Triangular decoupling of systems of differential equations, with application to separation of variables on Schwarzschild spacetime
 [arXiv:1711.00585, 1801.09800, 2004.09651]

Igor Khavkine

Institute of Mathematics Czech Academy of Sciences (Prague)

Geometry of Differential Equations seminar Independent University of Moscow

20 Oct 2021

Schwarzschild Scalar Wave Equation (model problem)

- Schwarzschild: spherically symmetric, static black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-f(\mathrm{~d} t)^{2}+f^{-1}(\mathrm{~d} r)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta(\mathrm{~d} \varphi)^{2}\right), \quad f(r)=1-\frac{2 M}{r} .
$$

where the spin-s Regge-Wheeler operator is $(r \in(2 M, \infty), I \geq s)$

Schwarzschild Scalar Wave Equation (model problem)

- Schwarzschild: spherically symmetric, static black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-f(\mathrm{~d} t)^{2}+f^{-1}(\mathrm{~d} r)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta(\mathrm{~d} \varphi)^{2}\right), \quad f(r)=1-\frac{2 M}{r} .
$$

- Radial mode equation of scalar wave equation (may omit ω / m):

$$
z(t, r, \theta, \varphi)=\frac{\phi_{\omega l m}(r)}{r} Y^{\prime m}(\theta, \varphi) e^{-i \omega t}, \quad \square_{\mathbf{g}} z=0 \quad \Longrightarrow \quad \mathcal{D}_{0} \phi=0,
$$

where the spin-s Regge-Wheeler operator is $(r \in(2 M, \infty), I \geq s)$

$$
\mathcal{D}_{s} \phi:=\partial_{r} f \partial_{r} \phi-\underbrace{\frac{l(I+1)+\left(1-s^{2}\right) \frac{2 M}{r}}{r^{2}}}_{(\ldots)>0} \phi+\omega^{2} \underbrace{\frac{1}{f}} \phi .
$$

N.B.: $\mathcal{D}_{s}^{*}=\mathcal{D}_{s}$ is formally self-adjoint, of Sturm-Liouville type.
self-adjoint ω^{2}-spectral problem for

Schwarzschild Scalar Wave Equation (model problem)

- Schwarzschild: spherically symmetric, static black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-f(\mathrm{~d} t)^{2}+f^{-1}(\mathrm{~d} r)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta(\mathrm{~d} \varphi)^{2}\right), \quad f(r)=1-\frac{2 M}{r} .
$$

- Radial mode equation of scalar wave equation (may omit ω / m):

$$
z(t, r, \theta, \varphi)=\frac{\phi_{\omega} / m}{r}(r) Y^{l m}(\theta, \varphi) e^{-i \omega t}, \quad \square_{\mathbf{g}} z=0 \quad \Longrightarrow \quad \mathcal{D}_{0} \phi=0,
$$

where the spin-s Regge-Wheeler operator is $(r \in(2 M, \infty), I \geq s)$

$$
\mathcal{D}_{s} \phi:=\partial_{r} f \partial_{r} \phi-\underbrace{\frac{l(I+1)+\left(1-s^{2}\right)^{2 M} \frac{2 M}{r}}{r^{2}}}_{(\cdots)>0} \phi+\omega^{2} \underbrace{\frac{1}{f}} \phi .
$$

N.B.: $\mathcal{D}_{s}^{*}=\mathcal{D}_{s}$ is formally self-adjoint, of Sturm-Liouville type.
self-adjoint ω^{2}-spectral problem for

Schwarzschild Scalar Wave Equation (model problem)

- Schwarzschild: spherically symmetric, static black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-f(\mathrm{~d} t)^{2}+f^{-1}(\mathrm{~d} r)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta(\mathrm{~d} \varphi)^{2}\right), \quad f(r)=1-\frac{2 M}{r} .
$$

- Radial mode equation of scalar wave equation (may omit ω / m):

$$
z(t, r, \theta, \varphi)=\frac{\phi_{\omega} / m}{r}(r) Y^{l m}(\theta, \varphi) e^{-i \omega t}, \quad \square_{\mathbf{g}} z=0 \quad \Longrightarrow \quad \mathcal{D}_{0} \phi=0,
$$

where the spin-s Regge-Wheeler operator is $(r \in(2 M, \infty), I \geq s)$

$$
\mathcal{D}_{s} \phi:=\partial_{r} f \partial_{r} \phi-\underbrace{\frac{l(I+1)+\left(1-s^{2}\right)^{\frac{2 M}{r}}}{r^{2}}}_{(\ldots)>0} \phi+\omega^{2} \underbrace{\frac{1}{f}}_{(\cdots)>0} \phi .
$$

N.B.: $\mathcal{D}_{s}^{*}=\mathcal{D}_{s}$ is formally self-adjoint, of Sturm-Liouville type. self-adjoint ω^{2}-spectral problem for on $L^{2}\left(2 M, \infty ; \frac{\mathrm{dr}}{f}\right)$.

Schwarzschild Scalar Wave Equation (model problem)

- Schwarzschild: spherically symmetric, static black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-f(\mathrm{~d} t)^{2}+f^{-1}(\mathrm{~d} r)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta(\mathrm{~d} \varphi)^{2}\right), \quad f(r)=1-\frac{2 M}{r} .
$$

- Radial mode equation of scalar wave equation (may omit ω / m):

$$
z(t, r, \theta, \varphi)=\frac{\phi_{\omega l m}(r)}{r} Y^{\prime m}(\theta, \varphi) e^{-i \omega t}, \quad \square_{\mathbf{g}} z=0 \quad \Longrightarrow \quad \mathcal{D}_{0} \phi=0,
$$

where the spin-s Regge-Wheeler operator is $(r \in(2 M, \infty), I \geq s)$

$$
\mathcal{D}_{s} \phi:=\partial_{r} f \partial_{r} \phi-\underbrace{\frac{I(\cdots)>0}{r^{2}}(I+1)+\left(1-s^{2}\right) \frac{2 M}{r}}_{f-1} \phi+\omega^{2} \underbrace{\frac{1}{f}}_{(\cdots)>0} \phi .
$$

N.B.: $\mathcal{D}_{s}^{*}=\mathcal{D}_{s}$ is formally self-adjoint, of Sturm-Liouville type.

Positive self-adjoint ω^{2}-spectral problem for on $L^{2}\left(2 M, \infty ; \frac{\mathrm{dr}}{f}\right)$.

Schwarzschild Scalar Wave Equation (model problem)

- Schwarzschild: spherically symmetric, static black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-f(\mathrm{~d} t)^{2}+f^{-1}(\mathrm{~d} r)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta(\mathrm{~d} \varphi)^{2}\right), \quad f(r)=1-\frac{2 M}{r} .
$$

- Radial mode equation of scalar wave equation (may omit ω / m):

$$
z(t, r, \theta, \varphi)=\frac{\phi_{\omega l m}(r)}{r} Y^{\prime m}(\theta, \varphi) e^{-i \omega t}, \quad \square_{\mathbf{g}} z=0 \quad \Longrightarrow \quad \mathcal{D}_{0} \phi=0,
$$

where the spin-s Regge-Wheeler operator is $(r \in(2 M, \infty), I \geq s)$

$$
\mathcal{D}_{s} \phi:=\partial_{r} f \partial_{r} \phi-\underbrace{\frac{I(I+1)+\left(1-s^{2}\right)^{\frac{2 M}{r}}}{r^{2}}}_{f^{-1}(\cdots)>0} \phi+\omega^{2} \underbrace{\frac{1}{f}}_{(\cdots)>0} \phi .
$$

N.B.: $\mathcal{D}_{s}^{*}=\mathcal{D}_{s}$ is formally self-adjoint, of Sturm-Liouville type.

Positive self-adjoint ω^{2}-spectral problem for on $L^{2}\left(2 M, \infty ; \frac{\mathrm{dr}}{f}\right)$.

- No complex $\nu_{\omega / m}=\sqrt{\omega^{2}} \in \mathbb{C} \backslash \mathbb{R}$ spectrum (growing $e^{-i \nu t}$ modes!).

Schwarzschild Scalar Wave Equation (model problem)

- Schwarzschild: spherically symmetric, static black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-f(\mathrm{~d} t)^{2}+f^{-1}(\mathrm{~d} r)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta(\mathrm{~d} \varphi)^{2}\right), \quad f(r)=1-\frac{2 M}{r}
$$

- Radial mode equation of scalar wave equation (may omit ω / m):

$$
z(t, r, \theta, \varphi)=\frac{\phi_{\omega l m}(r)}{r} Y^{\prime m}(\theta, \varphi) e^{-i \omega t}, \quad \square_{\mathbf{g}} z=0 \quad \Longrightarrow \quad \mathcal{D}_{0} \phi=0,
$$

where the spin-s Regge-Wheeler operator is $(r \in(2 M, \infty), I \geq s)$

$$
\mathcal{D}_{s} \phi:=\partial_{r} f \partial_{r} \phi-\underbrace{\frac{I(I+1)+\left(1-s^{2}\right) \frac{2 M}{r}}{r^{2}}}_{f^{-1}(\cdots)>0} \phi+\omega^{2} \underbrace{\frac{1}{f}}_{(\cdots)>0} \phi .
$$

N.B.: $\mathcal{D}_{s}^{*}=\mathcal{D}_{s}$ is formally self-adjoint, of Sturm-Liouville type.

