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Abstract

We present a streamlined and simplified exponential lower bound on the length of proofs

in intuitionistic implicational logic, adapted to Gordeev and Haeusler’s dag-like natural

deduction.

1 Introduction

Frege proof systems (often called Hilbert-style systems outside proof complexity) are among

the simplest and most natural proof systems for classical and nonclassical propositional logics.

By results of Reckhow and Cook [31, 7], all classical Frege systems are not only polynomially

equivalent to each other, but also to natural deduction systems and to sequent calculi (with cut),

which is further testimony to their robustness and fundamental status. Although it is commonly

assumed for all classical propositional proof systems that some tautologies require exponentially

large proofs, this has been proven so far only for relatively weak proof systems, such as constant-

depth Frege, polynomial calculus, and cutting planes (see e.g. [25, 5]). Unrestricted Frege

systems are far beyond the reach of current techniques: nothing better is known than a linear

lower bound on the number of proof lines and a quadratic bound on the overall proof size [3, 23].

Interestingly, the state of affairs is much better in nonclassical logics: Hrubeš [13, 14, 15]

proved exponential lower bounds on the number of lines in Frege proofs for some modal logics

and intuitionistic logic, which was generalized by Jeřábek [19] to all transitive modal and super-

intuitionistic logics with unbounded branching, and by Jalali [17] to substructural logics. Even

though the techniques are based on variants of the feasible disjunction property (i.e., given a

proof of φ ∨ ψ, we can decide in polynomial time which of φ or ψ is provable), and as such os-

tensibly require disjunction, Jeřábek [20] showed that the superintuitionistic exponential lower

bounds hold for a sequence of purely implicational intuitionistic tautologies.

In a series of papers, Gordeev and Haeusler [9, 10, 11, 12] claim to prove that all intuitionistic

implicational tautologies have polynomial-size proofs in a dag-like version of (Gentzen/Prawitz-

style) natural deduction, which—if true—would imply NP = PSPACE. These claims are wrong,

as they contradict the above-mentioned exponential lower bounds on the length of proofs of

implicational tautologies in intuitionistic proof systems. Unfortunately, this fact may not be so
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obvious to readers unfamiliar with nonclassical proof complexity literature, and in any event,

the full proof of the lower bound requires tracking down multiple papers: the Frege lower

bound for implicational tautologies in [20] builds on a lower bound for unrestricted intuitionistic

tautologies, as proved in either of [14, 15, 19]; these in turn rely on an exponential lower bound

on the size of monotone circuits separating the Clique–Colouring disjoint NP pair which—

in view of an observation of Tardos [32]—follows from Alon and Boppana [1] (improving a

superpolynomial lower bound by Razborov [30]). Finally, one needs a polynomial simulation of

natural deduction by Frege systems: this is originally due to Reckhow and Cook [31, 7], but

they state it for a sequent-style formulation of natural deduction rather than Prawitz-style, let

alone the further variant introduced only recently by Gordeev and Haeusler; while it is clear to

a proof complexity practitioner that the argument can be easily adapted to all such variants,

this is, strictly speaking, not explicitly proved in any extant literature.

The primary goal of this paper is to give a simple direct proof of an exponential lower bound

on the length of proofs of intuitionistic implicational tautologies in Gordeev and Haeusler’s dag-

like natural deduction. The streamlined argument replaces all proof-theoretic components of

the lower bound mentioned above (intuitionistic lower bound, reduction to implicational logic,

simulation of natural deduction by Frege), thus it is self-contained except for the combinatorial

component (i.e., a monotone circuit lower bound; to simplify our tautologies, we will use a lower

bound by Hrubeš and Pudlák [16] instead of Alon–Boppana). It is based on the efficient Kleene

slash approach employed in [8, 27, 18, 19]. While we strive to keep the proof of the main result

as simple as possible, we also briefly indicate how to generalize it to recover almost the full

strength of the lower bound from [20].

The intended audience of the paper is twofold:

• Readers with some general background in logic or computer science, but unfamiliar with

proof complexity. For them, the paper gives a simple, yet detailed, exposition of an

exponential lower bound on intuitionistic implicational logic so that they cannot be fooled

by the fact that Gordeev and Haeusler’s claims have been published.

• Researchers in proof complexity—not necessarily interested in Gordeev and Haeusler’s

claims—for whom the paper brings a new, much shorter proof of the known implicational

lower bound, bypassing implicational translation of full intuitionistic logic. We stress

that even though the proof system for which it is formulated is not traditional, it is

quite natural, and anyway the lower bound also applies to the standard Frege system

for implicational intuitionistic logic as the latter obviously embeds in dag-like natural

deduction (up to subproofs of Frege axioms, it can be thought of as natural deduction

without the →-introduction rule).

Our proof of the main lower bound does not involve any proof system other than dag-like

natural deduction itself. However, for the sake of completeness, we include an appendix showing

the equivalence of dag-like natural deduction with the standard intuitionistic implicational Frege

system up to polynomial increase in proof size, as well as the polynomial equivalence of both

systems to their tree-like versions (adapting the original result of Kraj́ıček along the lines of [20]).

Thus, dag-like natural deduction does not offer any significant shortening of proofs compared
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to the conventional tree-like natural deduction. The appendix may be of independent interest

as we took some effort to optimize the bounds.

An anonymous source pointed out that since Gordeev and Haeusler’s “horizontal compres-

sion” only changes the shape of the proof, but does not introduce any new formulas, their claims

also contradict other well-known results in proof complexity, namely constant-depth Frege lower

bounds such as Beame et al. [2]. For a sketch of the argument, take a sequence of tautologies

exponentially hard for constant-depth proofs, such as the pigeonhole principle, and convert it

to a sequence of (intuitionistically valid) implicational tautologies φn of polynomial size and

constant depth (measured, say, using the definition dp(φ → ψ) = max{1 + dp(φ), dp(ψ)}).
Each φn has a cut-free sequent proof of polynomial height (and exponential size), which only

involves formulas of constant depth by the subformula property, and thus translates to a natural

deduction proof of polynomial height using only formulas of constant depth (with polynomially

many distinct formulas). Gordeev and Haeusler’s claims imply that this can be compressed to

a polynomial-size dag-like natural deduction proof using formulas of constant depth. The lat-

ter, however, can be converted to a polynomial-size (classical) constant-depth sequent or Frege

proof, contradicting the hardness of the tautologies. We will not pursue this connection further

in this paper, and leave the details to an interested reader.

The paper is organized as follows. In Section 2 we review the needed prerequisites such as

dag-like natural deduction and monotone Boolean circuits. Section 3 is devoted to the proof of

the main exponential lower bound; we discuss extensions of the lower bound in Section 4, and

we conclude with a few remarks in Section 5. We present the equivalence of dag-like natural

deduction to a Frege system in Appendix A, and the equivalence of both systems to their

tree-like versions in Appendix B.

2 Preliminaries

The set Form of implicational formulas (or just formulas if no confusion arises) is the smallest

set that includes the set of propositional variables (or atoms) Var = {pn : n ∈ ω}, and such that

if φ and ψ are formulas, then (φ→ ψ) is a formula. The size |φ| of a formula φ is the number

of occurrences of variables and connectives in φ, i.e., |pn| = 1 and |(φ → ψ)| = 1 + |φ| + |ψ|.
We may omit outer brackets in φ→ ψ, and we treat → as a right-associative operator so that,

e.g., φ → ψ → χ → ω stands for (φ → (ψ → (χ → ω))). (Despite these conventions, we may

leave various redundant brackets in place to highlight the formula structure.) We will denote

formulas with lower-case Greek letters, and for convenience, we will often use lower-case Latin

letters (with indices and/or other decoration) other than pn for variables. We write p⃗ for a finite

tuple of variables ⟨pi : i < n⟩, especially if n is immaterial; the notation φ(p⃗) indicates that all

variables occurring in φ are among p⃗.

Upper-case Greek letters will usually denote finite sets or sequences of formulas. Our indices

generally start from 0; in particular, ⟨φi : i < n⟩, or more concisely ⟨φi⟩i<n, denotes the sequence
⟨φ0, . . . , φn−1⟩ (which is the empty sequence ⟨⟩ if n = 0). The length of a sequence Γ = ⟨φi⟩i<n,
denoted |Γ|, is n, and the size of Γ, denoted ∥Γ∥, is

∑
i<n|φi|. If Γ = ⟨φi⟩i<n is a sequence of
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formulas and ψ ∈ Form, we introduce the abbreviation Γ → ψ for the formula1

φn−1 → · · · → φ1 → φ0 → ψ.

Formally, Γ → ψ is defined by induction on n: ⟨φi⟩i<0 → ψ is ψ and ⟨φi⟩i<n+1 → ψ is

φn → ⟨φi⟩i<n → ψ.

A substitution is a mapping σ : Form → Form such that σ(φ→ ψ) = (σ(φ) → σ(ψ)) for all

φ,ψ ∈ Form. If Γ ⊆ Form, we write σ(Γ) = {σ(φ) : φ ∈ Γ}.
The intuitionistic implicational logic IPC→ is defined by its consequence relation ⊢ ⊆

P(Form) × Form: we put Γ ⊢ φ iff φ belongs to the smallest subset of Form that is closed

under the rule of modus ponens

φ,φ→ ψ / ψ,

and includes Γ and the logical axioms

φ→ ψ → φ

(φ→ ψ → χ) → (φ→ ψ) → (φ→ χ)

for φ,ψ, χ ∈ Form. As is conventional, we omit braces around formulas on the left-hand side

of ⊢, and write commas in place of ∪, so that, e.g., Γ, φ, ψ ⊢ χ stands for Γ ∪ {φ,ψ} ⊢ χ; we

may also coerce finite sequences Γ to sets. We write ⊢ φ for ∅ ⊢ φ, in which case we say that

φ is an intuitionistic implicational tautology, or IPC→ tautology for short.

Lemma 2.1 (deduction theorem) Let Π ⊆ Form, φ ∈ Form, and let Γ be a finite sequence

of formulas. Then

Π,Γ ⊢ φ ⇐⇒ Π ⊢ Γ → φ. 2

A Kripke model is a structure ⟨W,≤,⊨⟩, where ≤ is a partial order onW , and ⊨ ⊆W×Form

satisfies

x ⊨ φ =⇒ ∀y ≥ x y ⊨ φ,

x ⊨ φ→ ψ ⇐⇒ ∀y ≥ x (y ⊨ φ =⇒ y ⊨ ψ)

for all x ∈ W and φ,ψ ∈ Form. Unwinding the definitions, we see that for any sequence

Γ = ⟨φi⟩i<n,
x ⊨ Γ → ψ ⇐⇒ ∀y ≥ x

(
(∀i < n y ⊨ φi) =⇒ y ⊨ ψ

)
.

A formula φ holds in ⟨W,≤,⊨⟩ if x ⊨ φ for all x ∈W .

Intuitionistic logic is complete w.r.t. Kripke semantics, even if we only consider finite frames

(see e.g. [33, 6]):

Theorem 2.2 (finite model property) A formula is an IPC→ tautology if and only if it

holds in all finite Kripke models. 2

1It might appear more visually pleasing to define it as φ0 → φ1 → · · · → φn−1 → ψ, but the reverse order

will be technically more convenient, e.g. in some inductive arguments in Appendix A.
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Let us now present Gordeev and Haeusler’s dag-like natural deduction calculus NM→ based

on [10]. An NM→-proof skeleton is a finite directed acyclic graph (dag) ⟨V,E⟩ with a unique

node of out-degree 0, called the root, and with all nodes having in-degree at most 2; nodes of

in-degree 0, 1, and 2 are called leaves (assumptions), (→I)-nodes, and (→E)-nodes, respectively.

