Fragments of intuitionistic logic and proof complexity

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics of the Czech Academy of Sciences, Prague

Logic, Algebra and Truth Degrees, June 2016, Phalaborwa
Outline

1 Propositional proof complexity

2 Intuitionistic logic

3 Intuitionistic fragments
Propositional proof complexity

1 Propositional proof complexity

2 Intuitionistic logic

3 Intuitionistic fragments
Proof complexity

Fix a language $L \subseteq \Sigma^*$

Example: (the set of tautologies of) a propositional logic

- proof system for L: polynomial-time predicate $P(w, \pi)$ s.t.

$$w \in L \iff \exists \pi P(w, \pi)$$

- we are interested in the length (size) of proofs

$$s_P(w) = \min\{|\pi| : P(w, \pi)\}$$

- P is polynomially bounded if $s_P(w) \leq |w|^c \quad \forall w \in L$

- P p-simulates Q if there is a poly-time f s.t.

$$Q(w, \pi) \implies P(w, f(w, \pi))$$
Proof system = **nondeterministic acceptor** for L

- L has a polynomially bounded proof system iff $L \in \text{NP}$
- [CR7x] CPC has a polynomially bounded proof system iff $\text{NP} = \text{coNP}$
 - we expect all proof systems for CPC to require exponential-size proofs
 - only proven for weak systems (resolution, bounded-depth, . . .)

- nonclassical logics: often more complex
 - IPC: \text{PSPACE}-complete
 - in principle, could make lower bounds easier
Frege systems

Frege proof: sequence of formulas, each derived from earlier by instances of a fixed finite set of schematic axioms and rules

\[\varphi_1, \ldots, \varphi_k \vdash \psi \]

Required: sound and complete \(\Gamma \vdash_F \varphi \iff \Gamma \vdash_L \varphi \)

- robust notion:
 - independent of the choice of rules
 - \(\equiv \) sequent calculi, natural deduction, …
 - \(\equiv \) tree-like Frege (usually)

- in classical logic (CPC):
 - lower bounds \(\Omega(n^2) \) on size, \(\Omega(n) \) on \# of lines
 - hardly any candidates for hard tautologies
Extended Frege

Frege \rightarrow extended Frege (EF)

- allow introduction of abbreviations (extension variables)

 $q \iff \psi$

- equivalently: use circuits (dags) instead of formulas
- equivalently (sort of): count $\#$ of lines instead of size

substitution Frege (SF)

- allow explicit substitution rule
- CPC-\(EF \equiv_p \) CPC-SF
- nonclassical logics: often SF more powerful than EF
Intuitionistic logic

1 Propositional proof complexity

2 Intuitionistic logic

3 Intuitionistic fragments
Intuitionistic Frege/EF systems:

The most important tool is the feasible disjunction property

- simplest case [BM99, BP01]:
 given a proof of \(\varphi \lor \psi \), find in poly-time a proof of \(\varphi \) or \(\psi \)
- classical analogue: feasible interpolation
- \(\implies \) conditional exponential lower bounds for IPC-EF
- monotone variants [Hru07, 09]:
 \(\implies \) unconditional exponential lower bounds for IPC-EF
- generalization [J09]: exp. separation of EF from SF for IPC and si logics of unbounded branching
Without disjunction?

All known lower bounds for IPC-\(EF\) rely on feasible DP
\[\implies\text{tautologies prominently use disjunction}\]

\[\theta(\vec{p},\vec{q}) \rightarrow \alpha(\vec{p},\vec{s}) \lor \beta(\vec{q},\vec{r})\]

Question (P. Hrubeš)

What is the complexity of proving implicational tautologies in IPC-\(EF\)?

N.B.: IPC\(\rightarrow\) is still PSPACE-complete
Implicational tautologies

Answer [J15]

Just about the same as for arbitrary tautologies

poly-time transformations:

formula $\varphi \rightsquigarrow$ implicational formula $\varphi \rightarrow$

L-EF proof of $\varphi \iff L$-EF proof of $\varphi \rightarrow$ \hspace{1cm} ($L \supseteq IPC$)

- trade-off: restrictions on φ or on L
- side effect: also eliminate \lor, \ldots from proofs
Applicable to arbitrary logics L:

Theorem

Given a formula φ with no “essential” negatively occurring \lor, \bot, we can construct in poly time

- an implicational formula $\varphi \rightarrow$
- IPC-EF proof of $\sigma(\varphi \rightarrow) \rightarrow \varphi$ for a substitution σ
- IPC-EF proof of $\varphi \rightarrow \varphi \rightarrow$
Applicable to arbitrary formulas φ:

Theorem

Let L be an extension of IPC by implicational axioms. Given a formula φ, we can construct in poly-time

- an implicational formula $\varphi \rightarrow$
- IPC-EF proof of $\sigma(\varphi \rightarrow) \rightarrow \varphi$ for a substitution σ

s.t. given an L-EF proof of φ, we can construct in polytime an L-EF proof of $\varphi \rightarrow$
Application to known hard tautologies:

Theorem

There is a sequence of implicational tautologies φ_n s.t.