Positive self-adjoint ω^{2}-spectral problem for on $L^{2}\left(2 M, \infty ; \frac{\mathrm{dr}}{f}\right)$.

- No complex $\nu_{\omega / m}=\sqrt{\omega^{2}} \in \mathbb{C} \backslash \mathbb{R}$ spectrum (growing $e^{-i \nu t}$ modes!).
- Orthogonality and completeness of generalized eigenmodes $\phi_{\omega / m}(r)$.

Schwarzschild Scalar Wave Equation (model problem)

- Schwarzschild: spherically symmetric, static black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-f(\mathrm{~d} t)^{2}+f^{-1}(\mathrm{~d} r)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta(\mathrm{~d} \varphi)^{2}\right), \quad f(r)=1-\frac{2 M}{r}
$$

- Radial mode equation of scalar wave equation (may omit ω / m):

$$
z(t, r, \theta, \varphi)=\frac{\phi_{\omega l m}(r)}{r} Y^{\prime m}(\theta, \varphi) e^{-i \omega t}, \quad \square_{\mathbf{g}} z=0 \quad \Longrightarrow \quad \mathcal{D}_{0} \phi=0,
$$

where the spin-s Regge-Wheeler operator is $(r \in(2 M, \infty), I \geq s)$

$$
\mathcal{D}_{s} \phi:=\partial_{r} f \partial_{r} \phi-\underbrace{\frac{I(I+1)+\left(1-s^{2}\right) \frac{2 M}{r}}{r^{2}}}_{f^{-1}(\cdots)>0} \phi+\omega^{2} \underbrace{\frac{1}{f}}_{(\cdots)>0} \phi .
$$

N.B.: $\mathcal{D}_{s}^{*}=\mathcal{D}_{s}$ is formally self-adjoint, of Sturm-Liouville type.

Positive self-adjoint ω^{2}-spectral problem for on $L^{2}\left(2 M, \infty ; \frac{\mathrm{dr}}{f}\right)$.

- No complex $\nu_{\omega / m}=\sqrt{\omega^{2}} \in \mathbb{C} \backslash \mathbb{R}$ spectrum (growing $e^{-i \nu t}$ modes!).
- Orthogonality and completeness of generalized eigenmodes $\phi_{\omega / m}(r)$.

Tensor Wave Equations: triangular form?

Lemma (\triangle)

\tilde{E}_{ω} has a positive self-adjoint ω^{2}-spectral problem on $L^{2}\left(2 M, \infty ; \frac{\mathrm{dr}}{f}\right)^{\oplus 7}$,

$$
\tilde{E}_{\omega}=\left[\begin{array}{ccccccc}
\mathcal{D}_{0} & & * & & * & & * \\
& \mathcal{D}_{1} & & & & * & \\
& & \mathcal{D}_{0} & & & & * \\
& & & \mathcal{D}_{2} & & \mathcal{D}_{0} & \\
& & & & & \mathcal{D}_{1} & \\
& & & & & & \mathcal{D}_{0}
\end{array}\right]
$$

provided $\left\|\mathcal{D}_{s}^{-1}(*)\right\|<\infty$ (is relatively bounded). ($\tilde{E}_{\omega} \rightsquigarrow$ any triang.op.)
Proof: \tilde{E}_{ω}^{-1} is polynomial in \mathcal{D}_{s}^{-1} and $\mathcal{D}_{s}^{-1}(*) . \square$
Q: Can we use (\triangle) on radial mode equations of

vector wave (VW) and Lichnerowicz wave (LW) equations?

Tensor Wave Equations: triangular form?

Lemma (\triangle)

\tilde{E}_{ω} has a positive self-adjoint ω^{2}-spectral problem on $L^{2}\left(2 M, \infty ; \frac{\mathrm{dr}}{f}\right)^{\oplus 7}$,

$$
\tilde{E}_{\omega}=\left[\begin{array}{ccccccc}
\mathcal{D}_{0} & & * & & * & & * \\
& \mathcal{D}_{1} & & & & * & \\
& & \mathcal{D}_{0} & & & & * \\
& & & \mathcal{D}_{2} & & \mathcal{D}_{0} & \\
& & & & & \mathcal{D}_{1} & \\
& & & & & & \mathcal{D}_{0}
\end{array}\right]
$$

provided $\left\|\mathcal{D}_{s}{ }^{-1}(*)\right\|<\infty$ (is relatively bounded). ($\tilde{E}_{\omega} \rightsquigarrow$ any triang.op.)
Proof: \tilde{E}_{ω}^{-1} is polynomial in \mathcal{D}_{s}^{-1} and $\mathcal{D}_{s}^{-1}(*)$. \square
Q: Can we use (\triangle) on radial mode equations of

$$
\begin{array}{ll}
(\text { Max })(\text { VW }) & \square_{\mathbf{g}} v_{\mu}-\nabla_{\mu} \nabla^{\nu} v_{\nu}=0, \\
(\text { Ein })(\text { LW }) & \square_{\mathbf{g}} p_{\mu \nu}-2 R_{\mu}{ }^{\lambda \kappa}{ }_{\nu} p_{\lambda \kappa}-2 \nabla_{(\mu} \nabla^{\lambda} \bar{p}_{\nu) \lambda}=0,
\end{array}
$$

vector wave (VW) and Lichnerowicz wave (LW) equations?

Tensor Wave Equations: triangular form?

Lemma (\triangle)

\tilde{E}_{ω} has a positive self-adjoint ω^{2}-spectral problem on $L^{2}\left(2 M, \infty ; \frac{\mathrm{dr}}{f}\right)^{\oplus 7}$,

$$
\tilde{E}_{\omega}=\left[\begin{array}{ccccccc}
\mathcal{D}_{0} & & * & & * & & * \\
& \mathcal{D}_{1} & & & & * & \\
& & \mathcal{D}_{0} & & & & * \\
& & & & \mathcal{D}_{2} & \mathcal{D}_{0} & \\
& & & & & \mathcal{D}_{1} & \\
& & & & & & \mathcal{D}_{0}
\end{array}\right],
$$

provided $\left\|\mathcal{D}_{s}{ }^{-1}(*)\right\|<\infty$ (is relatively bounded). ($\tilde{E}_{\omega} \rightsquigarrow$ any triang.op.)
Proof: \tilde{E}_{ω}^{-1} is polynomial in \mathcal{D}_{s}^{-1} and $\mathcal{D}_{s}^{-1}(*)$. \square
Q: Can we use (\triangle) on radial mode equations of
(Max) (VW) $\square_{\mathbf{g}} v_{\mu}-\nabla_{\mu} \nabla^{\nu} v_{\nu}=0$,
(Ein) (LW) $\square_{\mathbf{g}} p_{\mu \nu}-2 R_{\mu}{ }^{\lambda \kappa}{ }_{\nu} p_{\lambda \kappa}-2 \nabla_{(\mu} \nabla^{\lambda} \bar{p}_{\nu) \lambda}=0$,
harmonic gauge Maxwell $v_{\mu}(s=1)$ and Einstein $p_{\mu \nu}(s=2)$ pert.s?

Obstacle:

Radial Mode Equation: $V W_{\omega}[v]=0$

Explicitly, $v_{\mu} \rightarrow v(r)=\left(v_{t}, v_{r}, u \mid w\right)$:
(odd)

$$
\begin{gathered}
\partial_{r} \mathcal{B}_{l} r^{2} f \partial_{r} w+\left(\omega^{2} \frac{r^{2}}{f}-\mathcal{B}_{l}\right) \mathcal{B}_{l} w+\mathcal{B}_{l} \frac{2 M}{r} w=0, \\
{\left[\begin{array}{r}
-\partial_{r} \frac{1}{f} r^{2} f \partial_{r} v_{t} \\
\partial_{r} f r^{2} f \partial_{r} v_{r} \\
\partial_{r} \mathcal{B}_{l} r^{2} f \partial_{r} u
\end{array}\right]+\left(\omega^{2} \frac{r^{2}}{f}-\mathcal{B}_{l}\right)\left[\begin{array}{r}
-\frac{1}{f} \\
f \\
f \\
v_{r} \\
\mathcal{B}_{l} u
\end{array}\right]} \\
\quad+i \omega \frac{2 M}{f}\left[\begin{array}{c}
v_{r} \\
-v_{t} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 f^{2} & 2 \mathcal{B}_{l} f \\
0 & 2 \mathcal{B}_{l} f & \mathcal{B}_{l} \frac{2 M}{r}
\end{array}\right]\left[\begin{array}{c}
v_{t} \\
v_{r} \\
u
\end{array}\right]=0,
\end{gathered}
$$

where $f(r)=1-\frac{2 M}{r}$ and $\mathcal{B}_{l}=I(I+1)$.