If ⟨u, v⟩ ∈ E, then u is a premise2 of v. A thread is a directed path starting from a leaf; a thread

is maximal if it ends in the root. An NM→-derivation ⟨V,E, γ⟩ is an NM→-proof skeleton ⟨V,E⟩
endowed with a vertex labelling γ = ⟨γv : v ∈ V ⟩ with γv ∈ Form, such that for all v ∈ V :

• if v is an (→I)-node, it is labelled with an implication α → β such that the premise of v

is labelled with β;

• if v is an (→E)-node, there are formulas α, β such that v is labelled with β, and the two

premises of v are labelled with α and α→ β, respectively.

A thread with leaf v is discharged if it contains an (→I)-node labelled with α→ β where α = γv.

Let φ ∈ Form and Γ ⊆ Form. An NM→-derivation is an NM→-derivation of φ from Γ if the

root is labelled φ and the leaves of all undischarged maximal threads are labelled with elements

of Γ. An NM→-proof of φ is an NM→-derivation of φ from ∅. The number of lines of an

NM→-derivation Π = ⟨V,E, γ⟩ is |V |, and the size of Π is ∥Π∥ =
∑

v∈V |γv|.
It may be difficult to verify the condition on discharging maximal threads directly from the

definition. As observed in [10], it can be checked efficiently as follows. Given an NM→-derivation

Π = ⟨V,E, γ⟩, we define for each v ∈ V a set Av ⊆ {γu : u is a leaf} by well-founded recursion:

Av =


{γv}, v is a leaf,

Au ∖ {α}, v is an (→I)-node with premise u and γv = α→ β,

Au0 ∪Au1 , v is an (→E)-node with premises u0 and u1.

Note that given Π, we can compute ⟨Av : v ∈ V ⟩ in polynomial time.

Lemma 2.3 ([10]) An NM→-derivation ⟨V,E, γ⟩ with root ϱ is a derivation of γϱ from Γ if

and only if Aϱ ⊆ Γ.

Proof: Show that Av is the set of labels of undischarged threads ending in v by well-founded

induction on v. 2

Likewise, we can show the soundness of NM→-derivations by well-founded induction on v,

using the deduction theorem:

Lemma 2.4 For any NM→-derivation ⟨V,E, γ⟩ and v ∈ V , Av ⊢ γv. 2

On the other hand, tree-like NM→ derivations are the same as the implicational fragment of

the usual Gentzen–Prawitz natural deduction (see e.g. [28, 26]). This implies the completeness

of the calculus, as observed in [10]:

2In [10], proofs go upside down so that edges are directed from conclusions to premises; we reversed them

to a more natural order. Also, they include an auxiliary repetition rule that we omit for simplicity (it can be

eliminated from any NM→ derivation without increasing its size).
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Lemma 2.5 A formula φ is an IPC→ tautology if and only if it has an NM→-proof. 2

We assume familiarity with classical propositional logic, but briefly, we consider formulas

built from propositional variables using the connectives {→,∧,∨,¬,⊤,⊥}. An assignment to

a set of variables X is a function a : X → 2, where 2 = {0, 1}. We denote the set of all such

assignments as 2X . For any a ∈ 2X and a formula φ over variables X, we define the relation

a ⊨ φ (in words, a satisfies φ) in the usual way:

a ⊨ p ⇐⇒ a(p) = 1, p ∈ X,

a ⊨ (φ→ ψ) ⇐⇒ a ⊭ φ or a ⊨ ψ,

a ⊨ ¬φ ⇐⇒ a ⊭ φ,

and so on for the other connectives. A formula φ is a classical tautology if a ⊨ φ for all

assignments a to the variables of φ.

We also need a bit of circuit complexity. A monotone circuit over a set X of variables is

C = ⟨V,E, g⟩ where ⟨V,E⟩ is a dag with a unique node ϱ of out-degree 0 (the root), endowed

with a labelling g : V → X ∪ {∧,∨} such that nodes v with g(v) ∈ X have in-degree 0. Nodes

v ∈ V are also called gates, and edges e ∈ E are called wires. We may write C(p⃗) to denote that

C is a circuit over a finite tuple of variables p⃗. The size of a circuit C = ⟨V,E, g⟩ is |C| = |E|
(i.e., the number of wires). By well-founded recursion, any assignment a : X → 2 extends to a

unique function â : V → 2, called the evaluation of C, such that

â(v) =


a(g(v)), g(v) ∈ X,

inf {â(u) : ⟨u, v⟩ ∈ E}, g(v) = ∧,
sup{â(u) : ⟨u, v⟩ ∈ E}, g(v) = ∨,

where inf ∅ = 1, sup∅ = 0 (thus ∧- and ∨-gates without inputs act as constants ⊤ and ⊥,

respectively). A circuit C with root ϱ computes a Boolean function f : 2X → 2 if f(a) = â(ϱ)

for each a ∈ 2X . More generally, a disjoint pair is P = ⟨P 0, P 1⟩ where P 0, P 1 ⊆ 2X and

P 0 ∩P 1 = ∅; a circuit C separates P if â(ϱ) = i for each i ∈ 2 and a ∈ P i. We will write a ⊨ C
for â(ϱ) = 1.

Let p⃗, q⃗, and r⃗ be pairwise disjoint tuples of variables, and φ(p⃗, q⃗) and ψ(p⃗, r⃗) classical

formulas. Then a circuit C(p⃗) interpolates the implication φ → ψ (which must be a classical

tautology) if φ(p⃗, q⃗) → C(p⃗) and C(p⃗) → ψ(p⃗, r⃗) are classical tautologies (i.e., a ⊨ φ =⇒ a ⊨ C
and a ⊨ C =⇒ a ⊨ ψ for all assignments a ∈ 2{p⃗,q⃗,r⃗}), or in other words, if C separates the

interpolation pair Itpφ,ψ = ⟨Itp0ψ, Itp1φ⟩, where

Itp0ψ = {a ∈ 2p⃗ : ∃c ∈ 2r⃗ ⟨a, c⟩ ⊭ ψ},
Itp1φ = {a ∈ 2p⃗ : ∃b ∈ 2q⃗ ⟨a, b⟩ ⊨ φ}.

For any n ≥ 2, the Colouring–Cocolouring disjoint pair CCn = ⟨CC0
n,CC

1
n⟩ over the set

of variables Xn =
(
[n]
2

)
(i.e., the set of unordered pairs of elements of [n] = {0, . . . , n − 1}) is

defined by

CC0
n =

{
E ⊆ Xn : the graph ⟨[n], E⟩ is k-colourable

}
,

CC1
n =

{
E ⊆ Xn : the graph ⟨[n], E⟩ is k-colourable

}
,
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where E = Xn ∖ E, k = ⌈
√
n⌉ − 1, and we identify E ⊆ Xn with its characteristic function

Xn → 2. To see that CC0
n ∩ CC1

n = ∅, observe that if c0, c1 : [n] → [k] are k-colourings of

⟨[n], E⟩ and ⟨[n], E⟩, respectively, then c0 × c1 : [n] → [k]× [k] is an injection, thus n ≤ k2.

An exponential lower bound on the monotone circuit complexity (and even monotone real

circuit complexity) of CCn was proved by Hrubeš and Pudlák [16, Thm. 10], using machinery

from Jukna [21]:

Theorem 2.6 For n ≫ 0, all monotone circuits separating CCn have size 2Ω(k1/4) = 2Ω(n1/8).

2

Strictly speaking, Hrubeš and Pudlák work with bounded fan-in monotone circuits, i.e., such

that the in-degree of all gates is at most 2, and they measure size by the number of gates. This

makes no difference, as a d-ary ∧- or ∨-gate can be simulated by d − 1 binary gates using

2(d− 1) wires, thus any monotone circuit with s wires can be transformed to a bounded fan-in

monotone circuit with s′ ≤ 2s wires; moreover, a circuit with s′ wires has at most s′ + 1 gates

(we may associate each node other than the root with an outgoing wire). This mild size increase

does not affect the shape of the lower bound in Theorem 2.6.

3 An exponential lower bound

In this section, we will prove our main lower bound, viz. there is an explicit sequence of impli-

cational intuitionistic tautologies that require NM→-proofs with exponentially many lines.

Let us start with construction of the IPC→ tautologies, which will express the disjointness

of CCn. Intuitionistic tautologies expressing disjointness of the Clique–Colouring pair were first

considered by Hrubeš [14]; they were made negation-free in Jeřábek [19], and implicational in

Jeřábek [20]. We will further simplify the tautologies from [20] by using a somewhat more

direct translation to implicational logic, and by employing the Colouring–Coclouring pair in

place of Clique–Colouring, which leads to more symmetric (and shorter) formulas. Fix n ≥ 2

and k = ⌈
√
n⌉ − 1. Our tautologies will employ variables pij and p

′
i,j (i < j < n), representing

the edge relation of a graph G = ⟨[n], E⟩ and its complement, and variables qil and ril (i < n,

l < k), representing a k-colouring of G and of its complement (respectively).

To motivate the formal definition below, we can state in classical propositional logic that q⃗

define a (possibly multivalued) k-colouring of G by the formula∧
i<n

∨
l<k

qil ∧
∧

i<j<n
l<k

¬(qil ∧ qjl ∧ pij),

and similarly for the complement, thus the disjointness of CCn is expressed by the classical

tautology (∧
i<n

∨
l<k

qil →
∨

i<j<n
l<k

(qil ∧ qjl ∧ pij)
)
∨
(∧
i<n

∨
l<k

qil →
∨

i<j<n
l<k

(ril ∧ rjl ∧ ¬pij)
)
,
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which can be made negation-free using the p⃗ ′ variables:∧
i<j<n

(pij ∨ p′ij) →
(∧
i<n

∨
l<k

qil →
∨

i<j<n
l<k

(qil ∧ qjl ∧ pij)
)
∨
(∧
i<n

∨
l<k

ril →
∨

i<j<n
l<k

(ril ∧ rjl ∧ p′ij)
)
.

This turns out to be an intuitionistic tautology as well. In order to convert it to an implica-

tional tautology, we introduce further auxiliary variables u, v, and w: the idea is to rewrite an

implication ψ → χ as (χ → u) → (ψ → u), where ψ → u and χ → u can be written using

implicational formulas when ψ and χ are monotone formulas. After some manipulation we end

up with the following:

Definition 3.1 Let n ≥ 2 and k = ⌈
√
n⌉ − 1. We define the following implicational formulas

in variables pij , p
′
ij , qil, ril, u, v, and w, where i < j < n and l < k:

αn(p⃗, q⃗, v) =
〈
⟨qil → v⟩l<k → v

〉
i<n

→ ⟨qil → qjl → pij → v⟩i<j<n
l<k

→ v,

τn(p⃗, p⃗
′, q⃗, r⃗, u, v, w) =

〈
(pij → u) → (p′ij → u) → u

〉
i<j<n

→
(
αn(p⃗, q⃗, v) → u

)
→

(
αn(p⃗

′, r⃗, w) → u
)
→ u.

(The order in which we enumerate the multiply-indexed sequences such as ⟨. . . ⟩i<j<n does not

matter.)

Observation 3.2 |τn| = O(n2k) = O(n5/2). 2

Lemma 3.3 The formulas τn are intuitionistic implicational tautologies.

Proof: Assume for contradiction that τn does not hold in a finite Kripke model ⟨W,≤,⊨⟩. This
means that there exists x ∈ W such that x ⊨ (pij → u) → (p′ij → u) → u for all i < j < n,

x ⊨ αn(p⃗, q⃗, v) → u, x ⊨ αn(p⃗ ′, r⃗, w) → u, but x ⊭ u. Replacing x with some x̃ ≥ x if necessary,

we may assume that x is maximal such that x ⊭ u, i.e., x′ ⊨ u for all x′ > x.

