Recursive functions
vs.
classification theory

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Utrecht Workshop on Proof Theory, April 2015
Recursive functions and R

1. Recursive functions and R

2. Model completions

3. Classification theory
Robinson’s theory R

NOT Robinson’s arithmetic (Q), but equally illustrious

Simple presentation: language $\langle 0, S, +, \cdot, < \rangle$, axioms

\[
S^n(0) + S^m(0) = S^{n+m}(0) \\
S^n(0) \cdot S^m(0) = S^{nm}(0) \\
\forall x \ (x < S^n(0) \iff x = 0 \lor \cdots \lor x = S^{n-1}(0))
\]

- Axiomatizes true Σ_1 sentences
- Essentially undecidable, no r.e. completion
- Locally finitely satisfiable
- Visser ’12: Strongest locally finitely satisfiable r.e. theory up to interpretation
Representability of recursive functions

Representation of a (partial) function \(f : \mathbb{N}^k \rightarrow \mathbb{N} \) in \(T \):

Formula \(\varphi(x_1, \ldots, x_k, y) \), constant terms \(n \) for \(n \in \mathbb{N} \) s.t. \(T \) proves

- \(n \neq m \) whenever \(n \neq m \)
- \(\varphi(n_1, \ldots, n_k, z) \leftrightarrow z = m \) whenever \(f(n_1, \ldots, n_k) = m \)

Essential undecidability of \(R \) follows from:

- Theories representing all recursive functions are essentially undecidable
- \(R \) represents all recursive functions (even partial)
Converse?

R was designed to represent recursive functions, while being as weak as possible

This suggests the following question:

Problem

If a theory represents recursive functions, does it interpret R?
Representability revisited

Representation of \(f \) \(\Longleftrightarrow \) interpretation of a certain theory

The extra requirements are pointless \(\implies \) better definition:

Definition

A representation of \(f : \mathbb{N}^k \to \mathbb{N} \) in \(T \) is an interpretation of the following theory \(\text{Rep}_f \) in \(T \):

- **Language**:
 - constants \(n \) for \(n \in \mathbb{N} \)
 - function symbol \(f \)

- **Axioms**:
 - \(n \neq m \) for \(n \neq m \)
 - \(f(n_1, \ldots, n_k) = m \) for \(f(n_1, \ldots, n_k) = m \)
New statement of the problem

Definition

\[\text{PRF} = \bigcup \{ \text{Rep}_f : f \text{ partial recursive function} \} \]

PRF can be equivalently expressed in a finite language:

\[0, S(x), \langle x, y \rangle, \phi_x(y) \]

Our question reduces to:

Problem

Does PRF interpret R?
1. Recursive functions and R

2. Model completions

3. Classification theory
Basic idea

PRF has quantifier-free axioms
\[\implies \text{shouldn’t interpret much of anything} \]

Trouble: interpretations may use formulas of arbitrary quantifier complexity \[\implies \text{not easy to analyze directly} \]

Strategy: extend PRF to a theory with quantifier elimination

- get a handle on possible interpretations
- embed the standard model of PRF in a randomly looking structure so that any combinatorial features are dissolved
Definition

Let T be a universal theory. A theory T^* is a

- companion of T if every model of T embeds in a model of T^* and vice versa
 - equivalently: $(T^*)^\forall = T$

- model companion of T if it is a companion, and it is model-complete
 - if $M \subseteq N$ are models of T^*, then $M \preceq N$
 - equivalently: over T^*, all formulas are existential

- model completion of T if it is a (model) companion, and it has quantifier elimination
The model companion T^* of T is unique if it exists.

Models of T^* are the existentially closed models of T:
- $M \models T$
- If an existential formula holds in an extension $M \subseteq N \models T$, it already holds in M.

T has a model companion \iff the class of e.c. models of T is elementary.