Radial Mode Equation: $L W_{\omega}[p]=0$ (odd sector)

Explicitly, $p_{\mu \nu} \rightarrow p(r)=\left(h_{t t}, h_{t r}, h_{r r}, j_{t}, j_{r}, K, G \mid h_{t}, h_{r}, h_{2}\right)$:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\partial_{r}\left(-2 \frac{\mathcal{B}_{1}}{f} r^{2} f \partial_{r}\right) h_{t} \\
\partial_{r}\left(2 \mathcal{B}_{l} f r^{2} f \partial_{r}\right) h_{r} \\
\partial_{r}\left(\frac{\mathcal{A}_{1}}{2} r^{2} f \partial_{r}\right) h_{2}
\end{array}\right]-\mathcal{B}_{l}\left[\begin{array}{r}
-2 \frac{\mathcal{B}_{1}}{f} h_{t} \\
2 \mathcal{B}_{l} f h_{r} \\
\frac{\mathcal{A}_{l}}{2} h_{2}
\end{array}\right]} \\
& +\left[\begin{array}{ccc}
-4 \frac{\mathcal{B}_{2}}{f} \frac{2 M}{r} & 0 & 0 \\
0 & -8 \mathcal{B}_{l} f\left(1-\frac{3 M}{r}\right) & 2 \mathcal{A}_{l} f \\
0 & 2 \mathcal{A}_{l} f & \mathcal{A}_{l}
\end{array}\right]\left[\begin{array}{l}
h_{t} \\
h_{r} \\
h_{2}
\end{array}\right] \\
& -i \omega \frac{4 M}{f}\left[\begin{array}{ccc}
0 & -\mathcal{B}_{l} & 0 \\
\mathcal{B}_{l} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
h_{t} \\
h_{r} \\
h_{2}
\end{array}\right]+\omega^{2} \frac{r^{2}}{f}\left[\begin{array}{c}
-2 \frac{\mathcal{B}_{l}}{f} h_{t} \\
2 \mathcal{B}_{l} f h_{r} \\
\frac{\mathcal{A}_{l}}{2} h_{2}
\end{array}\right]=0
\end{aligned}
$$

where $f(r)=1-\frac{2 M}{r}, \mathcal{A}_{I}=(I-1) I(I+1)(I+2)$ and $\mathcal{B}_{I}=I(I+1)$

Radial Mode Equation: $L W_{\omega}[p]=0$ (even sector)

$$
\begin{aligned}
& -i \omega \frac{4 M}{f}\left[\begin{array}{ccccccc}
0 & 0 & -\frac{1}{f} & -f & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\mathcal{B}_{1} & 0 \\
\frac{1}{f} & 0 & 0 & 0 & 0 & 0 & 0 \\
f & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \mathcal{B}_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
h_{t r} \\
j_{t} \\
h_{t t} \\
h_{r r} \\
K \\
j_{r} \\
G
\end{array}\right]+\omega^{2} \frac{r^{2}}{f}\left[\begin{array}{c}
-2 h_{t r} \\
-2 \frac{\mathcal{B}_{1}}{f} j_{t} \\
\frac{1}{T_{t}} h_{t t} \\
f^{2} h_{r r} \\
2 K \\
2 \mathcal{B}_{\mathcal{B}^{\prime}} f j_{r} \\
\frac{\mathcal{H}_{1}}{2} G
\end{array}\right]=0
\end{aligned}
$$

where $f(r)=1-\frac{2 M}{r}, \mathcal{A}_{l}=(I-1) I(I+1)(I+2)$ and $\mathcal{B}_{I}=I(I+1)$

Final Result:

Final Reduced Decoupled Forms

- Vector wave equation [arXiv:1711.00585]:

- Lichnerowicz wave equation [arxiv:2004.09651]:
\qquad

Final Reduced Decoupled Forms

- Vector wave equation [arxiv:1711.00585]:

$$
\nabla W_{\omega}^{\text {odd }} \sim \mathcal{D}_{1} \quad V W_{\omega}^{\text {even }} \sim\left[\begin{array}{ccc}
\mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{2 r}\right) \\
0 & \mathcal{D}_{1} & 0 \\
0 & 0 & \mathcal{D}_{0}
\end{array}\right]
$$

- Lichnerowicz wave equation [arxiv:2004.09651]:
- $L W_{\omega}^{\text {even }} \sim$
- NEW: completes previous partial and ad hoc results. [Berndtson (PhD, 2007)]

Final Reduced Decoupled Forms

- Vector wave equation [arXiv:1711.00585]:
- $V W_{\omega}^{\text {odd }} \sim \mathcal{D}_{1} \quad V W_{\omega}^{\text {even }} \sim\left[\begin{array}{ccc}\mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{2 r}\right) \\ 0 & \mathcal{D}_{1} & 0 \\ 0 & 0 & \mathcal{D}_{0}\end{array}\right]$
- Lichnerowicz wave equation [arxiv:2004.09651]:

$$
\begin{aligned}
&-L W_{\omega}^{\text {odd }} \sim {\left[\begin{array}{ccc}
\mathcal{D}_{1} & 0 & \frac{2 M}{r^{3}} \frac{\mathcal{B}_{1}}{3} \\
0 & \mathcal{D}_{2} & 0 \\
0 & 0 & \mathcal{D}_{1}
\end{array}\right] } \\
&-L W_{\omega}^{\text {even }} \sim\left[\begin{array}{ccccccc}
\mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{r}\right) & 0 & \frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{r}\right) & 0 & \frac{M^{2}}{2 r^{4}}\left(7 \mathcal{B}_{l}+2\right) \\
0 & \mathcal{D}_{1} & 0 & 0 & 0 & -\frac{2 M^{3}}{r^{3}} \mathcal{B}_{1}^{3} & 0 \\
0 & 0 & \mathcal{D}_{0} & 0 & 0 & 0 & \frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{r}\right) \\
0 & 0 & 0 & \mathcal{D}_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{r}\right) \\
0 & 0 & 0 & 0 & 0 & \mathcal{D}_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathcal{D}_{0}
\end{array}\right]
\end{aligned}
$$

- NEW: completes previous partial and ad hoc results. [Berndtson (PhD, 2007)]

Final Reduced Decoupled Forms

- Vector wave equation [arXiv:1711.00585]:
- $V W_{\omega}^{\text {odd }} \sim \mathcal{D}_{1} \quad V W_{\omega}^{\text {even }} \sim\left[\begin{array}{ccc}\mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{2 r}\right) \\ 0 & \mathcal{D}_{1} & 0 \\ 0 & 0 & \mathcal{D}_{0}\end{array}\right]$
- Lichnerowicz wave equation [arXiv:2004.09651]:

$$
\begin{aligned}
&-L W_{\omega}^{\text {odd }} \sim {\left[\begin{array}{ccc}
\mathcal{D}_{1} & 0 & \frac{2 M}{r^{3}} \frac{\mathcal{B}_{1}}{3} \\
0 & \mathcal{D}_{2} & 0 \\
0 & 0 & \mathcal{D}_{1}
\end{array}\right] } \\
&-L W_{\omega}^{\text {even }} \sim\left[\begin{array}{ccccccc}
\mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{r}\right) & 0 & \frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{r}\right) & 0 & \frac{M^{2}}{2 r^{4}}\left(7 \mathcal{B}_{l}+2\right) \\
0 & \mathcal{D}_{1} & 0 & 0 & 0 & -\frac{2 M}{r^{3}} \mathcal{B}^{3} \\
0 & 0 & \mathcal{D}_{0} & 0 & 0 & 0^{3} & \frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{r}\right) \\
0 & 0 & 0 & \mathcal{D}_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{1}+\frac{M}{r}\right) \\
0 & 0 & 0 & 0 & 0 & \mathcal{D}_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathcal{D}_{0}
\end{array}\right]
\end{aligned}
$$

- NEW: completes previous partial and ad hoc results. [Berndtson (PhD, 2007)]

Solution Strategy:

Strategy: triangular decoupling and reduction

- On Schwarzschild, The tensor operators $\square_{\mathbf{g}}$, VW and $L W$ are well-adapted to generalize the Euclidean identities $\Delta \partial_{\mu}=\partial_{\mu} \Delta$.
\rightarrow Hierarchically simplify radial mode equations of $V W[v]=0$ and $L W[p]=0$.
- By ~ we mean an equivalence in the category of (rational O) DEs
(or D-modules).
- N.B.: In each triangular decoupling, the upper-right corner simplification requires a small miracle (Schwarzschild geometry).