For each i < j < n, x ⊨ (pij → u) → (p′ij → u) → u implies that x ⊭ pij → u or x ⊭ p′ij → u.

Since u is true in all x′ > x, we obtain

(1) ∀i < j < n (x ⊨ pij or x ⊨ p′ij).

Since x ⊨ αn(p⃗, q⃗, v) → u, we have x ⊭ αn(p⃗, q⃗, v), thus there exists y ≥ x such that

y ⊨ ⟨qil → v⟩l<k → v for all i < n, and y ⊨ qil → qjl → pij → v for all i < j < n and

l < k, but y ⊭ v. As above, we may assume that y′ ⊨ v for all y′ > y. Then for every i < n,

y ⊨ ⟨qil → v⟩l<k → v implies y ⊭ qil → v for some l < k, whence y ⊨ qil by maximality. That is,

we can find a colouring function c : [n] → [k] such that y ⊨ qi,c(i) for all i < n.

If i < j < n are such that c(i) = c(j) = l, then y ⊨ qil → qjl → pij → v and y ⊭ v implies

y ⊭ pij , and a fortiori x ⊭ pij . This shows that c is a proper k-colouring of the graph ⟨[n], E⟩,
where E =

{
{i, j} : x ⊨ pij

}
.

Since x ⊨ αn(p⃗ ′, r⃗, w) → u, the same argument gives a k-colouring c′ : [n] → [k] of ⟨[n], E′⟩,
where E′ =

{
{i, j} : x ⊨ p′ij

}
. But then (1) implies that the function c × c′ : [n] → [k] × [k] is

injective, thus n ≤ k2 < n, a contradiction. 2
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The remaining task is to prove a form of monotone feasible interpolation (based on feasible

disjunction property) for NM→, which will imply an exponential lower bound for the τn tau-

tologies using Theorem 2.6. There are many ways how to prove the disjunction property of

intuitionistic logic and various intuitionistic theories, one of them being Kleene’s slash [22].

Efficient versions of Kleene’s slash were used by Ferrari, Fiorentini, and Fiorino [8] (under the

umbrella machinery of “extraction calculi”) to prove the feasible disjunction property for the

intuitionistic natural deduction system (which was originally proved by Buss and Mints [4] using

a form of cut elimination); by Mints and Kojevnikov [27] to prove the polynomial equivalence

of intuitionistic Frege systems using admissible rules (with a considerably simplified argument

given by Jeřábek [18]); and by Jeřábek [19] to prove an exponential lower bound on intuitionistic

Extended Frege proofs. We will adapt the argument from [19] to a purely implicational setting,

using a disjunction-free analogue of the disjunction property.

Definition 3.4 If P ⊆ Form, a P -slash is a unary predicate | on Form such that

|(φ→ ψ) ⇐⇒
(
∥φ =⇒ |ψ

)
for all φ,ψ ∈ Form, where we define the short-hand

∥φ ⇐⇒ |φ and φ ∈ P.

If Γ is a set of formulas, we write ∥Γ if ∥φ for all φ ∈ Γ. When we need to consider several

slash operators at the same time, we may distinguish them by subscripts, which are carried over

to ∥. We warn the reader that a P -slash is not uniquely determined by P , as we have liberty

in defining |p for p ∈ Var; however, an arbitrary choice of | on Var has a unique extension to a

P -slash.

If Π = ⟨V,E, γ⟩ is an NM→-derivation, a set P ⊆ Form is Π-closed if Av ⊆ P =⇒ γv ∈ P

for all v ∈ V .

Unwinding the definition, we obtain:

Observation 3.5 If Γ is a finite sequence of formulas, and φ ∈ Form, then

|(Γ → φ) ⇐⇒
(
∥Γ =⇒ |φ

)
. 2

We first verify that being Π-closed is enough to ensure the soundness of the slash:

Lemma 3.6 Let Π be an NM→-proof of φ, P be a Π-closed set of formulas, and | be a P -slash.

Then ∥φ.

Proof: We prove

(2) ∥Av =⇒ ∥γv

by well-founded induction on v ∈ V . This is trivial if v is a leaf. Let v be an (→E)-node

with premises u0, u1, such that γu0 = α, γu1 = (α → β), and γv = β, and assume ∥Av. Since
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Aui ⊆ Av, the induction hypothesis gives ∥α and ∥(α → β). Then the definition of |(α → β)

ensures |β, and Av ⊆ P implies β ∈ P as P is Π-closed, thus ∥β.
Finally, let v be an (→I)-node with premise u such that γu = β and γv = (α → β), and

assume ∥Av. Then Av ⊆ P implies γv ∈ P as P is Π-closed, hence it suffices to show |(α→ β).

Thus, assume ∥α; since Au ⊆ Av ∪ {α}, we have ∥Au, thus ∥β by the induction hypothesis. 2

Next, we need to furnish ourselves with Π-closed sets.

Definition 3.7 Let Π = ⟨V,E, γ⟩ be an NM→-derivation and P ⊆ Form. The Π-closure of P ,

denoted clΠ(P ), is P|V |, where we define Pi for each i ∈ ω by

P0 = P,

Pi+1 = Pi ∪ {γv : v ∈ V,Av ⊆ Pi}.

Lemma 3.8 Let Π be an NM→-derivation and P ⊆ Form.

(i) The set clΠ(P ) ⊇ P is Π-closed.

(ii) P ⊢ φ for all φ ∈ clΠ(P ).

Proof:

(i): Let Π = ⟨V,E, γ⟩ and t = |V |. It is clear from the definition that if Pi = Pi+1, then Pi
is Π-closed, and Pi = Pj for all j ≥ i. Thus, it suffices to shows that Pi = Pi+1 for some i ≤ t.

If not, then P = P0 ⊊ P1 ⊊ . . . ⊊ Pt+1, thus |Pi ∖ P | ≥ i for each i ≤ t + 1 by induction on i;

but Pi ⊆ P ∪ {γv : v ∈ V }, thus t ≥ |Pt+1 ∖ P | ≥ t+ 1, a contradiction.

(ii): We can prove P ⊢ φ for all φ ∈ Pi by induction on i using Corollary 2.4. 2

It will be crucial in what follows that Π-closure is efficiently computable: e.g., it is easy

to see that it is computable in polynomial time; but what we will actually need is that it is

computable by polynomial-size monotone circuits in the following sense:

Lemma 3.9 Let Π = ⟨V,E, γ⟩ be an NM→-derivation with t = |V | lines, F = {φi : i < n} ⊆
Form be such that {γv : v ∈ V } ⊆ F , and φ ∈ F .

Then there exists a monotone circuit C of size O(t3) over variables X = {xi : i < n} such

that for every assignment a ∈ 2X ,

a ⊨ C ⇐⇒ φ ∈ clΠ
(
{φi : a(xi) = 1}

)
.

Proof: We may assume φ = φ0. If φ /∈ FΠ = {γv : v ∈ V }, then φ ∈ clΠ(P ) ⇐⇒ φ ∈ P ,

which is computable by the trivial circuit C = x0, thus we may assume φ ∈ FΠ. More generally,

we observe that clΠ(P ) = P ∪ clΠ(P ∩ FΠ), thus we may assume F = FΠ; in particular, n ≤ t.
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We consider a circuit C with nodes yi,j for i < n and j ≤ t, and zv,j for v ∈ V and j < t,

wired such that

yi,0 ≡ xi,

yi,j+1 ≡ yi,j ∨
∨
v∈V
γv=φi

zv,j ,

zv,j ≡
∧
i<n
φi∈Av

yi,j .

We define the root of C to be y0,t (and we remove nodes from which y0,t is not reachable to

satisfy the formal definition of a circuit). It follows from the definition by induction on j that

if a ∈ 2X and P = {φi : a(xi) = 1}, then

â(yi,j) = 1 ⇐⇒ φi ∈ Pj ,

â(zv,j) = 1 ⇐⇒ Av ⊆ Pj ,

where â is the evaluation of C extending a. Consequently, φ ∈ clΠ(P ) ⇐⇒ a(y0,t) = 1.

In order to determine |C|, for each j < t there are n wires going from yi,j to yi,j+1, t wires

(one for each v ∈ V ) going from zv,j to yi,j+1 where γv = φi, and
∑

v|Av| ≤ nt wires going from

yi,j to zv,j such that φi ∈ Av. Thus, |C| ≤ (n+ t+ nt)t = O(nt2) = O(t3), using n ≤ t. 2

Pudlák [29] showed that the feasible disjunction property of intuitionistic calculi can serve a

similar role as feasible interpolation for classical proof systems, and as such implies conditional

lower bounds on the length of intuitionistic proofs. Hrubeš [14] discovered how to modify the set-

up to obtain an analogue of feasible monotone interpolation (first considered by Kraj́ıček [24]),

which yields unconditional exponential lower bounds utilizing monotone circuit lower bounds

such as Alon and Boppana [1]. These results naturally rely on the presence of disjunction.

Jeřábek [20] obtained a lower bound on implicational intuitionistic logic based using implica-

tional translations of intuitionistic formulas, but here we follow a more direct approach: we

introduce a version of feasible monotone interpolation based on a “disjunction-free disjunction

property”. This is the main new idea of this paper. To help the reader with intuition, we first

prove a most simple version of disjunction-free feasible disjunction property3, although we will

not really use this statement later.

Lemma 3.10 Given an NM→-proof Π of a formula φ of the form

(α0 → u) → (α1 → u) → u,

where the variable u does not occur in α0 and α1, we can compute in polynomial time an

i ∈ {0, 1} such that ⊢ αi.
3It is not surprising that α0 ∨ α1 can be expressed by an implicational formula as in Lemma 3.10; what is

supposed to be novel here is the way to prove the feasible disjunction property for this formulation without

reintroducing disjunctions.
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Proof: Put P = clΠ(α0 → u, α1 → u), and let | be a P -slash such that ∤u. Since |φ by Lemmas

3.6 and 3.8, we have ∦(αi → u) for some i < 2 by Observation 3.5. In view of (αi → u) ∈ P ,

this means ∤(αi → u), thus ∥αi. That is, we have verified

α0 ∈ P or α1 ∈ P.

Given Π, we can compute P in polynomial time, hence we can compute i < 2 such that αi ∈ P .

It remains to verify that this implies ⊢ αi. Lemma 3.8 gives

α0 → u, α1 → u ⊢ αi.

But u does not occur in αi, hence we may substitute it with ⊤, obtaining ⊢ αi. 2

We now generalize this argument to a Hrubeš-style feasible monotone interpolation.

Theorem 3.11 Let p⃗ = ⟨pi : i < n⟩, p⃗ ′ = ⟨p′i : i < n⟩, q⃗, r⃗, and u be pairwise disjoint tuples of

variables, and assume that a formula φ of the form〈
(pi → u) → (p′i → u) → u

〉
i<n

→
(
α0(p⃗, q⃗) → u

)
→

(
α1(p⃗

′, r⃗) → u
)
→ u

has an NM→-proof with t lines. Then there exists a monotone circuit C(p⃗) of size O(t3) that

interpolates the classical tautology

¬α1(¬p⃗, r⃗) → α0(p⃗, q⃗),

where ¬p⃗ denotes ⟨¬pi : i < n⟩.

Proof: Let Π = ⟨V,E, γ⟩ be a proof of φ with s lines. If I ⊆ [n], we write pI = {pi : i ∈ I},
and similarly for p′I . We define

P = {(pi → u) → (p′i → u) → u : i < n} ∪ {αj → u : j < 2},
PI,J = clΠ(P ∪ pI ∪ p′J)

for each I, J ⊆ [n]. Let |I,J be a PI,J -slash such that ∤I,Ju and |I,Jx for all variables x ̸= u.

