in (1.1).

Example 2.4 (0-1 loss). Let us take H = YX - the subset of all mapping
X → Y. The 0-1 instantaneous loss function L : X × Y × H → {0, 1} is
defined as follows: L(x, y, h) := d(y, h(x)) = 1 − δyh(x). The corresponding

expected 0-1 loss determines the probability of the answer h(x) that does
not correlate with x:

(2.7) R(0−1)
µX×Y (h) = µX×Y{(x, y) ∈ X ×Y|h(x) 6= y} = 1−µX×Y({x, h(x)}).

Example 2.5. Assume that x ∈ X is distributed by a probability measure
µX and its feature y is defined by y = h(x) where h : X → Y is a measurable

8the probability that A contains S is δS(A)
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mapping. Denote by Γh : X → X × Y, x 7→ (x, y), the graph of h. Then
(x, y) is distributed by the push-forward measure µh := (Γh)∗(µX ), where

(2.8) (Γh)∗µX (A) = µX
(
Γ−1
h (A)

)
= µX

(
Γ−1
h (A ∩ Γh(X )

))
.

Let us compute the expected 0-1 loss function for a mapping f ∈ H = YX
w.r.t. the measure µh. By (2.7) and by (2.8) we have

(2.9) R(0−1)
µh

(f) = 1− µX (x|f(x) = h(x)).

Hence R
(0−1)
µh (f) = 0 iff f = h µX -a. e..

2.2. Generative model of supervised learning. In many cases a dis-
criminative model of supervised learning may not yield a successful learning
algorithm because the hypothesis space H is too small and cannot approx-
imate a desired prediction for a feature ∈ Y of instance x ∈ X with a
satisfying accuracy, i.e., the optimal performance error of the class H

(2.10) RLµ,H := inf
h∈H

RLµ(h)

that represents the optimal performance of a learner using H is quite large.
One of possible reasons of this failure is that, a feature y ∈ Y of x cannot

be accurately approximated (using an instantaneous loss function L) by any
function h : X → Y.

In general case we may wish to estimate the probability that y ∈ Y is
a feature of x. This is expressed in term of the conditional probability
P (y ∈ B|x) - the probability that a feature y of x ∈ X belongs to B ⊂ ΣY .

Digression. Conditional probability is one of most basic concepts in prob-
ability theory. In general we always have a prior information before taking
decision, e.g. before estimating the probability of a future event. Condi-
tional probability P (A|B) formalizes the probability of an event A given the
knowledge that event B happens. Here we assume that A,B are elements
of the sigma-algebra ΣX of a measurable space (X ,ΣX ). If X is countable,
the concept of conditional probability can be defined straightforward:

(2.11) P (A|B) :=
P (A ∩B)

P (B)
.

It is not hard to see that, given B, the conditional probability P (·|B) defined
in (2.11) is a probability measure on X , A 7→ P (A|B), which is called the
conditional probability measure given B. In its turn, by taking integration
over X using the conditional probability P (·|B), we obtain the notion of
conditional expectation, given B, which shall be denoted by EP (·|B)Therefore
the conditional expectation given B is a function on ΣX .

In general case when X is not countable the definition of conditional
probability is more subtle, especially when we have to define P (A|B), where
B has null-measure. A typical situation is the case B = h−1(z0), where
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h : X → Z is a random variable (a measurable mapping). To treat this im-
portant case we need to define first the notion of conditional expectation, see
Subsection A.2 in Appendix. What is important for our applications in many
case is the notion of conditional distribution P (A|h(x) = z0), which can be
expressed by a function on Z moreover we also require that P (·|h(x) = z0)
is dominated by a measure µX for all z0 ∈ Z, i.e., there exists a density
function f(x|z0) on X such that by (A.5) we have

P (A|h(x) = z0) =

∫
A
f(x|z0)µX .

We may also wish to estimate the joint distribution µ := µX×Y of i.i.d.
labeled pairs (x, y). By Formula (A.7) the joint distribution µX×Y can be
recovered from conditional probability µ(y|x), see also Subsection A.3. Once
we know µ we know the expected risk RLµ for an instantaneous loss function

L, and hence a minimizing sequence {hi ∈ H} of RLµ

lim
n→∞

RLµ(hi) = RLµ,H

can be determined. In many cases we can find an explicit formula for the
Bayes optimal predictor that minimizes the expected risk value RLµ , once µ
is known.

Exercise 2.6 (The Bayes Optimal Predictor). ([SSBD2014, p. 46]) If Y =
Z2 there is an explicit formula for a Bayes classifier, called the Bayes optimal
predictor. Given any probability distribution D over X × {0, 1}, the best
label predicting function from X to {0, 1} will be

fD(x) =

{
1 if r(x) := D[y = 1|x] ≥ 1/2
0 otherwise

Show that for every probability distribution D, the Bayes optimal predictor
fD is optimal. In other words for every classifier g we have RD(fD) ≤ RD(g).

Exercise 2.7 (Regression optimal Bayesian estimator). In regression prob-
lem the output space Y is R. Let us define the following embedding

i1 : RX → RX×Y : [i1(f)](x, y) := f(x),

i2 : RY → RX×Y : [i2(f)](x, y) := f(y).

(These embeddings are adjoint to the projections: X : X × R ΠX→ X and

X × R ΠR→ R.) For a given probability measure µ on X × R we set

L2(X , (ΠX )∗µ) = {f ∈ RX | i1(f) ∈ L2(X × R, µ)},
L2(R, (ΠR)∗µ) = {f ∈ RR| i2(f) ∈ L2(X × R, µ)}.

Now we let F := L2(X ,Π∗(µ)). Let Y denote the function on R such that
Y (y) = y. Assume that Y ∈ L2(R, (ΠR)∗µ) and define the quadratic loss
function L : X × Y × F → R
(2.12) L(x, y, h) := |y − h(x)|2,
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(2.13) RLµ(h) = Eµ
(
|Y (y)− h(x)|2

)
= |i2(Y )− i1(h)|2L2(X×R,µ).

The expected risk RLµ is called the L2-risk, also known as mean squared error

(MSE). Show that the regression function r(x) := Eµ
(
i2(Y )|X = x

)
belongs

to F and minimizes the L2(µ)-risk.

Definition 2.8. A model of supervised learning with the aim to estimate
the conditional distribution P (y ∈ B|x), in particular, a conditional density
function p(y|x), or joint distribution of (x, y) is called a generative model of
supervised learning.

Remark 2.9. Generative models give us more complete information of the
correlation between a feature y and an instance x but they are more com-
plicated, since even in the regular case, a conditional density function is a
function of two variables x and y and we cannot express this correlation
as a dependence of y from x. In fact, we could interpret a density func-
tion p(y|x) as a probabilistic mapping from X to Y: p(y|x) indicates the
probability that the value of a mapping in consideration at x is equal to y.
In many practical cases, following Fisher suggestion, [Vapnik2006, p. 481],
[Sugiyama2016, p. 236], we often assume that y can be expressed in terms
of a function of x up to a white noise, i.e.

(2.14) y = f(x) + ε

where ε is a random error (a measurable function on X ) with zero expecta-
tion i.e., Eµ(ε) = 0.

This simplified setting of a supervised learning is a discriminative model.

2.3. Empirical Risk Minimization and overfitting. In a discriminative
model of supervised learning our aim is to construct a prediction rule A that
assigns a predictor hS to each sequence

S = {(x1, y1), · · · , (xn, yn)} ∈ (X × Y)n

of i.i.d. labeled data such that the expected error RLµ(hS) tends to the

optimal performance error RLµ,H of the class H. One of most popular ways
to find a prediction rule A is to use the Empirical Risk Minimization.

For a loss function

L : X × Y ×H → R,
and a training data S ∈ (X ×Y)n we define the empirical risk of a predictor
h as follows

(2.15) R̂LS(h) :=
1

n

n∑
i=1

L(xi, yi, h) ∈ R.

If L is fixed, then we also omit the superscript L.
The empirical risk is a function of two variables: the “empirical data” S

and the predictor h. Given S a learner can compute R̂S(h) for any function
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h : X → Y. A minimizer of the empirical risk should have also “approxi-
mately” minimize the expected risk. This is the empirical risk minimization
principle, abbreviated as ERM.

Remark 2.10. We note that

(2.16) R̂
L(d)
S (h) =

1

n
RL(dn)
µS

(h)

where µS is the Dirac measure on (X × Y)n associated to S, see (2.6). If h
is fixed, by the weak law of large numbers, the RHS of (2.16) converges in
probability to the expected risk RLµ(h), so we could hope to find a condition
under which the RHS of (2.16) for a sequence of hS , instead of h, converges
to RLµ,H.

Example 2.11. In this example we shall show the failure of ERM in certain
cases. The 0-1 empirical risk corresponding to 0-1-loss function L : X ×Y ×
YX → {0, 1} is defined as follows

(2.17) R̂0−1
S (h) :=

|i ∈ [n] : h(xi) 6= yi|
n

for a training data S = {(x1, y1), · · · , (xn, yn)} and a function h : X → Y.
We also often call R0−1

S (h) - the training error or the empirical error.
Now we assume that labeled data (x, y) is generated by a map f : X → Y,

i.e., y = f(x), and further more, x is distributed by a measure µX on X as in
Example 2.5. Then (x, f(x)) is distributed by the measure µf = (Γf )∗(µX ).

Let H = YX . Then f ∈ H and R0−1
µf

(f) = 0. For any given ε > 0 and

any n we shall find a map f , a measure µX , and a predictor hSn such that

R̂0−1
Sn

(hSn) = 0 and R0−1
µf

(hSn) = ε, which shall imply that the ERM is

invalid in this case.
Set

(2.18) hSn(x) =

{
f(xi) if there exists i ∈ [n] s.t. xi = x
0 otherwise.

Clearly R̂0−1
Sn

(hSn) = 0. We also note that hSn(x) = 0 except finite (at
most n) points x in X .

Let X be the unit cube Ik in Rk and Y = Z2. Let µ0 be the Lebesgue
measure on Ik, k ≥ 1.We decompose X into a disjoint union of two measur-
able subsets A1 and A2 such that µX (A1) = ε. Let f : X → Z2 be equal 1A1

- the indicator function of A1. By (2.7) we have

(2.19) Rµf (hSn) = µX ({x ∈ X |hSn(x) 6= 1A1(x)}).

Since hSn(x) = 0 a.e. on X it follows from (2.19) that

Rµf (hSn) = µX (A1) = ε.

Such a predictor hSn is said to be overfitting, i.e., it fits well to training
data but not real life.
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Exercise 2.12 (Empirical risk minimization). Let X × Y = Rd × R and
F := {h : X → Y| ∃v ∈ Rd : h(x) = 〈v, x〉} be the class of linear functions in
YX . For S =

(
(xi, yi)

)n
i=1
∈ (X × Y)n and the quadratic loss L (defined in

(2.12)), find the hypothesis hS ∈ F that minimizes the empirical risk R̂LS .

The phenomenon of overfitting suggests the following questions concern-
ing ERM principle [Vapnik2000, p.21]

1) Can we learn in discriminative model of supervised learning using the
ERM principle?

2) If we can learn, we would like to know the rate of convergence of the
learning process as well as construction method of learning algorithms.

We shall address these questions later in our course and recommend the
books by Vapnik on statistical learning theory for further reading.

2.4. Conclusion. In this lecture we learn a discriminative model of super-
vised learning which consists of a hypothesis space H of functions X → Y
and an expected risk function RLµ on H where L is an instantaneous loss
function and µ ∈ P(X × Y) is a unknown probability distribution of la-
beled pairs on X × Y. The aim of a learner is to find a prediction rule
A : S 7→ hS ∈ H such that (x, hS(x)) approximates the labeled training
data best, assuming that S is a sequence of i.i.d. labeled training data. The
ERM principle suggests that we could choose hS to be the minimizer of the
empirical risk R̂S and we hope that as the size of S increases the expected
error RLµ(hS) converges to the optimal performance error RLµ,H. Without
further condition on H and L the ERM principle does not work.

3. Statistical models and frameworks for unsupervised
learning and reinforcement learning

Last week we learned discriminative and generative models of supervised
learning. The starting point of our models is Vapnik’s postulate: learning
is a problem of function estimation on the basis of empirical data. In super-
vised learning we are given i.i.d. labeled data and the problem is to predict
the label of a new/unseen instance. If we regard this prediction as a function
X → Y (up to a negligible noise) then we have to find/estimate a function
from a hypothesis space H ⊂ YX such that its expected error is as small
as possible, using labeled data. If we wish instead to estimate the condi-
tional probability p(y|x) or the joint distribution of the labeled data then
our model is generative. The error function is a central notion of learning
theory that specifies the idea of “best approximation”, “best predictor”.

Today we shall study statistical models of machine learning for several
important tasks in unsupervised learning: density estimation, clustering,
dimension reduction, manifold learning and a mathematical model for rein-
forcement learning. The key problem is to specify the error function that
measures the accuracy of an estimator or the fitness of a decision.
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3.1. Statistical models and frameworks for density estimation. Let
X be a measurable space and denote by P(X ) the space of all probability
measures on X . In a density estimation problem we are given a sequence
of observables Sn = (x1, · · · , xn) ∈ X n, which are i.i.d. by unknown proba-
bility measure µu. We have to estimate the measure µu ∈ P(X ). Further-
more, having a prior information, we assume that µu belongs to a subset
P ⊂ P(X ), which is also called a statistical model. Simplifying further, we
assume that P consists of probability measures that are dominated by a
measure µ0 ∈ P(X ). Thus we regard P as a family of density functions
on X . If P is finite dimensional, then estimating µu ∈ P is called a para-
metric problem of density estimation, otherwise it is called a nonparametric
problem. The density estimation problem encompasses the problem of esti-
mating the joint distribution in the generative model of supervised learning
as particular case.
• In the parametric density estimation problem we assume that P ⊂ P(X )

is parameterized by a nice parameter set Θ, e.g. Θ is an open set of Rn.
That is, there exists a surjective map p : Θ→ P, θ 7→ pθµ0, which is usually
(in classical statistics) assumed to be a 1-1 map. 9 In this lecture we shall
assume that Θ is an open subset of Rn and p is a 1-1 map. Thus we shall
identify P with Θ and the parametric density estimation in this case is
equivalent to estimating the parameter p−1(µu) ∈ Θ. As in mathematical
models for supervised learning, we define an expected risk function Rµ :
Θ → R by averaging an instantaneous loss function L : X × Θ → R using
the unknown probability measure µu which we have to estimate. Usually this
setting of density estimation L given by the minus log-likelihood function

(3.1) L(x, θ) = − log pθ(x).

Hence the expected risk function Rµ : Θ → R is the expected log-likelihood
function:

(3.2) Rµ(θ) = RLµu(θ) = −
∫
X

log pθ(x)pu(x)dµ0

where µu = puµ0. Given a data Sn = (x1, · · · , xn) ∈ X n, by (3.1), the
corresponding empirical risk function is

(3.3) R̂LSn(θ) = −
n∑
i=1

log pθ(xi) = − log[pnθ (Sn)],

where pnθ (Sn) is the density of the probability measure µnθ on X n. It follows

that the minimizer θ of the empirical risk R̂LSn is the maximizer of the log-
likelihood function log[pnθ (Sn)]. According to ERM principle, the minimizer

θ of R̂LSn should provide an “approximation” of the density pu of the unknown
probability measure µu.

9For many important statistical models in machine learning the condition 1-1 map does
not hold and we refer to [AJLS2017] for a general treatment.
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Remark 3.1. (1) For X = R the ERM principle for the expected log-
likelihood function holds. Namely one can show that the minimum of the
risk functional in (3.2), if exists is attained at a function p∗u which may differ
from pu only on a set of zero measure, see [Vapnik1998, p.30] for a proof.

(2) Note that minimizing the expected log-likelihood function Rµ(θ) is
the same as minimizing the following modified risk function [Vapnik2000,
p.32]

(3.4) R∗µ(θ) := Rµ(θ) +

∫
X

log pu(x)pu(x)dµ0 = −
∫
X

log
pθ(x)

pu(x)
pu(x)dµ0.

The expression on the RHS of (3.4) is the Kullback-Leibler divergenceKL(pθµ0|µu)
that is used in statistics for measuring the divergence between pθµ0 and
µu = puµ0. The Kullback-Leibler divergence KL(µ|µ′) is dedined for prob-
ability measures (µ, µ′) ∈ P(X )×P(X ) such that µ << µ′, see also Remark
4.9 below. It is a quasi-distance, i.e., it satisfies the following properties:

(3.5) KL(µ|µ′) ≥ 0 and KL(µ|µ′) = 0 iff µ = µ′.

Thus a maximizer of the expected log-likelihood function minimizes the KL-
divergence. This justifies the choice of the expected risk function RLµu .

(3) It is important to find quasi-distance functions on P(Ω) that satisfying
certain natural statistical requirement. This problem has been considered
in information geometry, see [Amari2016, AJLS2017] for further reading.

(4) Traditionally in statistics people consider only measures that can be
expressed as a density function w.r.t. a given (dominant) measure. This
assumption holds in classical situations, when we consider only finite di-
mensional families of probability measures. Currently in machine learning
one also uses infinite dimensional family of probability measures on X that
cannot be dominated by any measure on X , for examples, the infinite di-
mensional family of posterior distributions of Dirichlet processes which are
used in clustering.

• A popular nonparametric technique for estimating density functions on
X = Rm‘ using empirical data Sn ∈ X n is the kernel density estimation
(KDE) [Tsybakov2009, p. 2]. For understanding the idea of KDE we shall
consider only the case X = R and µ0 = dx. Let

F (t) =

∫ t

−∞
pu(x)dx

be the corresponding cumulative distribution function. Consider the empir-
ical distribution function

F̂Sn(t) =
1

n

n∑
i=1

1(xi≤t).

By the strong law of large numbers we have

lim
n→∞

FSn(t)
a.s.
= F (t).
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How can we estimate the density pu? Note that for sufficiently small
h > 0 we can write an approximation

pu(t) ∼=
F (t+ h)− F (t− h)

2h
.

Replacing F by F̂Sn we define the Rosenblatt estimator

(3.6) p̂RSn(t) :=
F̂Sn(t+ h)− F̂Sn(t− h)

2h
,

which can be rewritten in the following form

(3.7) p̂RSn(t) =
1

2nh

n∑
i=1

1(t−h≤xi≤t+h) =
1

nh

n∑
i=1

K0(
xi − t
h

)

where K0(u) := 1
21(−1≤u≤1). A simple generalization of the Rosenblatt

estimator is given by

(3.8) p̂PRSn (t) =
1

nh

n∑
i=1

K(
xi − t
h

)

where K : R→ R is an integrable function satisfying
∫
K(u)du = 1. Such a

function K is called kernel and the parameter h is called bandwidth of the
kernel density estimator (3.8), also called the Parzen-Rosenblatt estimator.

To measure the accuracy of the estimator p̂PRSn we use a trick, namely
instead of using the L2-estimation

MSE(f̂PRSn ) :=

∫
R
|p̂PRSn (x)− pu(x)|2dx,

we consider MSE(f̂PR, x0) of f̂PRSn w.r.t. a given point x0 ∈ R, averaging
over the population of all possible data Sn ∈ Rn:

(3.9) MSE(f̂PR, x0) := Epnu [(p̂PRSn (x0)− pu(x0))2]dSn.

Note that the RHS measures the accuracy of p̂PRSn (x0) probably w.r.t. Sn ∈
Rn. This is an important concept of accuracy in the presence of uncertainty.

It has been proved that under certain condition on the kernel function K
and the infinite dimensional statistical model P of densities theMSE(f̂PR, x0)
converges to zero uniformly on R as h goes to zero [Tsybakov2009, Theorem
1.1, p. 9].

Remark 3.2. In this Subsection we discuss two popular models of machine
learning for density estimation using ERM principle, which works under cer-
tain conditions. We postpone important Bayesian model of machine learning
and stochastic approximation method for finding minimizer of the expected
risk function using i.i.d. data to later parts of our course.
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3.2. Statistical models and frameworks for clustering. Clustering is
the process of grouping similar objects x ∈ X together. There are two
possible types of grouping: partitional clustering, where we partition the
objects into disjoint sets; and hierarchical clustering, where we create a
nested tree of partitions. To formalize the notion of similarity we introduce
a quasi-distance function on X . That is, a function d : X ×X → R+ that is
symmetric, satisfies d(x, x) = 0 for all x ∈ X .

A popular approach to clustering starts by defining a cost function over
a parameterized set of possible clusterings and the goal of the clustering
algorithm is to find a partitioning (clustering) of minimal cost. Under this
paradigm, the clustering task is turned into an optimization problem. The
function to be minimized is called the objective function, which is a function
G from pairs of an input (X , d), and a proposed clustering solution C =
(C1, · · · , Ck), to positive real numbers. Given G, the goal of a clustering
algorithm is defined as finding, for a given input (X , d), a clustering C
so that G((X, d), C) is minimized. In order to reach that goal, one has
to apply some appropriate search algorithm. As it turns out, most of the
resulting optimization problems are NP-hard, and some are even NP-hard
to approximate.

