
The theory of hereditarily bounded sets

Emil Jeřábek∗

Institute of Mathematics, Czech Academy of Sciences

Žitná 25, 115 67 Praha 1, Czech Republic, email: jerabek@math.cas.cz

October 4, 2021

Abstract

We show that for any k ∈ ω, the structure 〈Hk,∈〉 of sets that are hereditarily of size

at most k is decidable. We provide a transparent complete axiomatization of its theory, a

quantifier elimination result, and tight bounds on its computational complexity. This stands

in stark contrast to the structure Vω =
⋃

kHk of hereditarily finite sets, which is well known

to be bi-interpretable with the standard model of arithmetic 〈N,+, ·〉.

1 Introduction

The Vaught set theory VS , originally introduced by Vaught [14], is a very rudimentary theory

of sets: it is axiomatized by the schema

(Vn) ∀x0, . . . , xn−1 ∃y ∀t
(
t ∈ y ↔

∨
i<n

t = xi

)
for all n ∈ ω, asserting that {xi : i < n} exists. It is one of the weakest known essentially

undecidable theories; while Robinson’s theory R, introduced in [12], is even weaker (in terms of

interpretability), VS is appealing in the simplicity of its axioms, especially in the context of set

theories where setting up an interpretation of an arithmetic theory such as R may be somewhat

of a laborious task.

In contrast to fullVS , the finite fragmentsVSk (axiomatized by (V0) and (Vk), which imply

(Vm) for all m ≤ k) are not essentially undecidable, but the reason for this is a bit indirect: for

each k, VSk is interpretable in any theory with a pairing function, and it is known that there

exist decidable consistent theories with pairing.

The first such theories were constructed by Malcev [9, 10]: he proved the decidability of

theories of locally free algebras, which are essentially the first-order theories of term algebras in

a given signature. His results also apply to free algebras with function symbols constrained to be

symmetric w.r.t. prescribed groups of permutations of the arguments. As a special case, acyclic

∗Supported by grant 19-05497S of GA ČR. The Institute of Mathematics of the Czech Academy of Sciences

is supported by RVO: 67985840.

1

pairing functions are locally free algebras with a single binary function; e.g., the pairing function

2x3y on N is acyclic, hence 〈N, 2x3y〉 is decidable. More generally, Tenney [13] proved that

pairing functions that are acyclic up to a finite (or sufficiently well-behaved) set of exceptions

have a decidable theory, including common pairing functions on N such as 2x(2y + 1) − 1,

max{x2, y2 + x} + y, or Cantor’s function C(x, y) =
(
x+y+1

2

)
+ x. (The decidability of 〈N, C〉

was reproved in [4] using Malcev’s results.) Decidable structures with pairing may include

more arithmetic functions: Cégielski and Richard observed in [5] that pairing functions such

as 2x + 2x+y are definable in 〈N,+, 2x〉, which is decidable due to Semenov [11], and in a tour

de force [6], they proved the decidability of 〈N, C, S〉 (while other related structures, including

〈N, C,<〉, 〈N, C,+〉, and 〈N, C, ·〉, are undecidable).

For more background on theories with “containers” such as pairs, sets, and sequences, see

Visser [15].

While the results above confirm that finite fragments of the Vaught set theory are not

essentially undecidable, the decidable extensions of VSk we get from interpretation in theories

of pairing are quite unnatural when we think of them as set theories: for example, they will

contradict extensionality, which is arguably the most characteristic principle distinguishing sets

from other kinds of objects. Thus, it might be worthwhile to see if we can find decidable

extensions of VSk that are easier to understand.

One of the simplest—and perhaps most natural—models of VSk is the structure1 Hk =

〈Hk,∈〉 of sets hereditarily of size at most k; that is, Hk is the smallest family of sets such that

every subset of Hk of cardinality ≤k is a member of Hk:

∀x
(
x ⊆ Hk ∧ |x| ≤ k =⇒ x ∈ Hk

)
.

Equivalently, Hk consists of (well-founded) sets x such that x itself, and all elements of its

transitive closure, have cardinality ≤k. The better known family of hereditarily finite sets Vω
includes each Hk, and in fact, Vω =

⋃
k∈ωHk. We observe that Hk is a minimal model of VSk,

in that it embeds (as a transitive submodel) into any other model ofVSk; thus, Hk is canonically

associated with VSk.

The main purpose of this paper is to show that Th(Hk) is decidable, providing an explicit

natural example of a decidable extension ofVSk. We present a transparent recursive axiomatiza-

tion of Th(Hk), and a characterization of elementary equivalence of tuples in models of Th(Hk)

in terms of isomorphism of transitive closures. Apart from the decidability of Hk, this yields a

quantifier elimination result (every formula is equivalent to a Boolean combination of bounded

existential formulas). We also establish that Th(Hk) is stable, and it is not finitely axiomatiz-

able. In Section 3, we investigate in more detail the computational complexity of Th(Hk): we

give an algorithm deciding Th(Hk) whose running time closely matches a general lower bound

on the complexity of theories with pairing by Ferrante and Rackoff [7], and its variant that has

much lower complexity for sentences with a small number of quantifier alternations.

The properties of Hk may be contrasted with the structure 〈Vω,∈〉, which is bi-interpretable

1The standard notation in set theory is that, for a (usually regular infinite) cardinal κ, Hκ consists of sets

hereditarily of cardinality <κ, thus our Hk would be denoted Hk+1. We decided to violate this convention as it

seems to be more confusing than helpful in the finite case.

2

with 〈N,+, ·〉 by Ackermann [1], and as such it is heavily undecidable, and its quantifier alter-

nation hierarchy is proper.

Let us remark that while we formulate most results so that they apply to all k ∈ ω, the

cases k = 0, 1 are somewhat degenerate: H0 is a one-element structure, and H1 is definitionally

equivalent to 〈H1,∅, {−}〉 ' 〈N, 0, S〉. Moreover, the case k = 2 can be reduced to Malcev’s

results: H2 is definitionally equivalent to the structure 〈H2,∅, {−,−}〉, which is a free algebra

with a constant and a commutative binary operation. A similar reduction does not seem

possible for k ≥ 3, as the set builder operation {x0, . . . , xk−1} has peculiar symmetries such

as {x, x, y} = {x, y, y} that cannot be expressed by mere permutations of arguments.

2 Completeness and decidability

The main result of this section is the decidability of Hk. Our strategy is to propose a recursively

axiomatized theory Sk, true in Hk, and prove its completeness: this implies that Sk is decidable

and Sk = Th(Hk). Without further ado, here is the definition of Sk.

Definition 2.1 Let k ∈ ω. The theory Sk in the language of set theory 〈∈〉 is axiomatized by

(V0), (Vk), the extensionality axiom

(E) ∀x, y
(
∀t (t ∈ x↔ t ∈ y)→ x = y

)
,

the boundedness axiom

(Bk) ∀x, u0, . . . , uk
(∧
i≤k

ui ∈ x→
∨

i<j≤k
ui = uj

)
postulating that all sets have at most k elements, and the axioms

(Cn) ∀x0, . . . , xn ¬
(∧
i<n

xi ∈ xi+1 ∧ xn = x0

)
for all n ∈ ω, n ≥ 1, prohibiting finite ∈-cycles.

Clearly, Hk � Sk. We aim to show that Sk is complete; we will prove this by an Ehrenfeucht–

Fräıssé argument, which will more generally provide a characterization of elementary equivalence

of finite tuples in models of Sk. Let us first agree on basic notation concerning models.