<table>
<thead>
<tr>
<th>T</th>
<th>T^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear orders</td>
<td>dense linear orders</td>
</tr>
<tr>
<td>integral domains</td>
<td>algebraically closed fields</td>
</tr>
<tr>
<td>Boolean algebras</td>
<td>atomless Boolean algebras</td>
</tr>
<tr>
<td>groups</td>
<td>N/A</td>
</tr>
</tbody>
</table>
If the empty L-theory \emptyset_L had a model completion \emptyset^*_L:

- every L-structure extends to a model of \emptyset^*_L
- every consistent existential L-theory is consistent with \emptyset^*_L
- a theory interpretable in a consistent existential L-theory is weakly interpretable in \emptyset^*_L
- (weak) interpretations in \emptyset^*_L are quantifier-free

PRF is existential, so what we’ll do:

- show that indeed, \emptyset_L has a model completion
- exhibit theories interpretable in R (∼ locally finitely satisfiable) and not weakly interpretable in \emptyset^*_L
\emptyset_L^* is well known for relational languages L: the theory of random structure(s)

- sentences that hold with asymptotic probability 1 in n-element random L-structures, $n \to \infty$
- or: the countable random L-structure
- Fraïssé limit of the class of all finite L-structures
- ω-categorical, quantifier elimination, …
- axiomatized by extension axioms:
 - for any distinct a_1, \ldots, a_k, there is another element b that bears any prescribed relations to a_1, \ldots, a_k
The general case

If L includes function symbols:

- no 0–1 or limit law; no uniform distribution on ω
- 2^ω quantifier-free types \implies no hope for ω-categoricity
- cannot assign values of terms willy-nilly:
 $f(a) = f(b) \implies g(f(a)) = g(f(b))$

Luckily, it all works out in the end:

Theorem

For every language L, \emptyset_L has a model completion \emptyset_L^*.

Warning: \emptyset_L^* may be incomplete (quantifier-free sentences)
Corollary

If \(T \) is interpretable in a consistent existential theory, it is weakly quantifier-free interpretable in \(\emptyset^*_L \) for some \(L \).

A partial converse \(\Rightarrow \) we are on the right track:

Proposition

Let \(T \) be an \(\exists \forall \) theory in a relational language (?). If \(T \) is weakly interpretable in some \(\emptyset^*_L \), it is interpretable in a consistent existential theory.

NB: \(\emptyset^*_L \) is \(\forall \exists \)
1. Recursive functions and R

2. Model completions

3. Classification theory
Classification theory

- Various criteria to separate tame and wild theories ("dividing lines")
- Structure theory for models of tame theories
 - geometry of definable sets and types
 - models with special properties (prime, saturated, ...)
 - interpretable algebraic structures (groups, ...)
- Uncountable categoricity, stability,
o-minimality, simplicity ...
- Shelah

Why is it relevant here?

- Many dividing lines amount to weak interpretability of
 \(\exists \forall \) locally finitely satisfiable theories!
Metaterminology

Let T be a theory:

- A formula φ has the xghg xiljxa property (XXP) in T if there are
 - a model $M \models T$
 - tuples $\overline{a}_i \in M$ $(i \in I)$

 such that hflijesai ff jai l jklf ajlifa $\varphi(\overline{a}_i, \overline{x})$ kah f h ahfdj k

- T has XXP if some formula has it in T

- T has the no xghg xiljxa property (NXXP) if it doesn’t have XXP

- NXXP is good, XXP is bad
Main classes

picture

missing

see http://forkinganddividing.com
Order and independence properties

- **order property (OP)**
 \[M \models T, \varphi(\bar{x}, \bar{y}), (\bar{a}_i)_{i \in \mathbb{N}} \text{ s.t.} \]
 \[M \models \varphi(\bar{a}_i, \bar{a}_j) \iff i < j \]

 NOP = stable = NIP & NSOP

- **strict order property (SOP)**
 - \(\varphi(\bar{x}, \bar{y}) \) defines a strict partial order
 - \(M \models \varphi(\bar{a}_i, \bar{a}_j) \) for \(i < j \)

- **\(k \)-strong order property (SOP\(_k \)), \(k \geq 3 \)**
 - \(\{ \varphi(\bar{x}_1, \bar{x}_2), \varphi(\bar{x}_2, \bar{x}_3), \ldots, \varphi(\bar{x}_k, \bar{x}_1) \} \) is inconsistent
 - \(M \models \varphi(\bar{a}_i, \bar{a}_j) \) for \(i < j \)