Example 3.3. The k-means objective function is one of the most popular
clustering objectives. In k-means the data is partitioned into disjoint sets
C1, · · · , Ck where each Ci is represented by a centroid µi := µi(Ci). It
is assumed that the input set X is embedded in some larger metric space
(X ′, d) and µi ⊂ X ′. We define µi as follows

µi(Ci) := arg min
µ∈X ′

∑
x∈Ci

d(x, µ).

The k-means objective function Gk is defined as follows

(3.10) Gk((X, d), (C1, · · · , Ck)) =

k∑
i=1

∑
x∈Ci

d(x, µi(Ci)).

The k-means objective function G is used in digital communication tasks,
where the members of X may be viewed as a collection of signals that have to
be transmitted. For further reading on k-means algorithms, see [SSBD2014,
p. 313].

Remark 3.4. The above formulation of clustering is deterministic. We
consider also more complicated probabilistic clustering, where the output is a
function assigning to each domain point x ∈ X , a vector (p1(x), · · · , pk(x)),
where pi(x) = P [x ∈ Ci] is the probability that x belongs to cluster Ci.
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3.3. Statistical models and frameworks for dimension reduction
and manifold learning. A central cause of the difficulties with unsuper-
vised learning is the high dimensionality of the random variables being mod-
eled. As the dimensionality of input x grows, any learning problem signifi-
cantly gets harder and harder. Handling high-dimensional data is cumber-
some in practice, which is often referred to as the curse of dimensionality.
Hence various methods of dimensionality reduction are introduced. Dimen-
sion reduction is the process of taking data in a high dimensional space and
mapping it into a new space whose dimension is much smaller.
• Classical (linear) dimension reduction methods. Given original data

Sm := {xi ∈ Rd| i ∈ [1,m]} we want to embed it into Rn, n < d, then we
would like to find a linear transformation W ∈ Hom(Rd,Rn) such that

W (Sm) := {W (xi)} ⊂ Rn.

To find the “best” transformation W = W(Sm) we define an error function

on the space Hom(Rd,Rn) and solve the associated optimization problem.

Example 3.5. A popular linear method for dimension reduction is called
Principal Component Analysis (PCA), which has another name SVD (sin-
gular value decomposition.) Given Sm ⊂ Rd, we use a linear transforma-
tion W ∈ Hom(Rd,Rn), where n < d, to embed Sm into Rd. Then, a
second linear transformation U ∈ Hom(Rn,Rd) can be used to (approxi-
mately) recover Sm from its compression W (Sm). In PCA, we search for
W and U to be a minimizer of the following reconstruction error function
RSm : Hom(Rd,Rn)×Hom(Rn,Rd)→ R

(3.11) R̂Sm(W,U) =
m∑
i=1

||xi − UW (xi)||2

where ||, || denotes the quadratic norm.

Exercise 3.6. ([SSBD2014, Lemma 23.1, p.324]) Let (W,U) be a minimizer

of R̂Sm defined in (3.11). Show that U can be chosen as an orthogonal
embedding and W ◦ U = Id|Rn .

Hint. First we show that if a solution (W,U) of (3.11) exists, then there
is a solution (W ′, U ′) of (3.11) such that dim ker(U ′W ′) = d− n.

Let Homg(Rd,Rn) denotes the set of all ort hogonal projections from Rd
to Rn and Homg(Rn,Rd) the set of all orthogonal embeddings from Rm
to Rd. Let F ⊂ Homg(Rd,Rn) × Homg(Rn,Rd) be the subset of all pairs
(W,U) of transformations such that W ◦ U = Id|Rn . Exercise 3.6 implies

that any minimizer (W,U) of R̂Sm is an element of F .
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Exercise 3.7. ([SSBD2014, Theorem 3.23, p. 325]) Let C(Sm) ∈ End(Rd)
be defined as follows

C(Sm)(v) :=

m∑
i=1

〈xi, v〉xi.

Assume that ξ1, · · · , ξd ∈ Rd are eigenvectors of C(Sm) with eigenvalues
λ1 ≥ · · · ≥ λd ≥ 0. Show that any (W,U) ∈ F with W (xj) = 0 for all
j ≥ m+ 1 is a solution of (3.11).

Thus a PCA problem can be solved using linear algebra method.

•Manifold learning and autoencoder. In real life data are not concentrated
on a linear subspace of Rd but around a submanifold M ⊂ Rd. The current
challenge in ML community is that to reduce representation of data in Rd
using all the data in Rd but only use only data concentrated around M . For
that purpose we use autoencoder, which is a non-linear analogue of PCA.

In an auto-encoder we learn a pair of functions: an encoder function
ψ : Rd → Rn, and a decoder function ϕ : Rn → Rd. The goal of the learning
process is to P find a pair of functions (ψ,ϕ) such that the reconstruction
error

RSm(ψ,ϕ) :=

m∑
i=1

||xi − ϕ(ψ(xi))||2

is small. We therefore must restrict ψ and ϕ in some way. In PCA, we
constrain k < d and further restrict ψ and ϕ to be linear functions.

Remark 3.8. Modern autoencoders have generalized the idea of an encoder
and a decoder beyond deterministic functions to stochastic mappings pstoch :
X → Y, (x, y) 7→ p(y|x). For further reading I recommend [SSBD2014],
[GBC2016] and [Bishop2006, §12.2, p.570].

3.4. Statistical model and framework for reinforcement learning. A
reinforcement learning agent interacts with its environment in discrete time
steps. At each time t, the agent receives an observation ot, which typically
includes the reward rt. It then chooses an action at from a set A of available
actions, which is subsequently sent to the environment. The environment
moves to a new state st+1 in a set S of available states and the reward rt+1

associated with the transition ot+1 := (st, at, st+1) is determined. The goal
of a reinforcement learning agent is to collect as much reward as possible.
The agent can (possibly randomly) choose any action as a function of the
history. The uncertainly in reinforcement learning is expressed in terms
of a transition probability Pr[s′|s, a] - distribution over destination states
s′ = δ(s, a) and in terms of a reward probability Pr[r′|s, a] - distribution
over rewards returned r′ = r(s, a). Thus the mathematical model of rein-
forcement learning is a Markov decision process. For further reading, see
[MRT2012, chapter 14].
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3.5. Conclusion. In this lecture we learned mathematical models for un-
supervised learning, where for each empirical data Sn ∈ X n we choose an
empirical risk/error function R̂Sn on a space of possible hypotheses as a
quasi-distance between a hypothesis and the true (desired) hypothesis. In
some case (e.g. in parametric density estimation) we can interpret this em-
pirical risk function to be derived from an expected risk/error function as
in the models of supervised learning. The main problem is to show the con-
vergence of minimizers of R̂Sn to the desired hypothesis as n goes to zero
and Sn are i.i.d. by an unknown measure on X n.

4. Fisher metric and maximum likelihood estimator

In the last lecture we considered several mathematical models in unsuper-
vised learning. The most important problem among them is the problem of
density estimation, which is also a problem in generative models of super-
vised learning and an important problem of classical statistics. The error
function in density estimation problem can be defined as the expected log-
likelihood function, which combining with the ERM principle leads to the
well known maximum likelihood estimator. The popularity of this estima-
tor stems from its asymptotic accuracy, also called consistency, which holds
under mild conditions. Today we shall study MLE using the Fisher metric,
the associated MSE function and the Cramér-Rao inequality.

We also clarify the relation between the Fisher metric and the Kullback-
Leibler divergence.

4.1. The space of all probability measures and total variation norm.
We begin today lecture with our investigation of natural geometry of P(X )
for an arbitrary measurable space (X ,Σ). This geometry induces the Fisher
metric on any statistical model P ⊂ P(X ) satisfying a mild condition.

Let us fix some notations. Recall that a signed finite measure µ on X is
a function µ : Σ → R which satisfies all axioms of a measure except that µ
needs not take non-negative value. Now we set

M(X ) := {µ : µ a finite measure on X},
S(X ) := {µ : µ a signed finite measure on X}.

It is known that S(X ) is a Banach space whose norm is given by the total
variation of a signed measure, defined as

‖µ‖TV := sup
n∑
i=1

|µ(Ai)|

where the supremum is taken over all finite partitions X = A1∪̇ . . . ∪̇An with
disjoint sets Ai ∈ Σ(X ) (see e.g. [Halmos1950]). Here, the symbol ∪̇ stands
for the disjoint union of sets.

Let me describe the total variation norm using the Jordan decomposition
theorem for signed measures, which is an analogue of the decomposition
theorem for a measurable function. For a measurable function φ : X →
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[−∞,∞] we define φ+ := max(φ, 0) and φ− := max(−φ, 0), so that φ± ≥ 0
are measurable with disjoint support, and

(4.1) φ = φ+ − φ− |φ| = φ+ + φ−.

Similarly, by the Jordan decomposition theorem, each measure µ ∈ S(X ) can
be decomposed uniquely as

(4.2) µ = µ+ − µ− with µ± ∈M(X ), µ+ ⊥ µ−.
That is, there is a Hahn decomposition X = X+∪̇X− with µ+(X−) =
µ−(X+) = 0 (in this case the measures µ+ and µ− are called mutually
singular). Thus, if we define

|µ| := µ+ + µ− ∈M(X ),

then (4.2) implies

(4.3) |µ(A)| ≤ |µ|(A) for all µ ∈ S(X ) and A ∈ Σ(X ),

so that
‖µ‖TV = ‖ |µ| ‖TV = |µ|(X ).

In particular,
P(X ) = {µ ∈M(X ) : ‖µ‖TV = 1}.

Next let us consider important subsets of dominated measures and equiv-
alent measures in the Banach space S(X ) which are most frequently used
subsets in statistics and ML.

Given a measure µ0 ∈M(X ), we let

S(X , µ0) := {µ ∈ S(X ) : µ is dominated by µ0}.
By the Radon-Nikodym theorem, we may canonically identify S(X , µ0)

with L1(X , µ0) by the correspondence

(4.4) ıcan : L1(X , µ0) −→ S(X , µ0), φ 7−→ φ µ0.

Observe that ıcan is an isomorphism of Banach spaces, since evidently

‖φ‖L1(X ,µ0) =

∫
X
|φ| dµ0 = ‖φ µ0‖TV .

Example 4.1. Let Xn := {ω1, · · · , ωn} be a finite set of n elementary events.
Let δωi denote the Dirac measure concentrated at ωi. Then

S(Xn) = {µ =
n∑
i=1

xiδωi |xi ∈ R} = Rn(x1, · · · , xn)

and

M(Xn) = {
n∑
i=1

xiδωi |xi ∈ R≥0} = Rn≥0.

For µ ∈M(Xn) of the form

µ =

k∑
i=1

ciδi, ci > 0
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we have ||µ||TV =
∑
ci. Thus the space L1(Xn, µ) with the total variation

norm is isomorphic to Rk with the l1-norm. The space P(Xn) with the
induced total variation topology is homeomorphic to a (n− 1)-dimensional
simplex {(c1, · · · , cn) ∈ Rn+|

∑
i ci = 1}.

Exercise 4.2. ([JLS2017]) For any countable family of signed measures
{µn ∈ S(X )} show that there exists a measure µ ∈ M(X ) dominating all
measures µn.

Remark 4.3. On (possibly infinite dimensional) Banach spaces we can do
analysis, since we can define the notion of differentiable mappings. Let V
and W be Banach spaces and U ⊂ V an open subset. Denote by Lin(V,W )
the space of all continuous linear map from V to W . A map φ : U → W is
called differentiable at x ∈ U , if there is a bounded linear operator dxφ ∈
Lin(V,W ) such that

(4.5) lim
h→0

‖φ(x+ h)− φ(x)− dxφ(h)‖W
‖h‖V

= 0.

In this case, dxφ is called the (total) differential of φ at x. Moreover, φ is
called continuously differentiable or shortly a C1-map, if it is differentiable
at every x ∈ U , and the map dφ : U → Lin(V,W ), x 7→ dxφ, is continuous.
Furthermore, a differentiable map c : (−ε, ε)→W is called a curve in W.

A map φ from an open subset Θ of a Banach space V to a subset X of a
Banach space W is called differentiable, if the composition i ◦ φ : Θ→W is
differentiable.

4.2. Fisher metric on a statistical model. Given a statistical model
P ⊂ P(X ) we shall show that P is endowed with a nice geometric structure
induced from the Banach space (S(X ), ||, ||TV ). Under a mild condition this
implies the existence of the Fisher metric on P . Then we shall compare the
Fisher metric and the Kullback-Leibler divergence.

We study P by investigating the space of functions on P (which is a linear
infinite dimensional vector space) and by investigating its dual version: the
space of all curves on P . The tangent fibration of P describes the first order
approximation of the later space.

Definition 4.4. ([AJLS2017, Definition 3.2, p. 141]) (1) Let (V, ‖ · ‖) be a
Banach space, X ⊂ V an arbitrary subset and x0 ∈ X . Then v ∈ V is called
a tangent vector of X at x0, if there is a curve c : (−ε, ε) → X ⊂ V such
that c(0) = x0 and ċ(0) = v.

(2) The tangent (double) cone CxX at a point x ∈ X is defined as the
subset of the tangent space TxV = V that are tangent to a curve lying in
X . The tangent space TxX is the linear hull of the tangent cone CxX .

(3) The tangent cone fibration CX (resp. the tangent fibration TX ) is
the union ∪x∈XCxX (resp. ∪x∈XTxX ) is a subset of V × V and therefore is
endowed with the induced topology.
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Exercise 4.5. (cf. [AJLS2018, Theorem 2.1]) Let P be a statistical model.
Show that any v ∈ TξP is dominated by ξ. Hence the logarithmic represen-
tation of v

log v := dv/dξ

is an element of L1(X , ξ).

Example 4.6. Assume that a statistical model P consists of measures dom-
inated by a measure µ0 and therefore P is regarded as a family of density
functions on X , namely

(4.6) P = {f · µ0| f ∈ L1(X , µ0)}.

Then a tangent vector v ∈ TξP has the form v = ḟ(0) ·µ0, where ξ = f(0)µ0,
and its logarithmic representation is expressed as follows

(4.7) log v =
dv

dξ
=
ḟ(0)

f(0)
=

d

dt |t=0
log f(t).

Next we want to put a Riemannian metric on P i.e., to put a positive
quadratic form g on each tangent space TξP . By Exercise 4.5, the logarith-
mic representation log(TξP ) of TξP is a subspace in L1(X , ξ). The space
L1(X , ξ) does not have a natural metric but its subspace L2(X , ξ) is a Hilbert
space.

Definition 4.7. (1) A statistical model P that satisfies

(4.8) log(TξP ) ⊂ L2(X , ξ)

for all ξ ∈ P is called almost 2-integrable.
(2) Assume that P is an almost 2-integrable statistical model. For each

v, w ∈ CξP the Fisher metric on P is defined as follows

(4.9) g(v, w) := 〈log v, logw〉L2(X ,ξ) =

∫
X

log v · logw dξ.

(3) An almost 2-integrable statistical model P is called 2-integrable, if the
function v 7→ |v|g is continuous on CP .

Since TξP is a linear hull of CξP , the formula (4.9) extends uniquely to
a positive quadratic form on TξP , which is also called the Fisher metric.

Example 4.8. Let P ⊂ P(X ) be a 2-integrable statistical model that is
parameterized by a differentiable map p : Θ→ P, θ 7→ pθµ0, where Θ is an
open subset in Rn. It follows from (4.7) that the Fisher metric on P has the
following form

(4.10) g|p(θ)(dp(v), dp(w)) =

∫
X

∂vpθ
pθ
· ∂wpθ
pθ

pθdµ0,

for any v, w ∈ TθΘ.
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Remark 4.9. (1) The Fisher metric has been defined by Fisher in 1925 to
characterize “information” of a statistical model. One of most notable ap-
plications of the Fisher metric is the Cramér-Rao inequality which measures
our ability to have a good density estimator in terms of geometry of the
underlying statistical model, see Theorem 4.13 below.

(2) The Fisher metric gp(θ)(dp(v), dp(v)) of a parametrized statistical
model P of dominated measures in Example 4.8 can be obtained from the
Taylor expansion of the Kullback-Leibler divergence I(p(θ),p(θ + εv)), as-
suming that log pθ is continuously differentiable in all partial derivative in θ
up to order 3. Indeed we have

I(p(θ),p(θ + εv)) =

∫
X
pθ(x) log

pθ(x)

pθ+εv(x)
dµ0

(4.11) = −ε
∫
X
pθ(x)∂v log pθ(x)dµ0

(4.12) − ε2

∫
X
pθ(x)(∂v)

2 log pθ(x)dµ0 +O(ε3).

Since logθ(x) is continuously differentiable in θ up to order 3, we can apply
differentiation under the integral sign, see e.g. [Jost2005, Theorem 16.11, p.
213] to (4.11), which then must vanish, and integration by part to (4.12).
Hence we obtain

I(p(θ),p(θ + εv)) = ε2gp(θ)(dp(v), dp(v)) +O(ε3)

what is required to prove.

4.3. The Fisher metric, MSE and Cramér-Rao inequality. As we
learned with the regression problem in Exercise 2.7, it is important to narrow
a hypothesis class to define a good loss/risk function, namely the L2-risk,
which is also called MSE.

We also wish to measure the efficiency of our estimator σ̂ : Ω → P via
MSE. For this purpose we need further formalization. In general case P is
a subset of an infinite dimensional space P(Ω) and to define a point ξ ∈ P
we need its coordinates, or certain features of ξ ∈ P which is formalized as
a vector valued map ϕ : P → Rn. 10.

Definition 4.10. A ϕ-estimator is a composition of an estimator σ̂ : Ω→ P
and a map ϕ : P → Rn.

Set ϕl : l ◦ ϕ for any l ∈ (Rn)∗ and

L2
ϕ(P,X ) := {σ̂ : X → P |ϕl◦σ̂ ∈ L2(X , ξ) for all ξ ∈ P and for all l ∈ (Rn)∗}.

10see [MFSS2016] for examples of ϕ : P(X ) → H, where H is a RKHS (see also
Definition 8.9) which is a generalization of the method of moment, see e.g. [Borovkov1998,
p. 56]



MACHINE LEARNING 31

If σ̂ ∈ L2
ϕ(P,X ), then the following L2-risk function, also called MSE, is

well-defined for any l, k ∈ (Rn)∗

(4.13) MSEϕξ [σ̂](l, k) := Eξ[(ϕl ◦ σ̂ − ϕl ◦ ξ) · (ϕk ◦ σ̂ − ϕk ◦ ξ)].

Thus the function MSEϕξ [σ̂](l, l) on P is the expected risk of the quadratic

instantaneous loss function

Ll : X × P → R, Ll(x, ξ) = |ϕl ◦ σ̂(x)− ϕl ◦ ξ|2.

Next we define the mean value ϕσ̂ of a ϕ-estimator ϕ ◦ σ̂ as a Rn-valued
function on P :

(4.14) 〈ϕσ̂(ξ), l〉 := Eξ(ϕl ◦ σ̂) =

∫
X
ϕl ◦ σ̂ dξ

for any l∗ ∈ (Rn)∗.

Definition 4.11. (1) The difference

(4.15) bϕσ̂ := ϕσ̂ − ϕ ∈ (Rn)P

will be called the bias of the estimator σ̂ w.r.t. the map ϕ.
(2) Given an estimator σ̂ ∈ L2

ϕ(P,X ) the estimator σ̂ will be called ϕ-

unbiased, if ϕσ̂ = ϕ, equivalently, bϕσ̂ = 0.

Using the mean value ϕσ̂, we define the variance of σ̂ w.r.t. ϕ as the
derivation of ϕ ◦ σ̂ from its mean value ϕσ̂. We set for all l ∈ (Rn)∗

(4.16) V ϕ
ξ [σ̂](l, l) := Eξ[(ϕl ◦ σ̂ − ϕlσ̂) · (ϕl ◦ σ̂ − ϕlσ̂)].

The RHS of (4.16) is well-defined, since σ̂ ∈ L2
ϕ(P,X ). It is a quadratic

form on (Rn)∗ and will be denoted by V ϕ
ξ [σ̂].

Exercise 4.12. ([JLS2017]) Prove the following formula

(4.17) MSEϕξ [σ̂](l, k) = V ϕ
ξ [σ̂](l, k) + 〈bϕσ̂(ξ), l〉 · 〈bϕσ̂(ξ), k〉

for all ξ ∈ P and all l, k ∈ (Rn)∗.

