Killing compatibility complex on Kerr spacetime arXiv:1910.08756 w/ Aksteiner, Andersson, Bäckdahl & Whiting

Igor Khavkine

Institute of Mathematics Czech Academy of Sciences, Prague

Geometry of differential equations seminar Independent University of Moscow

16 Dec 2020

Statement of the problem

- Consider a (pseudo-)Riemannian manifold (M, g).
- ▶ ∇_a Levi-Civita connection; R_{abcd} Riemann tensor of ∇_a .
- $K[v]_{ab} = \nabla_a v_b + \nabla_b v_a$ Killing operator.
- The Killing equation K[v]_{ab} = 0 is an over-determined equation of finite type.
- ► Given g, what is the full compatibility complex of K[v]_{ab} = 0?

$$T^*M \xrightarrow{K} S^2T^*M \xrightarrow{?} \cdots \xrightarrow{?} \cdots$$

Def: *C* is a compatibility operator for *K* if $c \circ K = 0 \implies c = c' \circ C$.

In General Relativity: the components of C constitute a "complete set of local gauge invariant observables" for linearized gravity on the spacetime (M, g).

Igor Khavkine (CAS, Prague)

Possible approaches

How to obtain a compatibility complex of K on (M, g)?

- 1. BGG machinery (representation theoretic approach)
 - Requires (M, g) to be a homogeneous space. Otherwise, does not even produce a complex!
 - Can start with a curved BGG machinery, but no self-contained way to complete it to a compatibility complex.
- 2. Spencer-Goldschmidt theory. (Goldschmidt, Ann Math (1967) 86 246)
 - Prolong to involution, compute Spencer cohomology.
 - Algorithmic. Implemented in computer algebra.
 - Computer algebra requires explicit coordinate components, is blind to any special geometry of (M, g).
 - Witness: execution of the algorithm (often infeasible by hand).
- 3. Reduction to canonical form. (IK [arXiv:1805.03751])
 - Canonical form: adapted to the geometry of (M, g), but with known compatibility complex (e.g., flat connection).
 - Reduction: equivalence up to homotopy.
 - Witness: the explicit equivalence, proof for canonical form (e.g., Poincaré lemma).
- Practical applications.
 - 1., 2.: only (anti-)de Sitter spacetime (maximal symmetry).
 - all other known cases; FLRW cosmology, Schwarzschild black hole [arXiv:1805.03751], now Kerr black hole [arXiv:1910.08765].

Step 1: Equivalence up to homotopy

Two complexes of differential operators, K_i and \mathbb{D}_i , are **equivalent up** to homotopy when the diagram

 $\begin{aligned} & \text{id} - V_i \circ U_i = H_i \circ K_i + K_{i-1} \circ H_{i-1}, \\ & \text{id} - U_i \circ V_i = H_i' \circ \mathbb{D}_i + \mathbb{D}_{i-1} \circ H_{i-1} \end{aligned}$

exists, where the solid arrows commute and the dashed arrows are homotopy corrections.

Lemma (homotopy equivalence as **witness**)

Consider an equivalence up to homotopy between complexes K_i and \mathbb{D}_i , $i \ge 0$. Then, if \mathbb{D}_i is a full compatibility complex, then so is K_i .

- The Lemma does not depend on K₀ being of finite type, only on the equivalence between K₀ and D₀.
- Hence, we can iterate the argument (simplifying at each step!) to get a full compatibility complex for K_i, and its equivalence up to homotopy with D_i.
- K_i will be of finite length when D_i is of finite length.

Lemma After reduction to canonical form: (a) $\mathbb{D}_1 \circ U_1[K[v]] = 0$ (b) $(id - K \circ H_0 - V_1 \circ U_1)[K[v]] = 0$ (d) \exists compatible U_2, V_2, H_1, H'_1 (c) (a) and (b) make a comp.op.

- ► The Lemma does not depend on K₀ being of finite type, only on the equivalence between K₀ and D₀.
- Hence, we can iterate the argument (simplifying at each step!) to get a full compatibility complex for K_i, and its equivalence up to homotopy with D_i.
- K_i will be of finite length when \mathbb{D}_i is of finite length.

Lemma After reduction to canonical form: (a) $\mathbb{D}_1 \circ U_1[K[v]] = 0$ (b) $(id - K \circ H_0 - V_1 \circ U_1)[K[v]] = 0$ (d) \exists compatible U_2 , V_2 , H_1 , H'_1 (c) (a) and (b) make a comp.op.

- ► The Lemma does not depend on K₀ being of finite type, only on the equivalence between K₀ and D₀.
- ► Hence, we can iterate the argument (simplifying at each step!) to get a full compatibility complex for K_i, and its equivalence up to homotopy with D_i.
- \triangleright *K_i* will be of finite length when \mathbb{D}_i is of finite length.

Lemma After reduction to canonical form: (a) $\mathbb{D}_1 \circ U_1[K[v]] = 0$ (b) $(id - K \circ H_0 - V_1 \circ U_1)[K[v]] = 0$ (d) \exists compatible U_2 , V_2 , H_1 , H'_1 (c) (a) and (b) make a comp.op.