- **independence property (IP)**
 \[\varphi(\bar{x}, \bar{y}), (\bar{a}_i)_{i \in \mathbb{N}}, (\bar{b}_X)_{X \subseteq \mathbb{N}} \text{ s.t.} \]
 \[M \models \varphi(\bar{a}_i, \bar{b}_X) \iff i \in X \]
\(\mathbb{N}^{<\omega} = \) tree of finite sequences over a countable alphabet

▶ tree property (TP)
\(M, \varphi(\overline{x}, \overline{y}), (\overline{a}_s)_{s \in \mathbb{N}^{<\omega}} \) s.t.

▶ \{\varphi(\overline{x}, \overline{a}_{\sigma|n}) : n \in \omega\} is consistent for each path \(\sigma \in \mathbb{N}^\omega \)

▶ \{\varphi(\overline{x}, \overline{a}_{s \cup i}), \varphi(\overline{x}, \overline{a}_{s \cup j})\} is inconsistent for \(s \in \mathbb{N}^{<\omega}, i < j \)

\[\text{NTP} = \text{simple} = \text{NTP}_1 \& \text{NTP}_2 \]

▶ TP\(_1\) (\(= \text{“SOP}_2\)”)

▶ \{\varphi(\overline{x}, \overline{a}_{\sigma|n}) : n \in \omega\} is consistent for \(\sigma \in \mathbb{N}^\omega \)

▶ \{\varphi(\overline{x}, \overline{a}_s), \varphi(\overline{x}, \overline{a}_t)\} is inconsistent for \(s, t \) incomparable

▶ TP\(_2\)
\(M, \varphi(\overline{x}, \overline{y}), (\overline{a}_{n,i})_{n,i \in \omega} \)

▶ \{\varphi(\overline{x}, \overline{a}_{n,\sigma(n)}) : n \in \omega\} is consistent for \(\sigma \in \mathbb{N}^\omega \)

▶ \{\varphi(\overline{x}, \overline{a}_{n,i}), \varphi(\overline{x}, \overline{a}_{n,j})\} is inconsistent for \(n \in \omega, i < j \)
\[\emptyset^*_L \text{ not quite domesticated} \]

NB: random relational structures are supersimple

Observation

Any consistent extension of

- \(PRF \), or
- \(\emptyset^*_L \) if \(L \) contains a binary function

is \(TP_2 \) (hence IP and non-simple).

Proof: Take \(\bar{a}_{n,i} = (n, i) \), and

\[
(x)_{y_1} = y_2
\]

for the formula \(\varphi(x, y_1, y_2) \)
Elimination of infinity

Definition

T has elimination of infinity if for every formula \(\varphi(\overline{z}, x) \), there is a bound \(n \) such that

\[
|\varphi(\overline{a}, M)| > n \implies |\varphi(\overline{a}, M)| \geq \aleph_0
\]

for every \(M \models T \) and \(\overline{a} \in M \)

Elimination of infinity \(\iff \) FO formulas are closed under \(\exists^\infty \):

\[
M \models \exists^\infty x \varphi(\overline{a}, x) \iff \varphi(\overline{a}, M) \text{ is infinite}
\]
Main theorem

For any language L:

- \emptyset^*_L has NSOP_3 (hence NSOP)
- $(\emptyset^*_L)^{eq}$ eliminates infinity
Consequences

Corollary

The following theories are interpretable in R, but not in PRF:

- (partial) orders with arbitrarily long chains
- “for each standard n, there is a set with n elements”
- directed graphs with arbitrarily long transitive chains, and no directed 3-cycle
Problems

- Does PRF interpret all consistent r.e. existential theories?
- Is the random graph interpretable in a consistent existential theory?
- Does \emptyset^*_L have NTP_1, or even NSOP_1?
- Does \emptyset^*_L have weak elimination of imaginaries?
Thank you for attention!
References

- S. Shelah: Classification theory and the number of nonisomorphic models, 2nd ed., Elsevier, 1990