By Proposition 3.3 in [JLS2017], since P is 2-integrable, the function
ϕlσ̂ := 〈ϕσ̂(ξ), l〉 is differentiable, i.e., there is differential dϕlσ̂ ∈ T ∗ξ P for any

ξ ∈ P such that ∂vϕ
l
σ̂(ξ) = dϕlσ̂(v) for all v ∈ TξP . Here for a function f

on P we define ∂vf(ξ) := ḟ(c(t)) where c(t) ⊂ P is a curve with c(0) = ξ
and ċ(0) = v. The differentiability of ϕlσ̂ is proved by differentiation under
integral

(4.18) ∂vϕ
l
σ̂ =

∫
X
∂v(ϕ

l ◦ σ̂ dξ) =

∫
X

(ϕl ◦ σ̂(x)− Eξ(ϕl ◦ σ̂)) · log v dξ,

see [AJLS2017, JLS2017] for more detail.
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Recall that the Fisher metric on any 2-integrable statistical model is non-
degenerate. 11 We now regard ‖dϕlσ̂‖2g−1(ξ) as a quadratic form on (Rn)∗.

Theorem 4.13 (The Cramér-Rao inequality). (cf. [AJLS2017, JLS2017])
Let P be a finite dimensional 2-integrable statistical model with non-degenerate
Fisher metric, ϕ a Rn-valued function on P and σ̂ ∈ L2

ϕ(P,X ) a ϕ-estimator.
Then for all l ∈ (Rn)∗ we have

V ϕ
ξ [σ̂](l, l)− ‖dϕlσ̂‖2g−1(ξ) ≥ 0.

If σ̂ is unbiased then its MSE is equal to its variance. In this case the
Cramér-Rao inequality asserts that we can never construct an exact estima-
tor.

Remark 4.14. Let us consider the following quadratic instantaneous loss
function for ϕ : P → Rn

(4.19) Lϕ : X × L2
ϕ(P,X )× P → R : (x, σ̂, ξ) 7→ ||ϕ(σ̂(x))− ϕ(ξ)||2

which defines the expected risk on L2
ϕ(P,X ) a follows

(4.20) R
Lϕ
ξ (σ̂) := EξL(x, σ̂, ξ) = Eξ||ϕ ◦ σ̂(x)− ϕ(ξ)||2.

Clearly R̂
Lϕ
ξ (σ̂) is equal to the mean square error MSEϕξ (σ̂) :=∑n

i=1MSEϕξ [σ̂](e∗i , e
∗
i ), where {e∗i } is an orthonormal dual basis of (Rn)∗.

Outline of the proof of the Cramér-Rao inequality. Since P is 2-integrable
and finite dimensional, the logarithmic representation log(TξP ) := {log v| v ∈
TξP} is a closed subspace of the Hilbert space L2(X , ξ). Denote by Πlog(TξP )

the orthogonal projection of L2(X , ξ) to log(TξP ) and by ∇gf the gradient
of a function f on P w.r.t. the Fisher metric g. To prove the Cramér-Rao
inequality it suffices to show the following geometric identity

(4.21) Πlog(TξP )(ϕ
l ◦ σ̂ − Eξ(ϕl ◦ σ̂)) = log(∇gϕ

l
σ̂) ∈ L2(X , ξ),

since the square of the L2-norm of the term in the RHS of (4.21) is equal to
||dϕlσ̂||2g−1 and the square of the L2-norm of the term in the LHS is equal to

V ϕ
ξ [σ̂](l, l).

Next, we reduce the proof of equality (4.21) to the proof of the following
equality for all v ∈ TξP

(4.22) 〈ϕl ◦ σ̂ − Eξ(ϕl ◦ σ̂), log v〉L2 = 〈∇gϕ
l
σ̂(ξ), v〉g

which is obtained easily from (4.18).

11In literature, e.g., [Amari2016, AJLS2017, Borovkov1998], one considers the Fisher
metric on a parametrized statistical model, i.e., the metric obtained by pull-back the
Fisher metric on P via the parameterization map p : Θ → P . This “parameterized”
Fisher metric may be degenerate.



MACHINE LEARNING 33

Remark 4.15. The Cramér-Rao inequality in Theorem 4.13 is non-parametric,
i.e. P is not assumed to be parameterized by a smooth manifold, as in
Janssen’s version of Cramér-Rao inequality [Janssen2003]. The condition
of 2-integrability of P is an adaptation of the 2-integrability condition of
parametrized measure models in [AJLS2017, JLS2017], which is equivalent
to the differentiability condition in [Janssen2003], see [JLS2017] for com-
ments and history of the Cramér-Rao inequality.

Example 4.16. Assume that ϕ is a differentiable coordinate mapping, i.e.,
there is a differentiable parameterization p from an open subset Θ of Rn
such that ϕ ◦ p = Id. Assume that σ̂ is an unbiased estimator. Then the
terms involving bσ̂ := bϕσ̂ vanishes. Since ϕσ̂ = ϕ we have ||dϕl||g−1(ξ) =

||dϕlσ̂||2g−1(ξ). Hence the Cramér-Rao inequality in Theorem 4.13 becomes

the well-known Cramér-Rao inequality for an unbiased estimator

(4.23) Vξ := Vξ[σ̂] ≥ g−1(ξ).

4.4. Efficient estimators and MLE.

Definition 4.17. Assume that P ⊂ P(X ) is a 2-integrable statistical model
and ϕ : P → Rn is a feature map. An estimator σ̂ ∈ L2

ϕ(P,X ) is called effi-

cient, if the Cramér-Rao inequality for σ̂ becomes an equality, i.e., V ϕ
ξ [σ̂] =

||dϕσ̂||2g−1(ξ) for any ξ ∈ P .

Theorem 4.18. Let P be a 2-integrable statistical model parameterized by
a differentiable map p : Θ→ P(X ), θ 7→ pθµ0, where Θ is an open subset of
Rn, and ϕ : P → Rn a differentiable coordinate mapping, i.e., p ◦ ϕ = Id.
Assume that the function p(x, θ) := pθ(x) has continuous partial derivatives
up to order 3. If σ̂ : X → P is an unbiased efficient estimator then σ̂ is a
maximum likelihood estimator (MLE), i.e.,

(4.24) ∂v log p(θ, x)|θ=ϕ◦σ̂(x) = 0

for all x ∈ X and all v ∈ TθΘ.

Proof. Assume that σ̂ is efficient. Since ϕ is a coordinate mapping, we obtain
from (4.21)

log(∇gϕ
l
σ̂)|ξ=σ̂(x) = ϕl ◦ σ̂ − Eσ̂(x)(ϕ

l ◦ σ̂ = 〈l, bϕσ̂(x)〉 = 0

since σ̂ is unbiased. Comparing the LHS of the above equality with the
LHS of (4.24) for dp(v) = ∇gdϕ

l = ∇gdϕ
l
σ̂ we obtain immediately Theorem

4.18. �

4.5. Consistency of MLE. Assume that P1 = P ⊂ P(X ) is a 2-integrable
statistical model that contains an unknown probability measure µu govern-
ing distribution of random instance xi ∈ X . Then Pn = {µn|µ ∈ P} ⊂
P(X n) is a 2-integrable statistical model containing probability measure µnu
that governs the distribution of i.i.d. of random instances (x1, · · · , xn) ∈ X n.
Denote by gn the Fisher metric on the statistical model Pn. The map
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λn : P1 → Pn, µ 7→ µn, is a 1-1 map, it is the restriction of the differentiable
map, also denoted by λn

λn : S(X )→ S(X n), λn(µ) = µn.

It is easy to see that for any v ∈ TµP we have

(4.25) gn(dλn(v), dλn(v)) = n · g1(v, v).

This implies that the lower bound in the Cramér-Rao inequality (4.23) for
unbiased estimators σ̂∗n := λ−1

n ◦ σ̂n : (X )n → P converges to zero and there
is a hope that MLE is asymptotically accurate as n goes to infinity. Now
we shall give a concept of a consistent sequence ϕ-estimators that formalizes
the notion of asymptotically accurate sequence of estimators σ̂∗k : X k → P1

and using it to examine MLE. 12.

Definition 4.19. (cf. [IH1981, p. 30], [Borovkov1998, Definition 1, p. 53])
Let P ⊂ P(X ) be a statistical model and ϕ a Rn-valued function on P .
A sequence of ϕ-estimators σ̂∗k : (X )k → P → Rn is called a consistent
sequence of ϕ-estimators for the value ϕ(µu) if for all δ > 0 we have

(4.26) lim
k→∞

µku({x ∈ X k : |ϕ ◦ σ̂∗k(x)− ϕ(µu)| > δ}) = 0.

Under quite general conditions on the density functions of a statistical
model P ⊂ P(X ) of dominated measures, see e.g. [IH1981, Theorem 4.3, p.
36] the sequence of MLE’s is consistent.

4.6. Conclusion. In this lecture we derive a natural geometry on a statis-
tical model P ⊂ P(X ) regarding it as a subset in the Banach space S(X )
with the total variation norm. Since P is non-linear, we linearize estimator
σ̂∗k : X k → Pk = λk(P ) by composing it with a map ϕk := λ−1

k ◦ϕ : Pk → Rn.
Then we define the MSE and variance of ϕk-estimator ϕk ◦ σ̂k, which can be
estimated using the Cramér-Rao inequality. It turns out that the efficient
unbiased estimator w.r.t. MSE is MLE. The notion of a ϕ-estimator allows
to define the notion of a consistent sequence of ϕ-estimators that formalizes
the notion of asymptotically accurate estimators.

5. Consistency of a learning algorithm

In the last lecture we learned the important concept of a consistent se-
quence of ϕ-estimators, which formalizes the notion of the asymptotic accu-
racy of a sequence of estimators, and applied this concept to MLE.

In this lecture we extend the concept of a consistent sequence of estimators
to the notion of consistency of a learning algorithm in a unified learning
model that encompasses models for density estimation and discriminative
models of supervised learning. The concept of consistency of a learning
algorithm formalizes the notion of learnability of a learning machine. In

12the notion of a consistent sequence of estimators that is asymptotically accurate has
been suggested by Fisher in [Fisher1925]
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particular we relate this notion with the problem of overfitting. 13 Then we
shall apply this concept to examine the success of ERM algorithm in binary
classification problems.

5.1. Consistent learning algorithm and its sample complexity.
In a unified learning model (Z,H, L, P ) we are given a measurable space

Z (e.g. Z = X × Y in classification and regression problems), a hypothesis
class H (e.g., the domain Θ in the density estimation problem in Subsection
3.1) together with an instantaneous loss function L : Z×H×P → R+, where
P ⊂ P(Z) is a statistical model. We define the expected risk function as
follows

RL : H× P → R+, (h, µ) 7→ EµL(z, h, µ).

We also set for µ ∈ P
RLµ : H → R, h 7→ RL(h, µ).

A learning algorithm is a map

A :
⋃
n

Zn → H, S 7→ hS

where S is distributed by some unknown µn ∈ Pn = λn(P ), cf. (2.1).

Example 5.1. In a unified learning model (Z,H, L, P ) there is always a
learning algorithm using ERM, if H is compact. For an element Sn =
(z1, · · · , zn) ∈ Zn we denote by [Sn] the subset {z1, · · · , zn} ⊂ Z. For

Sn ∈ Zn we define the empirical risk R̂LSn : H → R by the formula: R̂LSn(h) =∑
z∈[Sn] L(z, h). The ERM algorithm Aerm for (Z,H, L, P ) is defined as

follows

(5.1) Aerm(Sn) := argh∈Hmin R̂LSn(h).

Observe that argh∈Hmin R̂LSn(h) may not exist if H is not compact. In
this case we denote by Aerm(Sn) any hypothesis that satisfies the inequality

R̂LS(Aerm(Sn)) − infh∈H R̂
L
Sn

(h) = O(n−k), where k ≥ 1 depends on the
computational complexity of defining Aerm. In other words, Aerm is only
asymptotically ERM. 14

Note that the ERM algorithm Aerm does not depend on P but the knowl-
edge of P is important for defining and understanding the expected loss
function RLµ . In general we expect a close relationship between H, a repre-
sentation of a discriminative model, and P , a representation of a generative
model.

Recall that RLµ,H = infh∈HR
L
µ(h), see (2.10).

13In ML community, one says that a learning algorithm is consistent if it may commit
no error on the example of the training data [MRT2012, p.5].

14Vapnik considered ERM algorithm also for the case that R̂LSn
may not reach infimum,

using slightly different language than ours. In [SSBD2014] the authors assumed that a

minimizer of R̂LSn
always exists.
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Definition 5.2. A learning algorithm A in a model (Z,H, L, P ) is called
consistent, if for any ε ∈ (0, 1) and for every probability measure µ ∈ P ,

(5.2) lim
n→∞

µn{S ∈ Zn : |RLµ(A(S))−RLµ,H| ≥ ε} = 0

(2) A learning algorithm A is called uniformly consistent, if (5.2) converges
to zero uniformly on P , i.e., for any (ε, δ) ∈ (0, 1)2 there exists a number
mA(ε, δ) such that for any µ ∈ P and any m ≥ mA(ε, δ) we have

(5.3) µm{S ∈ Zm : |RLµ(A(S))−RLµ,H| ≤ ε} ≥ 1− δ.

If(5.3) holds we say that A predicts with accuracy ε and confidence 1− δ
using m samples.

We characterize the uniform consistency of a learning algorithm A via the
notion of the sample complexity function of A.

Definition 5.3. Let A be an algorithm on (Z,H, L, P ) and mA(ε, δ) the
minimal number m0 ∈ R+ ∪∞ such that (5.3) holds for any m ≥ m0. Then
the function mA : (ε, δ) 7→ mA(ε, δ) is called the sample complexity function
of algorithm A.

Clearly a learning algorithm A is uniformly consistent if and only if mA

takes value in R+. Furthermore, A is consistent if and only if the sample
function of A on the sub-model (Z,H, L, µ) takes values in R+ for all µ ∈ P .

Example 5.4. Let (Z,H, L, P ) be a unified learning model. Denote by
πn : Z∞ → Zn the map (z1, · · · , z∞) 7→ (z1, · · · , zn). A sequence {S∞ ∈
Z∞} of i.i. instances distributed by µ ∈ P is called overfitting, if there exist
ε ∈ (0, 1) such that for all n we have

(5.4) |RLµ(Aerm(πn(S∞))−RLµ,H| ≥ ε.
Thus Aerm is consistent, if and only if the set of all overfitting sequences
S∞ ∈ Z∞ has µ∞-zero measure 15, equivalently, if (5.2) holds, for any µ ∈ P .
In Example 2.11 we showed the existence of a measure µf on Z = X × Y
such that any sequence S∞ ∈ Z∞ distributed by µ∞f is overfitting. Hence

the unified learning model in Example 2.11) for any P containing µf is not
consistent using Aerm.

The following simple Lemma reduces a proof of the uniform consistency
of Aerm to the proof of the convergence in probability of RLS(h) to RLµ(h)
(the weak law of large numbers) that is uniform on H.

Lemma 5.5. Assume that for any (ε, δ) ∈ (0, 1)2 there exists a function
mH(ε, δ) taking value in R+ such that for all m ≥ mH(ε, δ) for all µ ∈ P
and for all h ∈ H we have

(5.5) µm{S ∈ Zm : |R̂LS(h)−RLµ(h)| < ε} ≥ 1− δ
then Aerm is uniformly consistent.

15we refer to [AJLS2017, p. 293] and [Bogachev2007, p. 188] for definition of µ∞
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Proof. For the simplicity of the exposition we assume first that Aerm(Sn) =
arg minh∈HR

L
Sn

(h). The argument for the general case can be easily adapted
from this simple case.

Given m ≥ mH(ε/2, δ/2), µ ∈ P and hε ∈ H such that RLµ(hε) ≤ RLµ,H+ε
we have

µm{S ∈ Zm : |RLµ(Aerm(S))−Rµ,H| ≤ 2ε} ≥
µm{S ∈ Zm : RLµ(Aerm(S)) ≤ RLµ(hε) + ε} ≥

µm{S ∈ Zm : RLµ(Aerm(S)) ≤ R̂LS(hε) +
ε

2
& |RLS(hε)−RLµ(hε)| <

ε

2
} ≥

µn{S ∈ Zm : RLµ(Aerm(S)) ≤ R̂LS(hε) + ε} − δ

2
≥

µn{S ∈ Zn : |RLµ(Aerm(S))− R̂LS(A(S))| ≤ ε

2
} − δ

2
≥ 1− δ

since R̂LS(A(S)) < R̂LS(hε). This completes the proof of Lemma 5.5. �

Theorem 5.6. (cf. [SSBD2014, Corollary 4.6, p.57]) Let (Z,H, L,P(Z))
be a unified learning model. If H is finite and L(Z ×H) ⊂ [0, c] 63 ∞ then
the ERM algorithm is uniformly consistent.

Proof. By Lemma 5.5, it suffices to find for each (ε, δ) ∈ (0, 1) × (0, 1) a
number mH(ε, δ) such that for all m ≥ mH(ε, δ) and for all µ ∈ P(Z) we
have

(5.6) µm
( ⋂
h∈H
{S ∈ Zm : |R̂LS(h)−RLµ(h)| ≤ ε}

)
≥ 1− δ.

In order to prove (5.6) it suffices to establish the following inequality

(5.7)
∑
h∈H

µm
(
{S ∈ Zm| |R̂LS(h)−RLµ(h)| > ε}

)
< δ.

Since #H < ∞, it suffices to find mH(ε, δ) such that when m ≥ mH(ε, δ)
each summand in RHS of (5.7) is small enough. For this purpose we shall
apply the well-known Hoeffding inequality, which specifies the rate of con-
vergence in the week law of large numbers, see Subsection B.2.

To apply Hoeffding’s inequality to the proof of Theorem 5.6 we observe
that for each h ∈ H

{θhi (z) := L(h, z) ∈ [0, c]}
are i.i.d. R-valued random variables on Z. Furthermore we have for any
h ∈ H and S = (z1, · · · , zm)

R̂LS(h) =
1

m

m∑
i=1

θhi (zi),

RLµ(h) = θ̄h.

Hence the Hoeffding inequality implies

(5.8) µm{S ∈ Zm : |R̂LS(h)−RLµ(h)| > ε} ≤ 2 exp(−2mε2c−2).
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Now pluging

m ≥ mH(ε, δ) :=
log(2#(H)/δ)

2ε2c−2

in (5.8) we obtain (5.7). This completes the proof of Theorem 5.6.
�

Definition 5.7. The function mH : (0, 1)2 → R defined by the requirement
that mH(ε, δ) is the least number for which (5.6) holds is called the sample
complexity of a (unified) learning model (Z,H, L, P ).

Remark 5.8. (1) We have proved that the sample complexity of the algo-
rithm Aerm is upper bounded by the sample complexity mH of (Z,H, L, P ).

(2) The definition of the sample complexity mH in our lecture is different
from the definition of the sample complexity mH in [?, Definition 3.1, p. 43],
which is equivalent to the notion of the sample complexity mA of a learning
algorithm in our lecture.

5.2. Uniformly consistent learning and VC-dimension. In this sub-
section we shall examine sufficient and necessary conditions for the existence
of a uniformly consistent learning algorithm on a unified learning model with
infinite hypothesis class H ⊂ YX . First we prove a version of No-Free-Lunch
theorem which asserts that there is no uniformly consistent learning algo-
rithm on a learning model with a very large hypothesis class and a very
large statistical model. Denote by PX (X ×Y) the set of all probability mea-
sures (Γf )∗(µX ) ∈ P(X × Y) where f : X → Y is a measurable map and
µX ∈ P(X ).

Theorem 5.9. Let X be an infinite domain set, Y = {0, 1} and L(0−1) the
0-1 loss function. Then there is no uniformly consistent learning algorithm
on a unified learning model (X × Y,H, L(0−1),PX (X × Y)).

Proof. To prove Theorem 5.9 it suffices to show that mA(ε, δ) = ∞ for
(ε, δ) = (1/8, 1/8) and any learning algorithm A. Assume the opposite, i.e.,
mA(1/8, 1/8) = m < ∞. Then we shall find µ(m) ∈ PX (X × Y) such that
Equation (5.3) violates for m, µ(m) and (ε, δ) = (1/8, 1/8).

To describe the measure µ(m) we need some notations. For a subset

C[k] ⊂ X of k-elements let µ
C[k]
X ∈ P(X ) be defined by

(5.9) µ
C[k]
X (B) :=

#(B ∩ C[k])

k
for any B ⊂ X .

For a map f : X → Y we set

µ
C[k]
f := (Γf )∗µ

C[k]
X ∈ PX (X × Y).

Lemma 5.10. Assume that X , Y are finite sets and #X ≥ n + 1. For
f ∈ YX set µf := µXf ∈ PX (X × Y). Then for any learning algorithm

A : S 7→ AS, any f ∈ YX we have

(5.10)

∫
YX

∫
(X×Y)n

R(0−1)
µf

(AS) d(µnf )(S)dµY
X

YX (f) ≥ (1− 1

#Y
)(1− n

#X
)
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Proof of Lemma 5.10. We set for S ∈ (X × Y)n

Pri : (X × Y)n → X , (x1, y1), · · · , (xn, yn) 7→ xi ∈ X ,

XS :=

n⋃
i+1

Pri(S).