Strategy: triangular decoupling and reduction

- On Schwarzschild, The tensor operators $\square_{\mathfrak{g}}, V W$ and $L W$ are well-adapted to generalize the Euclidean identities $\Delta \partial_{\mu}=\partial_{\mu} \Delta$.
- Hierarchically simplify radial mode equations of $V W[v]=0$ and $L W[p]=0$.
- By \sim we mean an equivalence in the c
(or D-modules).
- N.B.: In each triangular decoupling, the upper-right corner simplification requires a small miracle (Schwarzschild geometry).

Strategy: triangular decoupling and reduction

$$
E_{\omega} \sim\left[\begin{array}{ccccccc}
\mathcal{D}_{0} & * & * & * & * & * & * \\
& \mathcal{D}_{1} & * & * & * & * & * \\
& & \mathcal{D}_{0} & * & * & * & * \\
& & & \mathcal{D}_{2} & * & * & * \\
& & & & \mathcal{D}_{0} & * & * \\
& & & & & \mathcal{D}_{1} & * \\
& & & & & & \mathcal{D}_{0}
\end{array}\right]
$$

- mode hierarchy \rightsquigarrow triangular form
- recursive simplification
- On Schwarzschild, The tensor operators \square_{g}, VW and $L W$ are well-adapted to generalize the Euclidean identities $\Delta \partial_{\mu}=\partial_{\mu} \Delta$.
- Hierarchically simplify radial mode equations of $V W[v]=0$ and $L W[p]=0$.
- By ~ we mean an equivalence in the c
(or D-modules).
- N.B.: In each triangular decoupling, the upper-right corner simplification requires a small miracle (Schwarzschild geometry).

Strategy: triangular decoupling and reduction

$$
E_{\omega} \sim\left[\begin{array}{ccccccc}
\mathcal{D}_{0} & & * & & * & & * \\
& \mathcal{D}_{1} & & & & * & \\
& & \mathcal{D}_{0} & & & & * \\
& & & \mathcal{D}_{2} & & & \\
& & & & \mathcal{D}_{0} & & * \\
& & & & & \mathcal{D}_{1} & \\
& & & & & & \mathcal{D}_{0}
\end{array}\right]
$$

- mode hierarchy \rightsquigarrow triangular form
- recursive simplification
- $\{*\} \rightsquigarrow$ sparse reduction
- On Schwarzschild, The tensor operators \square_{g}, VW and $L W$ are well-adapted to generalize the Euclidean identities $\Delta \partial_{\mu}=\partial_{\mu} \Delta$.
- Hierarchically simplify radial mode equations of $V W[V]=0$ and $L W[p]=0$.
- By \sim we mean an equivalence in the c
(or D-modules).
- N.B.: In each triangular decoupling, the upper-right corner simplification requires a small miracle (Schwarzschild geometry).

Strategy: triangular decoupling and reduction

$$
E_{\omega} \sim\left[\begin{array}{ccccccc}
\mathcal{D}_{0} & & * & & * & & * \\
& \mathcal{D}_{1} & & & & * & \\
& & \mathcal{D}_{0} & & & & * \\
& & & \mathcal{D}_{2} & & & \\
& & & & \mathcal{D}_{0} & & * \\
& & & & & \mathcal{D}_{1} & \\
& & & & & & \mathcal{D}_{0}
\end{array}\right]
$$

- mode hierarchy \rightsquigarrow triangular form
- recursive simplification
- $\{*\} \rightsquigarrow$ sparse reduction
- On Schwarzschild, The tensor operators $\square_{\mathbf{g}}$, VW and $L W$ are well-adapted to generalize the Euclidean identities $\Delta \partial_{\mu}=\partial_{\mu} \Delta$.
- Hierarchically simplify radial mode equations of $V W[V]=0$ and $L W[p]=0$.
- By \sim we mean an equivalence in the category of (rational O)DEs (or D-modules).
- N.B.: In each triangular decoupling, the upper-right corner simplification requires a small miracle (Schwarzschild geometry).

Strategy: triangular decoupling and reduction

$$
E_{\omega} \sim\left[\begin{array}{ccccccc}
\mathcal{D}_{0} & & * & & * & & * \\
& \mathcal{D}_{1} & & & & * & \\
& & \mathcal{D}_{0} & & & & * \\
& & & \mathcal{D}_{2} & & & \\
& & & & \mathcal{D}_{0} & & * \\
& & & & & \mathcal{D}_{1} & \\
& & & & & & \mathcal{D}_{0}
\end{array}\right]
$$

- mode hierarchy \rightsquigarrow triangular form
- recursive simplification
- $\{*\} \rightsquigarrow$ sparse reduction
- On Schwarzschild, The tensor operators $\square_{\mathbf{g}}$, VW and $L W$ are well-adapted to generalize the Euclidean identities $\Delta \partial_{\mu}=\partial_{\mu} \Delta$.
- Hierarchically simplify radial mode equations of $V W[v]=0$ and $L W[p]=0$.
- By \sim we mean an equivalence in the category of (rational O)DEs (or D-modules).
- N.B.: In each triangular decoupling, the upper-right corner simplification requires a small miracle (Schwarzschild geometry).

Details in Reverse Order:

Morphisms Between (Rational O)DEs

- Replace equation $E[u]=0$ by complex of E $\ldots, E^{(n)}$. Extend by 0 when needed.
 For a single operator $E, H(E)=\operatorname{ker} E, H^{\prime}(E)=$ coker E

A mornhism of equations is a of complexes, hence induces map on cohomology $k^{(i)}: H^{(i)}(E) \rightarrow H^{(i)}(\tilde{E})$. For any function space.
$\begin{aligned} \Delta & \Delta \text { homotony } \boldsymbol{k}, \boldsymbol{k}^{\prime}, \ldots \text { induces a } \\ & \boldsymbol{k}^{(i)}=h^{(i)} \circ E^{(i)}+E^{(i-1)} \circ h^{(i-1)} .\end{aligned}$
\rightarrow Equivalent morphisms $k_{1}, k_{1}^{\prime}, \ldots \sim k_{2}, k_{2}^{\prime}, \ldots$ differ by a trivial morphism, hence induce equal maps on cohomology.

- Equivalent equations $E \sim \tilde{E}$ are related by
morphisms mutually inverse
$k \circ \bar{k} \sim i d, \bar{k} \circ k \sim i d$.

Morphisms Between (Rational O)DEs

- Replace equation $E[u]=0$ by complex of DOs E, E^{\prime}, $\ldots, E^{(n)}$. Extend by 0 when needed.

A moruhism of equations is a of complexes, hence induces map on cohomology $k^{(i)}: H^{(i)}(E) \rightarrow H^{(i)}(\tilde{E})$. For any function space.

$>$ Equivalent morphisms $k_{1}, k_{1}^{\prime}, \ldots \sim k_{2}, k_{2}^{\prime}, \ldots$ differ by a trivial morphism, hence induce equal maps on cohomology.

- Equivalent equations $E \sim \tilde{E}$ are related by morphisms mutually inverse k० $\bar{k} \sim i d, \bar{k} \circ k \sim i d$.

Morphisms Between (Rational O)DEs

- Replace equation $E[u]=0$ by complex of DOs E, E^{\prime}, $\ldots, E^{(n)}$. Extend by 0 when needed.

Replace solutions by cohomology $H^{(i)}(E)=\frac{\operatorname{ker} E^{(i)}}{\operatorname{im} E^{(i-1)}}$. For a single operator $E, H(E)=\operatorname{ker} E, H^{\prime}(E)=$ coker E

A mornhism of equations is a of complexes, hence induces map on cohomology $k^{(i)}: H^{(i)}(E) \rightarrow H^{(i)}(\tilde{E})$. For any function space.

- Equivalent morphisms $k_{1}, k_{1}^{\prime}, \ldots \sim k_{2}, k_{2}^{\prime}, \ldots$ differ by a trivial morphism, hence induce equal maps on conomology.
- Equivalent equations $E \sim \tilde{E}$ are related by morphisms mutually inverse $k \circ \bar{k} \sim i d, \bar{k} \circ k \sim i d$.

Morphisms Between (Rational O)DEs

- Replace equation $E[u]=0$ by complex of DOs E, E^{\prime}, $\ldots, E^{(n)}$. Extend by 0 when needed.
- Replace solutions by cohomology $H^{(i)}(E)=\frac{\operatorname{ker} E^{(i)}}{\operatorname{mE} E^{(i-1)}}$. For a single operator $E, H(E)=\operatorname{ker} E, H^{\prime}(E)=\operatorname{coker} E$

A mornhism of equations is a
of complexes, hence induces map on cohomology $k^{(i)}: H^{(i)}(E) \rightarrow H^{(i)}(\tilde{E})$. For any function space.

- Equivalent morphisms $k_{1}, k_{1}^{\prime}, \ldots \sim k_{2}, k_{2}^{\prime}, \ldots$ differ by a trivial morphism, hence induce equal maps on cohomology.
- Equivalent equations $E \sim \tilde{E}$ are related by morphisms mutually inverse $k \circ \bar{k} \sim i d, \bar{k} \circ k \sim i d$.