Definition 2.2 As a general notational convention, we will denote first-order structures by

bold-face letters (possibly decorated). The domain of a structure will be denoted by the same

letter, but in italics, and the basic relations and functions of a structure carry the name of the

structure as a superscript (this convention will also extend on a case-by-case basis to various

defined concepts). For example, a typical model of the language of set theory will be denoted A,

in which case A = 〈A,∈A〉.
We denote finite tuples (sequences) by letters with bars such as a; then lh(a) denotes the

length of a, and the individual elements of a are ai with 0 ≤ i < lh(a).

3

Let A and B be structures for the same language, and a ∈ A, b ∈ B finite tuples of the

same length l = lh(a) = lh(b). We write A, a ≡ B, b if a and b satisfy the same formulas, and

A, a ≡n B, b if they satisfy the same formulas of quantifier rank at most n. We recall that the

quantifier rank of a formula ϕ is defined inductively by

rk(ϕ) = 0, ϕ quantifier-free,

rk
(
c(ϕ0, . . . , ϕk−1)

)
= max

{
rk(ϕi) : i < k

}
, c ∈ {∧,∨,→,¬},

rk(Qxϕ) = rk(ϕ) + 1, Q ∈ {∃,∀}.

If f : A→ B and X ⊆ A, then f [X] denotes the image {f(x) : x ∈ X}, and f �X : X → B

the restriction of f to X. If a ∈ A with l = lh(a), then f(a) denotes the l-tuple b such that

bi = f(ai) for each i < l.

We also fix some notation and terminology specific to models of Sk. In particular, we intend

to characterize the elementary equivalence relations ≡n in terms of isomorphism of levels of

transitive closures, hence we need to define the latter.

Definition 2.3 Bounded quantifiers in the language of set theory are introduced as the abbre-

viations

∃y ∈ x ϕ ≡ ∃y (y ∈ x ∧ ϕ),

∀y ∈ x ϕ ≡ ∀y (y ∈ x→ ϕ),

where x and y are distinct variables. A formula is bounded if it is built from atomic formulas

using Boolean connectives and bounded quantifiers.

If A � Sk and u ∈ A, then

uA = {v ∈ A : v ∈A u}

denotes the extension of u in A. Conversely, if r ≤ k and {ui : i < r} ⊆ A, then {ui : i < r}A

or {u0, . . . , ur−1}A denotes the v ∈ A such that vA = {ui : i < r}, which exists by (V0) or (Vk),

and is unique by (E). In particular, ∅A = {}A.

If a ∈ A and l = lh(a), we define levels of the transitive closure of a (as subsets of A) by

tcA0 (a) = {ai : i < l},

tcAn+1(a) = tcAn (a) ∪
⋃

u∈tcAn (a)

uA,

tcA(a) =
⋃
n∈ω

tcAn (a).

We denote by tcAn (a) the (possibly empty) structure 〈tcAn (a),∈A, a〉, and likewise, tcA(a) =

〈tcA(a),∈A, a〉.
Notice that tcAn (a) =

⋃
i<l tc

A
n (ai), and tcAn (a) is finite: |tcAn (a)| ≤ l k≤n, where

k≤n =

n∑
i=0

ki =

kn+1 − 1

k − 1
, k 6= 1,

n+ 1, k = 1.

4

Also, for any fixed n and l, there is a formula ϕ(x, y) with lh(x) = l that defines the relation

y ∈ tcAn (x) in every model A � Sk. Finally, we define

A, a ∼n B, b ⇐⇒ tcAn (a) ' tcBn (b),

A, a ∼ B, b ⇐⇒ tcA(a) ' tcB(b).

We first observe basic properties of morphisms on transitive closures.

Lemma 2.4 Let A,B � Sk, a ∈ A, b ∈ B, lh(a) = lh(b), and n > 0.

(i) If f : tcAn (a)→ B is a mapping such that f(a) = b and

(1) ∀u ∈ tcAn−1(a) f(u) = {f(t) : t ∈A u}B,

then f [tcAm(a)] = tcBm(b) for all m ≤ n.

(ii) Any f : tcAn (a) ' tcBn (b) satisfies (1), thus f � tcAm(a) : tcAm(a) ' tcBm(b) for all m ≤ n.

Proof:

(i): By induction on m. The case m = 0 holds. Assume f [tcAm(a)] = tcBm(b) and m < n.

If t ∈ tcAm+1(a), then t ∈A u for some u ∈ tcAm(a), thus f(t) ∈B f(u) ∈ tcBm(b) by (1) and the

induction hypothesis, which means f(t) ∈ tcBm+1(b). Conversely, if s ∈ tcBm+1(b), we have s ∈B v

for some v ∈ tcBm(b). By the induction hypothesis, there is u ∈ tcAm(a) such that f(u) = v, thus

s = f(t) for some t ∈A u by (1), whence t ∈ tcAm+1(a).

(ii): Let u ∈ tcAn−1(a). We can prove f(u) ∈ tcBn−1(b) as in (i). On the one hand, if t ∈A u,

then t ∈ dom(f), hence f(t) ∈B f(u). Now, on the other hand, if s ∈B f(u), then s ∈ tcBn (b),

which means that s = f(t) for some t ∈ tcAn (a). Then f(t) ∈B f(u) implies t ∈A u. �

By definition, ≡ =
⋂
n≡n. It may not be a priori obvious that the same holds for the ∼

relation (which we aim to eventually prove to coincide with ≡): e.g., the corresponding property

fails for general pointed directed acyclic graphs. However, here it is true because axiom (Bk)

ensures that the graphs are image-finite:

Lemma 2.5 Let A,B � Sk, a ∈ A, b ∈ B, and lh(a) = lh(b). Then A, a ∼ B, b if and only if

∀n ∈ ωA, a ∼n B, b.

Proof: The left-to-right implication is clear. For the converse, Lemma 2.4 shows that the set T

of all isomorphisms f : tcAn (a) ' tcBn (b), n ∈ ω, forms a tree when ordered by inclusion, and

the finiteness of tcn implies that T is finitely branching. As such, T has an infinite branch by

Kőnig’s lemma; the union of the branch is then an isomorphism of tcA(a) to tcB(b). �

It is relatively straightforward to prove that A, a ≡ B, b implies A, a ∼ B, b: in view of the

previous lemma, we only need to establish that the isomorphism types of the finite structures

tcAn (a) are definable. We do this below, including explicit bounds on the complexity of the

defining formulas.

5

Lemma 2.6 Let A � Sk, a ∈ A, l = lh(a), and n ∈ ω. Then there is a formula ϕa,n(x) such

that for any B � Sk and any l-tuple b ∈ B, we have

B � ϕa,n(b) ⇐⇒ A, a ∼n B, b.

Moreover, we may take ϕa,n in the form ψ(x) ∧ ¬
∨
i<m ψi(x), where ψ and ψi are bounded

existential formulas using at most l(k≤n − 1) quantifiers each.

Proof: Let {ai : l ≤ i < r} be an enumeration of tcAn (a)r {ai : i < l}, where r ≤ l k≤n, and for

every i ≥ l, there is p(i) < i such that ai ∈A ap(i) (this can be arranged by enumerating elements

of tcAn′(a) before elements of tcAn′+1(a)r tcAn′(a), for each n′ < n). Let θ be (the conjunction of)

the diagram of {ai : i < r} with the structure induced from A, and put

ψ(x0, . . . , xl−1) = ∃xl ∈ xp(l) ∃xl+1 ∈ xp(l+1) . . . ∃xr−1 ∈ xp(r−1) θ(x0, . . . , xr−1).