If i ∈ I, then ∥I,Jpi, thus ∤I,J(pi → u), and |I,J(pi → u) → (p′i → u) → u by Observation 3.5.

Likewise if i ∈ J , using ∤I,J(p′i → u). In view of (pi → u) → (p′i → u) → u ∈ PI,J , we obtain

I ∪ J = [n] =⇒ ∥I,J
{
(pi → u) → (p′i → u) → u : i < n

}
.

On the other hand, |I,Jφ by Lemmas 3.6 and 3.8, thus assuming I ∪ J = [n], Observation 3.5

implies ∦I,J(αj → u) for some j < 2. Since αj → u is in PI,J , this means ∤I,J(αj → u), which

implies ∥I,Jαj . That is,

I ∪ J = [n] =⇒ α0 ∈ PI,J or α1 ∈ PI,J .

Applying this to J = I := [n]∖ I, and using the monotonicity of clΠ, we obtain

(3) ∀I ⊆ [n]
(
α0 ∈ PI,[n] or α1 ∈ P[n],I

)
.
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Put F = P ∪ p[n] ∪ p
′
[n] ∪ {γv : v ∈ V }. By Lemma 3.9, there is a monotone circuit of size

O(t3) that determines whether α ∈ clΠ(S) for a given S ⊆ F , using variables corresponding to

each pi ∈ F , which we may identify with pi itself, variables corresponding to formulas in P ∪p′[n],
which we may substitute with ⊤, and variables corresponding to other formulas from F , which

we may substitute with ⊥. We obtain a monotone circuit C(p⃗) of size O(t3) such that

(4) a ⊨ C ⇐⇒ α ∈ PI(a),[n]

for all assignments a, where I(a) = {i < n : a(pi) = 1}.
We claim that C interpolates ¬α1(¬p⃗, r⃗) → α0(p⃗, q⃗). Let a ∈ 2{p⃗,q⃗,r⃗}. On the one hand,

assume a ⊨ C; we need to show a ⊨ α0. We have α0 ∈ PI(a),[n] by (4). Since all formulas in P

are implied by u, we have

pI(a), p
′
[n], u ⊢ α0(p⃗, q⃗)

by Lemma 3.8. But α0 does not contain the variables p′i or u, hence we may substitute these

with ⊤, obtaining

pI(a) ⊢ α0(p⃗, q⃗).

Since a ⊨ pI(a), also a ⊨ α0.

On the other hand, assume a ⊭ C; we will verify a ⊨ α1(¬p⃗, r⃗). We have α0 /∈ PI(a),[n]
by (4), hence α1 ∈ P

[n],I(a)
by (3), thus

p[n], p
′
I(a)

, u ⊢ α1(p⃗
′, r⃗)

by Lemma 3.8. Substituting ⊤ for p⃗ and u, we obtain

p′
I(a)

⊢ α1(p⃗
′, r⃗).

Finally, we can substitute p′i with ¬pi for each i, getting

¬p
I(a)

⊢ α1(¬p⃗, r⃗)

(in intuitionistic or classical logic with ¬). Since a satisfies the left-hand side, this implies

a ⊨ α1(¬p⃗, r⃗). 2

We are ready to prove the main lower bound by applying Theorem 3.11 to the τn tau-

tologies from Definition 3.1; we only need to observe that interpolation of the implication

¬αn(¬p⃗, r⃗, w) → αn(p⃗, q⃗, v) is essentially identical to separation of the CCn disjoint pair.

Theorem 3.12 If n is sufficiently large, then every NM→-proof of τn has at least 2Ω(n1/8) lines.

Consequently, there are infinitely many intuitionistic implicational tautologies φ such that

every NM→-proof of φ needs to have at least 2Ω(|φ|1/20) lines.

Proof: It suffices to prove the first part; the second part then follows using Observation 3.2.

If τn has an NM→-proof with t lines, there is a monotone circuit C(p⃗) of size O(t3) that

interpolates

(5) ¬αn(¬p⃗, r⃗, w) → αn(p⃗, q⃗, v)
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by Theorem 3.11. We claim that C separates CCn, which implies t = 2Ω(n1/8) by Theorem 2.6.

Let E ⊆
(
[n]
2

)
, and let e be the corresponding assignment to p⃗, i.e., for each i < j < n,

e(pij) = 1 ⇐⇒ {i, j} ∈ E.

Assume that ⟨[n], E⟩ is k-colourable; we need to show e ⊭ C. Fix a vertex colouring c : [n] → [k],

and extend e to an assignment on q⃗ and v by e(v) = 0 and

e(qil) = 1 ⇐⇒ c(i) = l

for each i < n and l < k. Then for every i < n, e ⊭ qi,c(i) → v, thus e ⊨ ⟨qil → v⟩l<k → v.

Likewise, for every i < j < n and l < k, e ⊨ qil → qjl → pij → v, i.e., e ⊭ qil ∧ qjl ∧ pij : if

c(i) = l = c(j), then {i, j} /∈ E as c is a proper colouring. Thus, e ⊭ αn(p⃗, q⃗, v), which implies

e ⊭ C(p⃗) as C interpolates (5).

A symmetrical argument shows that if ⟨[n], E⟩ is k-colourable, then e extends to an assign-

ment such that e ⊭ αn(¬p⃗, r⃗, w), whence e ⊨ C(p⃗). 2

4 Extensions

The goal of the previous section has been to get to the basic lower bound (Theorem 3.12) as

directly and as simply as possible. However, if we expend more effort, we can improve the result

in various ways—more or less up to the strength of Theorem 4.22 of [20]. We briefly indicate

these modifications and their difficulty below, but we omit most details, and keep this section

informal, as it is essentially an extended remark. We refer the reader to [19, 20] for missing

definitions.

Logics of unbounded branching. We proved the lower bound for a proof system for IPC→,

but it can be generalized to analogous proof systems for some stronger logics, namely impli-

cational fragments of superintuitionistic (si) logics of unbounded branching. A si logic L has

branching at most k if it is complete w.r.t. a class of finite Kripke models such that every node

has at most k immediate successors (or if it is included in such a logic); if L does not have

branching at most k for any k ∈ ω, it has unbounded branching. We consider NM→ extended

with finitely many axiom schemata as proof systems for such logics. Any implicational logic of

unbounded branching is included in BD2 (the logic of Kripke models of depth 2), which can be

axiomatized over IPC by the schema

(6) ((φ→ ((ψ → χ) → ψ) → ψ) → φ) → φ

(this is an implicational version of the more familiar axiom φ ∨ (φ → (ψ ∨ ¬ψ))). It is not

a priori clear that the implicational fragment of BD2 is also axiomatized by (6) over IPC→,

but this can be shown using the criterion in [20, L. 4.11]. Thus, it suffices to prove our lower

bound for NM→ extended with axioms (6). This can be done by a minor modification of the

proof of Theorem 3.11: for each instance ω of (6) used in Π, we include ω itself as well as

φ → ((ψ → χ) → ψ) → ψ in P . These formulas are classically valid, hence they will not affect

the final argument showing that C interpolates ¬α1(¬p⃗, r⃗) → α0(p⃗, q⃗), and their presence in P

easily implies ∥I,Jω.
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Full propositional language. It is straightforward to generalize dag-like natural deduction

to the full language {→,∧,∨,⊥} of intuitionistic logic, including a suitable version of Lemma 2.3.

The lower bound still holds for this proof system: we can extend Definition 3.4 using the

standard Kleene slash conditions

|(φ ∧ ψ) ⇐⇒ |φ and |ψ,
|(φ ∨ ψ) ⇐⇒ ∥φ or ∥ψ,

and ∤⊥; then we can prove the analogue of Lemma 3.6, and the rest of the argument goes

through unchanged.

The only problem is that this generalization interferes with the extension to logics of un-

bounded branching from the previous paragraph. While positive fragments (i.e., {→,∧,∨}) of
logics of unbounded branching are still included in BD2, this is not true for fragments includ-

ing ⊥: then we only get that logics of unbounded branching are included in either BD2 or

KC+BD3 (see [19, Thm. 6.9]; KC denotes the logic of weak excluded middle). The proof of

the lower bound in the full language works fine for logics included in BD2 as indicated above,

but unfortunately we do not know a direct way of proving it for KC+BD3. It seems that in

this case we need the reduction to the ⊥-free fragment as given in [19, L. 6.30] or [20, §4.1].

Frege and Extended Frege. As we already mentioned in the introduction, the result applies

to the Frege system for IPC→, as this is essentially a fragment of NM→ without the (→I) rule

(see Theorem A.5 in the appendix for more details). However, the argument can be adapted

to Frege systems directly, using closure under modus ponens (MP) in place of Π-closure. This

also works for Frege systems of si logics included in BD2 in the full propositional language as

explained above. Since the lower bound is on the number of lines rather than overall proof size,

it also applies to Extended Frege systems.

Separation from Substitution Frege. We have only shown that the τn formulas are IPC→
tautologies, but more constructively, they have polynomial-size (and polynomial-time con-

structible) proofs in the Substitution Frege proof system for IPC→. This can be demonstrated

along the lines of the proof of [20, Thm. 4.22] or [19, L. 6.29]. Thus, for all proof systems subject

to the lower bound, we actually obtain an exponential separation from the IPC→ Substitution

Frege system.

Larger bounds. The Colouring–Cocolouring tautologies can be made shorter using bit en-

coding of the colouring functions: instead of the variables qil for i < n, l < k as in Definition 3.1,

we use variables qile for i < n, l < ⌈log k⌉, and e ∈ {0, 1}, with intended meaning “the lth bit of

the colour assigned to node i is e”, and likewise for r⃗. This reduces the size of τn to O(n2 log n)

while keeping the same proof size lower bound in terms of n, thus the lower bound in terms of

|φ| improves to 2|φ|
1/16−o(1)

(i.e., Ω(2|φ|
1/16−ε

) for arbitrarily small ε > 0).

Instead of Colouring–Cocolouring tautologies, we can use tautologies based on the original

Clique–Colouring disjoint pair as in [13, 14, 15, 19, 20] (and in a preliminary version of this

paper). They have larger size, viz. O(n2k2), but the monotone circuit size lower bound increases
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even more to 2Ω(k1/2) by Alon–Boppana [1]. For k ≈
√
n, this improves the bound in Theo-

rem 3.12 to 2Ω(|φ|1/12); if we raise k to ≈ n2/3−o(1) (the largest value to which the Alon–Boppana

result applies), it improves further to 2|φ|
1/10−o(1)

.

Any improvements of the underlying monotone circuit size lower bounds directly translate

to improvements of the proof size lower bounds. Recently, S. de Rezende and M. Vinyals (pers.

comm.) proved a strengthening of the Alon–Boppana lower bound to nΩ(k) for k ≤ n1/2−o(1),

and of the Hrubeš–Pudlák bound (our Theorem 2.6) to 2k
1/2−o(1)

. This implies improvements

of Theorem 3.12 to 2|φ|
1/10−o(1)

for the Colouring–Cocolouring tautologies from Definition 3.1,

2|φ|
1/8−o(1)

for the bit-encoded Colouring–Cocolouring tautologies, and 2|φ|
1/6−o(1)

for Clique–

Colouring tautologies with k = n1/2−o(1). In fact, their results apply to a restricted version of

the Clique–Colouring problem where the graph of size n = (k + 1)m is (k + 1)-partite with

each element of the clique chosen from a specific part of size m ≈ k1/2+o(1), and the colours

of nodes from a given part are chosen from a palette of constant size; moreover, each colour

occurs in the palettes of only O(1) parts. The corresponding IPC→ tautologies have size

O(km2) = O(k3+o(1)), yielding a 2|φ|
1/3−o(1)

proof size lower bound.