Morphisms Between (Rational O)DEs

- Replace equation $E[u]=0$ by complex of DOs E, E^{\prime}, $\ldots, E^{(n)}$. Extend by 0 when needed.
- Replace solutions by cohomology $H^{(i)}(E)=\frac{\operatorname{ker} E^{(i)}}{\operatorname{im} E^{(i-1)}}$. For a single operator $E, H(E)=\operatorname{ker} E, H^{\prime}(E)=$ coker E of complexes, hence induces map on cohomology $k^{(i)}: H^{(i)}(E) \rightarrow H^{(i)}(\tilde{E})$. For any function space.

Equivalent morphisms $k_{1}, k_{1}^{\prime}, \ldots \sim k_{2}, k_{2}^{\prime}, \ldots$ differ by a trivial morphism, hence induce equal maps on cohomology.

- Equivalent equations $E \sim \tilde{E}$ are related by morphisms mutually inverse $k \circ \bar{k} \sim \operatorname{id}, \bar{k} \circ k \sim i d$.

Morphisms Between (Rational O)DEs

- Replace equation $E[u]=0$ by complex of DOs E, E^{\prime}, $\ldots, E^{(n)}$. Extend by 0 when needed.
- Replace solutions by cohomology $H^{(i)}(E)=\frac{\operatorname{ker} E^{(i)}}{\operatorname{im} E^{(i-1)}}$. For a single operator $E, H(E)=\operatorname{ker} E, H^{\prime}(E)=\operatorname{coker} E$.
of complexes, hence induces map on cohomology
$k^{(i)}: H^{(i)}(E) \rightarrow H^{(i)}(\tilde{E})$. For any function space.
 cohomology.
equations $E \sim \tilde{E}$ are related by morphisms mutually inverse

Morphisms Between (Rational O)DEs

- Replace equation $E[u]=0$ by complex of DOs E, E^{\prime}, $\ldots, E^{(n)}$. Extend by 0 when needed.
- Replace solutions by cohomology $H^{(i)}(E)=\frac{\operatorname{ker} E^{(i)}}{\operatorname{im} E^{(i-1)}}$. For a single operator $E, H(E)=\operatorname{ker} E, H^{\prime}(E)=\operatorname{coker} E$.
- A morphism of equations is a cochain map k, k^{\prime}, \ldots of complexes, hence induces map on cohomology $k^{(i)}: H^{(i)}(E) \rightarrow H^{(i)}(\tilde{E})$. For any function space.

Morphisms Between (Rational O)DEs

- Replace equation $E[u]=0$ by complex of DOs E, E^{\prime}, $\ldots, E^{(n)}$. Extend by 0 when needed.
- Replace solutions by cohomology $H^{(i)}(E)=\frac{\operatorname{ker} E^{(i)}}{\operatorname{im} E^{(i-1)}}$. For a single operator $E, H(E)=\operatorname{ker} E, H^{\prime}(E)=\operatorname{coker} E$.
- A morphism of equations is a cochain map k, k^{\prime}, \ldots of complexes, hence induces map on cohomology $k^{(i)}: H^{(i)}(E) \rightarrow H^{(i)}(\tilde{E})$. For any function space.
- A homotopy k, k^{\prime}, \ldots induces a trivial morphism $k^{(i)}=h^{(i)} \circ E^{(i)}+E^{(i-1)} \circ h^{(i-1)}$.
a trivial morphism, hence induce

$$
\text { equations } E \sim \tilde{E} \text { are related by }
$$

morphisms mutually inverse

Morphisms Between (Rational O)DEs

- Replace equation $E[u]=0$ by complex of DOs E, E^{\prime}, $\ldots, E^{(n)}$. Extend by 0 when needed.
- Replace solutions by cohomology $H^{(i)}(E)=\frac{\operatorname{ker} E^{(i)}}{\operatorname{im} E^{(i-1)}}$. For a single operator $E, H(E)=\operatorname{ker} E, H^{\prime}(E)=\operatorname{coker} E$.
- A morphism of equations is a cochain map k, k^{\prime}, \ldots of complexes, hence induces map on cohomology $k^{(i)}: H^{(i)}(E) \rightarrow H^{(i)}(\tilde{E})$. For any function space.
- A homotopy k, k^{\prime}, \ldots induces a trivial morphism $k^{(i)}=h^{(i)} \circ E^{(i)}+E^{(i-1)} \circ h^{(i-1)}$.
- Equivalent morphisms $k_{1}, k_{1}^{\prime}, \ldots \sim k_{2}, k_{2}^{\prime}, \ldots$ differ by a trivial morphism, hence induce equal maps on cohomology.
equations $E \sim \tilde{E}$ are related by
morphisms mutually inverse

Morphisms Between (Rational O)DEs

- Replace equation $E[u]=0$ by complex of DOs E, E^{\prime}, $\ldots, E^{(n)}$. Extend by 0 when needed.
- Replace solutions by cohomology $H^{(i)}(E)=\frac{\operatorname{ker} E^{(i)}}{\operatorname{im} E^{(i-1)}}$. For a single operator $E, H(E)=\operatorname{ker} E, H^{\prime}(E)=\operatorname{coker} E$.
- A morphism of equations is a cochain map k, k^{\prime}, \ldots of complexes, hence induces map on cohomology $k^{(i)}: H^{(i)}(E) \rightarrow H^{(i)}(\tilde{E})$. For any function space.
- A homotopy k, k^{\prime}, \ldots induces a trivial morphism $k^{(i)}=h^{(i)} \circ E^{(i)}+E^{(i-1)} \circ h^{(i-1)}$.
- Equivalent morphisms $k_{1}, k_{1}^{\prime}, \ldots \sim k_{2}, k_{2}^{\prime}, \ldots$ differ by a trivial morphism, hence induce equal maps on cohomology.
- Equivalent equations $E \sim \tilde{E}$ are related by morphisms mutually inverse up to homotopy, $k \circ \bar{k} \sim \mathrm{id}, \bar{k} \circ k \sim \mathrm{id}$.

Morphisms Between (Rational O)DEs

- Replace equation $E[u]=0$ by complex of DOs E, E^{\prime}, $\ldots, E^{(n)}$. Extend by 0 when needed.
- Replace solutions by cohomology $H^{(i)}(E)=\frac{\operatorname{ker} E^{(i)}}{\operatorname{im} E^{(i-1)}}$. For a single operator $E, H(E)=\operatorname{ker} E, H^{\prime}(E)=\operatorname{coker} E$.
- A morphism of equations is a cochain map k, k^{\prime}, \ldots of complexes, hence induces map on cohomology $k^{(i)}: H^{(i)}(E) \rightarrow H^{(i)}(\tilde{E})$. For any function space.
- A homotopy k, k^{\prime}, \ldots induces a trivial morphism $k^{(i)}=h^{(i)} \circ E^{(i)}+E^{(i-1)} \circ h^{(i-1)}$.
- Equivalent morphisms $k_{1}, k_{1}^{\prime}, \ldots \sim k_{2}, k_{2}^{\prime}, \ldots$ differ by a trivial morphism, hence induce equal maps on cohomology.
- Equivalent equations $E \sim \tilde{E}$ are related by morphisms mutually inverse up to homotopy, $k \circ \bar{k} \sim \mathrm{id}, \bar{k} \circ k \sim \mathrm{id}$.

Triangular Reduction Strategy

- If \exists diff.ops. δ, ε such that $E_{0} \circ \delta=\Delta+\varepsilon \circ E_{1}(*)$, then
- Obvious generalization to larger triangular operator matrices.
- Q: How to solve the rational operator equation (*)? If no solution, how to choose nice Δ (relatively bounded)?

Triangular Reduction Strategy

- If \exists diff.ops. δ, ε such that $E_{0} \circ \delta=\Delta+\varepsilon \circ E_{1}(*)$, then
- Obvious generalization to larger triangular operator matrices.
- Q: How to solve the rational operator equation $(*)$? If no solution, how to choose nice Δ (relatively bounded)?

Triangular Reduction Strategy

- If \exists diff.ops. δ, ε such that $E_{0} \circ \delta=\Delta+\varepsilon \circ E_{1}(*)$, then
- Obvious generalization to larger triangular operator matrices.
- Q: How to solve the rational operator equation (*)? If no solution, how to choose nice Δ (relatively bounded)?

Reduction for Regge-Wheeler systems

- When $E_{0}=\mathcal{D}_{s_{0}}, E_{1}=\mathcal{D}_{s_{1}}$, enough to take $\triangle, \delta, \varepsilon$ of first order.
- We can parametrize (recalling $\mathcal{D}_{s}^{*}=\mathcal{D}_{s}$)

$$
\begin{aligned}
\Delta & =\frac{i \omega r}{r^{2}}\left(-\Delta_{-}+\left\{r f \Delta_{+}, \partial_{r}\right\}\right), \\
\delta & =\delta_{+}-2 \partial_{r}\left(r f \delta_{-}\right)+f_{1} \delta_{-}+\left\{r f \delta_{-}, \partial_{r}\right\}, \\
\varepsilon & =\delta_{+}+2 \partial_{r}\left(r f \delta_{-}\right)-f_{1} \delta_{-}+\left\{r f \delta_{-}, \partial_{r}\right\},
\end{aligned}
$$

where $\{X, Y\}=X \circ Y+Y \circ X$.