Note that S is distributed by µnf means that S = {(x1, f(x1)), · · · , (xn, f(xn)),

so S is essentially distributed by the uniform probability measure (µXX )n. Let
us compute and estimate the double integral in the LHS of (5.10) using (2.9)
and the Fubini theorem.

E
µY
X
YX

(
Eµnf

(
R(0−1)
µf

(AS)
))

=
1

#X
E
µY
X
YX

(
E(µXX )n

(∑
x∈X

(1− δAS(x)
f(x) )

))
≥ 1

#X
E
µY
X
YX

(
E(µXX )n

(∑
x 6∈XS

(1− δAS(x)
f(x) )

))
=

1

#X
E(µXX )n

(∑
x 6∈XS

E
µY
X
YX

(1− δAS(x)
f(x) )

)
=

1

#X
E(µXX )n

(
#[X \ XS ] ·

(
1− 1

#Y
))

since #[X\XS ]≥#X−n
≥ (1− 1

#Y
)(1− n

#X
).(5.11)

This completes the proof of Lemma 5.10. �

Continuation of the proof of Theorem 5.9. It follows from Lemma 5.10

that there exists f ∈ YX such that, denoting µ := µ
C[2m]
f , we have

(5.12)

∫
(X×Y)m

R(0−1)
µ (AS) dµm =

∫
(C[2m]×Y)m

R(0−1)
µ (AS) d(µm)(S) ≥ 1

4
.

Since 0 ≤ R(0−1)
µ ≤ 1 we obtain from (5.12)

µm{S ∈ (X × Y)m|R(0−1)
µ

(
A(S)

)
≥ 1

8
} > 1

8
.

This implies that (5.3) does not hold for (ε, δ) = (1/8, 1/8), for any m and

µ(m) = µ
C[m]
f . This proves Theorem 5.9. �

Remark 5.11. In the proof of Theorem 5.9 we showed that if there is a
subset C ⊂ X of size 2m and the restriction of H to C is the full set of
functions in {0, 1}C then (5.3) does not hold for any learning algorithm A,
m ∈ N and (ε, δ) = (1/8, 1/8). In other words we cannot predict a hypothesis

in H = YX of a learning model (X ,H, L(0−1),PX (X × Y)) with accuracy ε
and confidence 1 − δ using sample of size m if #X ≥ 2m. This motivates
the following Definition.
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Definition 5.12. (1) A hypothesis class H ⊂ {0, 1}X shatters a finite subset
C ⊂ X if #H|C = 2#C .

(2)The VC-dimension of a hypothesis class H ⊂ {0, 1}X , denoted by
V C dim(H), is the maximal size of a set C ⊂ X that can be shattered by
H. If H can shatter sets of arbitrarily large size we say that H has infinite
VC-dimension.

Example 5.13. Let H be the class of intervals in the real line, namely,

H = {1(a,b) : a < b ∈ R},

where 1(a,b) : R→ {0, 1} is the indicate function of the interval (a, b). Take
the set C = {1, 2}. Then, H shatters C, since all all the functions in the set

{1, 2}(0,1) can be obtained as the restriction of some function from H to C.
Hence V C dim(H) ≥ 2. Now take an arbitrary set C = {c1 < c2 < c3} and
the corresponding labeling (1, 0, 1). Clearly this labeling cannot be obtained
by an interval: Any interval h(a,b) that contains c1 and c3 (and hence labels
c1 and c3 with the value 1) must contain c2 (and hence it labels c2 with 0 ).
Hence H does not shatter C. We therefore conclude that V C dim(H) = 2.
Note that H has infinitely many elements.

Exercise 5.14 (VC-Threshold functions). Consider the hypothesis class
F ⊂ {−1, 1}R of all threshold functions sgnb : R→ R, where b ∈ R, defined
by

sgnb(x) := sgn(x− b)
Show that V C dim(F) = 1.

In Remark 5.11 we observed that the finiteness of V C dimH is a necessary
condition for the existence of a uniformly consistent learning algorithm on
a unified learning model (X ,H, L(0−1),PX (X × Y)). In the next section we
shall show that the finiteness of V C dimH is also a sufficient condition for
the uniform consistency of Aerm on (X ,H, L0−1,PX (X × Y)).

5.3. Fundamental theorem of binary classification.

Theorem 5.15 (Fundamental theorem of binary classification). A learning

model (X ,H ⊂ {0, 1}X , L(0−1),P(X × {0, 1})) has a uniformly consistent
learning algorithm, if and only if V C dim(H) <∞.

Outline of the proof. Note that the “only if” assertion of Theorem 5.15
follows from Remark 5.11. Thus we need only to prove the “if” assertion. By
Lemma 5.5 it suffices to show that if V C dim(H) = k <∞ then mH(ε, δ) <
∞ for all (ε, δ) ∈ (0, 1)2. In other words we need to find a lower bound for
the LHS of (5.5) in terms of the VC-dimension, which is an upper bound of
the RHS of (5.5), when ε ∈ (0, 1) and m is sufficiently large. This shall be
done in three steps.
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In step 1, setting Z = X×Y, and omitting superscript of the risk function
R, we use the Markov inequality to obtain

(5.13) µm{S ∈ Zm : |Rµ(h)− R̂S(h)| < a} ≤ Eµm |Rµ(h)−RS(h)|
a

for any a > 0 and any h ∈ H.

In step 2 we define the growth function ΓH(m) : N → N and use it to
upper bound the RHS of (5.13). Namely we shall prove the following

(5.14) Eµm(sup
h∈H
|Rµ(h)− R̂S(h)| ≤

4 +
√

log
(
ΓH(2m)

)
δ
√

2m
) ≥ 1− δ

for every µ ∈ P(X × Y) and any δ ∈ (0, 1). The proof of (5.14) is delicate
and can be found in [SSBD2014, p. 76-77].

Definition 5.16 (Growth function). Let F ⊂ YX be a class of functions
with finite target space Y. The growth function ΓF assigned to F is then
defined for all n ∈ N as

ΓF (n) := max
Σ⊂X|#Σ=n

#F|Σ.

We also set Γ(0) = 1.

Example 5.17. Consider the set F : {signb| b ∈ R} of all threshold func-
tions. Given a set of distinct points {x1, · · · , xn} = Σ ⊂ R, there are n+ 1
functions in F|Σ corresponding to n + 1 possible ways of placing b relative
to the xi s. Hence, in this case ΓF (n) ≥ n+ 1.

Exercise 5.18. Show that ΓF (n) = n + 1 for the set F of all threshold
functions.

In step 3 we use the following Vapnik-Chervonenski-Lemma, also known
as Sauer’s Lemma, whose proof can be found in [SSBD2014, p. 74-75].

Lemma 5.19. Let H ⊂ {0, 1}X be a hypothesis class with V C dim(H) =
d <∞. Then, for all n ∈ N we have

ΓH(n) ≤
d∑
i=0

(
n

i

)
.

In particular, if n > d+ 1 then ΓH(n) ≤ (en/d)d.

It follows from Lemma 5.19 that for any (ε, δ) ∈ (0, 1)2 there exists m
such that

4 +
√

log
(
ΓH(2m)

)
δ
√

2m
< ε

and therefore by (5.14) for any (ε, δ) ∈ (0, 1)2 the value mH(ε, δ) is finite.
This completes the proof of Theorem 5.15.
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5.4. Conclusions. In this lecture we define the notion of the (uniform) con-
sistency of a learning algorithm A on a unified learning model (Z,H, L, P )
and characterize this notion via the sample complexity of A. We relate
the consistency of the ERM algorithm with the uniform convergence of the
law of large numbers over the parameter space H and use it to prove the
uniform consistency of ERM in the binary classification problem (X ,H ⊂
{0, 1}X , L(0−1),P(X × {0, 1}). We show that the finiteness of the VC-
dimension of H is a necessary and sufficient condition for the existence of
a uniform consistent learning algorithm on a binary classification problem
(X × {0, 1},H ⊂ {0, 1}X , L(0−1),PX (X × {0, 1}).

6. Generalization ability of a learning machine and model
selection

In the last lecture we measured the consistency of a learning algorithm A
in a unified learning model (Z,H, L, P ) via the sample complexity function
mA : (0, 1)2 → R+ ∪∞. The sample complexity mA(ε, δ) is the less number
of samples that A requires in order to make a prediction with ε accuracy
and (1− δ) confidence. In 1984 Valiant suggested a PAC-model of learning,
which corresponds to the notion of uniform (w.r.t. P ) consistency of A,
which has moreover to be efficiently computable, i.e. the function mA(ε, δ)
must be polynomial in ε−1 and δ−1. Furthermore Valiant also requires
that A is efficiently computable, which can be expressed in terms of the
computational complexity of A, see [SSBD2014, Chapter 8] for discussion
on running time of A.

Thus, given a learning machine (Z,H, L, P,A), where A is a learning
algorithm, the generalization ability of (Z,H, L, P,A) is measured in terms
of the family of sample complexities {mA,µ(ε, δ)| µ ∈ P} of the learning
machines (Z,H, L, µ ∈ P,A) and the computational complexity of A. In
the previous lecture, Lemma 5.5, we gave upper bounds for the sample
complexity mAerm(ε, δ) in terms of the sample complexity mH(ε/2, δ/2) of
the learning model. Then we showed that in a binary classification problem
the sample complexity mH takes finite values if and only if the VC-dimension
of H is finite.

Today we shall discuss two further methods of upper bounds for the sam-
ple complexities mH and mAerm of some important learning models. Then
we discuss the problem of learning model selection.

6.1. Covering number and sample complexity. In the binary classifi-
cation problem of supervised learning the VC-dimension is a combinatorial
characterization of the hypothesis class H, which carries no topology, since
the domain X and the target space Y are discrete. The expected zero-
one loss function is therefore the preferred choice of a risk function. In
[CS2001] Cucker-Smale estimated the sample complexity mH of a discrim-
inative model for a regression problem with the MSE as the expected loss
function.
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Before stating Cucker-Smale’s results we introduce necessary notations.
• X is a topological space and ρ denotes a Borel measure on X × Rn.
• Let Cn(X ) be the Banach space of continuous bounded Rn-valued func-

tions on X with the norm 16

||f ||C0 = sup
x∈X
||f(x)||.

• For f ∈ Cn(X ) let fY ∈ Cn(X × Rn) denote the function

fY (x, y) := f(x)− y.
Then MSEρ(f) = Eρ(||fY ||2), see (2.2) and (2.3).
• For a function g ∈ Cn(X ×Rn) denote by Vρ(g) its variance, see (4.16),

Vρ(g) = Eρ(||g − Eρ(g)||2) = Eρ(||g||2)− ||Eρg||2.
• For a compact hypothesis class H ⊂ Cn(X ) define the following quan-

tities

(6.1) MSEρ,H(f) := MSEρ(f)−min
f∈H

MSEρ(f),

which is called the estimation error of f , or the sample error of f [CS2001],
and

Vρ(H) := sup
f∈H

Vρ(fY ),

N (H, s) := min{l ∈ N| there exists l disks in H with radius s covering H}.
• For S = (z1, · · · , zm) ∈ Zm := (X ×Y)m, where zi = (xi, yi), denote by

fS the minimizer of the function MSES : H → R such that

MSES(f) :=
1

m

m∑
i=1

||f(xi)− yi||2.

The existence of fS follows from the compactness of H and the continuity
of the functional MSES on H.

Theorem 6.1. ([CS2001, Theorem C]) Let H be a compact subset of C(X ) :=
C1(X ). Assume that for all f ∈ H we have |f(x)− y| ≤M ρ-almost every-
where, where ρ is a probability measure on X × R. Then for all ε > 0

(6.2) ρm{S ∈ Zm|MSEρ,H(fS) ≤ ε} ≥ 1−N (H, ε

16M
)2e
− mε2

8(4Vρ(H)+ 1
3M

2ε) .

Theorem 6.1 implies that for any n <∞ the ERM algorithm is consistent
on the unified learning model (X ,H ⊂ Cn(X ), L2,PB(X × Rn)), where L2

is the quadratic loss function, and PB(X × Rn) denotes the space of Borel
measures on the topological space X × Rn, if H is compact. To increase
the accuracy of the estimate in (6.2) we need to decrease the radius of the
covering balls and therefore increase the number of the covering ball.

16In [CS2001, p.8] the authors used the L∞-norm, but they considered only the sub-
space of continuous functions
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The proof of Theorem 6.1 is based on Lemma 5.5. To prove that the
sample complexity of Aerm is bounded it suffices to prove that the sample
complexity mH of the learning model (X ,H ⊂ C(X ), L2,PB(X × Rn)) is
bounded.

Outline of the proof of the Cucker-Smale theorem. The strategy of the
proof of Theorem 6.1 is similar to that of Fundamental Theorem of binary
classification (Theorem 5.15).

In the first step we prove the following Lemma, which gives a lower bound
on the rate of the convergence in probability of empirical risk MSES(f) to
the expected risk MSEρ(f) for a given f ∈ H.

Lemma 6.2. ([CS2001, Theorem A, p.8]) Let M > 0 and f ∈ C0(X ) such
that |f(x)− y| ≤M ρ-a.e.. Then for all ε > 0 we have

ρm{S ∈ Zm : |MSEρ(f)−MSES(f)| ≤ ε} ≥ 1− 2e
(− mε2

2(σ2+1
3M

2ε)
)

where σ2 = Vρ(f
2
Y ).

Lemma 6.2 is a version of the inequality (5.8), for which we used the
Hoeffding inequality. The Hoeffding inequality does not involve the variance
and Cucker-Smale used the Bernstein inequality instead of the Hoeffding
inequality, see Appendix B.

In the second step, we reduce the problem of estimating upper bound for
the sample complexity mH to the problem of estimating upper bound for
the sample complexities mDj , where {Dj | j ∈ [1, l]} is a cover of H, and
using the covering number. Namely we have the following easy inequality

ρm{S ∈ Zm| sup
f∈H
|MSEρ(f)−MSES(f)| ≥ ε} ≤

l∑
j=1

ρm{S ∈ Zm| sup
f∈Dj

|MSEρ(f)−MSES(f)| ≥ ε}.(6.3)

In the last third step we proof the following

Lemma 6.3. ([CS2001, Proposition 3, p. 12]) Let f1, f2 ∈ C(X ). If |fj(x)−
y| ≤ M on a set U ⊂ Z of full measure for j = 1, 2 then for any S ∈ Um
we have

|MSES(f1)−MSES(f2)|| ≤ 4M ||f1 − f2||C0 .

Lemma 6.3 implies that for all S ∈ Um

sup
f∈Dj

|MSEρ(f)−MSES(f)| ≥ 2ε =⇒ |MSEρ(fj)−MSES(fj)| ≥ ε.

Combining the last relation with (6.3), we derive the following desired upper
estimate for the sample complexity mH.
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Proposition 6.4. Assume that for all f ∈ H we have |f(x)−y| ≤M ρ-a.e..
Then for all ε > 0 we have

ρm{z ∈ Zm : sup
f∈H
|MSEρ(f)−MSEz(f)| ≤ ε} ≥ 1−N (H, ε

8M
)2e

(− mε2

4(2σ2+1
3M

2ε)

where σ2 = supf∈H Vρ(f
2
Y ).

This completes the proof of Theorem 6.1.

Exercise 6.5. Let L2 denote the instantaneous quadratic loss function in
(2.12). Derive from Theorem 6.1 an upper bound for the sample complexity
mH(ε, δ) of the learning model (X ,H ⊂ Cn(X ), L2,PB(X ×Rn)), where H is
compact and PB(X ×Rn) is the space of Borel measures on the topological
space X × Rn.

Remark 6.6. If the hypothesis class H in Theorem 6.1 is a convex subset in
H then Cucker-Smale got an improved estimation of the sample complexity
mAerm [CS2001, Theorem C∗].

6.2. Rademacher complexities and sample complexity. Rademacher
complexities are more sophisticated complexities that can be used in upper
bounds for a “half” of the sample complexity mH of a learning model but
they are sufficient for estimating upper bounds of the sample complexity
mAerm of the ERM algorithm.

The Rademacher complexity of a learning model (Z,H, L, µ) is defined as
the Rademacher complexity of the family GLH of functions

(6.4) {gh : Z → R, gh(z) = L(z, h)|h ∈ H}.

Definition 6.7 (Rademacher complexity). The empirical Rademacher com-
plexity of G w.r.t. a sample S = (z1, · · · , zn) ∈ Zn is defined as follows

R̂S(G) := E
(µ

Z2
Z2

)n
[sup
g∈G

1

n

n∑
i=1

σig(zi)],

where {σi ∈ Z2| i ∈ [1, n]} and µZ2
Z2

is the counting measure on Z2, see (5.9).
If S is distributed according to a probability measure µn on Zn, then the
Rademacher complexity of G w.r.t. µ are given by

Rn,µ(G) := Eµn [RS(G)].

The Rademacher n-complexity Rn(Z,H, L, µ) (resp. the Rademacher em-
pirical n-complexity RS(Z,H, L)) is defined to be the complexity Rn,µ(GLH)

(resp. the empirical complexity R̂S(GLH)), where GLH is the family associated
to the model (Z,H, L, µ) by (6.4).

Example 6.8. Let us consider a learning model (X×Z2,H ⊂ (Z2)X , L(0−1), µ).
For a sample S = {(x1, y1), · · · , (xm, ym)} ∈ (X × Z2)m denote by Pr(S)
the sample (x1, · · · , xm) ∈ Xm. We shall show that
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(6.5) R̂S(G(0−1)
H ) =

1

2
R̂Pr(S)(H).

Using the identity

L(0−1)(x, y, h) = 1− δh(x)
y =

1

2
(1− yih(xi))

we compute

R̂S(G(0−1)
H ) = E

(µ
Z2
Z2

)m
[sup
h∈H

1

m

m∑
i=1

σiδ
h(xi)
yi ]

= E
(µ

Z2
Z2

)m
[sup
h∈H

1

m

m∑
i=1

σi
1− yih(xi)

2
]

E
(µ

Z2
Z2

)m
σi=0

=
1

2
E

(µ
Z2
Z2

)m
[sup
h∈H

1

m

m∑
i=1

−σiyih(xi)]

=
1

2
E

(µ
Z2
Z2

)m
[sup
h∈H

1

m

m∑
i=1

σih(xi)] =
1

2
R̂Pr(S)(H)

which is required to prove.

We have the following relation between the empirical Rademacher com-
plexity and the Rademacher complexity, using the McDiarmid concentration
inequality, see (B.4) and [MRT2012, (3.14), p.36]

(6.6) µn{S ∈ Zn|Rn,µ(GLH) ≤ RS(GLH) +

√
ln(2/δ)

2m
} ≥ 1− δ/2.

Theorem 6.9. (see e.g. [SSBD2014, Theorems 26.3, 26.5, p. 377- 378])
Assume that (Z,H, L, µ) is a learning model with |L(z, h)| < c for all z ∈ Z
and all h ∈ H. Then for any δ > 0 and any h ∈ H we have

(6.7) µn{S ∈ Zn|RLµ(h)−RLS(h) ≤ Rn,µ(GLH) + c

√
2 ln(2/δ)

n
} ≥ 1− δ,

(6.8) µn{S ∈ Zn|RLµ(h)−RLS(h) ≤ RS(GLH) + 4c

√
2 ln(4/δ)

n
} ≥ 1− δ.

(6.9)

µn{S ∈ Zn|RLµ(Aerm(S))−RLµ(h) ≤ 2RrS(GLH) + 5c

√
2 ln(8/δ)

δ
} ≥ 1− δ.

(6.10) Eµn(RLµ(Aerm(S))−RLµ,H) ≤ 2Rrn,µ(GLH).

It follows from (6.10), using the Markov inequality, the following bound
for the sample complexity mAerm in terms of Rademacher complexity

(6.11) µn{S ∈ Zn|RLµ(Aerm)−RLµ,H ≤
2RLn,µ(GLH)

δ
} ≥ 1− δ.
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Remark 6.10. (1) The first two assertions of Theorem 6.9 give an upper
bound of a “half” of the sample complexity mH of a unified learning model
(Z,H, L, µ) by the (empirical) Rademacher complexity Rn(G) of the associ-
ated family G. The last assertion of Theorem 6.9 is derived from the second
assertion and the Hoeffding inequality.

(2) For the binary classification problem (X×{0, 1},H ⊂ {0, 1}X , L(0−1),P(X×
{0, 1}) there exists a close relationship between the Rademacher complexity
and the growth function ΓH(m), see [MRT2012, Lemma 3.1, Theorem 3.2,
p. 37] for detailed discussion.

6.3. Model selection. The choice of a right prior information in machine
learning is often interpreted as the choice of a right class H in a learning
model (Z,H, L, P ) which is also called a model selection. A right choice of
H should make balance between the approximation error and the estimation
error of H defined in the error decomposition of H.