The best circuit size lower bounds one could hope to achieve with this line of reasoning would

be a 2Ω(k) bound on Clique–Colouring with k a constant fraction of n (i.e., with m = O(1)), im-

plying a 2Ω(k) bound on Colouring–Cocolouring. These would translate to a 2Ω(|φ|1/5) proof size

lower bound for the Colouring–Cocolouring tautologies, 2Ω(|φ|1/4−o(1)) for bit-encoded Colouring–

Cocolouring, 2Ω(|φ|1/4) for Clique–Colouring with k = Θ(n), and an optimal 2Ω(|φ|) lower bound

for the restricted Clique–Colouring tautologies, matching the basic 2O(|φ|) upper bound on the

size of intuitionistic proofs. (All these bounds are essentially tight for the respective tautologies.)

5 Conclusion

We have shown how to prove a disjunction-free formulation of feasible disjunction property for

implicational intuitionistic logic directly using an efficient version of Kleene’s slash, without

reintroducing disjunctions into the proof. More generally, we demonstrated an implicational

version of Hrubeš-style feasible monotone interpolation, and exploited it to prove exponential

lower bounds on the number of lines in dag-like natural deduction NM→ for intuitionistic impli-

cational logic (or equivalent familiar systems such as Frege). This provides a simple refutation of

Gordeev and Haeusler’s claims that all IPC→ tautologies have polynomial-size proofs in NM→
that should be accessible to a broad logic-aware audience.

Our approach consolidated the proof-theoretic components of the exponential lower bound

to a single argument, obviating the need for translation of intuitionistic logic to its implicational

fragment, or of dag-like natural deduction to Frege systems. The lower bound is not fully self-

contained as we still rely on monotone circuit lower bounds; this combinatorial component of our

lower bound has a quite different flavour from the proof-theoretic part and uses quite different

techniques, thus it does not look very promising to try to combine them. Fortunately, we believe

there is no pressing need for that, as monotone circuit bounds are now a fairly well-understood

part of standard literature. The proof of the original Alon–Boppana bound in [1] is neither long

nor difficult to follow; likewise, the relevant arguments in [16, 21] are easily accessible.
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[13] Pavel Hrubeš, Lower bounds for modal logics, Journal of Symbolic Logic 72 (2007), no. 3,

pp. 941–958.

[14] , A lower bound for intuitionistic logic, Annals of Pure and Applied Logic 146

(2007), no. 1, pp. 72–90.

[15] , On lengths of proofs in non-classical logics, Annals of Pure and Applied Logic

157 (2009), no. 2–3, pp. 194–205.
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A Equivalence with Frege

Our objective in Section 3 was to prove an exponential lower bound on the size of NM→-

proofs as directly as we could, and in particular, we avoided translation of NM→ to other proof

systems such as Frege. However, no treatment of the proof complexity of NM→ can be complete

without showing that it is, after all, polynomially equivalent to the (intuitionistic implicational)

Frege proof system F→. This is implicit in Reckhow [31] and Cook and Reckhow [7], but they

work with a different formulation of natural deduction, and with classical logic, hence it is

worthwhile to spell out the reduction adapted to our situation, which is the main goal of this

section (Theorems A.5, A.10, and A.16).

Let us mention that even though we formulate the results in this and the next section as

only bounds on proof size (and other parameters), they are all constructive in that the relevant

proofs can be computed by polynomial-time algorithms.

We start by defining the intuitionistic implicational Frege system F→.

Definition A.1 A (sequence-like) F→-derivation of φ ∈ Form from Γ ⊆ Form is a finite se-

quence of formulas Π = ⟨γi : i < t⟩ such that t > 0, γt−1 = φ, and for each i < t: γi ∈ Γ, or γi
is an instance of one of the logical axioms

α→ β → α,(A1)

(α→ β → γ) → (α→ β) → (α→ γ)(A2)

for some α, β, γ ∈ Form, or γi is derived from γj and γk for some j, k < i by the rule of modus

ponens

(MP) α, α→ β / β,

i.e., γk = (γj → γi). The number of lines of Π is t, and the size of Π is ∥Π∥ =
∑

i<t|γi|.
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A dag-like F→-derivation of φ from Γ is Π = ⟨V,E, γ⟩, where ⟨V,E⟩ is a finite dag with a

unique node ϱ of out-degree 0 (the root), all nodes have in-degree 0 (the axioms or leaves) or 2

(the (MP)-nodes), γ = ⟨γv : v ∈ V ⟩ is a labelling of nodes by formulas such that γϱ = φ, all

leaves are labelled with elements of Γ or instances of (A1) or (A2), and if v is an (MP)-node

with premises v0 and v1, then γv is derived from γv0 and γv1 by (MP). The number of lines

of Π is |V |, and the size of Π is ∥Π∥ =
∑

v∈V |γv|.
A sequence-like or dag-like F→-proof of φ is a sequence-like or dag-like (resp.) F→-derivation

of φ from ∅.

The height of a dag-like F→-derivation or NM→-derivation ⟨V,E, γ⟩ is the maximal length

of a directed path from a leaf to the root. Such a derivation is tree-like if the underlying dag

⟨V,E⟩ is a tree, i.e., all nodes have out-degree at most 1. Tree-like F→-derivations and NM→-

derivations are also called F∗
→-derivations and NM∗

→-derivations (respectively), and likewise for

F∗
→-proofs and NM∗

→-proofs.

The formula size of a dag-like F→-derivation or NM→-derivation ⟨V,E, γ⟩ is maxv∈V |φv|,
and likewise for sequence-like F→-derivations.

Observe that NM∗
→ is the implicational fragment of the standard natural deduction system.

It is well known that sequence-like and dag-like Frege are just different presentations of the

same proof system:

Lemma A.2 A sequence-like (dag-like) F→-derivation of φ from Γ can be converted to a dag-

like (sequence-like, resp.) F→-derivation of φ from Γ with at most the same size, number of

lines, and formula size.

Proof: Given a sequence-like derivation ⟨γi : i < t⟩ of φ from Γ, put V = [t]. Let I be the set

of i < t such that γi is not an axiom (from Γ, or an instance of (A1) or (A2)); for each i ∈ I, fix

i0, i1 < i such that γi is derived from γi0 and γi1 by (MP), and let E = {⟨ij , i⟩ : i ∈ I, j ∈ {0, 1}}.
Observe that ⟨V,E⟩ is acyclic as E ⊆ <↾ [t]. Then ⟨V,E, ⟨γi : i < t⟩⟩ is a dag-like F→-derivation

of φ from Γ, possibly after eliminating nodes from which the root t− 1 is not reachable.

Conversely, let ⟨V,E, γ⟩ be a dag-like F→-derivation of φ from Γ, and t = |V |. Since ⟨V,E⟩
is acyclic, we can find an enumeration V = {vi : i < t} such that E ⊆ {⟨vi, vj⟩ : i < j} (a

“topological ordering” of ⟨V,E⟩). The root ϱ ∈ V is the only node without a successor, hence

we must have ϱ = vt−1. Then ⟨γvi : i < t⟩ is a sequence-like F→-derivation of φ from Γ. 2

The sequence-like definition is simpler, and is usually taken as the official definition of

Frege systems (we follow this usage). Nevertheless, the dag-like definition has other benefits, in

particular it allows the introduction of tree-like proofs and the height measure: this cannot be

done directly with sequence-like proofs as it depends on the choice of the dag structure, which

may not be uniquely determined by the proof sequence alone.

Let us also note basic dependencies between the various proof parameters:

Observation A.3 An NM→- or (dag-like) F→-derivation with formula size r and t lines has

size at most rt and at least max{r, t}. A derivation with height h has less than 2h+1 lines.
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Proof: The first part is obvious. In a dag with in-degree 2 and root ϱ, there are at most 2l

paths of length l ending in ϱ. Thus, if ϱ is reachable from any node in at most h steps, there

are at most
∑

l≤h 2
l = 2h+1 − 1 nodes. 2

We mostly consider formula size to be an auxiliary measure that can be used to conveniently

bound size as per Observation A.3; it is not that interesting on its own.

A simple, yet very useful, property of Frege and natural deduction systems is that instances

of any derivable schema have linear-size proofs. This is convenient for construction of asymp-

totically short proofs without worrying too much about the choice of basic axioms: we can use

any valid schematic axioms and rules in a given argument as long as the number of different

schemata is kept fixed.

Lemma A.4 Fix Γ ⊆ Form and φ ∈ Form in variables {pi : i < k} such that Γ ⊢ φ. Then

for all substitutions σ, there are F∗
→-derivations and NM∗

→-derivations of σ(φ) from σ(Γ) with

O(1) lines and size O(s), where s =
∑

i<k|σ(pi)|. (The constants implied in the O(. . . ) notation

depend on Γ and φ.) Moreover, we may assume the derivations use each axiom from σ(Γ) only

once.

Proof: Let Π = ⟨γi : i < t⟩ be a fixed F∗
→-derivation of φ from Γ such that all variables

occurring in Π are among {pi : i < k}. Then for any substitution σ, ⟨σ(γi) : i < t⟩ is an

F→-derivation of σ(φ) from σ(Γ) with t lines and size at most ∥Π∥ s. The argument for NM∗
→

is completely analogous.

Instead of applying the argument directly to Γ ⊢ φ, we may apply it to the IPC→ tautology

⊢ Γ → φ. This yields tree-like proofs of σ(Γ → φ) with O(1) lines and size O(s), which we can

turn into derivations of σ(φ) from σ(Γ) by |Γ| applications of (MP)/(→E); this ensures that

each axiom from σ(Γ) is used only once. 2

The simulation of F→ by NM→ is completely straightforward:

Theorem A.5 If φ has a dag-like F→-derivation from Γ with t lines, height h, formula size r,

and size s, then φ has an NM→-derivation from Γ with O(t) lines, height h+O(1), formula size

O(r), and size O(s). If the original F→-derivation is tree-like, the NM→-derivation can also be

taken tree-like.

Proof: Let Π = ⟨V,E, γ⟩ be a dag-like F→-derivation of φ from Γ. Reinterpreting the (MP)-

nodes as (→E)-nodes, Π becomes an NM→-derivation from Γ plus the instances of (A1) and (A2)

that appear in Π. By Lemma A.4, each of the latter can be replaced by a tree-like NM→-subproof

with O(1) lines (thus height O(1)) and size linear in the size of the axiom instance, yielding an

NM→-derivation of φ from Γ with the stated parameters. 2

For the converse simulation of NM→ by F→, we will need proofs of some auxiliary formulas.

As proved in [20, L. 2.3], there are short proofs of “structural rules” for Γ → φ, showing in

particular that we can arbitrarily reorder Γ so that we can treat it as a set. We include here

optimized proofs of some special cases.
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Definition A.6 We extend the Γ → φ notation to sequences indexed by finite subsets of

integers. If I ⊆ [m] and Γ = ⟨αi : i ∈ I⟩ = ⟨αi⟩i∈I , we define Γ → φ by induction on |I|:
⟨αi⟩i∈∅ → φ is φ, and if I ̸= ∅, then ⟨αi⟩i∈I → φ is αh → ⟨αi⟩i∈I∖{h} → φ, where h = max I.

(I.e., ⟨αi⟩i∈I → φ is ⟨αij ⟩j<n → φ, where ⟨ij : j < n⟩ is an increasing enumeration of I.)

If Γ = ⟨αi⟩i∈I , we put dom(Γ) = I, |Γ| = |I|, and ∥Γ∥ =
∑

i∈I |αi|. We write Γ↾J = ⟨αi⟩i∈I∩J .
If ∆ = ⟨βi⟩i∈J , we write Γ ⊆ ∆ when I ⊆ J and αi = βi for all i ∈ I.