- The operator equation becomes a rational $\operatorname{ODE}\left(\mathcal{R}_{s_{0}, s_{1}}^{*}=\mathcal{R}_{s_{0}, s_{1}}\right)$,

$$
\mathcal{D}_{s_{0}} \circ \delta=\Delta+\varepsilon \circ \mathcal{D}_{s_{1}} \quad \Longleftrightarrow \quad \mathcal{R}_{s_{0}, s_{1}}\left[\begin{array}{l}
\delta_{+} \\
\delta_{-}
\end{array}\right]=\left[\begin{array}{l}
\Delta_{+} \\
\Delta_{-}
\end{array}\right] .
$$

- Q: What are $\operatorname{ker} \mathcal{R}_{s_{0}, s_{1}}$ and coker $\mathcal{R}_{s_{0}, s_{1}}$ in rational functions?

Reduction for Regge-Wheeler systems

- When $E_{0}=\mathcal{D}_{s_{0}}, E_{1}=\mathcal{D}_{s_{1}}$, enough to take $\triangle, \delta, \varepsilon$ of first order.
- We can parametrize (recalling $\mathcal{D}_{s}^{*}=\mathcal{D}_{s}$)

$$
\begin{aligned}
\Delta & =\frac{i \omega r}{r^{2}}\left(-\Delta_{-}+\left\{r f \Delta_{+}, \partial_{r}\right\}\right), \\
\delta & =\delta_{+}-2 \partial_{r}\left(r f \delta_{-}\right)+f_{1} \delta_{-}+\left\{r f \delta_{-}, \partial_{r}\right\}, \\
\varepsilon & =\delta_{+}+2 \partial_{r}\left(r f \delta_{-}\right)-f_{1} \delta_{-}+\left\{r f \delta_{-}, \partial_{r}\right\},
\end{aligned}
$$

where $\{X, Y\}=X \circ Y+Y \circ X$.

- The operator equation becomes a rational $\operatorname{ODE}\left(\mathcal{R}_{s_{0}, s_{1}}^{*}=\mathcal{R}_{s_{0}, s_{1}}\right)$,

$$
\mathcal{D}_{s_{0}} \circ \delta=\Delta+\varepsilon \circ \mathcal{D}_{s_{1}} \quad \Longleftrightarrow \quad \mathcal{R}_{s_{0}, s_{1}}\left[\begin{array}{l}
\delta_{+} \\
\delta_{-}
\end{array}\right]=\left[\begin{array}{l}
\Delta_{+} \\
\Delta_{-}
\end{array}\right] .
$$

- Q: What are ker $\mathcal{R}_{s_{0}, s_{1}}$ and coker $\mathcal{R}_{s_{0}, s_{1}}$ in rational functions?

Rational solutions of rational ODEs

- Observations:
- Any rational $u(r)$ has a finite partial fraction decomposition.
- The poles of $v(r)$ and the singular points of $E[u]=v$ determine the poles of $u(r)$.
- The integer characteristic exponents (Frobenius method) determine bounds on the degrees of each pole or $u(r)=P\left(r, r^{-1}\right) / d(r), d(r)$-poly., $P\left(r, r^{-1}\right)$-Laurent poly.

Rational solutions of rational ODEs

- Observations:
- Any rational $u(r)$ has a finite partial fraction decomposition.
- The poles of $v(r)$ and the singular points of $E[u]=v$ determine the poles of $u(r)$.
- The integer characteristic exponents (Frobenius method) determine bounds on the degrees of each pole or $u(r)=P\left(r, r^{-1}\right) / d(r), d(r)$-poly., $P\left(r, r^{-1}\right)$-Laurent poly.

Lemma (IK 2018-20, Abramov et al. 1989-)

The dimension of $\operatorname{ker}_{\mathcal{U}} E<\infty$, when $\mathcal{U}=\mathbb{C}\left[r, r^{-1}\right], \mathbb{C}[[r]]\left[r^{-1}\right], \mathbb{C}[r]\left[\left[r^{-1}\right]\right]$, or $\mathbb{C}\left[\left[r, r^{-1}\right]\right]$, for compatible E.
non-degenerate on

\square
\square

Rational solutions of rational ODEs

- Observations:
- Any rational $u(r)$ has a finite partial fraction decomposition.
- The poles of $v(r)$ and the singular points of $E[u]=v$ determine the poles of $u(r)$.
- The integer characteristic exponents (Frobenius method) determine bounds on the degrees of each pole or $u(r)=P\left(r, r^{-1}\right) / d(r), d(r)$-poly., $P\left(r, r^{-1}\right)$-Laurent poly.

Lemma (IK 2018-20, Abramov et al. 1989-)

The dimension of $\operatorname{ker}_{\mathcal{U}} E<\infty$, when $\mathcal{U}=\mathbb{C}\left[r, r^{-1}\right], \mathbb{C}[[r]]\left[r^{-1}\right], \mathbb{C}[r]\left[\left[r^{-1}\right]\right]$, or $\mathbb{C}\left[\left[r, r^{-1}\right]\right]$, for compatible E.

- The residue pairing $\langle\alpha, v\rangle=\operatorname{Res}_{r=0}\left(\alpha^{*} v\right)$ satisfies $\langle\alpha, E[u]\rangle=\left\langle E^{*}[\alpha], u\right\rangle$ and is non-degenerate on compatible pairs

$$
\left.\left.\left.(\mathbb{C}[r]]\left[r^{-1}\right], \mathbb{C}[r]\right]\left[r^{-1}\right]\right), \quad\left(\mathbb{C}[r]\left[\left[r^{-1}\right]\right], \mathbb{C}[r]\left[\left[r^{-1}\right]\right]\right), \quad\left(\mathbb{C}\left[r, r^{-1}\right]\right], \mathbb{C}\left[r, r^{-1}\right]\right) .
$$

The pairing $\left\langle\mathrm{ker}_{u^{\prime}} \mathrm{E}^{*}\right.$, cokeru E) is non-degenerate on
\square

Rational solutions of rational ODEs

- Observations:
- Any rational $u(r)$ has a finite partial fraction decomposition.
- The poles of $v(r)$ and the singular points of $E[u]=v$ determine the poles of $u(r)$.
- The integer characteristic exponents (Frobenius method) determine bounds on the degrees of each pole or $u(r)=P\left(r, r^{-1}\right) / d(r), d(r)$-poly., $P\left(r, r^{-1}\right)$-Laurent poly.

Lemma (IK 2018-20, Abramov et al. 1989-)

The dimension of $\operatorname{ker}_{\mathcal{U}} E<\infty$, when $\mathcal{U}=\mathbb{C}\left[r, r^{-1}\right], \mathbb{C}[[r]]\left[r^{-1}\right], \mathbb{C}[r]\left[\left[r^{-1}\right]\right]$, or $\mathbb{C}\left[\left[r, r^{-1}\right]\right]$, for compatible E.

- The residue pairing $\langle\alpha, v\rangle=\operatorname{Res}_{r=0}\left(\alpha^{*} v\right)$ satisfies $\langle\alpha, E[u]\rangle=\left\langle E^{*}[\alpha], u\right\rangle$ and is non-degenerate on compatible pairs

$$
\left(\mathbb{C}[[r]]\left[r^{-1}\right], \mathbb{C}[[r]]\left[r^{-1}\right]\right), \quad\left(\mathbb{C}[r]\left[\left[r^{-1}\right]\right], \mathbb{C}[r]\left[\left[r^{-1}\right]\right]\right), \quad\left(\mathbb{C}\left[\left[r, r^{-1}\right]\right], \mathbb{C}\left[r, r^{-1}\right]\right)
$$

Lemma (IK 2020)

The pairing $\left\langle\operatorname{ker}_{\mathcal{U}^{\prime}} E^{*}\right.$, coker $\left.\mathcal{U} E\right\rangle$ is non-degenerate on compatible pairs $\left(\mathcal{U}^{\prime}, \mathcal{U}\right)$.
\square

Rational solutions of rational ODEs

- Observations:
- Any rational $u(r)$ has a finite partial fraction decomposition.
- The poles of $v(r)$ and the singular points of $E[u]=v$ determine the poles of $u(r)$.
- The integer characteristic exponents (Frobenius method) determine bounds on the degrees of each pole or $u(r)=P\left(r, r^{-1}\right) / d(r), d(r)$-poly., $P\left(r, r^{-1}\right)$-Laurent poly.