Then for any B � Sk and b ∈ B,

B � ψ(b) ⇐⇒ tcAn (a) ⊆̃ tcBn (b),

where M ⊆̃ N denotes that there exists an embedding f : M → N. Let {Mi : i < m} be an

enumeration (up to isomorphism) of all structures of the form tcCn (c) that do not embed into

tcAn (a), and as above, let ψi be a bounded existential formula in at most l k≤n variables such

that

B � ψi(b) ⇐⇒ Mi ⊆̃ tcBn (b).

Then ϕa,n = ψ ∧ ¬
∨
i<m ψi satisfies

B � ϕa,n(b) ⇐⇒ tcAn (a) ⊆̃ tcBn (b) ∧ ∀i < mMi *̃ tcBn (b)

⇐⇒ tcAn (a) ⊆̃ tcBn (b) ∧ tcBn (b) ⊆̃ tcAn (a)

⇐⇒ tcAn (a) ' tcBn (b),

using the fact that if M and N are finite structures such that M ⊆̃ N and N ⊆̃ M, then

M ' N. �

Corollary 2.7 Let A,B � Sk, a ∈ A, b ∈ B, and l = lh(a) = lh(b). Then A, a ≡ B, b implies

A, a ∼ B, b. More precisely, A, a ≡l(k≤n−1) B, b implies A, a ∼n B, b. �

It is more difficult to show the converse implication A, a ∼ B, b =⇒ A, a ≡ B, b. We will

do it by an Ehrenfeucht–Fräıssé argument: that is, we will prove that if A, a ∼m B, b for m

sufficiently larger than n, then any extension of a to a, c can be matched by an extension of b

to b, d so that A, a, c ∼n B, b, d. This is the content of the crucial Lemma 2.9 below. However,

we start with a little technical result that will be needed in its proof.

Lemma 2.8 Let A � Sk, a ∈ A, and n, r ∈ ω, where k ≥ 1. There exists {vi : i < r} ⊆ A such

that

• vi /∈ tcA(a),

6

• i 6= j =⇒ vi /∈ tcAn (vj),

for all i, j < r.

Proof: We may assume that l = lh(a) > 0. The acyclicity of ∈A implies that the relation

x ∈ tcA(y) (which is the reflexive transitive closure of ∈A) is a partial order, hence its restriction

to any nonempty finite set has a maximal element. That is, we can find a ∈ {ai : i < l} such

that a /∈ tcA(ai) for any ai 6= a. Then {a}A /∈ tcA(a), which implies that vi = {a}1+(n+1)i have

the required properties, where {a}0 = a, {a}t+1 = {{a}t}A. (If k ≥ 2, we may even ensure the

stronger condition vi /∈ tcA(vj) for j 6= i, by putting vi = {{a}i+1, {a}i+2}A.) �

Lemma 2.9 Let A,B � Sk, a ∈ A, b ∈ B, l = lh(a) = lh(b), and n > 0. If A, a ∼k≤n+n B, b,

then for every c ∈ A, there exists d ∈ B such that A, a, c ∼n−1 B, b, d.

Proof: If k = 0, the conclusion of the lemma holds trivially as |A| = |B| = 1, hence we may

assume k ≥ 1. Put N = k≤n + n, and fix f : tcAN (a) ' tcBN (b). Let C be the smallest subset

of tcAn (c) r tcAn (a) satisfying the inductive condition

uA ⊆ tcAn (a) ∪ C =⇒ u ∈ C

for u ∈ tcAn (c) r tcAn (a). We can extend f � tcAn (a) uniquely to a mapping g : tcAn (a) ∪ C → B

such that

g(u) = {g(t) : t ∈A u}B

for all u ∈ C. Let {ui : i < r} be an injective enumeration of

{u ∈ tcAn (c) r tcAn (a) : uA * tcAn (a, c)}.

Using Lemma 2.8, we can find {vi : i < r} ⊆ B such that

(i) vi /∈ tcBN (b) ∪ g[C],

(ii) i 6= j =⇒ vi /∈ tcBN (vj),

for all i, j < r. Since ∈A is acyclic, and therefore well-founded on the finite set tcAn (c), we can

construct using well-founded recursion a unique mapping g : tcAn (a, c)→ B such that

g(u) =

f(u), u ∈ tcAn (a),

vi, u = ui,

{g(t) : t ∈A u}B, u ∈ tcAn (c) r tcAn (a), uA ⊆ tcAn (a, c).

(This agrees with the original definition of g on tcAn (a) ∪ C, hence keeping the same name will

not lead to confusion. The reason for this slightly awkward two-stage construction of g is that

we could not define the whole g right away as it depends on the choice of {vi : i < r}, which in

turn depends on g � C.) Using Lemma 2.4 and the definition of g, the condition

(2) g(u) = {g(t) : t ∈A u}B

7

holds for all u ∈ tcAn (a, c) such that uA ⊆ tcAn (a, c). In particular, it holds for all u ∈ tcAn−1(a, c),

hence Lemma 2.4 implies g[tcAn−1(a, c)] = tcBn−1(b, d), where d = g(c).

We claim that g is injective. Assuming for the moment that this is true, let us show that

g � tcAn−1(a, c) : tcAn−1(a, c) ' tcBn−1(b, d). If t, u ∈ tcAn−1(a, c), then u satisfies (2). Thus, on the

one hand, t ∈A u implies g(t) ∈B g(u); on the other hand, if g(t) ∈B g(u), then g(t) = g(t′) for

some t′ ∈A u, and we have t = t′ by injectivity, hence t ∈A u.

It remains to prove the injectivity of g. Assume for contradiction that there are x, y ∈
tcAn (a, c) such that x 6= y, but g(x) = g(y). Since ∈A is well-founded on tcAn (a, c), we may take

x to be ∈A-minimal for which such a y exists.

If xA, yA ⊆ tcAn (a, c) so that (2) holds for both x and y, there is x′ ∈A x such that x′ /∈A y,

or y′ ∈A y such that y′ /∈A x. In the former case, g(x′) ∈B g(x) = g(y), hence g(x′) = g(y′) for

some y′ ∈A y, and necessarily x′ 6= y′; this contradicts the minimality of x. The other case is

symmetric.

Thus, xA * tcAn (a, c) or yA * tcAn (a, c). By swapping x and y if necessary (dropping the

minimality assumption, which is no longer needed), we may assume the latter. We distinguish

two cases.

Case 1: y = ui for some i < r. Thus, g(x) = vi and x 6= ui. We cannot have x ∈
tcAn (a) ∪ C because of (i), hence x ∈ tcAn (c) r (tcAn (a) ∪ C). Put x0 = x. Either x0 = uj
for some j, or xA0 ⊆ tcAn (a, c), while xA0 * tcAn (a) ∪ C; thus, there is x1 ∈A x0 such that

x1 ∈ tcAn (c) r (tcAn (a) ∪ C), and we can continue in the same way. By acyclicity of ∈A, the

process has to stop after less than |tcAn (c)| ≤ k≤n steps; that is, we can construct a sequence

x0, . . . , xs ∈ tcAn (c) r (tcAn (a) ∪ C) such that s < k≤n, xs ∈A · · · ∈A x1 ∈A x0, x
A
i ⊆ tcAn (a, c)

for each i < s, and xAs * tcAn (a, c), which means xs = uj for some j < r. But then

vj = g(xs) ∈B · · · ∈B g(x1) ∈B g(x0) = vi

by (2), i.e., vj ∈ tcBs (vi). By condition (ii), this is only possible if j = i, and then s = 0 by

acyclicity of ∈B. Thus, x = ui after all, a contradiction.