First, a general observation that we will keep using to construct proofs of small height:

Lemma A.7 Given a sequence of formulas ⟨φi : i ≤ n⟩, n ≥ 1, there is an F∗
→-derivation of

φ0 → φn from {φi → φi+1 : i < n} with O(n) lines, height O(log n), formula size O(r), and

size O(rn) that uses each assumption φi → φi+1 only once, where r = maxi|φi|.

Proof: We arrange the implications in a balanced binary tree with n leaves. Formally, we

construct for each4 k ≤ ⌈log n⌉ and i < n such that 2k | i a derivation Πki of φi → φmin{i+2k,n}
by induction on k as follows: Π0

i is the trivial derivation of φi → φi+1 from itself. Let k < ⌈log n⌉
and i < n be such that 2k+1 | i. If i + 2k ≥ n, we put Πk+1

i = Πki ; otherwise, we combine Πki
and Πk

i+2k
to Πk+1

i using an instance of the schematic rule

α→ β, β → γ ⊢ α→ β,

i.e., an F∗
→-derivation of φi → φmin{i+2k+1,n} from φi → φi+2k and φi+2k → φmin{i+2k+1,n} with

O(1) lines and size O(r) that uses each assumption only once, which exists by Lemma A.4.

Then Π
⌈logn⌉
0 is the desired derivation of φ0 → φn. 2

Lemma A.8 Given sequences of formulas Γ and ∆ such that ∆ ⊆ Γ, and φ ∈ Form, there

exists an F∗
→-proof of

(7) (∆ → φ) → (Γ → φ)

with O(n) lines, height O(log n), formula size O(s), and size O(sn), where n = max
{
|Γ|, 2

}
and

s = ∥Γ∥+ |φ|.

Proof: We may assume Γ = ⟨αi⟩i<n and ∆ = ⟨αi⟩i∈I , I ⊆ [n]. For each i ≤ n, let φi denote the

formula (∆ ↾ [i] → φ) → (Γ ↾ [i] → φ). Then φi → φi+1 is an instance of one of the schemata

(δ → γ) → (δ → α→ γ),

(δ → γ) → ((α→ δ) → α→ γ)

with δ = (∆ ↾ [i] → φ), γ = (Γ ↾ [i] → φ), and α = αi, depending on whether i ∈ I. Thus, it has

an F∗
→-proof with O(1) lines and size O(s) by Lemma A.4. Using Lemma A.7, we can combine

these proofs to a proof of φ0 → φn with O(n) lines, height O(log n), formula size O(s), and size

O(sn). Since φn is (7), it remains to detach the IPC→ tautology φ0 = (φ → φ), which has a

proof with O(1) lines and size O(|φ|). 2

4In this paper, log denotes base-2 logarithm.
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Lemma A.9 Given sequences of formulas Γ, ∆, and Θ, and φ,ψ ∈ Form, there are F∗
→-proofs

of

(Γ → φ→ ψ) → (Γ → φ) → (Γ → ψ),(8)

Γ → (Γ → φ) → φ,(9)

(Γ → Γ → φ) → (Γ → φ),(10)

(Θ → Γ → ∆ → φ) → (Θ → ∆ → Γ → φ)(11)

with O(n) lines, height O(log n), formula size O(s), and size O(sn), where n = max
{
|Γ|+ |∆|+

|Θ|, 2} and s = ∥Γ∥+ ∥∆∥+ ∥Θ∥+ |φ|+ |ψ|.

Proof: We prove (8) using the same strategy as in Lemma A.8: putting

φi = (Γ ↾ [i] → φ→ ψ) → (Γ ↾ [i] → φ) → (Γ ↾ [i] → ψ)

for each i ≤ |Γ|, φi → φi+1 has a proof with O(1) lines and size O(s) as it is an instance of the

schema

(β → γ → δ) → ((α→ β) → (α→ γ) → (α→ δ)).

These proofs combine to a proof of φ0 → φ|Γ| with the stated parameters using Lemma A.7.

Then φ|Γ| is (8), and φ0 = (φ→ ψ) → (φ→ ψ) has a short proof.

For (9), we put φi = ((Γ → φ) → Γ ↾ [i] → φ) → Γ ↾ [i] → (Γ → φ) → φ. Then φ0 is an

instance of α→ α, and φi → φi+1 is an instance of

((α→ β) → δ) → (α→ γ → β) → γ → δ

(with α = (Γ → φ), β = (Γ ↾ [i] → φ), γ = γi, and δ = (Γ ↾ [i] → (Γ → φ) → φ), where

Γ = ⟨γi⟩i<|Γ|). Thus, using Lemmas A.4 and A.7, we obtain an F∗
→-proof of φ|Γ| with O(n) lines,

height O(log n), formula size O(s), and size O(sn). Detaching the premise (Γ → φ) → Γ → φ

of φ|Γ| yields (9).

(10) follows by (MP) from (9) and (8).

(11): We have (Γ → ∆ → φ) → (∆ → Γ → ∆ → Γ → φ) from (7), and (∆ → Γ → ∆ →
Γ → φ) → (∆ → Γ → φ) from (10), thus we obtain (11) when Θ = ∅. The general case follows

by applying (8). 2

Theorem A.10 If φ has an NM→-derivation from Γ with t lines, height h, and size s, then φ

has a dag-like F→-derivation from Γ with O(t2) lines, height O(h), formula size O(s), and size

O(st2). If the original NM→-derivation is tree-like, the F→-derivation can be taken tree-like as

well.

Proof: Let Π = ⟨V,E, γ⟩ be an NM→-derivation of φ from Γ. Let ⟨γ′i⟩i<t′ , t′ ≤ t, be an

injective enumeration of the set {γv : v ∈ V }, and for each v ∈ V , let A′
v denote the sequence

⟨γ′i : i < t′, γ′i ∈ Av ∖ Γ⟩; notice that ∥A′
v∥ ≤ s. We consider the collection of IPC→ tautologies

⟨A′
v → γv : v ∈ V ⟩, and complete it to a valid F→-derivation from Γ using Lemmas A.8 and A.9.

In more detail, for every v ∈ V , we construct an F∗
→-derivation Πv of A′

v → γv from

{A′
u → γu : ⟨u, v⟩ ∈ E} ∪ Γ with O(t) lines, height O(log t), and formula size O(s). Moreover,
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each assumption A′
u → γu is used only once, and the path from it to the conclusion has length

O(1); both of these properties are obtained by constructing a derivation of ⟨A′
u → γu⟩⟨u,v⟩∈E →

A′
v → γv from Γ and applying (MP):

• If v is a leaf, then either γv ∈ Γ and A′
v = ∅, in which case we take the trivial derivation

of γv from itself, or A′
v = ⟨γv⟩, in which case we find an F∗

→-proof of γv → γv with O(1)

lines and size O(s) by Lemma A.4.

• If v is an (→I)-node with premise u, we have γv = (α→ β) and γu = β for some α and β,

and A′
v = A′

u ∖ {α} as a set. If α ∈ A′
u, then (A′

u → β) → (A′
v → α → β) is an instance

of (11), otherwise it is an instance of (7).

• If v is an (→E)-node with premises u0 and u1, then γu0 = α, γu1 = (α→ β), and γv = β

for some α and β. We have A′
ui ⊆ A′

v, hence (7) gives F
∗
→-proofs of (A′

u0 → α) → A′
v → α

and (A′
u1 → α → β) → A′

v → α → β. We infer (A′
u1 → α → β) → (A′

u0 → α) → A′
v → β

using the instance (A′
v → α → β) → (A′

v → α) → A′
v → β of (8) and O(1) additional

proof lines by Lemma A.4.

Combining these derivations Πv along the shape of the original derivation Π yields an F→-

derivation (tree-like if Π is tree-like) of φ from Γ with O(t2) lines, height O(h + log t) = O(h)

(cf. Observation A.3), formula size O(s), and size O(st2) as promised. 2

The bottleneck in the proof of Theorem A.10 is that formulas of the form Γ → φ with

long Γ are cumbersome to operate as φ is nested deep inside, and when untangling it we need

to keep copying large parts of the formula. This could be avoided if we had a conjunction

connective: using
∧
Γ → φ instead, φ sits right at nesting depth 1; if we arrange the big

conjunction
∧
Γ in a balanced binary tree, the individual entries of Γ are also easy to access at

nesting depth O(log n), and wholesale manipulations such as Lemma A.8 can be done using a

divide-and-conquer approach that saves size.

We do not have ∧ in implicational logic, as it is not definable in terms of →. However,

we may observe that if we fix a formula φ, then formulas α, β of the form Φ → φ do have a

definable conjunction operation: α is equivalent to (α → φ) → φ, and likewise for β, thus also

α ∧ β is equivalent to (α ∧ β → φ) → φ, which can be written as (α→ β → φ) → φ. This idea

was introduced in [20, Prop. 2.6] to prove polynomial simulation of Frege by tree-like Frege for

purely implicational logic (cf. Theorem B.3), but here we will use it to improve the bounds in

Theorem A.10.

Definition A.11 For any formulas φ, α, and β, we put

αφ = (α→ φ) → φ,

α ∧φβ = (α→ β → φ) → φ.

For all sequences of formulas Γ = ⟨αi : i ∈ I⟩, I ⊆ [m], we define
∧φ
i∈I αi, also denoted

∧φΓ, by
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induction on m:

∧φ

i∈I
αi =



⊤, I = ∅,
αφi0 , I = {i0},∧φ

i∈I−2k

α2k+i, I ⊆ [2k, 2k+1),( ∧φ

i∈I∩[2k]

αi

)
∧φ
( ∧φ

i∈I−2k

α2k+i

)
, I ⊆ [2k+1], I ∩ [2k] ̸= ∅ ̸= I ∩ [2k, 2k+1),

where ⊤ is a fixed IPC→ tautology, k ≥ 0, and I − 2k = {i : 2k + i ∈ I}. We write
∧φ
i<n αi for∧φ

i∈[n] αi.

The idea is that
∧φ
i<2k αi consists of ∧

φarranged in a perfect binary tree of height k, while

if I ⊆ [2k], then
∧φ
i∈I αi conforms to the same arrangement except that unused leaves and non-

splitting inner nodes are omitted; this ensures that the layouts of
∧φ
i∈I αi and

∧φ
i∈J αi for any

I, J ⊆ [2k] are compatible, facilitating efficient manipulation of
∧φΓ in a divide-and-conquer

manner.

Lemma A.12 The size of
∧φΓ is ∥Γ∥+O

(
|φ|n

)
, where n = max

{
|Γ|, 1

}
.

Proof: Observe that the inductive definition introduces ∧φ only when the sequences on both

sides are nonempty. Thus,
∧φΓ is a binary tree of ∧φwith n leaves where every inner node splits,

thus there are n− 1 inner nodes. Since α and β occur only once in α∧φβ, each node of the tree

gives rise to only one subformula of
∧φΓ; thus, ∧φΓ consists of one occurrence of each αi of total

size ∥Γ∥, and O(1) occurrences of φ and → per each node of the tree of total size O
(
|φ|n

)
. 2

The following is a
∧φ-version of Lemma A.8 that also handles unions of two sequences.

Lemma A.13 Let φ ∈ Form and Γ = ⟨αi : i ∈ I⟩ be a sequence of formulas with |Γ| = n ≥ 1

and I ⊆ [m], m ≥ 2. Let Γu = Γ ↾ Iu for u = 0, 1, 2, where Iu ⊆ I are such that I2 ⊆ I0 ∪ I1.
Then there is an F∗

→-proof of

(12)
∧φ

Γ0 →
∧φ

Γ1 →
∧φ

Γ2

with O(n) lines, height O(logm), formula size O(s+ |φ|n), and size O
(
(s+ |φ|n) logm

)
, where

s = ∥Γ∥.

