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CV summary
I 2004–2009: My PhD thesis: Computer simulation of spin foam

models of quantum gravity (UWO, Canada)
I 2009–2011: Development of an independent research program

(Utrecht). (Canadian grant $$$)
I 2011– : Active focus on mathematical aspects of Quantum

Field Theory and Gravity (Utrecht, Trento). (Dutch grant $$$)
I 19 published articles (11 since 2011).
I 20 international conference presentations, 7 invited (since 2011).
I 30+ seminar presentations in Europe, Canada, US (since 2011).

I (Co-)Mentoring:
I 2 MSc projects completed (Utrecht, Trento), 1 in progress (Pavia).
I 2 PhD projects in progress (Trento, Pavia).

I Teaching:
I ∼300 hours of classroom instruction, between 2002 and 2015.
I Courses assisted: Numerical Analysis, Mathematical Methods for

Engineers, Mathematical Analysis for Physicists and Engineers.
I Instruction in English and Italian.
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QFT and Gravity as motivations
I Mathematical Physics is Mathematics motivated by Physics.
I Quantum Field Theory (QFT) and Gravity, in various

combinations, are at the forefront of fundamental physics. E.g.:
I early universe cosmology
I black hole dynamics and evaporation

I It is a very fertile ground for interesting and challenging
mathematical problems.

I They require tools from and stimulate development in
I PDEs and analysis on manifolds
I finite and infinite dimensional geometry, super-geometry
I operator and topological algebras
I representation and invariant theory
I commutative algebra, homological algebra
I category theory, higher geometry, . . .

I Mathematical developments feed back into
physicists’ calculations.
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What is a QFT mathematically?

I Mathematical formalizations of QFTs vary widely. The choice
depends on the specific type of field theory under consideration.

I I am mostly interested in (perturbatively) non-linear, gauge
theories on curved Lorentzian spacetimes. (Different from 2D
CFT, TQFT, instantons, stochastic processes, etc.)

I Such a QFT is mostly determined by a variational PDE system
that can be made hyperbolic by suitable gauge-fixing.

I Examples:
I scalar wave and Klein-Gordon fields, Dirac spinor fields
I Maxwell theory, Yang-Mills theory
I General Relativity (most prominent representative)

I The appropriate mathematical formalism is Locally Covariant
(Perturbative) Algebraic QFT (LCQFT) on curved spacetimes,
axiomatized by Brunetti-Fredenhagen-Verch (2003).

Igor Khavkine (Trento) QFT & Gravity May 2016 3 / 16



Studying Quantum Field Theory (QFT)
A QFT is constructed roughly as follows:

The Brunetti-Fredenhagen-Verch framework for Locally Covariant
QFT; the arrows are functors with specific properties.
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Solution (phase) space
ẼL[φ] = 0: Euler-Lagrange equations on F → M; S: solution space on M

Under sufficient well-posedness conditions, the solution space S
becomes a phase space, with symplectic and Poisson structures.
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Linearization instability
X

(x , y) ∈ Se(x , y) = 0

(x , y)

T(x,y)S

e(0,0)(ξ, η) = 0

T(0,0)S

e(x , y) = x2 − y2 + · · ·

I Solution space of a nonlinear equation:

e(x , y) = 0⇔ (x , y) ∈ S ⊂ X .
I Formal (Zariski) tangent space T(x,y)S:

e(x + tξ, y + tη) = te(x,y)(ξ, η) + O(t2),
(ξ, η) ∈ T(x,y)S ⇔ e(x,y)(ξ, η) = 0.

I Extendable tangent (cone) vector (ξ, η):

e(xt , yt ) = 0 with (xt , yt ) = (x , y) + t(ξ, η) + O(t2).
I Obstruction Q: (ξ, η)-extendable⇒ Q(ξ, η) = 0.

Linearization
instability
at (x , y):

not all vectors in
T(x,y)S are
extendable!
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Linearization instability
AHP16 L.Instab
Def: A Gauge Theory admits a large (gauge) symmetry group,
G � Γ(F ), locally parametrized by arbitrary functions on M.

Def: In Higher (or Reducible) Gauge Theory, gauge symmetries admit
gauge symmetries, etc., · · · � G2 � G1 � Γ(F ); linearize at ϕ and take
cohomologies to get RSymp(ϕ), stage-p rigid symmetries.