Case 2: y ∈ tcAn (a). We cannot have x ∈ tcAn (a) as f is injective. If x /∈ tcAn (a) ∪ C, then

the argument in Case 1 shows that vj ∈ tcB
k≤n

(g(x)) for some j < r, while g(x) = f(y) ∈ tcBn (b),

thus vj ∈ tcBN (b), contradicting (i). The only remaining possibility is x ∈ C. Put x0 = x and

y0 = y. We have xA0 ⊆ tcAn (a) ∪ C, thus x0 satisfies (2), while

f(y0) = {f(t) : t ∈A y0}B

by Lemma 2.4. Thus, the same argument as above shows that there are x1 ∈A x0 (whence

x1 ∈ tcAn (a) ∪C) and y1 ∈A y0 (whence y1 ∈ tcAn+1(a)) such that g(x1) = f(y1) and x1 6= y1. If

x1 ∈ C, we may continue in the same way, but the acyclicity of ∈A again implies that the process

has to stop: that is, we construct sequences x0, . . . , xs and y0, . . . , ys such that s ≤ |C| ≤ k≤n,

xs ∈A · · · ∈A x1 ∈A x0, xi ∈ C for each i < s, xs ∈ tcAn (a), ys ∈A · · · ∈A y1 ∈A y0 (thus

yi ∈ tcAn+i(a) ⊆ tcAN (a)), xi 6= yi for each i ≤ s, and g(xi) = f(yi). But then f(xs) = f(ys)

contradicts the injectivity of f . This completes the proof. �

We can now put everything together to obtain the desired characterization of elementary

equivalence.

8

Theorem 2.10 Let A,B � Sk, a ∈ A, b ∈ B, and l = lh(a) = lh(b). Then

A, a ≡ B, b ⇐⇒ A, a ∼ B, b.

More precisely, for all n ∈ ω,

A, a ≡l(k≤n−1) B, b =⇒ A, a ∼n B, b,(3)

A, a ∼tk(n) B, b =⇒ A, a ≡n B, b,(4)

where tk(0) = 0, tk(n+ 1) = k≤tk(n)+1 + tk(n) + 1.

Proof: Corollary 2.7 gives (3), hence it suffices to establish (4). Clearly

A, a ∼tk(n) B, b =⇒ A, a ≡0 B, b,

and by Lemma 2.9 and the definition of tk(n+ 1),

A, a ∼tk(n+1) B, b =⇒ ∀c ∈ A ∃d ∈ B (A, a, c ∼tk(n) B, b, d)

∧ ∀d ∈ B ∃c ∈ A (A, a, c ∼tk(n) B, b, d).

Thus, if A, a ∼tk(n) B, b, then Duplicator has a winning strategy in the n-round Ehrenfeucht–

Fräıssé game for 〈A, a〉 and 〈B, b〉, which implies A, a ≡n B, b. �

Theorem 2.11 The theory Sk is complete for each k ∈ ω. Consequently, Sk = Th(Hk), and

Sk is decidable.

Proof: Applying Theorem 2.10 with l = 0, we see that any two models of Sk are elementarily

equivalent, thus Sk is complete. Being a complete recursively axiomatized theory, it is decidable.

�

In order to clarify the numerical content of Theorem 2.10, let us give bounds on tk using

better known functions.

Definition 2.12 The iterated exponential function 2xn is defined by 2x0 = x and 2xn+1 = 22
x
n .

Unless stated otherwise, log n denotes logarithm to base 2.

Proposition 2.13 We have t1(n) = 3(2n − 1). For k ≥ 2 and n ≥ 1,

(5) tk(n) ≤ 2ckn−1,

where ck = (k + 3) log k + log log k + 2.

Proof: The expression t1(n) = 3(2n−1) follows by induction on n from the defining recurrence,

which simplifies to t1(0) = 0, t1(n + 1) = 2t1(n) + 3. For k ≥ 2, we put f(x) = k≤x+1 + x + 1

and h(x) = (x+ 1) log k + log log k + 2. We want to show

(6) f (n)(x) ≤ 2h(x)n

9

for all x ≥ 0 and n ∈ ω, which gives (5) using tk(n) = f (n)(0) = f (n−1)(k + 2).

Now, using the monotonicity of 2xn in x, (6) follows by induction on n from the inequalities

x ≤ h(x) (which is obvious) and h(f(x)) ≤ 2h(x), hence it suffices to prove the latter; unwinding

the definitions, we need to show that

(7) (k≤x+1 + x+ 2) log k + log log k + 2 ≤ 4kx+1 log k = 2(x+1) log k+log log k+2.

This follows from the inequalities

k≤x+1 ≤ k

k − 1
kx+1 ≤ 2kx+1,

x+ 2 ≤ 2x+1 ≤ kx+1,

log log k + 2 ≤ 2log log k+1 ≤ k log k,

which are easy to verify, using the fact that 2x ≥ x+ 1 for all x ≥ 1. �

Remark 2.14 For k = 1, the bound t1(n) = 3(2n − 1) from Theorem 2.10 can be improved

to 2n − 1, because in this case Lemma 2.9 holds with the conclusion strengthened to A, a, c ∼n
B, b, d. Moreover, one can also prove a matching improvement to Corollary 2.7 to obtain the

exact characterization

A, a ≡n B, b ⇐⇒ A, a ∼2n−1 B, b,

using the fact that there are definitions of quantifier rank n of y = {x}t for each t ≤ 2n and of

y = {∅}t for each t ≤ 2n − 2. We leave the details to an interested reader.

Apart from the completeness and decidability of Sk, Theorem 2.10 implies a quantifier

elimination result for Sk:

Theorem 2.15 Let k ∈ ω. Then every formula is equivalent to a Boolean combination of

bounded existential formulas over Sk.

Proof: Let ϕ(x) be a formula. By Theorem 2.10, there exists n such that

A, a ∼n B, b =⇒
(
A � ϕ(a) ⇐⇒ B � ϕ(b)

)
for any A,B � Sk and a ∈ A, b ∈ B. There are only finitely many isomorphism types of

structures of the form tcAn (a), thus there is a finite list {〈Ai, ai〉 : i < m} such that

A � ϕ(a) ⇐⇒ ∃i < m (A, a ∼n Ai, ai).

Then

Sk ` ϕ(x)↔
∨
i<m

ϕai,n(x),

where ϕai,n(x) is as in Lemma 2.6, which makes the right-hand side a Boolean combination of

bounded existential formulas. �

10

Remark 2.16 If we expand the language with the predicates y = ∅ and y = {x0, . . . , xk−1}
(which have bounded universal definitions in the original language), every formula is equivalent

both to a bounded existential formula and to a bounded universal formula. To see this, note

that an embedding f : tcAn (a) → tcBn (b) in the expanded language has to be an isomorphism,

as f [tcAn (a)] = tcBn (b) by Lemma 2.4. It follows that if we take θ in the proof of Lemma 2.6 to

be the diagram in the expanded language, then it suffices to put ϕa,n = ψ.

If k = 1, the y = {x} predicate is redundant, as it is equivalent to x ∈ y. Moreover, S1 has

full quantifier elimination in a language with function symbols ∅ and {x}, as 〈H1,∅, {x}〉 '
〈N, 0, S〉.

As we learned from Albert Visser, it is an interesting problem whether there exists a finitely

axiomatized consistent decidable theory with a pairing function. We observe that our theories

do not cut the mustard, though we postpone the (albeit simple) proof to the next section, where

the relevant construction will be used in a more substantial way:

Proposition 2.17 Sk is not finitely axiomatizable for any k > 0.