Proof: We construct the proofs by induction on ⌈logm⌉. If m = 2 or n = 1, then (12) has a

proof with O(1) lines and size O(s + |φ|) by Lemma A.4. If I ⊆ [2k, 2k+1) for some k, we can

just apply the induction hypothesis (without changing the proof) to Γ′ = ⟨α2k+i : i ∈ I − 2k⟩
and Γ′

u = Γ′ ↾ (Iu − 2k), as
∧φΓu =

∧φΓ′
u.

Assume that I ⊆ [2k+1] and I0, I1 ̸= ∅, where I0 = I ∩ [2k] and I1 = I−2k. For each u < 3,

put I0u = Iu ∩ [2k] and I1u = Iu − 2k. Let Γ0 = Γ ↾ I0, Γ1 = ⟨α2k+i : i ∈ I1⟩, and Γvu = Γv ↾ Ivu for

each v < 2, u < 3. There are proofs of

(13)
∧φ

Γu →
∧φ

Γvu,
∧φ

Γ0
u →

∧φ
Γ1
u →

∧φ
Γu
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with O(1) lines and size O(s + |φ|n) using Lemma A.4: if Ivu = ∅ for some v < 2, then∧φΓu =
∧φΓ1−v

u and
∧φΓvu = ⊤; otherwise,

∧φΓu is
(∧φΓ0

u

)
∧φ
(∧φΓ1

u

)
, thus (13) are instances of

the valid schemata (α0 → φ) ∧φ(α1 → φ) → (αv → φ) and α → β → α ∧φβ (observe that each∧φΓvu is of the form α→ φ for some formula α).

Using (13), we can construct proofs of

(14)
(∧φ

Γ0
0 →

∧φ
Γ0
1 →

∧φ
Γ0
2

)
→

(∧φ
Γ1
0 →

∧φ
Γ1
1 →

∧φ
Γ1
2

)
→

(∧φ
Γ0 →

∧φ
Γ1 →

∧φ
Γ2

)
with O(1) lines and size O(s + |φ|n). The induction hypothesis for Γ0 and Γ1 gives us proofs

of
∧φΓv0 →

∧φΓv1 →
∧φΓv2 for v < 2, and these together yield (12).

We can imagine the resulting proof as a binary tree of (14) inferences. Since each application

of (14) corresponds to splitting I to two nonempty disjoint subsets, each inner node has two

children, and the tree has at most n leaves. Thus, the proof has O(n) lines. Each application

of (14) also strictly decreases ⌈logm⌉, hence the height of the proof is O(logm). The formula

size is O(s+ |φ|n) using Lemma A.12.

As for the size of the proof, the root of the tree contributes O(s + |φ|n). Its two children

contribute O(s0+ |φ|n0) and O(s1+ |φ|n1), where s0+s1 = s and n0+n1 = n, thus O(s+ |φ|n)
together. Continuing the same way, each level of the tree consists of inferences of sizeO(s+|φ|n),
and there are at most O(logm) levels, hence the total size is O

(
(s+|φ|n) logm

)
. (More formally,

we can prove such a bound by induction on ⌈logm⌉.) 2

We cannot use
∧φA′

v → γφv with a fixed formula φ instead of A′
v → γv for the simulation

of NM→ by F→ as in the proof of Theorem A.10, because the (→I)-rule would translate to an

unsound inference ∧φ
A′
v → αφ → βφ ⊢

∧φ
A′
v → (α→ β)φ.

We will in fact work with
∧γvA′

v → γv, but this necessitates that we are able to transform
∧φΓ

to
∧ψΓ for given φ, ψ:

Lemma A.14 Let φ,ψ ∈ Form and Γ = ⟨αi : i ∈ I⟩ be a sequence of formulas with I ⊆ [m],

m ≥ 2. Then there is an F∗
→-proof of

(15)
∧φ

Γ →
(∧ψ

Γ
)φ

with O(n) lines, height O(logm), formula size O(s + |φ|n + |ψ|n), and size O
(
(s + |φ|n +

|ψ|n) logm
)
, where n = max

{
|Γ|, 1

}
and s = ∥Γ∥.

Proof: We construct the proofs by induction on ⌈logm⌉, similarly to Lemma A.13. If m = 2

or n = 1, then (15) has a proof with O(1) lines and size O(s + |φ| + |ψ|) by Lemma A.4. If

I ⊆ [2k, 2k+1) for some k, we can apply the induction hypothesis to Γ′ = ⟨α2k+i : i ∈ I − 2k⟩
without changing the proof. If I ⊆ [2k+1] and I0, I1 ̸= ∅, where I0 = I ∩ [2k] and I1 = I − 2k,

the induction hypothesis applied to Γ0 = Γ ↾ I0 and Γ1 = ⟨α2k+i : i ∈ I1⟩ gives proofs of∧φ
Γ0 →

(∧ψ
Γ0

)φ
,

∧φ
Γ1 →

(∧ψ
Γ1

)φ
.
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These yield (15) using an instance of the schema

(α→ βφ) → (γ → δφ) → α ∧φγ → (β ∧ψδ)φ

(we invite the reader to check this is indeed a valid schema).

The resulting proof has the stated size parameters by the same argument as in Lemma A.13.

2

Before we get to the improved simulation of NM→ by F→, we need to introduce one more

size parameter so that we can state the bounds accurately:

Definition A.15 The inferential size of a NM→-derivation or dag-like F→-derivation ⟨V,E, γ⟩
is

∑
v∈V sv, where sv = |γv|+

∑
⟨u,v⟩∈E |γu|.

Clearly, a derivation with t lines and formula size r has inferential size O(rt). A tree-like

derivation (or more generally, a derivation where each node has bounded out-degree) of size s

has inferential size O(s). We will see later (Lemma B.2) that any dag-like F→-derivation of

size s can be shortened to a derivation with inferential size O(s), but we do not know whether

the analogue for NM→-derivations holds.

Theorem A.16 If φ has an NM→-derivation from Γ with t lines, height h, formula size r, and

inferential size s̃, then φ has a dag-like F→-derivation from Γ with O(t2) lines, height O(h),

formula size O(rt), and (inferential) size O(s̃t log t). If the original NM→-derivation is tree-like,

the F→-derivation can be taken tree-like as well.

Proof: We use the same notation and argument structure as in the proof of Theorem A.10, but

we work with the formulas δv =
∧γvA′

v → γv in place of A′
v → γv. Observe |δv| = O

(
s+ |γv| t

)
=

O(rt), where s = ∥Π∥.
For each v ∈ V , we construct an F∗

→-derivation Πv of ⟨δu⟩⟨u,v⟩∈E → δv from Γ with O(t)

lines, height O(log t), formula size O(s + svt) = O(rt), and size O
(
(s + svt) log t

)
, where sv =

|γv|+
∑

⟨u,v⟩∈E |γu|:

• The case of v being a leaf is straightforward.

• If v is an (→I)-node with premise u, we have γv = (α→ β) and γu = β for some α and β,

and A′
u ⊆ A′

v ∪ {α} as a set. Lemma A.13 gives a proof of
∧βA′

v → αβ →
∧βA′

u, which

(using α → αβ) yields δu →
∧βA′

v → γv. Combining this with
∧γvA′

v →
(∧βA′

v

)γv from

Lemma A.14 gives δu →
∧γvA′

v → γv, i.e., δu → δv.

• If v is an (→E)-node with premises u0 and u1, then γu0 = α, γu1 = (α→ β), and γv = β

for some α and β, and A′
ui ⊆ A′

v. Using Lemmas A.13 and A.14, we obtain proofs of

δu0 →
∧βA′

v → αβ and δu1 →
∧βA′

v → (α → β)β, which yield δu0 → δu1 →
∧βA′

v → β

(i.e., δu0 → δu1 → δv) using the schema αβ → (α→ β)β → β.

Combining the Πv derivations yields an F→-derivation (tree-like if Π is tree-like) of φ from Γ

with O(t2) lines, height O(h), formula size O(rt), and size O
(
st log t+

∑
v svt log t) = O(s̃t log t).

2
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Remark A.17 We can improve the resulting F→-derivation to a tree-like derivation of height

O(log t) at the expense of a mild size increase: see Theorem B.5.

If we have a real ∧, the |γv| terms from the size parameters disappear, and we obtain a

derivation with formula size O(s) and size O(st log t) rather than O(s̃t log t). It is unclear how

to achieve that in the purely implicational setting. One possible improvement is to modify the

inductive definition of
∧φ so that

∧φΓ = (Γ → φ) → φ whenever |Γ| ≤ ℓ, where ℓ ≥ 1 is an

extra parameter. Then
∧φΓ has size O

(
∥Γ∥ + |φ| nℓ

)
, where n = max

{
|Γ|, ℓ

}
. The proofs in

Lemma A.13 will have formula size O
(
s + |φ| nℓ

)
and size O

(
s(logm + ℓ) + |φ| nℓ logm

)
, and

similarly for Lemma A.14. In the context of the proof of Theorem A.16, the optimal choice is

ℓ ≈
√
(s̃/s) log t, which yields an F→-derivation of φ from Γ with O(t2) lines, height O(log t),

formula size O
(
s+ rt/ℓ

)
, and size O

(
st log t+

√
s̃st2 log t

)
.

Remark A.18 Using similar arguments, we can also prove an efficient version of Lemma 2.1:

if φ has an F→-derivation from Γ = {αi : i < n} and ∆ with t ≥ n lines, height h, formula size r,

and size s, then
∧φΓ → φ and Γ → φ have F→-derivations from ∆ with O(t) lines, height O(h),

formula size O
(
r + ∥Γ∥+ |φ|n

)
, and size O

(
s+ (∥Γ∥+ |φ|n)t

)
.

B Equivalence of dag-like and tree-like proofs

Our final task is to show that NM→ and F→ are polynomially equivalent to their tree-like

versions NM∗
→ and F∗

→; more precisely, we will show that an F→-proof with t lines can be

converted to a polynomially larger tree-like proof of height O(log t) (Theorem B.3), which

implies a similar simulation of NM→ by NM∗
→ (Theorem B.5).

The original argument by Kraj́ıček [23, L. 4.4.8] (stated in the context of classical logic,

but intuitionistically valid) relies on conjunctions: given a proof ⟨γi : i < t⟩, we consider the

conjunctions τj =
∧
i<j γi, construct short tree-like proofs of τi → τi+1, and combine them to

a proof of τt. A purely implicational version of the argument was sketched in [20, Prop. 2.6],

using the α ∧φβ formulas to emulate conjunctions. We now present the argument in detail,

incorporating an extra idea to save proof size: instead of (an implicational emulation of) the

long conjunctions τi → τi+1, we start with τ
′
i → γi where τ

′
i only consists of the premises needed

to infer γi, and we gradually merge these lists of premises in later stages of the proof.

Let us first observe that if we do not care about the exact values of the polynomial bounds,

an O(log t) height bound along with a polynomial formula-size bound is all we need to show,

as we will then get tree-like polynomial-size proofs for free:

Lemma B.1 Let Π be a dag-like F→-derivation of φ from Γ of height h and formula size r.

Then there is a tree-like F→-derivation Π′ of φ from Γ of height h and formula size r, hence

with less than 2h+1 lines and size 2h+1r.

Proof: We can unwind a dag-like derivation ⟨V,E, γ⟩ with root ϱ to a tree-like derivation

⟨V ′, E′, γ′⟩ of the same height by taking for V ′ the set of all paths ending in ϱ, with ⟨p, q⟩ ∈ E′

if p initially extends q by one edge, and γ′p = γv where v is the starting vertex of p. The bounds

on the number of lines and size follow from Observation A.3. 2
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Thus, a reader who is happy with any polynomial may ignore the exact bounds on the

number of lines below and concentrate on height bounds, which are easier to verify.