Lemma (IK 2018-20, Abramov et al. 1989-)

The dimension of $\operatorname{ker}_{\mathcal{U}} E<\infty$, when $\mathcal{U}=\mathbb{C}\left[r, r^{-1}\right], \mathbb{C}[[r]]\left[r^{-1}\right], \mathbb{C}[r]\left[\left[r^{-1}\right]\right]$, or $\mathbb{C}\left[\left[r, r^{-1}\right]\right]$, for compatible E.

- The residue pairing $\langle\alpha, v\rangle=\operatorname{Res}_{r=0}\left(\alpha^{*} v\right)$ satisfies $\langle\alpha, E[u]\rangle=\left\langle E^{*}[\alpha], u\right\rangle$ and is non-degenerate on compatible pairs

$$
\left(\mathbb{C}[[r]]\left[r^{-1}\right], \mathbb{C}[[r]]\left[r^{-1}\right]\right), \quad\left(\mathbb{C}[r]\left[\left[r^{-1}\right]\right], \mathbb{C}[r]\left[\left[r^{-1}\right]\right]\right), \quad\left(\mathbb{C}\left[\left[r, r^{-1}\right]\right], \mathbb{C}\left[r, r^{-1}\right]\right) .
$$

Lemma (IK 2020)

The pairing $\left\langle\operatorname{ker}_{\mathcal{U}^{\prime}} E^{*}\right.$, coker $\left.\mathcal{U} E\right\rangle$ is non-degenerate on compatible pairs $\left(\mathcal{U}^{\prime}, \mathcal{U}\right)$.

Theorem (IK 2020)

dim cokeru $\mathcal{R}_{s_{0}, s_{1}}=\operatorname{dim} \operatorname{ker}_{\mathcal{U}^{\prime}} \mathcal{R}_{s_{0}, s_{1}}^{*}<\infty$ (and it has relatively bounded representatives).

Triangular Decoupling Strategy

- Start with complicated equation $E[u]=0$. We want to find an equivalent equation in block upper triangular form.

Triangular Decoupling Strategy

- Start with complicated equation $E[u]=0$. We want to find an equivalent equation in block upper triangular form.
- Input: equations $E[u]=0, E_{D}[v]=0, E_{T}[w]=0$ with morphisms

Triangular Decoupling Strategy

- Start with complicated equation $E[u]=0$. We want to find an equivalent equation in block upper triangular form.
- Input: equations $E[u]=0, E_{D}[v]=0, E_{T}[w]=0$ with morphisms

Output: decoupling equivalence

$$
E[u]=0 \sim\left[\begin{array}{cc}
E_{D} & \Delta_{D T} \\
0 & E_{T}
\end{array}\right]\left[\begin{array}{l}
v \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

\Rightarrow Both $E_{D}[v]=0$ and $E_{T}[w]=0$ could undergo
keeping the overall upper triangular form.

- Q: How to identify the input and the decoupling morphisms?

Triangular Decoupling Strategy

- Start with complicated equation $E[u]=0$. We want to find an equivalent equation in block upper triangular form.
- Input: equations $E[u]=0, E_{D}[v]=0, E_{T}[w]=0$ with morphisms

Output: decoupling equivalence

$$
E[u]=0 \sim\left[\begin{array}{cc}
E_{D} & \Delta_{D T} \\
0 & E_{T}
\end{array}\right]\left[\begin{array}{l}
v \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

\Rightarrow Both $E_{D}[v]=0$ and $E_{T}[w]=0$ could undergo
keeping the overall upper triangular form.

- Q: How to identify the input and the decoupling morphisms?

Triangular Decoupling Strategy

- Start with complicated equation $E[u]=0$. We want to find an equivalent equation in block upper triangular form.
- Input: equations $E[u]=0, E_{D}[v]=0, E_{T}[w]=0$ with morphisms

Output: decoupling equivalence

$$
E[u]=0 \sim\left[\begin{array}{cc}
E_{D} & \Delta_{D T} \\
0 & E_{T}
\end{array}\right]\left[\begin{array}{l}
v \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

- Both $E_{D}[v]=0$ and $E_{T}[w]=0$ could undergo further decoupling, keeping the overall upper triangular form.

Triangular Decoupling Strategy

- Start with complicated equation $E[u]=0$. We want to find an equivalent equation in block upper triangular form.
- Input: equations $E[u]=0, E_{D}[v]=0, E_{T}[w]=0$ with morphisms

Output: decoupling equivalence

$$
E[u]=0 \sim\left[\begin{array}{cc}
E_{D} & \Delta_{D T} \\
0 & E_{T}
\end{array}\right]\left[\begin{array}{l}
v \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

- Both $E_{D}[v]=0$ and $E_{T}[w]=0$ could undergo further decoupling, keeping the overall upper triangular form.
- Q: How to identify the input and the decoupling morphisms?

Wave Equation Identities on Schwarzschild

- Input: hierarchy of pure gauge, gauge invariant and constraint violating modes. The physics literature on Schwarzschild perturbations provides natural candidates, generalizing Euclidean div $\Delta=\Delta$ div and grad $\Delta=\Delta$ grad.

$$
L W_{\omega} \sim\left[\begin{array}{ccc}
V W_{\omega} & * & * \\
0 & \mathcal{D}_{2} & * \\
0 & 0 & V W_{\omega}
\end{array}\right] \quad \begin{aligned}
& \text { \} pure gauge } \\
& \} \text { gauge invariant } \\
& \} \text { constraint violating }
\end{aligned} \text { (Einstein) }
$$

- We can apply triangular decoupling again.
- Recursively apply to $L W_{\omega} \rightsquigarrow V W_{\omega} \rightsquigarrow \mathcal{D}_{0}$:

- N.B.: minor miracle on Schwarzschild geometry [arXiv:2004.09651],
constraint violating $=0$, gauge invariant $=0 \sim$ pure gauge.

Wave Equation Identities on Schwarzschild

- Input: hierarchy of pure gauge, gauge invariant and constraint violating modes. The physics literature on Schwarzschild perturbations provides natural candidates, generalizing Euclidean div $\Delta=\Delta$ div and grad $\Delta=\Delta$ grad.

$$
L W_{\omega} \sim\left[\begin{array}{ccc}
V W_{\omega} & * & * \\
0 & \mathcal{D}_{2} & * \\
0 & 0 & V W_{\omega}
\end{array}\right] \quad \begin{aligned}
& \text { \} pure gauge } \\
& \} \text { gauge invariant } \\
& \} \text { constraint violating }
\end{aligned} \text { (Einstein) }
$$

- We can apply triangular decoupling again.
- Recursively apply to $L W_{\omega} \rightsquigarrow V W_{\omega} \rightsquigarrow \mathcal{D}_{0}$:

- N.B.: minor miracle on Schwarzschild geometry [arXiv:2004.09651],
constraint violating $=0$, gauge invariant $=0 \sim$ pure gauge.

Wave Equation Identities on Schwarzschild

- Input: hierarchy of pure gauge, gauge invariant and constraint violating modes. The physics literature on Schwarzschild perturbations provides natural candidates, generalizing Euclidean $\operatorname{div} \Delta=\Delta$ div and grad $\Delta=\Delta$ grad.

$$
L W_{\omega} \sim\left[\begin{array}{ccc}
V W_{\omega} & * & * \\
0 & \mathcal{D}_{2} & * \\
0 & 0 & V W_{\omega}
\end{array}\right] \quad \begin{aligned}
& \text { \} pure gauge } \\
& \} \text { gauge invariant } \\
& \} \text { constraint violating }
\end{aligned} \text { (Einstein) }
$$

- We can apply triangular decoupling again.
- Recursively apply to $L W_{\omega} \rightsquigarrow V W_{\omega} \rightsquigarrow \mathcal{D}_{0}$:

$$
V W_{\omega} \sim\left[\begin{array}{ccc}
\mathcal{D}_{0} & * & * \\
0 & \mathcal{D}_{1} & * \\
0 & 0 & \mathcal{D}_{0}
\end{array}\right] \quad \begin{aligned}
& \text { \} pure gauge } \\
& \text { \} gauge invariant } \\
& \text { \} constraint violating }
\end{aligned} \quad \text { (Maxwell) }
$$

- N.B.: minor miracle on Schwarzschild geometry [arXiv:2004.09651],
constraint violating $=0$, gauge invariant $=0 \sim$ pure gauge.