Proof: See Corollary 3.5. �

Remark 2.18 The axioms (Cn) of Sk express the acyclicity of ∈. More generally, since ∈ is

well founded, Hk satisfies the ∈-induction schema

∀x
(
∀y ∈ x ϕ(y)→ ϕ(x)

)
→ ∀x ϕ(x)

(where ϕ is any formula, possibly with parameters), of which each (Cn) axiom is a special case.

By Theorem 2.11, the full ∈-induction schema is equivalent to its instances {(Cn) : n ≥ 1} over

the remaining axioms of Sk; there does not seem to be an easy direct proof of this fact.

The axiom of foundation (regularity) as commonly formulated in ZF,

x 6= ∅→ ∃y ∈ x ∀z ¬(z ∈ x ∧ z ∈ y),

is strictly weaker: using the fact that |x| ≤ k by (Bk), it is easily seen to be equivalent to

{(Cn) : 1 ≤ n ≤ k}.

We end this section with a basic model-theoretic classification of the Sk theories.

Definition 2.19 Let κ be an infinite cardinal. A theory T is κ-stable if for every M � T and

A ⊆ M of size |A| ≤ κ, there are at most κ (complete) 1-types of M over A. We say that T

is stable if it is κ-stable for some κ ≥ ‖T‖, and it is superstable if there is κ0 such that T is

κ-stable for all κ ≥ κ0.

As is well known, the theory S1—definitionally equivalent to Th(N, 0, S)—is uncountably

categorical, and therefore κ-stable for all κ ≥ ω. In contrast to that, it is easy to see that no

consistent theory with pairing (even non-functional) can be superstable, as there are always at

least |A|ω different types over A; thus, the result below is the best possible for k ≥ 2.

11

Proposition 2.20 For each k ≥ 2, the theory Sk is stable.

Proof: Let M � Sk, and A ⊆ M be such that |A| ≤ κ. By replacing A with tcM(A) (which

has the same cardinality) if necessary, we may assume tcM(A) = A. By Theorem 2.10, 1-types

over A correspond to isomorphism types of tcN(A, c) for N � M, c ∈ N ; since the structure

on A is fixed, these are determined by isomorphism types of tcN(c) expanded with constants a

for all a ∈ A ∩ tcN(c). In other words, these structures are certain countable pointed directed

graphs endowed with a partial vertex labelling with labels from A. Thus, the number of types

is at most 2ω|A|ω ≤ κω, and consequently, Sk is κ-stable whenever κ = κω. �

We remark that theories of locally free algebras (including acyclic pairing functions) are

also stable; further model-theoretic properties of acyclic pairing functions were investigated by

Bouscaren and Poizat [2].

3 Computational complexity

The proof of Theorem 2.11 does not give any bound on the computational complexity of Sk,

but as we will see in this section, we can actually find reasonably tight upper and lower bounds

on the complexity. Recall that there is a general lower bound due to Ferrante and Rackoff [7]:

Theorem 3.1 Let T be a consistent theory with a pairing function. Then every language

L ∈ DTIME(20O(n)) has a linearly-bounded polynomial-time reduction to T . Consequently, there

exists γ > 0 such that every decision procedure for T takes time at least 20γn for infinitely many

input lengths n. �

A few remarks are in order. First, the result is stated in [7] for theories of a pairing function,

but it is straightforward to adapt the argument to theories with a non-functional pairing predi-

cate. The constant γ only depends on the defining formula for the pairing predicate, otherwise

it is independent of T . Second, the result is quite robust across models of computation and

complexity measures: it applies equally well to time or space, on deterministic, nondeterminis-

tic, or alternating Turing machines, etc. The reason is that all these measures are equivalent

up to an exponential or two, and this difference is drowned by the overall complexity: say,

ASPACE(20γn) ⊆ DTIME(20γn+O(1)).

In Theorem 3.1, the length of input is officially measured as the number of letters when the

formula is written as a word over a finite alphabet (thus a variable xi takes length O(log i)),

but a fortiori the bound also holds when we measure the input by the number of symbols

(quantifiers, connectives, variables, predicate and function symbols); as we will see, the bound

is tight in both regimes (the explanation is that the formulas used in the lower bound reuse just

O(1) distinct variables over and over). We will state upper bounds in terms of the number of

symbols, which is more intuitive, and makes the upper bounds stronger.

Corollary 3.2 There exists γ > 0 such that every decision procedure for any consistent exten-

sion of VS 2 has complexity at least 20γn for infinitely many input lengths n. In particular, this

applies to the theories Sk for k ≥ 2. �

12

We aim to show that the bound on the complexity of Sk from Corollary 3.2 is optimal up

to the value of γ. The basic idea is that using Theorem 2.10, we can represent tuples from an

unspecified model of Sk by finite objects of bounded size (namely, isomorphism types of tcm(a)

for sufficiently large m) that carry enough information to determine the truth of ϕ(a) for a

given formula ϕ. First, we need an internal description of structures of the form tcAm(a) so that

we can efficiently recognize them.

Definition 3.3 Consider a (possibly empty) structure T = 〈T,∈T, a〉, where lh(a) = l. We

regard T as a directed graph such that there is an edge x → y iff y ∈T x. We say that T is a

tckm(l)-structure if it satisfies the following conditions:

• T is a directed acyclic graph with all nodes of out-degree ≤ k.

• Every node t ∈ T is reachable from some ai, i < l, in at most m steps.

• Let U ⊆ T denote the set of nodes u ∈ T such that u is reachable from some ai in

< m steps, or u has out-degree k. Then T is extensional w.r.t. U : i.e., for every distinct

u, u′ ∈ U , there is t ∈ T such that t ∈T u and t /∈T u′, or vice versa.

Lemma 3.4 For any structure T = 〈T,∈T, a〉 with lh(a) = l, the following are equivalent:

(i) T is a tckm(l)-structure.

(ii) T embeds in a model A � Sk in such a way that T = tcAm(a).

Proof: (ii)→ (i) is clear, using the observation that uA ⊆ tcAm(a) for every u from the set

U = tcAm−1(a) ∪
{
u ∈ tcAm(a) : |uA ∩ tcAm(a)| = k

}
.

(i) → (ii): Let U be as in Definition 3.3. We first extend T to a model A0 = 〈A0,∈A0〉 by

adding an infinite descending chain below each u ∈ T r U ; formally, A0 = T ∪̇
(
(T r U)× ω

)
,

with

∈A0 = ∈T ∪
{〈
〈u, 0〉, u

〉
,
〈
〈u, n+ 1〉, 〈u, n〉

〉
: u ∈ T r U, n ∈ ω

}
.

Notice that no element of A0 r T is reachable in ≤ m steps from a. Since each u ∈ T r U has

strictly less than k elements in T, all u ∈ A0 have at most k elements in A0. Moreover, the

structure is still acyclic, and the added chains ensure that it is extensional; i.e., A0 satisfies the

axioms (E), (Bk), and (Cn) for all n ≥ 1.

In order to satisfy axioms (V0) and (Vk) as well, we inductively add to A0 all the missing

subsets of size at most k: i.e., we define Ai = 〈Ai,∈Ai〉 by induction on i ∈ ω as

Ai+1 = Ai ∪̇ {x ⊆ Ai : |x| ≤ k, ∀u ∈ Ai uAi 6= x},
∈Ai+1 = ∈Ai ∪ {〈u, x〉 : x ∈ Ai+1 rAi, u ∈ x},

and we let A = 〈A,∈A〉 be the union of the chain:

A =
⋃
i∈ω

Ai, ∈A =
⋃
i∈ω
∈Ai .

By construction, A � Sk and tcAm(a) = T. �

13

Incidentally, the construction from Lemma 3.4 can be used to prove Proposition 2.17:

Corollary 3.5 Sk is not finitely axiomatizable for any k > 0.