We need one more structural property of F→-proofs so that we can accurately estimate the

resulting proof size. Let us say that an F→-derivation is non-redundant if no formula occurs in

it more than once.

Lemma B.2

(i) Any F→-derivation of φ from Γ can be made non-redundant by omitting some formulas.

(ii) A non-redundant dag-like F→-derivation of size s has inferential size O(s).

Proof:

(i): If we omit all but the first occurrence of each formula from a (sequence-like) F→-

derivation, it remains an F→-derivation.

(ii): Clearly, the total size of axioms (logical or from Γ) is at most s. As for (MP) inferences,

the size of an inference α, α → β / β is linear in the size of its second premise α → β. In a

non-redundant proof, each formula of the form α → β can be used at most once as a second

premise of an (MP) inference, because the conclusion of such an inference can only be β, which

can only occur once in the derivation. Thus, the total size of (MP) inferences is also O(s). 2

We remark that property (ii) is specific to Frege systems based on (MP) as the only rule of

inference; we see no reason it should hold in general. (Another such (MP)-specific property is

the last part of Lemma A.4.)

Theorem B.3 If φ has an F→-derivation from Γ with t lines, formula size r, and size s,

then it has a tree-like F→-derivation from Γ with O(t log t) lines, height O(log t), formula size

O(s+ |φ| t), and size O
(
(s+ |φ| t)(log t)2

)
.

Proof: Let Π = ⟨γi : i < t⟩ be a derivation of φ from Γ, which we may assume to be non-

redundant by Lemma B.2. We fix E ⊆ < ↾ [t] that makes ⟨[t], E, γ⟩ a dag-like derivation by

Lemma A.2. For each j < t and k ≤ ⌈log t⌉ such that 2k | j, we put

P kj =
{
i < j : ∃i′ ∈ [j, j′) ⟨i, i′⟩ ∈ E

}
,

Γkj = ⟨γi : i ∈ [j, j′)⟩,
∆k
j = ⟨γi : i ∈ P kj ⟩,

τkj =
∧φ

∆k
j →

∧φ
Γkj ,

where j′ = min{j + 2k, t}. Observe that |Γkj | ≤ 2k, |∆k
j | = |P kj | = O(2k), and |τkj | = O

(
∥Γkj ∥+

∥∆k
j ∥ + |φ| 2k

)
= O(sk,j + |φ| 2k), where we put si = |γi| +

∑
⟨i′,i⟩∈E |γi′ | as in Definition A.15,

and sk,j =
∑

i∈[j,j′) si. Notice that
∑

i si = O(s) by Lemma B.2, thus also
∑

2k|j sk,j = O(s) for

each k.

We construct F∗
→-derivations Πkj of τkj from Γ by induction on k. For k = 0, the formula τ0j

is
∧φ⟨γi : ⟨i, j⟩ ∈ E⟩ → γφj , which has a derivation from Γ with O(1) lines and size O(sj + |φ|)
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using Lemma A.4. Assume that Πkj have been defined for all j < t such that 2k | j, and let

j < t be such that 2k+1 | j. If j + 2k ≥ t, we have τk+1
j = τkj , thus we can take Πk+1

j = Πkj .

Otherwise, we combine Πkj and Πk
j+2k

to Πk+1
j using an F∗

→-proof of τkj → τk
j+2k

→ τk+1
j with

O(2k) lines, height O(log t), formula size O(sk+1,j + |φ| 2k), and size O
(
(sk+1,j + |φ| 2k) log t

)
that we construct as follows. Observe that Γk+1

j is the concatenation of Γkj and Γk
j+2k

, and

∆k
j ⊆ ∆k+1

j , while ∆k
j+2k

is a concatenation of a subsequence of ∆k+1
j and a subsequence of Γkj .

Thus, Lemma A.13 gives us F∗
→-proofs of

τkj →
∧φ

∆k+1
j →

∧φ
Γkj ,

τkj+2k →
∧φ

∆k+1
j →

∧φ
Γkj →

∧φ
Γkj+2k ,∧φ

Γkj →
∧φ

Γkj+2k →
∧φ

Γk+1
j .

with the stated size parameters. These together imply τkj → τk
j+2k

→ τk+1
j .

In the end, Π
⌈log t⌉
0 is a derivation of ⊤ →

∧φ
i<t γi from Γ. This yields

∧φ⟨γt−1⟩, i.e., φφ,
using Lemma A.13, and we can infer φ.

It is clear that the whole derivation has height O(log t) and formula size O(s + |φ| t). The

derivations Π0
j have together O(t) lines and size O

(∑
j(sj + |φ|)

)
= O(s + |φ| t). Likewise, for

each k < ⌈log t⌉, there are t/2k+1 subproofs of τkj → τk
j+2k

→ τk+1
j with O(2k) lines each, which

together makes O(t) lines of size O
(∑

2k+1|j(sk+1,j+|φ| 2k) log t
)
= O

(
(s+|φ| t) log t

)
. Summing

over all k < ⌈log t⌉, the whole derivation has O(t log t) lines and size O
(
(s+ |φ| t)(log t)2

)
. 2

Remark B.4 We could avoid the machinery of
∧φΓ formulas by defining τkj = (Γkj → φ) →

(∆k
j → φ), and using Lemmas A.8 and A.9 in place of Lemma A.13, yielding an F∗

→-derivation

with O(t log t) lines, height O(log t), formula size O(s), and size O(st+ |φ| t log t).
If we have a real ∧, the |φ| terms from the size parameters disappear: we obtain a derivation

with O(t log t) lines, height O(log t), formula size O(s), and size5 O
(
s(log t)2

)
.

Back in the implicational setting, we can alternatively use
∧p in place of

∧φ, where p is the

right-most variable occurrence in φ, i.e., φ is of the form Φ → p for some sequence Φ. This

reduces all the |φ| terms in the size parameters to O(1): we obtain a derivation of φp from Γ

with O(t log t) lines, height O(log t), formula size O(s), and size O
(
s(log t)2

)
. We can construct

a proof of φp → φ using Lemma A.9: two instances of (9) give Φ → (((Φ → p) → p) → p) → p,

and (11) yields (((Φ → p) → p) → p) → Φ → p. We obtain an F∗
→-derivation of φ from Γ with

O(t log t+n) lines, height O
(
log(t+n)

)
, formula size O(s), and size O

(
s(log t)2 + |φ|n

)
, where

n = |Φ| ≤ |φ|. Furthermore, if the IPC→ tautology Γ → φ is not a substitution instance of

any strictly smaller IPC→ tautology, then n = O(t) because of [23, L. 4.4.4], which simplifies

the bounds to O(t log t) lines, height O(log t), formula size O(s), and size O
(
s(log t)2 + |φ|n

)
.

We can also modify the definition of
∧φusing an extra parameter ℓ as in Remark A.17. In the

context of the proof of Theorem B.3, the optimal choice is ℓ ≈
√
|φ| t(log t)/s, which yields an

5[23, L. 4.4.8] seemingly claims an even better bound O(s log t), but this is a typo, as the argument only

warrants size O(st log t); cf. https://www.karlin.mff.cuni.cz/~krajicek/upravy.html.
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F∗
→-derivation of φ from Γ withO(t log t) lines, height O(log t), formula size O

(
s+

√
|φ| st/ log t

)
,

and size O
(
s(log t)2 +

√
|φ| st(log t)3

)
.

Theorems A.10 or A.16, B.3, and A.5 imply a polynomial simulation of NM→ by NM∗
→,

but we can obtain better bounds by taking into account that the building blocks of the proofs

constructed in Theorems A.10 and A.16 are already tree-like:

Theorem B.5 If φ has an NM→-derivation from Γ with t lines, size s, and inferential size s̃,

then it has an F∗
→-derivation and an NM∗

→-derivation from Γ with O(t2) lines, height O(log t),

formula size O(st), and size O
(
min{st2, s̃t(log t)2}

)
.

Proof: In view of Theorem A.5, it suffices to construct an F∗
→-derivation.

We combine the arguments in Theorems A.16 and B.3. Let Π = ⟨V,E, γ⟩ be an NM→-

derivation of φ from Γ. By considering a topological ordering of ⟨V,E⟩, we may assume V = [t]

and E ⊆ <↾ [t]. As in the proof of Theorem A.16, let ⟨γ′i⟩i<t′ , t′ ≤ t, be an injective enumeration

of the set {γi : i < t}, and for each i < t, let A′
i denote the sequence ⟨γ′j : j < t′, γ′j ∈ Ai ∖ Γ⟩.

Put δi =
∧γiA′

i → γi; we have |δi| = O(s+ |γi| t).
Similarly to the proof of Theorem B.3, for all j < t and k ≤ ⌈log t⌉ such that 2k | j, we put

P kj =
{
i < j : ∃i′ ∈ [j, j′) ⟨i, i′⟩ ∈ E

}
,

Γkj = ⟨δi : i ∈ [j, j′)⟩,
∆k
j = ⟨δi : i ∈ P kj ⟩,

τkj =
∧φ

∆k
j →

∧φ
Γkj ,

where j′ = min{j + 2k, t}. We have |Γkj | ≤ 2k and |∆k
j | = |P kj | = O(2k), thus |τkj | = O

(
∥Γkj ∥+

∥∆k
j ∥ + |φ| 2k

)
= O(s2k + sk,jt), where sk,j =

∑
j≤i<j′ |γi| +

∑
i∈Pk

j
|γi| ≤ s. Observe sk,j ≤∑

j≤i<j′ s0,i, thus for a fixed k,
∑

j sk,j ≤
∑

i<t s0,i = s̃. We will now construct F∗
→-derivations

Πkj of τkj from Γ by induction on k.

As shown in the proof of Theorem A.16, for each j < t, there is an F∗
→-derivation of ∆0

j → δj
from Γ with O(t) lines, height O(log t), formula size O(s + s0,jt), and size O

(
(s + s0,jt) log t

)
.

We can infer
∧φ∆0

j → γφj , which is τ0j , using O(1) extra lines of size O(s+ s0,jt); we denote the

resulting derivation Π0
j . In total, these derivations have O(t2) lines, height O(log t), formula

size O(rt) (where r is the formula size of Π) and size O(s̃t log t).

Let k < ⌈log t⌉ and j < t be such that 2k+1 | j. If j + 2k ≥ t, then τk+1
j = τkj , and

we put Πk+1
j = Πkj . Otherwise, we combine Πkj and Πk

j+2k
to Πk+1

j using an F∗
→-proof of

τkj → τk
j+2k

→ τk+1
j as constructed in the proof of Theorem B.3: it has O(2k) lines, height

O(log t), formula size O(s2k + sk+1,jt) = O(st), and size O
(
(s2k + sk+1,jt) log t

)
; summing this

over all j for a fixed k gives O(t) lines of total size O(s̃t log t).

Altogether, Π
⌈log t⌉
0 has O(t2) lines, height O(log t), formula size O(st), and size O

(
s̃t(log t)2

)
.

It is a derivation of ⊤ →
∧φ
i<t δi from Γ. Since δt−1 = ⊤ → φ, we can infer φ using Lemma A.13

without asymptotically increasing any of the size parameters.
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We can obtain the O(st2) size bound similarly, using δi = A′
i → γi as in the proof of

Theorem A.10 in place of Theorem A.16; in this case, we can avoid usage of the
∧φ formulas

entirely as in Remark B.4. 2

We mention that if we have a real ∧, the size bound improves to O
(
st(log t)2

)
.
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