- ► The Lemma does not depend on K₀ being of finite type, only on the equivalence between K₀ and D₀.
- Hence, we can iterate the argument (simplifying at each step!) to get a full compatibility complex for K_i, and its equivalence up to homotopy with D_i.
- K_i will be of finite length when \mathbb{D}_i is of finite length.

$$\begin{split} \mathcal{K}[V_0[u]] &= 0 \propto \mathbb{D}u = V_1[\mathbb{D}u],\\ \mathbb{D}U_0[v] &= 0 \propto \mathcal{K}[v] = U_1[\mathcal{K}[v]],\\ v - V_0[U_0[v]] &= 0 \propto \mathcal{K}[v] = H_0[\mathcal{K}[v]],\\ u - U_0[V_0[u]] &= 0 \propto \mathbb{D}u = H_0'[\mathbb{D}u]. \end{split}$$

On solutions means that some 0 must become $\propto K[v]$ or $\propto \mathbb{D}u$.

The relationships between these differential operators are **visually summarized** in the following diagram:

$$\begin{split} \mathcal{K}[V_0[u]] &= 0 \propto \mathbb{D}u = V_1[\mathbb{D}u],\\ \mathbb{D}U_0[v] &= 0 \propto \mathcal{K}[v] = U_1[\mathcal{K}[v]],\\ v - V_0[U_0[v]] &= 0 \propto \mathcal{K}[v] = H_0[\mathcal{K}[v]],\\ u - U_0[V_0[u]] &= 0 \propto \mathbb{D}u = H_0'[\mathbb{D}u]. \end{split}$$

On solutions means that some 0 must become $\propto K[v]$ or $\propto \mathbb{D}u$.

The relationships between these differential operators are **visually summarized** in the following diagram:

$$\begin{aligned} & \mathcal{K}[V_0[u]] = 0 \propto \mathbb{D}u = V_1[\mathbb{D}u], \\ & \mathbb{D}U_0[v] = 0 \propto \mathcal{K}[v] = U_1[\mathcal{K}[v]], \\ & v - V_0[U_0[v]] = 0 \propto \mathcal{K}[v] = H_0[\mathcal{K}[v]], \\ & u - U_0[V_0[u]] = 0 \propto \mathbb{D}u = H_0'[\mathbb{D}u]. \end{aligned}$$

On solutions means that some 0 must become $\propto K[v]$ or $\propto \mathbb{D}u$.

The relationships between these differential operators are **visually summarized** in the following diagram:

$$\begin{aligned} & \mathcal{K}[V_0[u]] = 0 \propto \mathbb{D}u = V_1[\mathbb{D}u], \\ & \mathbb{D}U_0[v] = 0 \propto \mathcal{K}[v] = U_1[\mathcal{K}[v]], \\ & v - V_0[U_0[v]] = 0 \propto \mathcal{K}[v] = H_0[\mathcal{K}[v]], \\ & u - U_0[V_0[u]] = 0 \propto \mathbb{D}u = H'_0[\mathbb{D}u]. \end{aligned}$$

On solutions means that some 0 must become $\propto K[v]$ or $\propto \mathbb{D}u$.

The relationships between these differential operators are **visually summarized** in the following diagram:

$$\begin{split} \mathcal{K}[V_0[u]] &= 0 \propto \mathbb{D}u = V_1[\mathbb{D}u],\\ \mathbb{D}U_0[v] &= 0 \propto \mathcal{K}[v] = U_1[\mathcal{K}[v]],\\ v - V_0[U_0[v]] &= 0 \propto \mathcal{K}[v] = H_0[\mathcal{K}[v]],\\ u - U_0[V_0[u]] &= 0 \propto \mathbb{D}u = H'_0[\mathbb{D}u]. \end{split}$$

On solutions means that some 0 must become $\propto K[v]$ or $\propto \mathbb{D}u$.

The relationships between these differential operators are **visually summarized** in the following diagram:

$$\begin{aligned} & \mathcal{K}[V_0[u]] = 0 \propto \mathbb{D}u = V_1[\mathbb{D}u], \\ & \mathbb{D}U_0[v] = 0 \propto \mathcal{K}[v] = U_1[\mathcal{K}[v]], \\ & v - V_0[U_0[v]] = 0 \propto \mathcal{K}[v] = H_0[\mathcal{K}[v]], \\ & u - U_0[V_0[u]] = 0 \propto \mathbb{D}u = H'_0[\mathbb{D}u]. \end{aligned}$$

On solutions means that some 0 must become $\propto K[v]$ or $\propto \mathbb{D}u$.

The relationships between these differential operators are **visually summarized** in the following diagram:

Canonical form for PDEs of finite type

- The Killing equation K[v]_{ab} = ∇_av_b + ∇_bv_a = 0 is of finite type. There exists an N < ∞ such that v(x), ∂v(x), ..., ∂^Nv(x) determines the solution v uniquely on a neighborhood of x.
- The canonical form for any PDE of finite type is Du = 0, where D is a flat connection on a (possibly new) set of fields u:

$$\mathbb{D}_{a}u^{\alpha} = \partial_{a}u^{\alpha} + \Gamma_{a\beta}^{\alpha}u^{\beta} = 0, \quad \text{where} \quad [\mathbb{D}_{a}, \mathbb{D}_{b}] = 0.$$

- Starting with D₀ := D, define D_ρw = D ∧ w^α for any vector valued p-form w^α. Then D_ρ ∘ D_{ρ-1} = 0 is the de Rham complex twisted by D; it is a full compatibility complex (Poincaré lemma).
- The number of components of u^α is the number of independent solutions of K[v] = 0 (≤ n(n + 1)/2 in n-dim.). This number should be locally constant!