Proof: Since any finite set of consequences of Sk is provable from a finite subset of the axiom-

atization of Sk in Definition 2.1, it suffices to show that for every n ≥ 1, there is a model A

satisfying (V0), (Vk), (E), (Bk), (Ci) for 1 ≤ i < n, and ¬(Cn). Let A0 be an n-cycle, and build

A from A0 as in the proof of Lemma 3.4. �

Definition 3.6 Let k, l,m ∈ ω. If T = 〈T,∈T, a〉 is a tckm(l)-structure, and ϕ(x) a formula

such that l = lh(x) and m ≥ tk(rk(ϕ)), we write T �Sk ϕ(a) if A � ϕ(a), where A � Sk is such

that T = tcAm(a). (Such an A exists by Lemma 3.4, and the definition is independent of the

choice of A by Theorem 2.10.)

If T = 〈T,∈T, a〉 is a tckm(l)-structure, m′ ≤ m, l′ ≤ l, and a′ is a subsequence of a of

length l′, let tcTm′(a
′) denote the tckm′(l

′)-structure 〈T ′,∈T ∩ (T ′×T ′), a′〉, where T ′ is the set of

nodes of T reachable in ≤ m′ steps from a′. (This coincides with tcAm′(a
′) for any A � Sk such

that T = tcAm(a).)

For testing the truth of quantified formulas in T, we will need to be able to efficiently

recognize when a tckm(l)-structure and a tckm′(l
′)-structure are compatible in that they can be

jointly embedded in a model of Sk. This is accomplished in the next lemma; note that a and a′

need not be disjoint (in fact, the intended use case is that a′ extends a).

Lemma 3.7 Let T = 〈T,∈T, a, a′〉, l = lh(a), l′ = lh(a′), and k,m,m′ ≥ 0. Then the following

are equivalent.

(i) T embeds in a model A � Sk in such a way that T = tcAm(a) ∪ tcAm′(a
′).

(ii) The following conditions hold:

• T is a directed acyclic graph with all nodes of out-degree ≤ k.

• Every node t ∈ T is reachable from some ai, i < l, in at most m steps, or from some

a′i, i < l′, in at most m′ steps.

• T is extensional w.r.t. U , where U denotes the set of nodes u ∈ T such that u is

reachable from some ai in < m steps, or from some a′i in < m′ steps, or u has

out-degree k.

Proof: Just like the proof of Lemma 3.4. �

If T satisfies the conditions of Lemma 3.7, the tckm(l)-structure tcTm(a) and the tckm′(l
′)-

structure tcTm′(a
′) are called compatible. Note that T is uniquely determined by tcTm(a) and

tcTm′(a
′), being their union. We stress that compatibility is not defined “up to isomorphism”;

the two structures have to be presented in such a way that elements of their intersection inside T

are represented literally the same in both.

We consider the recursive algorithm Sk-Sat in Fig. 1. (We are primarily interested in the

case where k is a constant, but the algorithm actually works uniformly even if k is given as part

of the input.)

14

function Sk-Sat(T, ϕ) ∈ {0, 1}
input: tckm(l)-structure T = 〈T,∈T, a〉, formula ϕ(x),

where l = lh(x), m ≥ tk(rk(ϕ))

1 if ϕ is atomic then return T � ϕ(a)

2 if ϕ = ¬ϕ0 then return ¬Sk-Sat(T, ϕ0)

3 if ϕ = ϕ0 ∨ ϕ1 then return Sk-Sat(T, ϕ0) ∨ Sk-Sat(T, ϕ1)

4 if ϕ = ϕ0 ∧ ϕ1 then return Sk-Sat(T, ϕ0) ∧ Sk-Sat(T, ϕ1)

5 if ϕ = ∃y ϕ0(x, y) then:

6 for each tcktk(rk(ϕ0))
(l + 1)-structure T′ = 〈T ′,∈T′ , a, c〉 do:

7 if T′ is compatible with T and Sk-Sat(T′, ϕ0) = 1 then return 1

8 return 0

9 if ϕ = ∀y ϕ0(x, y) then:

10 for each tcktk(rk(ϕ0))
(l + 1)-structure T′ = 〈T ′,∈T′ , a, c〉 do:

11 if T′ is compatible with T and Sk-Sat(T′, ϕ0) = 0 then return 0

12 return 1

Figure 1: An algorithm for T �Sk ϕ(a).

Lemma 3.8 Given a tckm(l)-structure T = 〈T,∈T, a〉 and a formula ϕ(x) such that l = lh(x)

and m ≥ tk(rk(ϕ)), Sk-Sat(T, ϕ) = 1 if and only if T �Sk ϕ(a).

Proof: By induction on the complexity of ϕ. The only nontrivial cases are for the quantifiers.

We will give the proof for ϕ(x) = ∃y ϕ0(x, y); the argument for ∀y ϕ0(x, y) is dual.

On the one hand, assume that T �Sk ϕ(a); i.e., A � ϕ(a), where we fix A � Sk such that T =

tcAm(a). Let c ∈ A be such that A � ϕ0(a, c), and put m′ = tk(rk(ϕ0)). Then T′ = tcAm′(a, c)

is a tckm′(l + 1)-structure compatible with T, and T′ �Sk ϕ0(a, c), hence Sk-Sat(T′, ϕ0) = 1 by

the induction hypothesis. Thus, Sk-Sat(T, ϕ) returns 1 on line 7.

On the other hand, assume that Sk-Sat(T, ϕ) = 1, thus there is a tckm′(l + 1)-structure

T′ = 〈T ′,∈T′ , a, c〉 compatible with T such that Sk-Sat(T′, ϕ0) = 1. By compatibility, there

is a model A � Sk such that T = tcAm(a) and T′ = tcAm′(a, c). By the induction hypothesis,

T′ �Sk ϕ0(a, c), which means A � ϕ0(a, c) and A � ϕ(a). Thus, T �Sk ϕ(a). �

Theorem 3.9 Let k ≥ 2. Given a sentence ϕ with n symbols, we can decide whether Sk ` ϕ
in time 2ck(n+1)/4 for sufficiently large n, where ck is the constant from Proposition 2.13.

Proof: We have Sk ` ϕ iff ∅ �Sk ϕ iff Sk-Sat(∅, ϕ) = 1 by Lemma 3.8, where ∅ is considered

as a tckm(0)-structure with m = tk(rk(ϕ)). Rather than measuring time directly, it is easier

to estimate the space requirements of Sk-Sat(∅, ϕ). We claim that space O(m logm + n) is

sufficient.

It is easy to see that we can test whether a given T is a tckm(l)-structure in space linear

in the size of T; likewise for testing compatibility, or the truth of atomic formulas. Thus, the

dominant cost is that for each recursive call, we need to store O(1) bits describing where the

call was made, and for the quantifier cases, the structure T′. The former add up to space

15

O(n), as the recursion depth is at most n. The latter are dominated by the size of T′ in the

top-most quantifier calls, where it has s ≤ k≤tk(rk(ϕ0)) ≤ m/k elements (in subsequent calls,

the structures become exponentially smaller, hence their space requirements are negligible in

comparison). Since T′ is a directed graph with out-degree at most k, it can be described by a

list of edges using O(ks log s) = O(m logm) bits; this gives total space O(m logm+n). As long

as m dominates n (which will be the case for our bounds on m below), this means the algorithm

works in space O(m logm), and therefore in time mO(m).