6.3.1. Error decomposition. We assume that the maximum domain of the
expected loss function RLµ is a subspace HL,µ ⊃ H, given L and a probability
measure µ ∈ P .

We define the Bayes risk of the learning problem RLµ on the maximal
domain HL,µ as follows

RLb,µ := inf
h∈HL,µ

RLµ(h)

Recall that RLµ,H := infh∈HR
L
µ(h) quantify the optimal performance of a

learner in H. Then we decompose the difference between the expected risk
of a predictor h ∈ H and the Bayes risk as follows:

(6.12) RLµ(h)−RLb,µ = (RLµ(h)−RLµ,H) + (RLµ,H −RLb,µ).

The first term in the RHS of (6.12) is called the estimation error of h, cf.
(6.1), and the second term is called the approximation error. If h = Aerm(S)

is a minimizer of the empirical risk R̂LS , then the estimation error of Aerm(S)
is also called the sample error [CS2001, p. 9].

The approximation error quantifies how well the hypothesis class H is
suited for the problem under consideration. The estimation error measures
how well the hypothesis h performs relative to best hypotheses in H. Typi-
cally, the approximation error will decrease when enlargingH but the sample
error will increase as demonstrated in No-Free-Lunch Theorem 5.9, because
P should be enlarged as H will be enlarged.

Example 6.11. (cf. [Vapnik2000, p. 19], [CS2001, p. 4, 5]) Let us
compute the error decomposition of a discriminative model (X × R,H ⊂
RX , L2,PB(X × R) for regression problem. Let π : X × R → X denote
the natural projection. Then the measure ρ, the push-forward measure
π∗(ρ) ∈ P(X ) and the conditional probability measure ρ(y|x) on each fiber
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π−1(x) = R are related as follows∫
X×R

ϕ(x, y)dρ =

∫
X

(

∫
R
ϕ(x, y)dρ(y|x))dπ∗(ρ)

for ϕ ∈ L1(ρ), similar to the Fubini theorem, see Subsection A.4.
Let us compute the Bayes risk RLb,µ for L = L2. The maximal subspace

HL,µ where the expected loss RLµ is well defined is the space L2(X , π∗(ρ)).
We claim that the regression function of ρ, see Exercise 2.7,

rρ(x) := Eρ(i2(Y )|X = x) =

∫
R
ydρ(y|x)

minimizes the MSEπ∗(ρ) defined on the space L2(X , π∗(ρ)). Indeed, for any

f ∈ L2(X , π∗(ρ)) we have

(6.13) MSEπ∗(ρ)(f) =

∫
X

(f(x)− rρ(x))2dπ∗(ρ) +MSEπ∗(ρ)(rρ).

The equation (6.13) implies that the Bayes risk RLb,π∗(ρ) is MSEπ∗(ρ)(rρ). It

follows that the approximation error of a hypothesis class H is equal

MSEπ∗(ρ)(fmin) =

∫
X

(fmin − rρ(x))2dπ∗(ρ) +MSEπ∗(ρ)(rρ),

where fmin is a minimizer of MSE in H. Since MSEπ∗(ρ)(rρ) is a constant,
if H is compact, fmin exists and satisfies the condition

(6.14) fmin = argmin
g∈H

d(g, rρ),

where d is the L2-distance on L2(X , π∗(ρ)).

6.3.2. Validation and cross-validation. An important empirical approach in
model selection is validation and its refinement - (k-fold) cross-validation.
Validation is used for model selection as follows. We first train different
algorithms (or the same algorithm with different parameters) on the given
training set S. Let H := {h1, · · · , hr} be the set of all output predictors of
the different algorithms. Now, to choose a single predictor fromH we sample
a fresh validation set S′ ∈ Zm and choose the predictor hi that minimizes
the error over the validation set.

The basic idea of cross-validation is to partition the training set S =
(z1, · · · , zn) ∈ Zn into two sets S = S1 ∪ S2 where S1 ∈ Zk and S2 ∈ Zn−k.
The set S1 is used for training each of the candidate models, and the second
set S2 is used for deciding which of them yields the best results.

The n-cross validation is a refinement of cross-validation by partition of
the training set into n-subsets and use one of them for testing the and repeat
the procedure (n− 1)-time for other testing subsets.
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6.4. Conclusion. In this lecture we use several complexities of a learning
model (Z,H, L, P ) for obtaining upper bounds of the sample complexity of
the ERM algorithm Aerm. Among them Rademacher complexities are the
most sophisticated ones that measure the capacity of a hypothesis class on a
specific sample, which can be used to bound the difference between empirical
and expected error, and thus the excess generalization error of empirical risk
minimization. To find an ideal hypothesis class H for a learning problem
we have to take into account the error decomposition of a learning model
and the resulting bias-variance trade-off and use empirical cross validation
methods.

7. Support vector machines

In this lecture we shall consider a class of simple supervised learning
machines for binary classification problems and apply results in the previ-
ous lectures on consistent learning algorithms. Our learning machines are
(V ×Z2,Hlin, L,P(V ×Z2), A) where V is a real Hilbert space, Hlin consists
of linear classifiers, defined below, L is a (0 − 1) loss function (resp. regu-
larized (0 − 1) loss function) and A is a hard SVM algorithm (resp. a soft
SVM algorithm), which we shall learn in today lecture. The original SVM
algorithm is the hard SVM algorithm, which was invented by Vapnik and
Chervonenkis in 1963. The current standard incarnation (soft margin) was
proposed by Cortes and Vapnik in 1993 and published in 1995.

7.1. Linear classifier and hard SVM. For (w, b) ∈ V × R we set

(7.1) f(w,b)(x) := 〈w, x〉+ b.

Definition 7.1. A linear classifier is a function sign f(w,b) : V → Z2,
x 7→ signf(w,b)(x) ∈ {−1, 1} = Z2.

We identify each linear classifier with the half spaceH+
(w,b) := signf−1

(w,b)(1) =

f−1
(w,b)(R≥0) ⊂ V and set H(w,b) := f−1

(w,b)(0) ⊂ V . Note that each hyperplane

H(w,b) ⊂ V defines H+
(w,b) up to a reflection of V around H(w,b) and therefore

defines the affine function f(w,b) up to a multiplicative factor λ ∈ R∗. Denote
by HA(V ) the set of of all hyperplanes in the affine space V . Then Hlin is
a double cover of HA(V ) with the natural projection π : Hlin → HA(V )
defined above.

Definition 7.2. A training sample S = (x1, y1), · · · , (xm, ym) ∈ (V ×
{±1})m is called separable, if there is a half space H+

(w,b) ⊂ V that cor-

rectly classifies S, i.e. for all i ∈ [1,m] we have xi ∈ H+
(w,b) iff yi = 1. In

other words, the linear classifier signf(w,b) is a minimizer of the empirical

risk function R0−1
S : Hlin → R associated to the zero one loss function L(0−1).
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Remark 7.3. (1) A half space H+
(w,b) correctly classifies S if and only if the

empirical risk function R̂
(0−1)
S (f(w,b)) = 0 and sign f(w,b) is a linear classifier

associated to H+
(w,b).

(2) Write S = S+ ∪ S− where

S± := {(x, y) ∈ S| y = ±1}.

Let Pr : (V × {±1})m → V m denote the canonical projection. Then S
is separable if and only if there exists a hyper-plane H(w,b) that separates
[Pr(S+)] and [Pr(S−)], where recall that [(x1, · · · , xm)] = ∪mi=1{xi} ⊂ V . In
this case we say that H(w,b) correctly separates S.

(3) If a training sample S is separable then the separating hyperplane
is not unique, and hence there are many minimizers of the empirical risk

function R̂
(0−1)
S . Thus, given S, we need to find a strategy for selecting one

of these ERM’s, or equivalently for selecting a separating hyperplane H(w,b),

since the associated half-space H+
(w,b) is defined by H(w,b) and any training

value (xi, yi). The standard approach in the SVM framework is to choose
H(w,b) that maximizes the distance to the closest points xi ∈ [Pr(S)]. This
approach is called the hard SVM rule. To formulate the hard SVM rule we
need a formula for the distance of a point to a hyperplane H(w,b).

Lemma 7.4 (Distance to a hyperplane). Let V be a real Hilbert space and
H(w,b) := {z ∈ V | 〈z, w〉 + b = 0}. The distance of a point x ∈ V to H(w,b)

is given by

(7.2) ρ(x,H(w,b)) := inf
z∈H(w,b)

||x− z|| = |〈x,w〉+ b|
||w||

.

Proof. Since H(w,b) = H(w,b)/λ for all λ > 0, it suffices to prove (7.2) for the
case ||w|| = 1 and hence we can assume that w = e1. Now formula (7.2)
follows immediately, noting that H(e1,b) = H(e1,0) − be1. �

Let H(w,b) separate S = {(x1, y1), · · · , (xm, ym)} correctly. Then we have

yi = sign(〈xi, w〉+ b),

=⇒ |〈xi, w〉+ b| = yi(〈x,w〉+ b).

Hence, by Lemma 7.4, the distance between H(w,b) and S is

(7.3) ρ(S,H(w,b)) := min
i
ρ(xi, H(w,b)) =

mini yi(〈xi, w〉+ b)

||w||
.

The distance ρ(S,H(w,b)) is also called the margin of a hyperplane H(w,b)

w.r.t. S. The hyperplanes, that are parallel to the separating hyperplane
and passing through the closest points on the negative or positive sides are
called marginal.
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Denote byHS the subset of π(Hlin) = HA(V ) that consists of hyperplanes
separating S. Set

(7.4) A∗hs(S) := arg max
H(w,b)′∈HS

ρ(S,H(w,b)′).

Now we define a map Ahs : ∪m(V × Z2)m → Hlin by letting Ahs(S) ∈
π−1A∗hs(S) to be the linear classifier that correctly classifies S.

Definition 7.5. A hard SVM is a learning machine (V × Z2,Hlin, L(0−1),
P(V × Z2), Ahs).

The domain of the optimization problem in (7.4) is HS , which is not easy
to determine. So we replace this problem by another optimization problem
over a larger convex domain as follows.

Lemma 7.6. For S = {(x1, y1), · · · , (xm, ym)} we have

(7.5) Ahs(S) = H+
(w,b) where (w, b) = arg max

(w,b):||w||≤1
min
i
yi(〈w, xi〉+ b).

Proof. If H(w,b) separates S then ρ(S,H(w,b)) = mini yi(〈w, xi〉 + b). Since
the constraint ||w|| ≤ 1 does not effect on H(w,b), which is invariant under a
positive rescaling, (7.3) implies that

(7.6) max
(w,b):||w||≤1

min
i
yi(〈w, xi〉+ b) ≥ max

H(w,b)′∈HS
ρ(S,H(w,b)′).

Next we observe that if H(w,b) 6∈ HS then

min
i
yi(〈w, xi〉+ b) < 0.

Combining this with (7.6) we obtain

max
(w,b):||w||≤1

min
i
yi(〈w, xi〉+ b) = max

(w,b):H(w,b)∈HS
min
i
yi(〈w, xi〉+ b).

This completes the proof of Lemma 7.6. �

A solution Ahs(S) of the equation (7.5) maximizes the enumerator of the
far RHS of (7.3) under the constraint ||w|| ≤ 1. In the Proposition below we
shall show that Ahs(S) can be found as a solution to the dual optimization
problem of minimizing the dominator of the RHS (7.3) under the constraint
that the enumerator of the far RHS of (7.3) has to be fixed.

Proposition 7.7. A solution to the following optimization problem, which
is called Hard-SVM,

(7.7) (w0, b0) = argmin
w,b
{||w||2 : yi(〈w, xi〉+ b) ≥ 1 for all i}

produces a solution (w, b) := (w0/||w0||, b0/||w0||) of the optimization prob-
lem (7.5).
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Proof. Let (w0, b0) be a solution of (7.7). We shall show that (w0/||w0||, b0/||w0||)
is a solution of (7.5). It suffices to show that the margin of the hyperplane
H(w0,b0) is greater than or equal to the margin of the hyperplane associated
to a (and hence any) solution of (7.5).

Let (w∗, b∗) be a solution of Equation (7.5). Set

γ∗ := min
i
yi(〈w∗, xi〉+ b∗)

which is the margin of the hyperplane H(w∗,b∗) by (7.3). Therefore for all i
we have

yi(〈w∗, xi〉+ b∗) ≥ γ∗

or equivalently

y∗i (〈
w∗

γ∗
, xi〉+

b∗

γ∗
) ≥ 1.

Hence the pair (w
∗

γ∗ ,
b∗

γ∗ ) satisfies the condition of the quadratic optimization

problem in (7.7). It follows that

||w0|| ≤ ||
w∗

γ∗
|| = 1

γ∗
.

Hence for all i we have

yi(
w0

||w0||
+

b0
||w0||

) =
yi(〈w0, xi〉+ b0)

||w0||
≥ 1

||w0||
≥ γ∗.

This implies that the margin of H(w0,b0) satisfies the required condition. This
completes the proof of Proposition 7.7. �

Remark 7.8. (1) The optimization problem of (7.4) is a specific instance
of quadratic programming (QP), a family of problems extensively studied in
optimization. A variety of commercial and open-source solvers are available
for solving convex QP problems. It is well-known that there is a unique
solution of (7.4).

(2) In practice, when we have a sample set S of large size, then S is not
separable, thus the application of hard SVM is limited.

Exercise 7.9. (1) Show that the vector w0 of the solution (w0, b0) in (7.7)
of the SVM problem is a linear combination of the training set vectors
x1, · · · , xm.

(2) Show that xi lies on the marginal hyperplanes 〈w0, x〉+ b0 = ±1.

A vector xi appears in the linear expansion of the weight vector w0 in
Exercise 7.9 is called a support vector.

7.2. Soft SVM. Now we consider the case when the sample set S is not sep-
arable. There are at least two possibilities to overcome this difficulty. The
first one is to find a nonlinear embedding of patterns into a high-dimensional
space. To realize this approach we use a kernel trick that embeds the pat-
terns in an infinite dimensional Hilbert space space, which we shall learn in
the next lecture. The second way is to seek a predictor sign f(w,b) such that
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H(w,b) = f−1
(w,b)(0) still has maximal margin in some sense. More precisely,

we shall relax the hard SVM rule (7.7) by replacing the constraint

(7.8) yi(〈w, xi〉+ b) ≥ 1

by the relaxed constraint

(7.9) yi(〈w, xi〉) + b ≥ 1− ξi
where ξi ≥ 0 are called the slack variables. The slack variables are commonly
used in optimization to define relaxed versions of some constraints. In our
case a slack variable ξi measures the distance by which vector xi violates
the original inequality in the LHS of (7.8).

The relaxed hard SVM rule is called the soft SVM rule.

Definition 7.10. The soft SVM algorithm Ass : (Rd × Z2)m → Hlin with
slack variables {ξ ∈ Rm≥0} is defined as follows

Ass(S) = sign f(w0,b0)(S)

where (w0, b0) satisfies the following equation with ξ = (ξ1, · · · , ξm)

(w0, b0, ξ) = argmin
w,b,ξ

(λ||w||2 +
1

m
||ξ||l1)(7.10)

s. t. ∀i, yi(〈w, xi〉+ b) ≥ 1− ξi and ξi ≥ 0.(7.11)

In what follows we shall show that the soft SVM algorithm Ass is a so-
lution of a regularized loss minimization rule, which is a refinement of the
ERM rule.

Digression Regularized Loss Minimization (RLM) is a learning algorithm
on a learning model (Z,H, L, P ) in which we jointly minimize the empirical

risk R̂LS and a regularization function. Formally, a regularization function
is a mapping R : H → R and the regularized loss minimization rule is a
map Arlm : Zn → H such that Arlm(S) is a minimizer of the empirical

regularized loss function R̃LS := R̂LS +R : H → R.
As the ERM algorithm works under certain condition, the RLM algorithm

also works under certain conditions, see e.g. [SSBD2014, Chapter 13] for
detailed discussion.

The loss function for the soft SVM learning machine is the hinge loss
function Lhinge : Hlin × (V × {±1})→ R defined as follows

(7.12) Lhinge(h(w,b), (x, y)) := max{0, 1− y(〈w, x〉+ b)}.

Hence the empirical hinge risk function is defined as follows for S =
{(x1, y1) · · · , (xm, ym)}

RhingeS (h(w,b)) =
1

m

m∑
i=1

max{0, 1− yi(〈w, xi〉+ b}.
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Lemma 7.11. The Equation (7.10) with constraint (7.11) for Ass is equiv-
alent to the following regularized risk minimization problem, which does not
depend on the slack variables ξ:

(7.13) Ass(S) = arg min
f(w,b)

(
λ||w||2 +RhingeS (f(w,b))

)
∈ Hlin.

Proof. Let us fix (w0, b0) and minimize the RHS of (7.10) under the con-
straint (7.11). It is straightforward to see that ξi = Lhinge

(
(w, b), (xi, yi)

)
.

Using this and comparing (7.10) with (7.13), we complete the proof of
Lemma 7.11. �

From Lemma 7.11 we obtain immediately the following

Corollary 7.12 (Definition). A soft SVM is a learning machine (V ×
Z2,Hlin,
Lhinge,P(V × Z2), Arlm).

Remark 7.13. The hinge loss function Lhinge enjoys several good properties
that justify the preference of Lhinger as a loss function over the zero-one loss
function L(0−1), see [SSBD2014, Subsection 12.3, p. 167] for discussion.

7.3. Sample complexities of SVM.

Exercise 7.14. Prove that V C dimHlin = dimV + 1.

From the Fundamental Theorem of binary classification 5.15 and Exercise
(7.14) we obtain immediately the following

Proposition 7.15. The binary classification problem (V×Z2,Hlin, L(0−1),P(V×
Z2)) ha a uniformly consistent learning algorithm if and only if V is finite
dimensional.

In what follow we shall show the uniform consistent of hard SVM and
soft SVM replacing the statistical model P(Rd × Z2) by a smaller class.

Definition 7.16. ([SSBD2014, Definition 15.3]) Let µ be a distribution on
V × Z2. We say that µ is separable with a (γ, ρ)-margin if there exists
(w∗, b∗) ∈ V × R such that ‖w‖ = 1 and such that

µ{(x, y) ∈ V × Z2| y(〈w∗, x〉+ b∗) ≥ γ and ||x|| ≤ ρ} = 1.

Similarly, we say that µ is separable with a (γ, ρ)-margin using a homoge-
neous half-space if the preceding holds with a half-space defined by a vector
(w∗, 0).

Definition 7.16 means that the set of labeled pairs (x, y) ∈ V × Z2 that
satisfy the condition

y(〈w∗, x〉+ b∗) ≥ γ and ||x|| ≤ ρ

has a full µ-measure, where µ is a separable measure on with (γ, ρ)-margin.
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Remark 7.17. (1) We regard an affine function f(w,b) : V → R as a linear
function fw′ : V ′ → R where V ′ = 〈e1〉⊗R ⊕ V , i.e., we incorporate the
bias term b of f(w,b) in (7.1) into the term w as an extra coordinate. More
precisely we set

w′ := be1 + v and x′ := e1 + x.

Then
f(w,b)(x) = fw′(x

′).

Note that the natural projection of the zero set f−1
w′ (0) ⊂ V ′ to V is the zero

set H(w,b) of f(w,b).
(2) By Remark 7.17 (1), we can always assume that a separable measure

with (γ, ρ)-margin is a one that uses a homogeneous half-space by enlarging
the instance space V .

Denote by P(γ,ρ)(V ×Z2) the subset of P(V ×Z2) that consists of separable
measures with a (γ, ρ)-margin using a homogeneous half-space. Using the
Rademacher complexity, see [SSBD2014, Theorem 26.13, p. 384], we have
the following estimate of the sample complexity of the learning machine
(V × Z2,Hlin, L(0−1), P(γ,ρ)(V × Z2), Ahs).

Theorem 7.18. ([SSBD2014, Theorem 15.4, p. 206]) Let µ ∈ P(γ,ρ)(V ×
Z2). Then we have

µm{S ∈ (V × Z2)m|R(0−1)
µ (Ahs(S)) ≤

√
4(ρ/γ)2

m
+

√
2 log(2/δ)

m
} ≥ 1− δ.

Denote by Pρ(V ×Z2) the set of of probability measures on V ×Z2 whose
support lies in B(0, ρ)×Z2 where B(0, ρ) is the ball of radius ρ centered at
the origin of V . Now we shall examine the sample complexity of the soft
SVM learning machine (V ×Z2,Hlin, Lhinge, Pρ(V ×Z2), Ass). The following
theorem is a a consequence of Lemma 7.11 and a general result on the sample
complexity of RLM under certain conditions, see [SSBD2014, Corollary 13.8,
p. 179].

Theorem 7.19. ([SSBD2014, Corollary 15.7, p. 208]) Let µ ∈ Pρ(V ×Z2).
Then for every r > 0 we have

Eµm
(
R(0−1)
µ

(
Ass(S)

))
≤ Eµm

(
Rhingeµ

(
Ass(S)

))
≤ min

w∈B(0,r)
Rhingeµ (hw) +

√
8ρ2r2

m
.(7.14)

Exercise 7.20. Using the Markov inequality, derive from Theorem 7.19 an
upper bound for the sample complexity of the soft SVM.