Theorem
For a sufficiently regular Higher Gauge Theory, at a background
solution ϕ on M, for any higher stage rigid symmetry ξ ∈ RSymp(ϕ)

there is a linearization obstruction Qξ
p valued in Hn−p

dR (M).

Fischer-Marsden (1973): linearization instability in General Relativity

I GR: RSym1(g) ∼= Killing vectors of g. (Fischer, Marsden, Moncrief)
I YM: RSym1(∇) ∼= ∇-constant g-valued 0-forms. (Moncrief)
I Freedman-Townsend: RSym2(B = 0) ∼= H0(M, g⊗ R). (New!)
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Poisson structure in Gauge Theories

In a Gauge Theory, we work with
equivalence classes [φ] ∈ S̄ = S/G.

Linearizing, we work with
equivalence classes [ψ] ∈ TφS̄.

There is a Poisson bracket {−,−}
defined on S̄.

Equivalently, we want the Poisson algebra of gauge-invariant functions
on S (observables). It is the starting point for quantization.

The Poisson bracket can be constructed by canonical methods of
Hamiltonian mechanics. But it is more convenient to use the Peierls
formula (1952), which does not require us to parametrize S or S̄ by
initial data: {A,B}φ =

∫
M×M dx δA

δφ(x) [G+
φ (x , y)−G−φ (x , y)] δB

δφ(y)dy

The Peierls formula uses gauge-fixing to lift the Poisson bracket to S.
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Poisson structure in Gauge Theories
IJMPA29 Cov.Peierls, AHP2016 Caus.Cohom
Q: Does {−,−} develop degeneracies when restricted to T ∗φ S̄ ⊂ T ∗φS?
Poisson degeneracies lead to interesting physical effects: central charges,
superselection sectors, . . .

Theorem
For sufficiently regular Gauge Theories, there exists sheaves G and C ′ on M
and degrees p,q ≥ 0 such that the degeneracy dimension of the Poisson
bracket is dominated by dim Hp

sc(M,G )⊕ Hq
sc,sol (M,C ′) <∞.

G is determined by gauge symmetries and C ′ by constraints; p,q > 1 in
Higher Gauge Theories.

I Yang-Mills: G ,C ′ ∼= g⊗ R, p = q = 1 (twisted de Rham)

I General Relativity: G ,C ′ ∼= Killing vector sheaf, p = q = 1

I Freedman-Townsend, Chern-Simons, Courant σ-model: like YM

Q: Why sheaves? A: Sheaf cohomology is a short-cut to counting solutions
of complicated PDEs (e.g., de Rham’s theorem).
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Wick polynomials
I QFT associates a non-commutative ∗-algebra A (of quantum

observables) to a spacetime region M. They are generated by

A 3 1, A 3
∫

M
φ(x)f (x)dx , f ∈ C∞c (M).

The quantum field φ(x) is an A-valued distribution.
I Usually, products φ(x) · φ(x) are ill defined, but we can define

(Wick powers) :φ2(x): = lim
y→x

φ(x)φ(y)−G(x , y) 1,

for special scalar distributions G(x , y).
I Wick polynomials are a convenient basis for local physical

observables in QFT: energy and momentum density, charge
current, etc.

I Replacing G(x , y) by G′(x , y) may give a different prescription
:φ2(x):′. The difference :φ2:′ − :φ2: is a finite renormalization.
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Finite renormalizations of Wick polynomials
I Consider a Locally Covariant QFT of a scalar φ(x), with Wick

powers :φk (x):, on a Lorentzian spacetime (M,g).
I Different prescriptions : · : and : · :′ must differ by

:φk (x):− :φk (x):′ =
k−2∑
i=1

Ck−i [g](x) :φi(x):,

where Ci [g](x) are local curvature scalars of g.
I Hollands-Wald (2001): The original sufficient conditions required

locality, covariance, continuous dependence on metrics and
“analytic dependence” on analytic metrics.

I Unnaturality of the analyticity hypothesis has slowed progress
beyond the scalar field case.

I Classifying finite renormalizations helps us classify anomalies
(symmetries broken by quantum effects).
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Finite renormalizations of Wick polynomials
CMP2016 Analytic Dep, with V.Moretti (Trento)
Q: How is the analyticity hypothesis used?
A: Only to show that Ci [g](x) is a differential operator on g(x). By hypothesis,

Ci [g](x) = Ci (g(x), ∂g(x), ∂2g(x), · · · ) = convergent series,

which is finite by a secondary argument.
Q: Is it possible to remove the analyticity requirement? A: Yes.