In order to bound m in terms of n, we first bound r = rk(ϕ). Obviously, r ≤ n, but we

may do a bit better as follows. By preprocessing ϕ if necessary, we may assume that there are

no dummy quantifiers in ϕ. Then each quantified variable occurs also in an atomic formula;

since only two variables occur in a single atomic formula, it follows that the formula has ≥ r/2
atomic subformulas (of 3 symbols each), and consequently ≥ r/2− 1 binary connectives. Since

every quantifier takes two symbols by itself, we see that n ≥ 4r − 1, i.e., r ≤ (n+ 1)/4.

By Proposition 2.13, m ≤ 2ckr−1, where r = rk(ϕ). Thus, m ≤ 2ck(n−3)/4. Since this grows

much faster than n, we obtain that the algorithm works in space O(2ck(n−3)/4 log 2ck(n−3)/4). In

fact, it is easy to check that there is enough leeway in the bound from Proposition 2.13 so that

for any constant C, Ctk(r) log tk(r) ≤ 2ckr−1 for large enough r. Thus, for large enough n, the

algorithm works in space 2ck(n−3)/4, and in time 2ck(n+1)/4. �

The main virtue of Theorem 3.9 is that it provides an upper bound on the complexity of Sk
that matches the lower bound from Theorem 3.1 up to the value of γ, and to that end it is

stated so that the bound only depends on n (and k, which is considered to be constant), not

other parameters. On the flip side, this simplicity means that it vastly overestimates the needed

complexity for many classes of formulas.

It is clear from the proof that the height of the tower of exponentials in the bound is actually

controlled by the quantifier rank rather than the length of the sentence. Even better, we will

show below that it only depends on the number of quantifier alternations.

For simplicity, we will formulate the result for sentences in prenex normal form. Recall that

a formula is ∃n if it is in prenex normal form, and the quantifier prefix consists of n alternating

(possibly empty) blocks of quantifiers, where the first block is existential. The definition of

∀n formulas is dual. Let us first generalize Lemma 2.9 and Theorem 2.10 to handle blocks of

quantifiers.

Lemma 3.10 Let A,B � Sk, a ∈ A, b ∈ B, l = lh(a) = lh(b), and n, q > 0. If A, a ∼q k≤n+n
B, b, then for every q-tuple c ∈ A, there exists a q-tuple d ∈ B such that A, a, c ∼n−1 B, b, d.

Proof: The proof of Lemma 2.9 works literally the same with c in place of c, and q k≤n in place

of k≤n. In particular, the quantity k≤n only enters the proof through the bound |tcAn (c)| ≤ k≤n,

which is now replaced with |tcAn (c)| ≤ q k≤n. �

Theorem 3.11 Let A,B � Sk, a ∈ A, b ∈ B, and lh(a) = lh(b). For any n, q ∈ ω, define

tk(n, q) by tk(0, q) = 0, tk(n + 1, q) = q k≤tk(n,q)+1 + tk(n, q) + 1. Let ϕ(x) be an ∃n formula

with each quantifier block of length at most q. Then

A, a ∼tk(n,q) B, b =⇒
(
A � ϕ(a) ⇐⇒ B � ϕ(b)

)
.

16

function Sk-BSat(T, ϕ) ∈ {0, 1}
input: tckm(l)-structure T = 〈T,∈T, a〉, ∃r or ∀r formula ϕ(x),

where l = lh(x), m ≥ tk(r, q), q = maximal quantifier block size in ϕ

1 if r = 0 then return T � ϕ(a)

2 if ϕ = ∃y ϕ0(x, y), ϕ0 ∈ ∀r−1, l0 = lh(y) then:

3 for each tcktk(r−1,q)(l + l0)-structure T′ = 〈T ′,∈T′ , a, c〉 do:

4 if T′ is compatible with T and Sk-BSat(T′, ϕ0) = 1 then return 1

5 return 0

6 if ϕ = ∀y ϕ0(x, y), ϕ0 ∈ ∃r−1, l0 = lh(y) then:

7 for each tcktk(r−1,q)(l + l0)-structure T′ = 〈T ′,∈T′ , a, c〉 do:

8 if T′ is compatible with T and Sk-BSat(T′, ϕ0) = 0 then return 0

9 return 1

Figure 2: A block-wise algorithm for T �Sk ϕ(a).

Proof: By induction on n, using Lemma 3.10. �

Lemma 3.12 For any k ≥ 2 and n, q ≥ 1, we have

tk(n, q) ≤ 2
(q(k+1)+2) log k+log log k+log q+2
n−1 ≤ 24qk log kn−1 .

Proof: Similar to the proof of Proposition 2.13, with (x+ 1) log k+ log log k+ log q+ 2 in place

of h(x), using the inequality

(q k≤x+1 + x+ 2) log k + log log k + log q + 2 ≤ 4q kx+1 log k,

which can be proved in the same way as (7). �

Theorem 3.13 Given a sentence ϕ in prenex normal form and k ≥ 2, we can decide whether

Sk ` ϕ in NTIME
(
tk(r, q)

O(tk(r,q))nO(1)
)
, where n is the length of ϕ, r is such that ϕ is ∃r+1,

and q is the maximal length of a quantifier block in ϕ. This is NTIME(nO(1)) for r = 0,

NTIME
(
(kq)O(kq)nO(1)

)
for r = 1, and NTIME

(
2
O(qk log k)
r nO(1)

)
for r ≥ 2.

Proof: Write ϕ = ∃xψ(x), where ψ is ∀r. Put m = tk(r, q) and l = lh(x) ≤ q. In order to test

Sk ` ϕ, we nondeterministically guess a tckm(l)-structure T = 〈T,∈T, a〉, and verify T �Sk ψ(a)

using the algorithm Sk-BSat(T, ψ) from Fig. 2. Note that s = |T | ≤ l k≤m ≤ 1
k tk(r + 1, q),

hence the bit-size of T is O(ks log s) = O
(
tk(r + 1, q) log tk(r + 1, q)

)
, and we can check that

T is a tckm(l)-structure in time polynomial in tk(r + 1, q) = q kO(tk(r,q)). (For r = 0, we have

s ≤ l ≤ n, thus T can be represented with O(n2) bits using an adjacency matrix, and then we

can check that T is a tck0(l)-structure in time nO(1) independent of k: if k > n, we only need to

check that T = {a} and ∈T is acyclic.)

We claim that Sk-BSat(T, ψ), and thus the whole test, works in time polynomial in n and

tk(r, q)
tk(r,q). In the top-level iteration, the structures T′ have sizes up to (l + l0)k

≤tk(r−1,q) ≤
2q k≤tk(r−1,q) ≤ 2

k tk(r, q), and can be described using O
(
tk(r, q) log tk(r, q)

)
bits. Thus, the loop

17

on lines 7–8 goes through exp
(
O
(
tk(r, q) log tk(r, q)

))
structures T′; for each of them, it checks

in time tk(r + 1, q)O(1) whether it is compatible with T, and if so, makes a recursive call. In

turn, each of these recursive calls will involve a loop over exp
(
O
(
tk(r − 1, q) log tk(r − 1, q)

))
structures, where for each of them, we do a compatibility check in time tk(r, q)

O(1), and a

recursive call. This goes on until we get down to the quantifier-free matrix at recursion depth r;

this takes time nO(1) to check on line 1. Thus, the total number of recursive calls is∏
i<r

2O(tk(r−i,q) log tk(r−i,q)) = 2O
(∑

i<r tk(r−i,q) log tk(r−i,q)
)

= 2O(tk(r,q) log tk(r,q)) = tk(r, q)
O(tk(r,q)),

and each takes time polynomial in tk(r + 1, q) = q kO(tk(r,q)) and n. This gives total time

tk(r, q)
O(tk(r,q))nO(1), as claimed. (For r = 0, this means nO(1); there are no recursive calls.)