Theorem 7.19 and Exercise 7.20 imply that we can control the sample
complexity of a soft SVM algorithm as a function of the norm of the under-
lying Hilbert space V , independently of the dimension of V . This becomes
highly significant when we learn classifiers h : V → Z2 via embeddings into
high dimensional feature spaces.
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7.4. Conclusion. In this section we consider two classes of learning ma-
chines for binary classification. The first class consists of learning models
(V ×Z2,Hlin, L(0−1),P(V ×Z2)) with finite VC-dimension iff and only if V is
finite dimensional. If µ ∈ P(V ×Z2) is separable with (γ, ρ)-margin then we
can upper bound the sample complexity of the hard SVM algorithm Ahs for
(V ×Z2,Hlin, L(0−1), µ) using the ration ρ/γ and Rademacher’s complexity.
The second class consists of learning machines (V ×Z2,Hlin, Lhinge,Pρ(V ×
Z2), Ass). The soft SVM algorithm Ass is a solution of a regularized ERM
and therefore we can apply here general results on sample complexity of
regularized ERM algorithms.

8. Kernel based SVMs

In the previous lecture we considered the hypothesis class Hlin of linear
classifiers. A linear classifier sign f(w,b) correctly classifies a training sam-
ple S ⊂ (V × {±1})m iff the zero set H(w,b) of f(w,b) separates the subsets
[Pr(S−)] and [Pr(S+)]. By Radon’s theorem any set of distinct (d+2) points
in Rd can be partitioned into two subsets that cannot be separated by a hy-
perplane in Rd. Thus it is reasonable to enlarge the hypothesis class Hlin
by adding polynomial classifiers. Now we observe that any (polynomial)
function f on Rd can be regarded as the restriction of a new coordinate
function y on Rd × R(y) to the image of the graph Γf (Rd) ⊂ Rd × R of
f , i.e., f(x) = y(Γf (x)). However, the computational complexity of SVM

with learning by polynomial embedding {(x, f(x))| x ∈ Rd} may be compu-
tationally expensive. The common solution to this concern is kernel based
learning. The term “kernels” is used in this context to describe inner prod-
ucts in the feature space. Namely we are interested in classifiers of the
form

sign h̃ : X → Z2, h̃(x) := 〈h, ψ(x)〉,

where h is an element in a Hilbert space W , ψ : X →W is a “feature map”
and the kernel function Kϕ : X × X → R is defined

(8.1) Kψ(x, y) := 〈ψ(x), ψ(y)〉.

We shall see that to solve the hard SVM optimization problem (7.7) for
h ∈ W it suffices to learn K. This kernel trick requires less computational
complexity than the one for learning ψ : X →W .

8.1. Kernel trick. It is known that a solution of a hard SVM can be ex-
pressed as a linear combination of support vectors (Exercise 7.9). If the
number of support vectors is less than the dimension of the instance space,
then this property simplifies the search for a solution of the hard SVM.
Below we shall show that this property is a consequence of the Represen-
ter Theorem concerning solutions of a special optimization problem. The
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optimization problem we are interested in is of the following form:

(8.2) w0 = arg min
w∈W

(
f
(
〈w,ψ(x1)〉, · · · , 〈w,ψ(xm)〉

)
+R(‖w‖)

)
where xi ∈ X , w and ψ(xi) are elements of a Hilbert space W , f : Rm → R
is an arbitrary function and R : R+ → R is a monotonically non-decreasing
function. The map ψ : X → W is often called the feature map, and W is
called the feature space.

The following examples show that the optimization problem for the hard
(resp. soft) SVM algorithm is an instance of the optimization problem (8.2).

Example 8.1. Let S = {(x1, y1), · · · , (xm, ym) ∈ (V × Z2)m.
(1) Plugging in Equation (8.2)

R(a) := a2,

f(a1, · · · , am) :=

{
0 if yi(ai) ≥ 1 for all i
∞ otherwise

we obtain Equation (7.7) of hard SVM for homogeneous vectors (w,0), re-
placing ai by 〈w, xi〉. The general case of non-homogeneous solutions (w, b)
is reduced to the homogeneous case by Remark 7.17.

(2) Plugging in Equation (8.2)

R(a) := λa2,

f(a1, · · · , am) :=
1

m

m∑
i=1

max{0, 1− yiai}

we obtain Equation (7.13) of soft SVM for a homogeneous solution Ass(S),
identifying Ass(S) with its parameter (w, 0), S with {(x1, y1) · · · (xm, ym)}
and replacing ai with 〈w, xi〉.

Theorem 8.2 (Representer Theorem). Let ψ : X →W be a feature mapping
from an instance space X to a Hilbert space W and w0 a solution of (8.2).
Then the projection of w0 to the subspace 〈ψ(x1), · · · , ψ(xm)〉⊗R in W is
also a solution of (8.2).

Proof. Assume that w0 is a solution of (8.2). Then we can write

w0 =
m∑
i=1

αiψ(xi) + u

where 〈u, ψ(xi)〉 = 0 for all i. Set w̄0 := w0 − u. Then

(8.3) ‖w̄0‖ ≤ ‖w0‖
and since 〈w̄0, ψ(xi)〉 = 〈w0, ψ(xi)〉 we have

(8.4) f
(
〈w̄0, ψ(x1)〉, · · · , 〈w̄0, ψ(xm)〉

)
= f

(
〈w0, ψ(x1)〉, · · · , 〈w0, ψ(xm)〉

)
.

From (8.3), (8.4) and taking into account the monotonicity of R, we conclude
that w̄0 is also a solution of (8.2). This completes the proof of Theorem
8.2. �
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The Representer Theorem implies that it suffices to find a solution of
Equation (8.2) in a finite dimensional subspace W1 ⊂ W . In what follows
we shall describe a method to solve the minimization problem of (8.2) on
W1, which is called the kernel trick.

Let
• K : X × X → R, K(x, x′) := 〈ψ(x), ψ(x′)〉 be a kernel function,
• G = (Gij) := K(xi, xj) - a Gram matrix,
• w0 =

∑m
i=1 αjψ(xj) ∈W1 - a solution of Equation (8.2).

Then α = (α1, · · · , αm) is a solution of the following minimization prob-
lem

(8.5) arg min
α∈Rm

f
( m∑
j=1

αjGj1, · · · ,
m∑
j=1

αjGjm
)

+R
(√√√√ m∑

i,j=1

αiαjGji

)
.

Recall that the solution w0 =
∑m

i=1 αjψ(xj) of the hard (resp. soft) SVM
optimization problem, where (α1, · · · , αm) is a solution of (8.5), produces a
“nonlinear” classifier ŵ0 : X → Z2 associated to as follows

ŵ0(x) := signw0(x)

where

(8.6) w0(x) := 〈w0, ψ(x)〉 =
m∑
i=1

αj〈ψ(xj), ψ(x)〉 =
m∑
j=1

αjK(xj , x).

To compute (8.6) we need to know only the kernel function K and not the
mapping ψ, nor the inner product 〈, 〉 on the Hilbert space W .

This motivates the following question.

Problem 8.3. Find a sufficient and necessary condition for a kernel func-
tion, also called a kernel, K : X × X → R such that K can be written as
K(x, x′) = 〈ψ(x), ψ(x′)〉 for a feature mapping ψ : X → W , where W is a
real Hilbert space.

Definition 8.4. If K satisfies the condition in Problem 8.3 we shall say
that K is generated by a (feature) mapping ψ. The target Hilbert space is
also called a feature space.

8.2. PSD kernels and reproducing kernel Hilbert spaces.

8.2.1. Positive semi-definite kernel.

Definition 8.5. Let X be an arbitrary set. A map K : X × X → R is
called positive semi-definite kernel (PSD kernel) iff for all x1, · · · , xm the
Gram matrix Gij = K(xi, xj) is positive semi-definite.

Theorem 8.6. A kernel K : X × X → R is induced by a feature map to a
Hilbert space if and only if it is positive semi-definite.
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Proof. 1) First let us prove the “only if” assertion of Theorem 8.6. Assume
that K(x, x′) = 〈ψ(x), ψ(x′)〉 for a mapping ψ : X → W , where W is a
Hilbert space. Given m points x1, · · · , xm ∈ X we consider the subspace
Wm ⊂W generated by ψ(x1), · · · , ψ(xm). Using the positive definite of the
inner product on Wm, we conclude that the Gram matrix Gij = K(xi, xj)
is positive semi-definite. This proves the “only if” part of Theorem 8.6

2) Now let us prove the “if” part. Assume that K : X ×X → R is positive
semi-definite. For each x ∈ X let Kx ∈ RX be the function defined by

Kx(y) := K(x, y).

Denote by

W := {f ∈ RX | f =

N(f)∑
i=1

aiKxi , ai ∈ R and N(f) <∞}.

Then W is equipped with the following inner-product

〈
∑
i

αiKxi ,
∑
j

βjKyj 〉 :=
∑
i,j

αiβjK(xi, yj).

The PSD property of K implies that the inner product is positive semi-
definite, i.e.

〈
∑
i

αiKxi ,
∑
j

αiKxi〉 ≥ 0.

Since the inner product is positive semi-definite, the Cauchy-Schwarz in-
equality implies for f ∈W and x ∈ X

(8.7) 〈f,Kx〉2 ≤ 〈f, f〉〈Kx,Kx〉.

Since for all x, y we have Ky(x) = K(y, x) = 〈Ky,Kx〉 , it follows that for
all f ∈W we have

(8.8) f(x) = 〈f,Kx〉.

Using (8.8), we obtain from (8.7) for all x ∈ X

|f(x)|2 ≤ 〈f, f〉K(x, x).

This proves that the inner product on W is positive definite and hence W
is a pre-Hilbert space. Let H be the completion of W . The map x 7→ Kx

is the desired mapping from X to H. This completes the proof of Theorem
8.6. �

Example 8.7. (1) (Polynomial kernels). Assume that P is a polynomial in
one variable with non-negative coefficients. Then the polynomial kernel of
the form K : Rd×Rd → R, (x, y) 7→ P (〈x, y)〉 is a PSD kernel. This follows
from the observations that if Ki : X ×X → R, i = 1, 2, are PDS kernel then
(K1+K2)(x, y) := K1(x, y)+K2(x, y) is a PSD kernel, and (K1 ·K2)(x, y) :=
K1(x, y) ·K2(x, y) is a PSD kernel. In particular, K(x, y) := (1 + 〈x, y〉)2 is
a PSD kernel.
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(2) (Exponential kernel). For any γ > 0 the kernel K(x, y) := exp
(
γ ·

〈x, y〉
)

is a PSD kernel, since it is the limit of a polynomials in 〈x, y〉 with
non-negative coefficients.

Exercise 8.8. (1) Show that the Gaussian kernel K(x, y) := exp
(
−γ

2 ||x −
y||2) is a PSD kernel.

(2) Let X = B(0, 1) - the open ball of radius 1 centered at the origin
0 ∈ Rd. Show that K(x, y) := (1−〈x, y〉)−p is a PSD kernel for any p ∈ N+.

8.2.2. Reproducing kernel Hilbert space. Given a PSD kernel K : X×X → R
there exist many feature maps ϕ : X → W such that K is generated by a
feature map ϕ : X → W . Indeed, if K(x, x) = 〈ϕ(x), ϕ(x)〉 then K(x, x) =
〈e ◦ ϕ(x), e ◦ ϕ(x)〉 for any isometric embedding e : W → W ′. However,
there is a canonical choice for the feature space, a so-called reproducing
kernel Hilbert space.

Definition 8.9 (Reproducing kernel Hilbert space). Let X be an instance
set and H ⊂ RX a real Hilbert space of functions on X with the unique
vector space structure such that for x ∈ X the evaluation map

evx : H → R , evx(f) := f(x)

is a linear map. 17 Then H is called a reproducing kernel Hilbert space
(RKHS) on X if for all x ∈ X the linear map evx is bounded i.e.,

sup
f∈B(0,1)⊂H

evx(f) <∞.

Remark 8.10. Let H be a RKHS on X and x ∈ X . Since evx is bounded,
by the Riesz representation theorem there is a function kx ∈ H so that
f(x) = 〈f, kx〉 for all f ∈ H. Then the kernel

K(x, y) := 〈kx, ky〉
is a PSD kernel. K is called the reproducing kernel of H.

Thus every RKHS H on X produces a PSD kernel K : X × X → R.
Conversely, Theorem 8.11 below asserts that every PSD kernel reproduces
a RKHS H.

Theorem 8.11. Let K : X × X → R be a PSD kernel. There there exists
a unique RKHS H such that K is the reproducing kernel of H.

Proof. By Theorem 8.6, given a PSD kernel K : X ×X → R, there exists a
RKHS

H := {Kx|Kx(y) = K(x, y) for all x, y ∈ X}
such that

(8.9) ∀x, y ∈ X we have K(x, y) = 〈Kx,Ky〉.
17In other words, the vector structure on H is induced from the vector structure on R

via the evaluation map.
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From (8.9) we conclude that the evaluation map evx : H → R, evx(Ky) =
K(y, x) is a linear bounded map for all x, y, since

||evx|| = max
||Ky ||=1

evx(Ky) = max
||Ky ||=1

K(y, x) ≤
√
K(x, x).

Hence H is a RKHS.
To show the uniqueness of a RKHS H such that K is the reproducing

kernel of H we assume that there exists another RKHS H′ such that for all
x, y ∈ X there exist kx, ky ∈ H′ with the following properties

K(x, y) = 〈kx, ky〉 and f(x) = 〈f, kx〉 for all f ∈ H.

We define a map g : H → H′ by setting g(Kx) = kx. It is not hard to see
that g is an isometric embedding. To show that g extends to an isometry
it suffices to show that the set kx is dense in H′. Assume the opposite, i.e.
there exists f ∈ H′ such that 〈f, kx〉 = 0 for all x. But this implies that
f(x) = 0 for all x and hence f = 0. This completes the proof of Theorem
8.11. �

8.3. Kernel based SVMs and their generalization ability.

8.3.1. Kernel based SVMs. Let K : X × X → R be a PSD kernel. Denote
by H(K) the RHKS of functions on X that produces K. Each function
h ∈ H(K) defines a binary classifier

sign h : X → Z2.

Denote by Klin the set of all binary classifiers sign h where h ∈ H(K). Using
the Representer Theorem 8.2 and Example 8.1 (1), we replace the algorithm
Ahs of a hard SVM by a kernel based algorithm.

Definition 8.12. A kernel based hard SVM is a learning machine
(X×Z2,Klin, L

(0−1),P(X×Z2), Ahk), where for S = {(x1, y1), · · · , (xm, ym)}
∈ (X × Z2)m and any x ∈ X we have

Ahk(S)(x) = sign
m∑
i=1

αjK(xj , x) ∈ Z2,

and α := (α1, · · · , αm) is the solution of the following optimization problem
(8.10)

α = argmin
(
f
( m∑
j=1

αjK(xj , x1), · · · ,
m∑
j=1

αjK(xj , xm)
)
+R(

√√√√ m∑
i,j=1

αiαjK(xi, xj))
)
,

where R and f are defined in Example 8.1(1).

Using the Representer Theorem 8.2 and Example 8.1 (2) , we replace the
algorithm Ass of a soft SVM by a kernel based algorithm.
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Definition 8.13. A kernel based soft SVM is a learning machine
(X×Z2,Klin, L

hinge,P(X×Z2), Ask), where for S = {(x1, y1), · · · , (xm, ym)}
∈ (X × Z2)m and any x ∈ X we have

Ask(S)(x) = sign

m∑
i=1

αjK(xj , x) ∈ Z2,

and α := (α1, · · · , αm) is the solution of the following optimization problem
(8.11)

α = argmin
(
f
( m∑
j=1

αjK(xj , x1), · · · ,
m∑
j=1

αjK(xj , xm)
)
+R(

√√√√ m∑
i,j=1

αiαjK(xi, xj))
)
,

where R and f are defined in Example 8.1(2).

8.3.2. Generalization ability of kernel based SVMs.
• The advantage of working with kernels rather than directly optimizing in

the feature space is that in some situations the dimension of the feature space
is extremely large while implementing the kernel function is very simple
and in many case the computational time complexity of solving (8.10) is a
polynomial on the variable of the size of xi, i ∈ [1,m], see [SSBD2014, p.
221-223].
• The upper bound for the sample complexity of hard SVM in Theorem

7.18 is also valid for the sample complexity of the kernel based hard SVM
[SSBD2014, Theorem 26.3, p. 384] after adapting the condition of separa-
bility with (γ, ρ)-margin of a measure µ ∈ P(X ×Z2) in terms of the kernel
function.
• The upper bound for the sample complexity of soft SVM in Theorem

7.19 is also valid for the sample complexity of the kernel based soft SVM,
after adapting the support condition a measure µ ∈ P(X × Z2) in terms of
the kernel function.

8.4. Conclusion. In this section we learn the kernel trick, which simplifies
the algorithm of solving hard SVM and soft SVM optimization problem,
using embedding of patterns into a Hilbert space. The kernel trick is based
on the theory of RKHS and has many applications, e.g., for defining a feature
map ϕ : P(X ) → V , where V is a RHKS, see e.g. [MFSS2016]. The main
difficulty of the kernel method is that we still have no general method of
selecting a suitable kernel for a concrete problem. Another open problem is
to improve the upper bound for sample complexity of SVM algorithm, i.e.,
to find new conditions on µ ∈ P such that the sample complexity of Ahk,
Ask which is computed w.r.t. µ is bounded.

9. Neural networks

In the last lecture we examined kernel based SVMs which are generaliza-
tions of linear classifiers, which are also called perceptrons.
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Today we shall examine other generalizations of linear classifiers which
are artificial neural networks, shortened as neural networks (otherwise, non-
artificial neural networks are (called) biological neural networks). The idea
behind neural networks is that many neurons can be joined together by
communication links to carry out complex computations. Neural networks
achieve outstanding performance on many important problems in computer
vision, speech recognition, and natural language processing.

Note that under “a neural network” one may think of a computing de-
vice, a learning model, or a hypothesis class of a learning model, a class of
(sequences of) multivariable functions.

In today lecture we shall investigate several types of neural networks,
their expressive power, i.e., the class of functions that can be realized as
elements in a hypothesis class of a neural network. In the next lecture we
shall discuss the current learning algorithm -stochastic gradient descend -
on neural networks.

9.1. Neural networks as computing devices. A neural network has a
graphical representation for multivariate functions of multi-variables hV,E,σ,w :
Rn → Rm or a sequence of multivariate functions of multi-variables {hiV,E,σ,w :

Rn → Rm| i ∈ N}.
• The quadruple (V,E, σ, w) consists of
+ the network graph (V,E), also called the underlying graph of the net-

work, where V is the set of nodes n, also called neurons, and E is the set of
directed edges connecting nodes of

+ σ - a family of functions σn : R→ R, also called the activation function
of neuron n. Usually σn = σ is independent of n. Most common activation
functions are:
- the sign function σ(x) = sign(x),
- the threshold function σ(x) = 1R+(x),
- the sigmoid function σ(x) := 1

1+e−x , which is a smooth approximation to
the threshold function;

+ w : E → R - the weight function of the network.
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• The networks architecture of a neural network is the triple G = (V,E, σ).

• A weight w : E → R endows each neuron n with a computing instruction of
type “ input-output”. The input I(n) of a neuron n is equal to the weighted
sum of the outputs of all the neurons connected to it: I(n) =

∑
w(n′n)O(n′),

where n′n ∈ E is a directed edge and O(n′) is the output of the neuron n′ in
the network.
• The output O(n) of a neuron n is obtained from the input I(n) as follows:

O(n) = σ(I(n)).
• The i-th input nodes give the output xi. If the input space is Rn then

we have n + 1 input-nodes, one of them is the “constant” neuron, whose
output is 1.
• There is a neuron in the hidden layer that has no incoming edges. This

neuron will output the constant σ(0).
• A feedforward neural network (FNN) has underlying acyclic directed

graph. Each FNN (E, V,w, σ) represents a multivariate multivariable func-
tion hV,E,σ,w : Rn → Rm which is obtained by composing the computing
instruction of each neuron on directed paths from input neurons to output
neurons. For each architecture (V,E, σ) of a FNN we denote by

HV,E,σ = {hV,E,σ,w : w ∈ RE}

the underlying hypothesis class of functions from the input space to the
output space of the network.
• A recurrent network (RNN) has underlying directed graph with a cycle.

By unrolling cycles in a RNN in discrete time n ∈ N, a RNN defines a map r :
N+ :→ {FNN} such that [r(n)] ⊂ [r(n+ 1)], where [r(n)] is the underlying
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graph of r(n), see [GBC2016, §10.2, p. 368] and [Graves2012, §3.2, p. 22].
Thus a RNN can be regarded as a sequence of multivariate multivariable
functions which serves as in a discriminative model for supervised sequence
labelling.