- φ_n has poly-time constructible IPC_{\rightarrow}-SF proofs
- φ_n requires exponential-size L-EF proofs for any $L \supseteq \text{IPC}$ of unbounded branching
Eliminate connectives from proofs

The argument involves elimination of \lor / \bot from L-EF proofs of implicational tautologies

- basic idea: emulate \bot by

$$\bigwedge_{i} p_i$$

and $\alpha \lor \beta$ by

$$\bigwedge_{i} ((\alpha \rightarrow p_i) \rightarrow (\beta \rightarrow p_i) \rightarrow p_i)$$

- related to Diego’s theorem
Theorem

Let P be an extension of the standard IPC-EF calculus by an implicational axiom schema.

Given a P-proof of φ, we can construct in poly time a P-proof π of φ s.t.

- if \bot doesn’t occur in φ, it doesn’t occur in π
- the only disjunctions in π are subformulas of φ
The argument does not eliminate conjunctions:

- no “definition” of \land by implicational formulas?
- we even get new conjunctions when eliminating \lor or \bot

Question

Can we generalize the elimination theorem to \land anyway?
Intuitionistic fragments

1. Propositional proof complexity

2. Intuitionistic logic

3. Intuitionistic fragments
Proofs in fragments

Forget length of proofs

Our elimination result implies:

Corollary

Let X be a set of implicational axioms

If $IPC + X$ proves an implicational formula φ, then so does $IPC_{\rightarrow,\land} + X$

That is: $IPC + X \rightarrow = (IPC_{\rightarrow,\land} + X) \rightarrow$

Similar consequences also hold for fragments with \lor or \bot

Let us name the concept . . .
Hereditary conservativity

\(L_C = \text{the fragment of logic } L \text{ in language } C \)

Definition

Let

- \(C_0, C_1 \) be languages with a common sublanguage \(C \)
- \(L_i \) be a logic in language \(C_i, i = 0, 1 \)

Then \(L_0 \) is hereditarily \(C \)-conservative over \(L_1 \) if

\[
(L_0 + X)_C \subseteq (L_1 + X)_C
\]

for all sets \(X \) of \(C \)-formulas
Corollary

Let $\rightarrow \in C \subseteq C_i \subseteq C_{IPC}$, $i = 0, 1$. Then

$$C_0 \subseteq C_1 \quad \text{or} \quad \land \in C_1$$ \hspace{1cm} (i)

\[\Downarrow\]

IPC\(_{C_0}\) is hereditarily C-conservative over IPC\(_{C_1}\) \hspace{1cm} (ii)

If we could eliminate \land the same way, we could drop (i)
Hereditary conservativity for IPC (2)

Theorem [Wro80]

Let $\rightarrow \in C \subseteq C_i \subseteq C_{\text{IPC}}$, $i = 0, 1$. Then

$$C_0 \subseteq C_1 \quad \text{or} \quad \land \in C_1$$

(i)

\[\iff\]

IPC$_{C_0}$ is hereditarily C-conservative over IPC$_{C_1}$

(ii)

\[\implies\]

we cannot eliminate \land in such a generality
The next best thing (using a different method):

Theorem

Let P be an extension of the standard IPC-EF calculus by an implicational axiom schema α such that

$$(\text{IPC} + \alpha) \rightarrow = \text{IPC} \rightarrow + \alpha$$

Given a P-proof of φ, we can construct in poly time a P-proof π of φ s.t.

- if \bot doesn’t occur in φ, it doesn’t occur in π
- the only disjunctions in π are subformulas of φ
- the only conjunctions in π are subformulas of φ
Thank you for attention!
S. R. Buss, G. Mints: The complexity of the disjunction and existential properties in intuitionistic logic, APAL 99 (1999), 93–104

S. A. Cook, R. A. Reckhow: The relative efficiency of propositional proof systems, JSL 44 (1979), 36–50

P. Hrubeš: Lower bounds for modal logics, JSL 72 (2007), 941–958

_______: A lower bound for intuitionistic logic, APAL 146 (2007), 72–90

_______: On lengths of proofs in non-classical logics, APAL 157 (2009), 194–205

E. Jeřábek: Substitution Frege and extended Frege proof systems in non-classical logics, APAL 159 (2009), 1–48