Proposition (Peetre 1959, Slovak 1988)
A sheaf morphism of smooth functions is given by a differential operator iff it
is regular (sends smooth parametrized functions to smooth functions).

Theorem
By locality, g 7→ Ci [g](x) is a sheaf morphism. Peetre-Slovak and a regularity
hypothesis imply that the Ci [g] are differential operators. By covariance they
are curvature scalars.

We have replaced the continuity and analyticity hypotheses by a technically
more natural regularity hypothesis.
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QFT of Gravity (QG) as motivation
QG is the application of QFT to General Relativity.

The guiding theme of my research program is to make precise and
rigorous all of the illustrated steps.
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QFT of Gravity (QG) as motivation
QG is difficult because it uniquely combines all of the following
challenges:

1. Non-linearity
I λφ4, QED, YM, fluids

2. Dynamical Causality
I gas dynamics, fluids,

quasilinear hyperbolic PDE
3. Singularities

I fluid shocks, breaking
waves, wave focusing

4. Gauge Redundancy
I Maxwell, YM, TQFT, string

5. Non-local Observables
I Aharonov-Bohm, TQFT,

Wilson loops
6. UV Renormalization

I any interacting QFT
7. IR Renormalization

I any massless field
8. Non-perturbative Definition

I any physical QFT

Much is known about each obstacle in isolation. It is an outstanding
challenge to understand them better in General Relativity and to
combine this understanding together.
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Research program panorama
Non-Linearity

Dynamical Causality

Singularities

Gauge Redundancy

Non-local Observables

UV Renormalization

IR Renormalization

Non-perturbative Definition

Future

Schw.Grav.Prop†

Higher Grpd†

Conal Temp.Fun

Killing Cplx†

Supergeom.Fermions†

Tensor Wick†

Faddeev-Kulish on CST

BH Dyn.Evap

Path.Int ∗~

Past

CQG28 Hawk.Comment

PRD85 Q.Astro I

aXv1211 Causality

PRD89 Q.Astro II†

AHP16 L.Instab

IJMPA29 Cov.Peierls

AHP2016 Caus.Cohom

aXv1409 Calabi Cplx

CMP2016 Analytic Dep†

CQG32 Obsv.GR

† with collaborators
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Thank you for your attention!
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Current projects

I Schw.Grav.Prop Compute the harmonic gauge graviton propagator on
Schwarzschild spacetime, via separation of variables and spectral analysis of
the radial (highly non-standard) Sturm-Liouville problem. With F. Bussola,
C. Dappiaggi (Pavia).

I Higher Grpd Reveal the structure of higher groupoids in the gauge symmetries
of ordinary and reducible gauge theories. With U. Schreiber (Prague).

I Conal Temp.Fun Use de Rham currents and Sullivan’s (1976) structure cycles
to study temporal functions on conal manifolds.

I Killing Cplx Study the cohomology resolution by a complex of differential
operators of the sheaf of Killing vectors on curved spacetime, using the Spencer
formal theory of PDEs. Initial stages with G. Canepa, C. Dappiaggi (Pavia).

I Supergeom.Fermions Use supergeometry and hyperbolic PDEs to construct
quasi-linear classical field theories with fermions. With F. Hanisch (Potsdam).

I Tensor Wick Extend the new proof, with the use of the Peetre-Slovak theorem
and differential invariants, of the characterization of finite renormalizations of
Wick polynomials to tensor, spinor and gauge field theories. With A. Melati,
V. Moretti (Trento).



Future projects

I Faddeev-Kulish on CST Reproduce the success of the UV
Renormalizaton program on curved spacetimes by formulating IR
Renormalization on curved spacetimes, with the help of the
heuristics of Faddeev-Kulish (1970) the modern theory of decay
rates of wave-like PDEs on asymptotically flat spacetimes.

I BH Dyn.Evap Apply the methods of locally covariant
perturbative QFT to study the quantum gravitational back-reaction
of Hawking evaporation of black holes.

I Path.Int ∗~ Identify a spacetime covariant functional-integral
formula for the quantum ∗-product in QFT.