Digression The goal of supervised sequence labelling is to assign sequences
of labels, drawn from a label space, to sequences of input data. For example,
one might wish to transcribe a sequence of acoustic features with spoken
words (speech recognition), or a sequence of video frames with hand gestures
(gesture recognition). Although such tasks commonly arise when analysing
time series, they are also found in domains with non-temporal sequences,
such as protein secondary structure prediction.

If the sequences are assumed to be independent and identically distributed,
we recover the basic framework of pattern classification, only with sequences
in place of patterns (of course the data-points within each sequence are not
assumed to be independent). In practice this assumption may not be the
case.

Example 9.1. A multilayer perceptron (MLP) is a type of FNN that has
vertices arranged in a disjoint union of layers V = ∪nl=0Vi such that every
edge in E connects nodes in neighboring layers Vi, Vi+1. The depth of the
MLP is m. V0 is called the input layer, Vn is called the output layer, the
other layer is called hidden.
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Remark 9.2. Neural networks are abstraction of biological neural networks,
the connection weights w represent the strength of the synapses between the
neurons and the activation function σ is usually an abstraction representing
the rate of action potential firing in the cell. In its simplest form, this
function is binary, that is, either the neuron is firing or not. We can consider
activation function as a filter of relevant information, or introducing the non-
linearlity in regression problems.

In the remaining of today lecture we consider only FNNs. In particular
under NN’s we mean FNNs.

9.2. The expressive power of neural networks. In this section we want
to address the following

Question 9.3. What type of functions can be implemented using neural
networks.

First we consider representation of Boolian functions by neural networks.

Proposition 9.4 (Representation of Boolean functions). ( [SSBD2014, Claim
20.1, p. 271]) Every Boolean function f : Zd2 → Z2 can be represented exactly
by a feedforward neural network HV,E, sign with a single hidden layer contain-

ing at most 2d + 1 neurons and with the activation function σ(x) = sign(x).

Proof. Let (V,E) be a two-layer FNN with #V0 = d + 1, #V1 = 2d + 1,
#V2 = 1 and E consist of all possible edges between adjacent layers. As
before Z2 = {±1}. Now let f : Zd2 → Z2. Let ui ∈ f−1(1) ⊂ Zd2 and
k := #f−1(1). Set

gi(x) := sign(〈x, ui〉 − d+ 1).

Then {gi| i ∈ [1, k]} are linear classifiers and therefore can be implemented
by the neurons in V1. Now set

f(x) := sign(
k∑
i=1

gi(x) + k − 1)

which is also a linear classifier. This completes the proof of Proposition
9.4 �

In general case we have the following Universal Approximation Theorem,
see e.g. [Haykin2008, p. 167].

Theorem 9.5. Let ϕ be a nonconstant, bounded and monotone increas-
ing continuous function. For any m ∈ N, ε > 0 and any function F ∈
C0([0, 1]m) there exists an integer m1 ∈ N and constants ai, bj , wij where
i ∈ [1,m1], j ∈ [1,m] such that

f(x1, · · · , xm) :=

m1∑
i=1

αiϕ(
m∑
j=1

wijxj + bi)
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for all (x1, · · · , xm) ∈ [0, 1]m we have

|F (x1, · · · , xm)− f(x1, · · · , xm)| < ε.

9.3. Sample complexities of neural networks. A learning model (X ×
Y,HV,E,σ, L, P ) is called a neural network if HV,E,σ is a neural network and

HV,E,σ ⊂ YX .

9.3.1. Neural networks for binary classification problem. In neural networks
with hypothesis class HV,E,σ for binary classification problems one often
choose the activation function σ to be the sign function, and the loss function
L to be L(0−1).

Proposition 9.6. ([SSBD2014, Theorem 20.6, p. 274]) Let HV,E,sign be a
MLP. The VC-dimension of HV,E,sign is O(|E| log |E|).

Outline of the proof If H := HV,E,sign consists of exactly one percep-
tron, then Proposition 9.6 is valid since in this case V C dimH = |Ein| =
O(|E| log |E|), where Ein denotes the set of directed edges coming into the
perceptron.

We want to reduce the proof for the general case of a neural network to
the case of a single perceptron, using the known VC-dimension of a single
perceptron. Let m := V C dim(H). Using

(9.1) ΓH(m) = 2m,

to prove Proposition 9.6, it suffices to show that

(9.2) ΓHV,E,σ(m) ≤ (em)|E|,

since log2(em) < 4 log(E) by (9.2) and ((9.1)).
Let V0, · · · , VT be the layers of (E, V ). For t ∈ [1, T ] denote by Ht the

neural network HWt,Et,sign where Wt consists of inputs neurons in Vt−1 and
output neurons in Vt and Et consists of edges of H that connect Vt−1 with
Vt. Now we decompose

(9.3) H = HT ◦ · · · ◦ H1.

Lemma 9.7 (Exercises). (1) ([SSBD2014, Exercise 4, p. 282]) Let F1 ⊂ ZX
and F2 ⊂ YZ . Set H := F2 ◦ F1. Then ΓH(n) ≤ ΓF2(n)ΓF1(n).

(2) ([SSBD2014, Exercise 3, p. 282]) Let Fi be a set of function from X
to Yi for i = 1, 2. Then ΓF1×F2(n) ≤ ΓF1(n)ΓF2(n).

By Lemma 9.7 (1) we have

ΓH(m) ≤ ΠT
t=1ΓHt(m).

Next we observe that

(9.4) Ht = Ht,1 × · · · ×Ht,|Vt|.
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Each neuron ni on Vt has dt,i heading edges presenting the number of the
inputs for the linear classifier ni. Hence V C dimHt,i = dt,i < m − 1. By
Lemma 9.7 and by Vapnik-Chervonenski-Sauer-Lemma we have

ΓH(m) ≤ ΠT
t=1Π

|Vt|
i=1(

em

dt,i
)dt,i < (em)|E|,

which completes the proof of Proposition 9.6.

It follows from Proposition 9.6 that the sample complexity of the ERM
algorithm for (V ×Z2,HV,E,sign, L(0−1),P(V ×Z2)) is finite. But the running
time for ERM algorithm in a neural networkHV,E,sign is non-polynomial and
therefore it is impractical to use it [SSBD2014, Theorem 20.7, p. 276]. The
solution is to use the stochastic gradient descend, which we shall learn in
the next lecture.

9.3.2. Neural networks for regression problem. In neural networks with hy-
pothesis class HV,E,σ for regression problems one often chooses the activa-
tion function σ to be the sigmoid function σ(a) := (1 + e−a)−1, and the loss
function L to be L2, i.e., L(x, y, hw) := 1

2 ||hw(x)− y||2 for hw ∈ HV,E,σ and
x ∈ X = Rn, y ∈ Y = Rm.

9.3.3. Neural networks for generative models in supervised learning. In gen-
erative models of supervised learning we need to estimate the conditional
distribution p(t|x). In many regression problems p is chosen as follows
[Bishop2006, (5.12), p. 232]

(9.5) p(t|x) = N (t|y(x,w), β−1) =
β√
2π

exp
−β
2

(t− y(x,w)),

where β is unknown parameter and y(x,w) is the expected value of t. Thus
the learning model is of the form (X ,H, L, P ) where H := {y(t, x, w)} pa-
rameterized by a parameter w, β, and a statistical model P is a subset of
P(X ), since the joint distribution µ(x, y) is completely defined by µX and
the conditional distribution µ(y|x).

Now assume that X = (x1, · · · , xn) are i.i.d. by µ ∈ P along with labels
(t1, · · · , tn). Then (9.5) implies

(9.6) − log p(t|X,w, β) = −n
2

log β +
n

2
log(2π) +

β

2

n∑
i=1

|tn − y(xn, w)|2.

As in the density estimation problem we want to minimize the LHS of (9.5).
Leaving β = const we minimize first the β -independent component of the
loss function

(9.7) LS(w) =
1

2

n∑
i−1

|y(xn, w)2 − tn|2.
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Once we know a solution wML of the equation minimizing LS(w), the value
of β can be found by the following formula

(9.8)
1

βML
=

1

n

n∑
i=1

|y(xi, wML)− ti|2.

9.4. Conclusion. In this lecture we considered learning machines whose
hypothesis class consisted of functions or sequence of functions that can
be graphical represented by neural networks. Neural networks have good
expressive power and finite VC-dimension in binary classification problems
but the ERM algorithm in these networks has very high computational com-
plexity and therefore they are unpractical.

10. Training neural networks

Training a neural network is a popular name for running a learning al-
gorithm in a neural network learning model. We consider in this lecture
only the case where the input space and the output space of a network are
Euclidean spaces Rn and Rm respectively. Our learning model is of the form
(Rn×Rm,HV,E,σ, L, P ) and the learning algorithm is stochastic gradient de-
scend (SGD), which aims to find a minimizer of the expected risk function
RLµ : HV,E,σ → R. Since HV,E,σ is parameterized by the weight function

w ∈ RE ∼= R|E|, we regard RLµ as a function of variable w on RN , where
N = |E|. We begin with classical (deterministic) gradient and subgradient
descend of a function on RN and then analyze the SGD if the loss function
L is convex. In this case we get an upper bound for the sample complexity
of SGD. Finally we discuss SGD in general FNNs.

10.1. Gradient and subgradient descend. For any differentiable func-
tion f on a RN denote by ∇gf the gradient of f w.r.t. a Riemannian metric
g on RN , i.e., for any x ∈ RN and any V ∈ RN we have

(10.1) df(V ) = 〈∇gf,X〉.

If g is fixed, for instance g is the standard Euclidean metric on RN , we just
write ∇f instead of ∇gf .

The negative gradient flow of f on RN is a dynamic system on RN defined
by the following ODE with initial value w0 ∈ RN

(10.2) w(0) = w0 ∈ RN and ẇ(t) = −∇f(w(t)).

If w(t) is a solution of (10.2) then f(w(t)) < f(w(t′)) for any t′ > t unless
∇f(w(t)) = 0, i.e., w(t) is a critical point of f .

If f is not differentiable we modify the notion of the gradient of f as
follows.

Definition 10.1. Let f : S → R be a function on an open convex set
S ⊂ RN . A vector v ∈ RN is called a subgradient of f at w ∈ S if

(10.3) ∀u ∈ S, f(u) ≥ f(w) + 〈u− w, v〉.
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The set of subgradients of f at w is called the differential set and denoted
by ∂f(w).

Exercise 10.2. (1) Show that if f is differentiable at w then ∂f(w) contains
a single element ∇f(w).

(2) Find a subgradient of the generalized hinge loss function fa,b,c(w) =

max{a, 1− b〈w, c〉} where a, b ∈ R and w, c ∈ RN and 〈·, ·〉 a scalar product.

Remark 10.3. It is known that a subgradient of a function f on a con-
vex open domain S exists at every point w ∈ S iff f is convex, see e.g.
[SSBD2014, Lemma 14.3].

• Gradient descend algorithm discretizes the solution of the gradient flow
equation (10.2). We begin with an arbitrary initial point x0 ∈ RN . We set

(10.4) wn+1 = wn − γn∇f(wn),

where γn ∈ R+ is a constant, called a “learning rate” in machine learning, to
be optimized. This algorithm can be slightly modified. For example, after
T iterations we set the output point w̄T to be

(10.5) w̄T :=
1

T

T∑
i=1

wi,

or

(10.6) w̄T := arg min
i∈[1,T ]

f(wi).

If a function f on RN has a critical point which is not the minimizer of
f , then the gradient flow (10.2) and its discrete version (10.4) may not yield
the required minimizer of f . If f is convex, then f has only a unique critical
point w0 which is also the minimizer of f . In fact we have the following
stronger assertion.

(10.7) f(w)− f(u) ≤ 〈w − u,∇f(w)〉 for any w, u ∈ RN .

It also follows from (10.7) that there exists a unique minimizer of f , and
hence the gradient flow (10.2) works. Its discrete version (10.4) also works,
as stated in the following.

Proposition 10.4. ([SSBD2014, Corollary 14.2, p. 188]) Let f be a convex
ρ-Lipschitz function on RN ,18 and let w∗ ∈ arg minw∈B(0,r)⊂RN f(w). If

we run the GD algorithm (10.4) on f for T steps with γt = η = r
ρ
√
T

for

t ∈ [1, T ], then the output w̄T defined by (10.5) satisfies

f(w̄T )− f(w∗) ≤ rρ√
T
.

18i.e., |f(w)− f(u)| ≤ ρ |w − u|
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Under the conditions in Proposition 10.4, for every ε > 0, to achieve
f(w̄T ) − f(w∗) ≤ ε, it suffices to run the GD algorithm for a number of
iterations that satisfies

T ≥ r2ρ2

ε2
.

Lemma 10.5. ([SSBD2014, Lemma 14.1, p. 187]) Let w∗, v1, · · · , vT ∈ RN .
Any algorithm with an initialization w1 = 0 and

(10.8) wt+1 = wt − ηvt
satisfies

(10.9)

T∑
i=1

〈wt − w∗, vt〉 ≤
||w∗||2

2η
+
η

2

T∑
t=1

||vt||2.

In particular, for every r, ρ > 0, if for all t ∈ [1, T ] we have ||vt|| ≤ ρ and if

we set η = (r/ρ)T−1/2 then if ||w∗|| ≤ r we have

(10.10)
1

T

T∑
t=1

〈wt − w∗, vt〉 ≤
rρ√
T
.

To apply Lemma 10.5 to Proposition 10.4 we set vt := ∇f(wt) and note
that ||∇f(wt)|| ≤ ρ since f is ρ-convex, moreover

f(w̄T )− f(w∗) = f(
1

T

T∑
t=1

wt)− f(w∗)

since f is convex
≤ 1

T

T∑
t=1

f(wt)− f(w∗) =
1

T

T∑
i=1

(f(wt)− f(w∗))

by(10.7)

≤ 1

T

T∑
i=1

〈wt − w∗,∇f(wt)〉.

• Subgradient descend algorithm. Comparing (10.3) with (10.7), taking
into account the technical Lemma 10.5, we conclude that the gradient de-
scend algorithm can be applied the case of non-differentiable function f that
has subgradient at every point.

10.2. Stochastic gradient descend (SGD). Let (Z,H, L, P ) be a learn-
ing model. Given a sample S := (z1, · · · , zn) ∈ Zn consisting of observables
zi that are i.i.d. by µ ∈ P , a SGD searches for an approximate minimizer
hS ∈ H of the function RLµ : H → R using the following formula of “differ-
entiation under integration”

(10.11) ∇RLµ(h) =

∫
Z
∇hL(h, z) dµ(z)
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if L is differentiable. Thus ∇RLµ(h) can be computed in two steps. First we
compute ∇hL(h, zi) for zi ∈ S. Then we approximate the RHS of (10.11)
by the empirical gradient 1

n

∑
zi∈S ∇hL(h, zi) which is equal to the gradient

of the empirical risk function.

∇R̂LS(h) =
1

n

∑
zi∈S
∇hL(h, zi).

Next we apply the algorithm for gradient flow described above to ∇R̂LS(h).
The weak law of large numbers ensures the convergence in probability of
∇R̂LS(h) to RHS of (10.11), and heuristically the convergence of the empirical
gradient descend algorithm to the gradient descend of the expected risk
function RLµ .

There are several versions of SGD with minor modifications.
For simplicity and applications in NN we assume Z = Rn × Rm, H :=

HE,V,σ is parameterized by w ∈ RN and L is differentiable in w. A version
of SGD works as follows.
1) Choose a parameter η > 0 and T > 0.
2) Assume that S = (z1, z2, · · · , zn) ∈ Zn. Take arbitrary z ∈ S.
3) Set w1 = 0 ∈ RN .
4) wt+1 := wt − η∇wL(wt, z).
5) Set the output w̄T (z) := 1

n

∑n
t=1wt.

Proposition 10.6. ([SSBD2014, Corollary 14.12, p. 197]) Assume L is a
convex function in variable w and µ ∈ P governs the probability distribution
of i.i.d. zi ∈ S ∈ (Rn × Rm). Assume that r, ρ ∈ R+ are given with the
following properties.

1) w∗ ∈ arg minw∈B(0,r)R
L
µ

(
w
)
.

2) The SGD is run for T iterations with η =
√

r2

ρ2T
.

3) For all t ∈ [1, T ] we have Eµ
(
||∇wL(wt, z)||

)
≤ ρ (e.g., ||∇wL(wt, z)|| ≤

ρ for all z).

4) Assume that T ≥ r2ρ2

ε2
.

Then

(10.12) Eµ
(
RLµ
(
w̄T (z)

))
≤ RLµ

(
h(w∗)

)
+ ε.

Exercise 10.7. Find an upper bound for the sample complexity of the SGD
in Proposition 10.6.

Example 10.8. Let us consider layered FNN with H = HE,V,σ where V =
V0 ∪ V1 ∪ · · · ∪ VT . For the loss function

L(x, y, w) :=
1

2
||hw(x)− y||2
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and a vector v ∈ RN on Rn we compute the gradient of L w.r.t. the Eu-
clidean metric on RN , regarding x, y as parameters:

〈∇L(x, y, w), v〉 = 〈hw(x)− y,∇vhw(x)〉.
To compute ∇vhw(x) = dh(v) we decompose hw = hT ◦ · · · ◦ h1 as in (9.3)
and using the chain rule

d(hT ◦ · · · ◦ h1)(v) = dhT ◦ · · · dh1(v).

To compute dhi we use the decomposition (9.4)

d(ht,1 × · · · × ht,|Vt|) = dht,1 × · · · × dht,|Vt|.

Finally for ht,j = σ(
∑
ajxj) we have

dht,j = dσ ◦ (
∑

ajdxj).

The algorithm for computing the gradient ∇L w.r.t. w efficiently is called
backpropogation. 19

Remark 10.9. (1) In a general FNN the loss function L is not convex there-
fore we cannot apply Proposition 10.6. Training FNN is therefore subject
to experimental tuning.

(2) Training a RNN is reduced to training of sequence of FNN given a
sequence of labelled data, see [Haykin2008, §15.6, p. 806] for more details.

10.3. Online gradient descend and online learnability. For training
neural networks one also use Online Gradient Descend (OGD), which works
as an alternative method of SGD [SSBD2014, p. 300]. Let L : RN ×Z → R
be a loss function. A version of OGD works almost like SGD
1) We choose a parameter η > 0 and T > 0.
2) A sample S = (z1, · · · , · · · zT ) ∈ ZT is given.
3) Set w1 = 0.
4) For t∈ [1, T ] set vt := ∇wf(wt, zt).
5) Set wt := wt − ηvt.

Despite on their similarity, at the moment there is no sample complex-
ity analysis of OGD. Instead, ML community develops a concept of online
learnability for understanding OGD.

10.3.1. Setting of online-learning. Let (X×Y,H, L, P ) be a supervised learn-
ing model. The general on-line learning setting involves T rounds. At the
t-th round, 1 ≤ t ≤ T , the algorithm A receives an instance xt ∈ X and
makes a prediction A(xt) ∈ Y. It then receives the true label yt ∈ Y and
computes a loss L(A(yt), yt), where L : Y ×Y → R+ is a loss function. The
goal of A is to find a predictor A(xt) that minimizes the cumulative loss,
which is an analogue of the notion of empirical risk in our unified learning
model RA(T ) :=

∑T
i=1 L(A(xt), yt) over T rounds [MRT2012, p. 148].

19According to [Bishop2006, p. 241] the term “backpropogation” is used in the neural
computing literature to mean a variety of different things.
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In the case of 0-1 loss function L(0−1) the value RA(T ) is called the number
of mistakes that A makes after T rounds.

Definition 10.10 (Mistake Bounds, Online Learnability). ([SSBD2014,
Definition 21.1, p. 288]) Given any sequence S = (x1, h

∗(y1)), · · · , (xT , h∗(yT )),
where T is any integer and h∗ ∈ H, let MA(S) be the number of mistakes A
makes on the sequence S. We denote by MA(H) the supremum of MA(S)
over all sequences of the above form. A bound of the form MA(H) ≤ B <∞
is called a mistake bound. We say that a hypothesis class H is online learn-
able if there exists an algorithm A for which MA(H) ≤ B <∞.

Remark 10.11. 1) Similarly we also have the notion of a successful online
learner in regression problems [SSBD2014, p. 300] and within this concept
online gradient descent is a successful online learner whenever the loss func-
tion is convex and Lipschitz.

2) In the online learning setting the notion of certainty and therefore the
notion of probability measure are absent. In particular we do not have the
notion of expected risk. So there is an open question if we can make explain
it using statistical learning theory.

10.4. Conclusion. In this section we study stochastic gradient descend as
a learning algorithm which works if the loss function is convex. To apply
stochastic gradient flow as a learning algorithm in FNN where the loss func-
tion is not convex one needs experimentally modify the algorithm so it does
not stay in a critical point which is not the minimizer of the empirical risk
function. One also trains NN with online gradient descends for which we
need a new concept of online learnability which has not yet interpreted using
probability framework.