Wave Equation Identities on Schwarzschild

- Input: hierarchy of pure gauge, gauge invariant and constraint violating modes. The physics literature on Schwarzschild perturbations provides natural candidates, generalizing Euclidean $\operatorname{div} \Delta=\Delta \operatorname{div}$ and grad $\Delta=\Delta$ grad.

$$
L W_{\omega} \sim\left[\begin{array}{ccc}
V W_{\omega} & * & * \\
0 & \mathcal{D}_{2} & * \\
0 & 0 & V W_{\omega}
\end{array}\right] \begin{aligned}
& \text { \} pure gauge } \\
& \} \text { gauge invariant } \\
& \} \text { constraint violating }
\end{aligned} \text { (Einstein) }
$$

- We can apply triangular decoupling again.
- Recursively apply to $L W_{\omega} \rightsquigarrow V W_{\omega} \rightsquigarrow \mathcal{D}_{0}$:

$$
V W_{\omega} \sim\left[\begin{array}{ccc}
\mathcal{D}_{0} & * & * \\
0 & \mathcal{D}_{1} & * \\
0 & 0 & \mathcal{D}_{0}
\end{array}\right] \begin{aligned}
& \text { \} pure gauge } \\
& \text { \} gauge invariant } \\
& \} \text { constraint violating }
\end{aligned} \text { (Maxwell) }
$$

- N.B.: minor miracle on Schwarzschild geometry [arxiv:2004.09651],

$$
\text { constraint violating }=0 \text {, gauge invariant }=0 \sim \text { pure gauge. }
$$

Discussion

- Abstract decoupling and reduction strategies (using ideas from homological algebra, D-modules, category of PDEs) allow us to reduce complicated coupled systems of vector and tensor radial mode equations to sparse upper triangular ODEs.
Previous partial results were based on trial and error, very
laborious. [Berndtson (PhD, 2007)]
- TODO: Construct Green function for the Lichnerowicz and vector wave equations on
- TODO: Generalization to rotating Kerr blackhole?

Discussion

- Abstract decoupling and reduction strategies (using ideas from homological algebra, D-modules, category of PDEs) allow us to reduce complicated coupled systems of vector and tensor radial mode equations to sparse upper triangular ODEs.
- Previous partial results were based on trial and error, very laborious. [Berndtson (PhD, 2007)]
- TODO: Construct Green function for the Lichnerowicz and vector wave equations on
- TODO: Generalization to rotating Kerr blackhole?

Discussion

- Abstract decoupling and reduction strategies (using ideas from homological algebra, D-modules, category of PDEs) allow us to reduce complicated coupled systems of vector and tensor radial mode equations to sparse upper triangular ODEs.
- Previous partial results were based on trial and error, very laborious. [Berndtson (PhD, 2007)]
- TODO: Construct Green function for the Lichnerowicz and vector wave equations on Schwarzschild.
- TODO: Generalization to rotating Kerr blackhole?

Discussion

- Abstract decoupling and reduction strategies (using ideas from homological algebra, D-modules, category of PDEs) allow us to reduce complicated coupled systems of vector and tensor radial mode equations to sparse upper triangular ODEs.
- Previous partial results were based on trial and error, very laborious. [Berndtson (PhD, 2007)]
- TODO: Construct Green function for the Lichnerowicz and vector wave equations on Schwarzschild.
- TODO: Generalization to rotating Kerr blackhole?

Discussion

- Abstract decoupling and reduction strategies (using ideas from homological algebra, D-modules, category of PDEs) allow us to reduce complicated coupled systems of vector and tensor radial mode equations to sparse upper triangular ODEs.
- Previous partial results were based on trial and error, very laborious. [Berndtson (PhD, 2007)]
- TODO: Construct Green function for the Lichnerowicz and vector wave equations on Schwarzschild.
- TODO: Generalization to rotating Kerr blackhole?

Thank you for your attention!

Separation of variables: $2+2$ tensor formalism

- We follow the convenient formalism of [Martel \& Poisson 2005].
- Schwarzschild $\left(\mathcal{M} \times S^{2}\right)$ is spherically symmetric $f(r)=1-\frac{2 M}{r}$: ${ }^{4} g_{\mu \nu}=-f(r) \mathrm{d} t^{2}+\frac{\mathrm{d} r^{2}}{f(r)}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) \rightarrow\left[\begin{array}{cc}g_{a b} & 0 \\ 0 & r^{2} \Omega_{A B}\end{array}\right]$.
- Tensor indices a, b, c, \ldots and ∇_{a} are for $\left(\mathcal{M}, g_{a b}\right)$. Tensor indices A, B, C, \ldots and D_{A} are for the unit sphere $\left(S^{2}, \Omega_{A B}\right)$.
- Vector field $v_{\mu} \rightarrow\left[\begin{array}{l}v_{a} \\ v_{A}\end{array}\right]$, symmetric tensor $p_{\mu \nu} \rightarrow\left[\begin{array}{ll}p_{a b} & p_{a B} \\ p_{A b} & p_{A B}\end{array}\right]$.
- Connection ${ }^{4} \nabla=(\nabla, D)+\Gamma$,

$$
\left.\Gamma_{\nu \lambda}^{\mu}=\left[\begin{array}{cc}
0 & 0 \\
0 & -r r^{a} \Omega_{B C}
\end{array}\right] \quad\left[\begin{array}{cc}
0 & \frac{r_{b}}{r} \delta_{C}^{A} \\
\frac{r_{c}}{r} \delta_{B}^{A} & 0
\end{array}\right]\right] .
$$

- Formalism covariant with respect to changes of coordinates and metric on $\left(\mathcal{M}, g_{a b}\right)$.

Spherical harmonics

- Spherical scalar, vector and tensor harmonics:

$$
\begin{aligned}
D_{A} D^{A} Y & =-I(I+1) Y, & Y_{A}=D_{A} Y, & Y_{A B}=D_{A} Y_{B}+\frac{I(I+1)}{2} \Omega_{A B} Y \\
\int_{S^{2}} \bar{Y}^{\prime} Y \epsilon & =\delta_{I I \prime} \delta_{m m^{\prime}}, & X_{A}=\epsilon_{B A} D^{B} Y, & X_{A B}=D_{A} X_{B}+\frac{I(I+1)}{2} \epsilon_{A B} Y
\end{aligned}
$$

Simply normalized, orthogonal, tensor eigenfunctions of $D_{A} D^{A}$.

- Vector and Tensor decompositions

$$
\left.\begin{array}{c}
{\left[\begin{array}{ll}
p_{a b} & p_{a B} \\
p_{A b} & p_{A B}
\end{array}\right]=\sum_{l m}\left[\begin{array}{cc}
h_{a b}^{l m} Y^{l m} & \text { even } \\
r j_{b}^{l m} Y_{A}^{l m} & r^{2}\left(K^{l m} \Omega_{A B}^{l m} Y_{B}^{l m}\right. \\
Y^{l m}
\end{array} G^{l m} Y_{A B}^{l m}\right)}
\end{array}\right]+\sum_{l m}\left[\begin{array}{cc}
0 & r h_{a}^{l m} X_{B}^{l m} \\
r h_{b}^{l m} X_{A}^{l m} & r^{2} h_{2}^{l m} X_{A B}^{l m}
\end{array}\right] .
$$

From now on, omit spherical harmonic (I, m) mode indices:

$$
p=\left(h_{a b}, j_{a}, K, G \mid h_{a}, h_{2}\right) \quad \text { and } \quad v=\left(v_{a}, u \mid w\right)
$$

- In static Schwarzschild (t, r) coordinates $(2 M<r<\infty)$:

$$
\begin{gathered}
p(t, r)=p(r) e^{-i \omega t} \quad \text { and } \quad v(t, r)=v(r) e^{-i \omega t}, \quad \text { where } \\
p(r)=\left(h_{t t}, h_{t r}, h_{r r}, j_{t}, j_{r}, K, G \mid h_{t}, h_{r}, h_{2}\right), \quad v(r)=\left(v_{t}, v_{r}, u \mid w\right)
\end{gathered}
$$

A toy example: equivalence up to homotopy

In this toy example, the morphisms satisfy

$$
\begin{aligned}
\left(\partial_{r}^{2}+\omega^{2}\right) \circ \partial_{r} & =\partial_{r} \circ\left(\partial_{r}^{2}+\omega^{2}\right), \\
\left(\partial_{r}^{2}+\omega^{2}\right) \circ \frac{-\partial_{r}}{\omega^{2}} & =\frac{-\partial_{r}}{\omega^{2}} \circ\left(\partial_{r}^{2}+\omega^{2}\right) .
\end{aligned}
$$

Intuitively, ∂_{r} is not invertible, but it is invertible up to homotopy:

$$
\begin{aligned}
& \frac{-\partial_{r}}{\omega^{2}} \circ \partial_{r}=1-\frac{1}{\omega^{2}} \circ\left(\partial_{r}^{2}+\omega^{2}\right), \\
& \frac{-\partial_{r}}{\omega^{2}} \circ \partial_{r}=1-\left(\partial_{r}^{2}+\omega^{2}\right) \circ \frac{1}{\omega^{2}}, \\
& \partial_{r} \circ \frac{-\partial_{r}}{\omega^{2}}=1-\frac{1}{\omega^{2}} \circ\left(\partial_{r}^{2}+\omega^{2}\right), \\
& \partial_{r} \circ \frac{-\partial_{r}}{\omega^{2}}=1-\left(\partial_{r}^{2}+\omega^{2}\right) \circ \frac{1}{\omega^{2}} .
\end{aligned}
$$

N.B.: ∂_{r} maps solutions to solutions!