For r = 1, we have tk(1, q) = O(kq), hence the time bound is (kq)O(kq)nO(1). For r ≥ 2,

tk(r, q) = 2
O(qk log k)
r−1 by Lemma 3.12; it is easy to show that (2xd)c ≤ 2cxd for any d, x ≥ 1 by

induction on d, hence

tk(r, q)
O(tk(r,q)) = 2tk(r,q)

O(1)
= 2

(
2
O(qk log k)
r−1

)O(1)

= 22
O(qk log k)
r−1 = 2O(qk log k)

r ,

which gives the time bound 2
O(qk log k)
r nO(1). �

For completeness, let us also indicate the complexity of Sk for k = 0, 1, which is essentially

known from the literature.

Theorem 3.14 S1 is PSPACE-complete, and for any fixed r ≥ 1, the ∃r fragment of S1 is

ΣP
r -complete, and the ∀r fragment is ΠP

r -complete.

S0 is decidable in P; more precisely, it is complete for ALOGTIME = UE-uniform NC1

under DLOGTIME reductions.

Proof: S0 is the theory of a one-element structure, hence it is equivalent to propositional logic

(we can decide a given sentence by removing all quantifiers, replacing atomic formulas xi ∈ xj
with the truth-constant 0 and xi = xj with 1, and evaluating the resulting Boolean sentence).

This is NC1-complete by results of Buss [3].

For S1, it is well known and easy to see that the truth of quantified Boolean sentences

is reducible to any consistent first-order theory T that proves the existence of two distinct

elements, making T PSPACE-hard. Moreover, the reduction takes ∃r QBF to ∃r sentences,

hence T -provability of ∃r sentences is ΣP
r -hard, and dually for ∀r.

On the other hand, H1 is definitionally equivalent to 〈N, 0, S〉, whose theory is known to be

decidable in PSPACE: e.g., this is proved in [7] for the more general structure 〈N, <〉.
Using the machinery we have already developed, this can be shown as follows. First, we

have t1(r, q) = (2+ 1
q)(q+1)r, hence S1-BSat(∅, ϕ) decides S1 ` ϕ in exponential space. We can

make it more space-efficient by employing a more compact representation for tc1m(l)-structures

T = 〈T,∈T, a〉. Any such structure is a disjoint union of ∈T-chains, where each chain has some

ai on top, the distance between neighbouring ai and aj on the same chain is ≤ m+ 1, and each

chain ends ≤ m steps below the lowest ai on the chain. We can represent this by noting for

18

each ai the nearest aj below ai on the same chain, if any, and the distance (in binary!) from

ai to aj , or to the end of the chain. This takes O(l logm) = O(lr log(q + 1)) = O(n2 log n)

bits if m = t1(r, q) and l, r, q ≤ n, and we can test compatibility of tc1m(l)-structures in this

representation and satisfaction of quantifier-free formulas in polynomial time.

Thus, S1-BSat modified to use this representation runs in polynomial space, placing S1 in

PSPACE. Moreover, we may view the modified S1-BSat as an alternating polynomial-time

algorithm, where the loop on lines 3–4 is replaced with a nondeterministic (existential) guess of

T′, and the loop on lines 7–8 with a co-nondeterministic (universal) guess. Then S1-BSat(∅, ϕ)

for an ∃r sentence ϕ makes r− 1 alternations starting from an existential state, i.e., it works in

Σr-TIME(nO(1)) = ΣP
r , and dually for ∀r sentences. �

4 Conclusion

As we have seen, the complete theory of the structure Hk can be described by a simple list

of axioms, it is decidable, and generally tame (it has quantifier elimination down to formulas

of quite a low complexity, it is stable, and its computational complexity—albeit somewhat

daunting—is the lowest possible for theories with pairing). Thus, it is in many respects as nice

as other known examples of decidable theories with a pairing function.

However, it has a different flavour from the previous examples, which are generally of alge-

braic or arithmetic nature, whereas here we have a theory of sets. In particular, the theories

Th(Hk) provide natural decidable extensions of finite fragments of the Vaught set theory VS ,

which was our original motivation.

Acknowledgements

I want to thank Albert Visser for a helpful discussion on theories of pairing, and an anonymous

reviewer for useful comments. A preliminary sketch of the basic results of this paper was first

reported in [8].

References

[1] Wilhelm Ackermann, Die Widerspruchsfreiheit der allgemeinen Mengenlehre, Mathema-

tische Annalen 114 (1937), pp. 305–315 (in German).

[2] Elisabeth Bouscaren and Bruno Poizat, Des belles paires aux beaux uples, Journal of Sym-

bolic Logic 53 (1988), no. 2, pp. 434–442 (in French).

[3] Samuel R. Buss, The Boolean formula value problem is in ALOGTIME , in: Proceedings of

the 19th Annual ACM Symposium on Theory of Computing, ACM Press, 1987, pp. 123–

131.

19

[4] Patrick Cégielski, Serge Grigorieff, and Denis Richard, La théorie élémentaire de la fonction

de couplage de Cantor des entiers naturels est décidable, Comptes Rendus de l’Académie

des Sciences – Series I – Mathematics 331 (2000), no. 2, pp. 107–110 (in French).

[5] Patrick Cégielski and Denis Richard, On arithmetical first-order theories allowing encoding

and decoding of lists, Theoretical Computer Science 222 (1999), no. 1–2, pp. 55–75.

[6] , Decidability of the theory of the natural integers with the Cantor pairing func-

tion and the successor, Theoretical Computer Science 257 (2001), no. 1–2, pp. 51–77.

[7] Jeanne Ferrante and Charles W. Rackoff, The computational complexity of logical theories,

Lecture Notes in Mathematics vol. 718, Springer-Verlag, 1979.

[8] Emil Jeřábek, Answer to a question by Zuhair Al-Johar, MathOverflow, 2018, https://

mathoverflow.net/a/302634.

[9] Anatolĭı I. Mal’cev, On the elementary theories of locally free universal algebras, Doklady

Akademii Nauk SSSR 138 (1961), no. 5, pp. 1009–1012 (in Russian), English translation

in: Soviet Mathematics – Doklady 2 (1961), no. 3, pp. 768–771.

[10] , Axiomatizable classes of locally free algebras of several types, Sibirskĭı Matem-

aticheskĭı Zhurnal 3 (1962), no. 5, pp. 729–743 (in Russian), English translation in: The

Metamathematics of Algebraic Systems: Collected Papers: 1936–1967, Studies in Logic

and the Foundations of Mathematics 66, North-Holland, 1971, pp. 262–281.

[11] Aleksei L. Semenov, Logical theories of one-place functions on the set of natural numbers,

Izvestiya Akademii Nauk SSSR, Seriya Matematicheskaya 47 (1983), no. 3, pp. 623–658

(in Russian), English translation in: Mathematics of the USSR, Izvestiya 22 (1984), no. 3,

pp. 587–618.

[12] Alfred Tarski, Andrzej Mostowski, and Rafael M. Robinson, Undecidable theories, North-

Holland, Amsterdam, 1953.

[13] Richard L. Tenney, Decidable pairing functions, Ph.D. thesis, Cornell University, 1972.

[14] Robert L. Vaught, Axiomatizability by a schema, Journal of Symbolic Logic 32 (1967),

no. 4, pp. 473–479.

[15] Albert Visser, Pairs, sets and sequences in first-order theories, Archive for Mathematical

Logic 47 (2008), no. 4, pp. 299–326.

20