11. Bayesian machine learning

Under “Bayesian learning” one means application of Bayesian statistics
to statistical learning theory. Bayesian inference is an approach to statis-
tics in which all forms of uncertainty are expressed in terms of probability.
Ultimately in Bayesian statistics we regard all unknown quantities as ran-
dom variables and we consider a joint probability distribution for all of them,
which contains the most complete information about the correlation between
the unknown quantities.

11.1. Bayesian concept of learning. A Bayesian approach to a problem
starts with the formulation of a model that we hope is adequate to describe
the situation of interest. We then formulated a prior distribution over the
unknown parameters of the model, which is meant to capture our beliefs
about the situation before seeing the data. After observing some data,
we apply Bayes’ Theorem A.6, to obtain a posterior distribution for these
unknowns, which takes account of both the prior and the data. From this
posterior distribution we can compute predictive distributions for future
observations using (11.1).
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To predict the value of an unknown quantity zn+1, given a sample (z1, · · · , zn),
a prior distribution dθ ∈ P(Θ), one uses the following formula

(11.1) P (zn+1| z1, · · · , zn) =

∫
P (zn+1|θ)P (θ|z1, · · · , zn)dθ

which is a consequence of formula (A.8). The conditional distribution P (zn+1|θ)
is called sampling distribution of data zn+1 which is assumed to known, the
conditional probability P (θ|z1, · · · , zn) is called posterior distribution of θ
after observing (z1, · · · , zn).

Example 11.1 (Bayesian neural networks). ([Neal1996, §1.1.2, p. 5]) In
Bayesian neural network the aim of a learner is to find a conditional prob-
ability P (y|xn+1, (x1, y1), · · · , (xn, yn)), where y is a label, xn+1 is a new
input and {(xi, yi)| i = 1, n} is training data. Let θ be a parameter of the
neural network. Then we have
(11.2)

P (y|xn+1, (x1, y1), · · · , (xn, yn)) =

∫
P (y|xn+1, θ)P (θ| (x1, y1), · · · , (xn, yn)) dθ.

The conditional sampling probability P (y|xn+1, θ) is assumed to known.
Hence we can compute the LHS of (11.2), which is called predictive distri-
bution of y.

11.2. Estimating decisions using posterior distributions. In statisti-
cal decision theory we consider the problem of making optimal decisions,
that is, decisions or actions that minimize our expected loss. For example,
in our unified learning model (Z,H, L, P ) our learning algorithm A should
minimize the expected loss RLµ : H → R, which is the average of the instan-
taneous loss function L : H × Z → R over the sample space Z using the
unknown probability measure µ that governs the distribution of observable
z ∈ Z. Since we shall not consider asymptotic theory in Bayesian decision
theory and in Bayesian machine learning, see Remark 11.7 below, our discus-
sion of Bayesian optimal decisions should be compared with our discussion
on efficient estimators in Subsection 4.4.

In Bayesian decision theory we consider a decision model (or learning
model) (X ,Θ,D, L, π ∈ P(Θ)) where
• X is a sample space, also called observation space,
• a family of conditional sampling distributions {Pθ ∈ P(X ), | θ ∈ Θ} is

given
• Θ is the parameter space with given a prior distribution π(θ),
• D is a decision space (e.g., D = h(Θ) is a “feature space” of Θ) we are

interested to learn, observing x ∈ X ,
• L : Θ×D → R is an instantaneous loss that measures the discrepancy

between θ ∈ Θ and d ∈ D,
• the posterior expected loss is defined as follows

(11.3) ρL(π, d|x) :=

∫
Θ
L(θ, d)dπ(θ|x)
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• the integrated risk is defined as follows

(11.4) rL(π, δ) =

∫
Θ

∫
X
L(θ, δ(x)) dµ(x|θ)dπ(θ),

where δ : X → D is an estimator.

Theorem 11.2. ([Robert2007, Theorme 2.3.2]) An estimator minimizing
the integrated risk rL(π, δ) can be obtained by selecting for every x ∈ X the
value δ(x) which minimizes the posterior expected risk ρL(π, δ|x).

Theorem 11.2 says that the posterior loss function and the integrated risk
function lead to the same decision and the Bayesian approach agrees with
the classical approach. It also leads to the following definition.

Definition 11.3. A Bayes estimator associated with a prior distribution π
and a loss function L is any estimator δπ which minimizes r(π, δ). For every
x ∈ X it is given by δπ := arg min ρ(π, d|x). The value r(π) := r(π, δπ) is
called the Bayes risk.

Example 11.4. The most common risk function used for Bayesian estima-
tion is the mean square error (MSE), which is defined by L(θ, d) = |θ− d|2.
In this case the Bayes estimator is defined the mean of the posterior distri-
bution (cf. Exercise 2.7)

(11.5) δπ(x) = Eπ[θ|x].

Exercise 11.5. (cf. [Robert2007, Proposition 2.5.7, p. 81]) Prove that the
Bayes optimal predictor in exercise 2.6 is a Bayes estimator.

Remark 11.6. Following Bayesian ultimately probabilistic approach we
also define the notion of randomized estimators, also called statistical deci-
sion rule [Chentsov1972, Definition 5.1, p. 65], which is a stochastic/probabilistic
map from a sample space X taking value in the space D. Fortunately we
don’t need to consider randomized estimators since there is a known theorem
that the Bayes risk on the set of randomized estimators is the same as the
Bayes risk on the set of nonrandomized estimators [Robert2007, Theorem
2.4.2, p. 66].

Remark 11.7 (Asymptotic properties of Bayes learning algorithm). ([Robert2007,
p. 48]) In Bayesian decision theory one did not consider asymptotic theory.
Firstly, the Bayesian point of view is intrinsically conditional. When condi-
tioning on the observation S ∈ X n, there is no reason to wonder what might
happen if n goes to infinity since n is fixed by the sample size. Theorizing on
future values of the observations thus leads to a frequentist analysis, oppo-
site to the imperatives of the Bayesian perspective. Secondly, even though
it does not integrate asymptotic requirements, Bayesian procedures perform
well in a vast majority of cases under asymptotic criteria. In a general con-
text, Ibragimov and Hasminskii show that Bayes estimators are consistent
[IH1981, chapter 1].
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11.3. Bayesian model selection. In Example 11.1 we gives an example
of using Bayesian methods to learning using neural network. Another ap-
plication of Bayesian methods is model selection. First we enumerate all
reasonable models of the data and assigning a prior belief µi to each of these
models Mi. Then, upon observing the data x you evaluate how probable
the data was under each of these models to compute P (x|µi). To compare
two models Mi with Mj , we need to compute their relative probability given
the data: µiP (x|Mi)/µjP (x|Mj).

11.4. Conclusion. In our lecture we considered main ideas and some appli-
cations of Bayesian methods in machine learning. Bayesian machine learning
is an emerging promising trend in machine learning that is well suitable for
solving complex problems on one hand and consistent with most basic tech-
niques of non-Bayesian machine learning. There are several problems in
implementing Bayesian approach, for instance to translating our subjective
prior beliefs into a mathematically formulated model and prior. There may
also computational difficulties with the Bayesian approach.

Appendix A. Some basic notions in probability theory

Basis objects in probability theory (and mathematical statistics) are mea-
surable spaces (X ,Σ), where Σ is a σ-algebra of subsets of a space X . A
countably additive measure µ on Σ is called a probability measure if µ ≥ 0
and µ(X ) = 1.

For this Appendix I use [Bogachev2007] as my main reference on mea-
sure theory and [Schervish1997] for theoretical statistics, see also the book
[JP2003] for a clear and short exposition of probability theory and [AJLS2015,
AJLS2017, AJLS2018] for geometric approach in statistics.

A.1. Dominating measures and the Radon-Nikodym theorem. Let
µ and ν be countably additive measures on a measurable space (X ,Σ)
(i) The measure ν is called absolutely continuous with respect to µ (or domi-
nated by µ) if |ν|(A) = 0 for every set A with |µ|(A) = 0. Notation: ν << µ.
(ii) The measure ν is called singular with respect to µ, if there exists a set
Ω ∈ Σ such that

|µ|(Ω) = 0 and |ν|(X \ Ω) = 0.

Notation: ν ⊥ µ.

Theorem A.1. (cf. [Bogachev2007, Theorem 3.2.2, vol 1, p. 178]) Let µ
and ν be two finite measures on a measurable space (X ,Σ). The measure
ν is dominated by the measure µ precisely when there exists a µ-integrable
function f such that ν is given by

(A.1) ν(A) =

∫
A
f dµ

for each A ∈ Σ.
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We denote ν by fµ for µ, ν, f satisfying the equation (A.1). The function
f is called the (Radon-Nikodym) density (or the Radon-Nikodym derivative)
of ν w.r.t. µ. The function f is denoted by dν/dµ.

A.2. Conditional expectation and regular conditional measure.

A.2.1. Conditional expectation. In this section we define the notion of con-
ditional expectation using the Radon-Nykodym theorem. We note that any
sub-σ-algebra B ⊂ Σ can be written as B = Id−1(B) where Id : (X ,Σ) →
(X ,B) is the identity mapping. In what follow we let B := σ(η) where
η : (X ,Σ)→ (Y,Σ′) is a measurable map.

(X ,Σ)
η //

Idη
��

(Y,Σ′)

(X , η−1(Σ′))

η
88

Definition A.2. Let µ ∈ P(X ) and f ∈ L1(X , µ). The conditional expec-

tation Eσ(η)f is defined as follows

(A.2) Eσ(η)
µ f := (Idη)

µ
∗f :=

d(Idη)∗(fµ)

d(Idη)∗(µ)
∈ L1(X , η−1(Σ′), (Idη)∗µ).

It follows immediately from (A.2) that for all x ∈ X we have

(A.3) Eσ(η)f(x) = g(η(x)) where g = ηµ∗ f :=
dη∗(fµ)

dη∗(µ)
∈ L1(Y,Σ′, η∗µ).

In the probabilistic literature for B = σ(η) one uses the notation

E(f |B) := EBµf.

Remark A.3. There are many approaches to conditional expectations. For-
mula (A.2), defined in [AJLS2015], and Formula (A.7) defined in [Halmos1950,
p. 207] using the Radon-Nykodym theorem, are the simplest.

A.2.2. Conditional measure and conditional probability. Given a measure µ
on (X ,Σ) the conditional measure (or conditional probability in the case of
probability measure µ) of A ∈ Σ w.r.t. B, is defined as follows

(A.4) µ(A|B) := Eµ(1A|B).

In probabilistic literature one omits µ in (A.4) and writes instead

P (A|B) := µ(A|B).

If B = η−1(Σ′) where η : (X ,Σ) → (Y,Σ′) is a measurable map, one uses
the notation

P (A|η) := µ(A|η) := µ(A|B).

For any A ∈ Σ and B ∈ B = η−1(Σ′) formulas (A.2) and (A.1) imply

(A.5) µ(A ∩B) =

∫
B
µ(A|B)dµ.
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By (A.3) the measurable function ζA := ηµ∗ (1A) : Y → R satisfies the
following relation

µ(A|η)(x) = ζA(η(x))

for all x ∈ X . Then one sets for y ∈ Y

(A.6) µB(A|y) := µB(A|η(x) = y) := ζA(y).

The RHS of (A.6) is called the measure of A under conditioning η = y.
We also rewrite formula (A.6) as follows for E ∈ Σ′

(A.7) µ(A ∩ η−1(E)) =

∫
E
µy(A) dη∗(µ)(y)

where µy(A) := µB(A|y) is a Σ′-measurable function.
Note that it is not always the case that for η∗(µ)-almost all y ∈ Y the

set function µy(A) is countably addictive measure, see Example 10.4.9 in
[Bogachev2007, p. 367, v.2]. Nevertheless this becomes possible under
some additional conditions on set-theoretic or topological character, see
[Bogachev2007, Theorems 10.4.5, 10.4.8, v. 2].

A.2.3. Regular conditional measure.

Definition A.4. [Bogachev2007, Definition 10.4.1, p. 357]) Suppose we are
given a sub-σ-algebra B ⊂ Σ. A function

µB(·, ·) : Σ×X → R

is called a regular conditional measure on Σ w.r.t. B if
(1) for every x ∈ X the function A 7→ µB(A, x) is a measure on Σ,
(2) for every A ∈ Σ the function x 7→ µB(A, x) is B-measurable and µ-
integrable,
(3) For all A ∈ Σ, B ∈ B the following formula holds, cf (A.5)

(A.8) µ(A ∩B) =

∫
B
µB(A, x)dµ(x).

Remark A.5. Assume that µB(A, x) is a regular conditional measure. For-
mulas (A.8) and (A.5) imply that µB(A, x) : X → R is a representative of
the conditional measure µ(A|B) ∈ L1(X ,B, (Idη)∗(µ)). Thus one also uses
the notation µ(A|x) instead of µ(A, x).

A.3. Joint distribution and Bayes’ theorem. Till now we define condi-
tional probability measure µ(A|B) on a measurable space (X ,Σ, µ) where B
is a sub σ-algebra of Σ. We can also define conditional probability measure
µX×Y(A|B) where A is a subset of the σ-algebra ΣX of a measurable space
X and B is a sub-σ algebra of the σ-algebra ΣY of a measurable space Y,
if a joint probability measure µX×Y on (X × Y,ΣX × ΣY) is given. This
can be done by push forwarding the measure µX×Y to X and Y and lifting
as in Exercise 2.7. There are several sufficient conditions on ΣX for the
existence of regular conditional measure µ(A|y) for any A ∈ ΣX and y ∈ Y,
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see Corollaries A.9, A.10 below and Theorem 10.4.14 in [Bogachev2007, p.
364, v. 2].

The Bayes theorem stated below assumes the existence of regular con-
ditional measure µX|Θ(A|θ), 20 where µ is a joint distribution of random
elements x ∈ X and θ ∈ Θ. Furthermore we also assume the condition that
there exists a measure ν ∈ P(X ) such that ν dominates µθ := µ(·|θ) for all
θ ∈ Θ.

Theorem A.6. [Bayes’ theorem]([Schervish1997, Theorem 1.31, p. 16])
Suppose that X has a parametric family {Pθ| θ ∈ Θ} such that Pθ << ν for
some ν ∈ P(X ) for all θ ∈ Θ. Let fX|Θ(x|θ) denotes the conditional density
of Pθ w.r.t. ν. Let µΘ be the prior distribution of Θ and let µΘ|X (·|x) the
conditional distribution of Θ given x. Then µΘ|X << µΘ ν- a.s. and the
Radon-Nykodim derivative is

dµΘ|X

dµΘ
(θ|x) =

fX|Θ(x|θ)∫
Θ fX|Θ(x|t) dµΘ(t)

for those x s.t. the dominator is neither 0 or infinite. The prior predictive
probability of the set of x values s.t. the dominator is 0 or infinite is 0,
hence the posterior can be defined arbitrary for such x values.

A.4. Transition measure, Markov kernel, and parameterized statis-
tical model. Regular conditional measures in Definition A.4 are examples
of transitions measures for which we shall have a generalized version of Fu-
bini theorem (Theorem A.8)

Definition A.7. ([Bogachev2007, Definition 10.7.1, vol. 2, p. 384]) Let
(X1,B1) and (X ,B2) be a pair of measurable spaces. A transition measure
for this pair is a function P (·|·) : X1×B2 → R with the following properties:

(i) for every fixed x ∈ X1 the function B 7→ P (x|B) is a measure on B2;
(ii) for every fixed B ∈ B2 the function x 7→ P (x|B) is measurable w.r.t.

B1.

In the case where transition measures are probabilities in the second ar-
gument, they are called transition probabilities. In probabilistic literature
transition probability is also called Markov kernel, or (probability) kernel
[Kallenberg2002, p. 20].

Theorem A.8. ([Bogachev2007, Theorem 10.7.2, p. 384, vol. 2]) Let P (·|·)
be a transition probability for spaces (X1,B1) and (X2,B2) and let ν be a
probability measure on B1. Then there exists a unique probability measure µ
on (X1 ×X2,B1 ⊗ B2) with

(A.9) µ(B1 ×B2) =

∫
B1

P (x|B2)dν(x) for all B1 ∈ B1, B2 ∈ B2.

20Schervish considered only parametric family of conditional distributions
[Schervish1997, p.13]
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In addition, given any f ∈ L1(µ) for ν- a.e. x1 ∈ X1 the function x2 7→
f(x1, x2) on X2 is measurable w.r.t. the completed σ-algebra (B2)P (x1|·) and
P (x1|·)-integrable, the function

x1 7→
∫
X2

f(x1, x2)dP (x1|x2)

is measurable w.r.t. (B1)ν , and ν-integrable, and one has

(A.10)

∫
X1×X2

f(x1, x2)dµ(x1, x2) =

∫
X1

∫
X2

f(x1, x2)dP (x1|x2)dν(x1).

Corollary A.9. If a parametrization (Θ,ΣΘ) → P(X ), θ 7→ pθ, defines a
transition measure then pθ can be regarded as a regular conditional proba-
bility measure µ(·|θ) for µ defined by (A.9).

Recall that P(X ) as a subset of the Banach space S(X ) has a natural
topology which is called strong topology.

Corollary A.10. Assume that Θ is a topological space and ΣΘ is a Borel σ-
algebra. If the parametrization mapping Θ → P(X ), θ 7→ pθ, is continuous
w.r.t. the strong topology, then pθ can be regarded as a regular conditional
probability measure.

Proof. Since the parametrization is continuous, for any A ∈ ΣX the function
θ 7→ pθ(A) is continuous and bounded, and hence measurable. Hence the
parametrization Θ → P(X ) defines a transition probability measure and
applying Theorem A.8 we obtain Corollary A.10. �

It can be shown that for any measurable space (X ,ΣX ) the space P(X )
has a unique smallest σ-algebra ΣP(X ) such that the pairing (P(X ),ΣX )→
R, (µ,A) 7→ µ(A), defines a probabilistic mapping Ev : (P(X ),ΣP(X )) →
(X ,ΣX ) and hence any statistical model P ⊂ (P(X ),ΣP(X )) can be regarded
as a family of regular conditional probability measures on (X ,ΣX ).

Appendix B. Concentration-of-measure inequalities

In probability theory, the concentration of measure is a property of a
large number of variables, such as in laws of large numbers. Concentration-
of-measure inequalities provide bounds on the probability that a random
variable X deviates from its mean, median or other typical value by a given
amount. Very roughly speaking, the concentration of measure phenomenon
can be stated in the following simple way: “A random variable that depends
in a smooth way on many independent random variables (but not too much
on any of them) is essentially constant”. For the proofs of concentration-of
measure inequalities in this Appendix we refer to [Lugosi2009]. I also recom-
mend [Ledoux2001, Shioya2016] for more advanced treatment the concentration-
of-measure theory.
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B.1. Markov’s inequality. For any nonnegative random variableX : (X , µ)→
(R+, dt), and any t > 0 we have

(B.1) µ{x ∈ X |X(x) > t} ≤ EµX
t

.

B.2. Hoeffding’s inequality. ([Hoeffding1963]) Let θ = (θ1, · · · , θn) be a
sequence of i.i.d. R-valued random variables on Z and µ ∈ P(Z). Assume
that Eµ(θi(z)) = θ̄ for all i and µ{z ∈ Z| [ai ≤ θi(z) ≤ b]} = 1. Then for
any ε > 0 we have

(B.2) µm{z ∈ Zm :
∣∣ 1

m

m∑
i=1

θi(zi)− θ̄
∣∣ > ε} ≤ 2 exp

( −2mε2

(b− a)2

)
,

where z = (z1, · · · , zm).

B.3. Bernstein’s inequality. Let θ be a R-valued random variable on a
probability space (Z, µ) with the mean Eµ(θ) = θ̄ and variance σ2 = Vµ(θ).
If |ξ − Eµ(ξ)| ≤M then for all ε > 0 we have

(B.3) µm{z ∈ Zm :
∣∣ 1

m

m∑
i=1

θi(zi)− θ̄
∣∣ > ε} ≤ 2 exp

( −mε2

2(σ2 + 1
3Mε

)),

where z = (z1, · · · , zm).

B.4. McDiarmid’s inequality. (or Bounded Differences or Hoeffding/Azuma
Inequality). Let X1, · · · , Xm ∈ X are i.i.d. by a probability measure µ. As-
sume that f : Xm → R satisfies the following property form some c > 0.
For all i ∈ [1,m] and for all x1, · · · , xm, x′i ∈ X we have

|f(x1, · · · , xm)− f(x1, · · · , xi−1, x
′
i, xi+1, · · · , xm)| ≤ c.

Then we have for all δ ∈ (0, 1)

(B.4) µm{S ∈ Xm| |f(S)− Eµmf(S)| ≤ c
√

ln(2/δ)

m
} ≥ 1− δ.
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