Canonical form for PDEs of finite type

- The Killing equation K[v]_{ab} = ∇_av_b + ∇_bv_a = 0 is of finite type. There exists an N < ∞ such that v(x), ∂v(x), ..., ∂^Nv(x) determines the solution v uniquely on a neighborhood of x.
- The canonical form for any PDE of finite type is Du = 0, where D is a flat connection on a (possibly new) set of fields u:

$$\mathbb{D}_{a}u^{\alpha} = \partial_{a}u^{\alpha} + \Gamma_{a\beta}^{\alpha}u^{\beta} = 0, \quad \text{where} \quad [\mathbb{D}_{a}, \mathbb{D}_{b}] = 0.$$

- Starting with D₀ := D, define D_ρw = D ∧ w^α for any vector valued *p*-form w^α. Then D_ρ ∘ D_{p-1} = 0 is the **de Rham complex twisted by** D; it is a full compatibility complex (Poincaré lemma).
- The number of components of u^α is the number of independent solutions of K[v] = 0 (≤ n(n + 1)/2 in n-dim.). This number should be locally constant!

Canonical form for PDEs of finite type

- The Killing equation K[v]_{ab} = ∇_av_b + ∇_bv_a = 0 is of finite type. There exists an N < ∞ such that v(x), ∂v(x), ..., ∂^Nv(x) determines the solution v uniquely on a neighborhood of x.
- The canonical form for any PDE of finite type is Du = 0, where D is a flat connection on a (possibly new) set of fields u:

$$\mathbb{D}_{a}u^{\alpha} = \partial_{a}u^{\alpha} + \Gamma_{a\beta}^{\alpha}u^{\beta} = 0, \quad \text{where} \quad [\mathbb{D}_{a}, \mathbb{D}_{b}] = 0.$$

- Starting with D₀ := D, define D_ρw = D ∧ w^α for any vector valued p-form w^α. Then D_ρ ∘ D_{ρ-1} = 0 is the de Rham complex twisted by D; it is a full compatibility complex (Poincaré lemma).
- The number of components of u^α is the number of independent solutions of K[v] = 0 (≤ n(n + 1)/2 in n-dim.). This number should be locally constant!

Remark

The **canonical form** need not always be a **flat connection**. It need only be a PDE with a **known** compatibility complex.

But the **twisted de Rham** complex \mathbb{D}_p is a particularly simple construction.

Example: (anti-)de Sitter (maximal symmetry)

The simplest example is of a constant curvature space, identified by

$$C[g] := R_{abcd}[g] - \alpha(g_{ac}g_{bd} - g_{ad}g_{bc}) = 0.$$

The Calabi complex (reviewed in [arXiv:1409.7212])

$$\begin{split} \mathcal{K}_{1}[h] &= \dot{C}[h] = \nabla_{(a} \nabla_{c}) h_{bd} - \nabla_{(b} \nabla_{c}) h_{ad} - \nabla_{(a} \nabla_{d}) h_{bc} + \nabla_{(b} \nabla_{d}) h_{ac} \\ &+ \alpha (g_{ac} h_{bd} - g_{bc} h_{ad} - g_{ad} h_{bc} + g_{bd} h_{ac}), \\ \mathcal{K}_{2}[r] &= 3 \nabla_{[a} r_{bc]de}, \\ &\cdots \\ \mathcal{K}_{i}[b] &= (i+1) \nabla_{[a_{b}} b_{a_{i}} \cdots a_{i} b_{c} \quad (i \geq 2). \end{split}$$

is already known to be a **full compatibility complex**. Our method is not necessary, but can reproduce the same result.

▶ These formulas work in any signature and dimension *n*.

Lorentzian: Minkowski or (Anti-)de Sitter space with Λ = (n-1)(n-2)/2 α.
 Riemannian: *n*-sphere (α > 0), *n*-dimensional hyperbolic space (α < 0).

Example: (anti-)de Sitter (maximal symmetry)

The simplest example is of a constant curvature space, identified by

$$C[g] := R_{abcd}[g] - \alpha(g_{ac}g_{bd} - g_{ad}g_{bc}) = 0.$$

The Calabi complex (reviewed in [arXiv:1409.7212])

$$\begin{split} \mathcal{K}_{1}[h] &= \dot{C}[h] = \nabla_{(a} \nabla_{c}) h_{bd} - \nabla_{(b} \nabla_{c}) h_{ad} - \nabla_{(a} \nabla_{d}) h_{bc} + \nabla_{(b} \nabla_{d}) h_{ac} \\ &+ \alpha (g_{ac} h_{bd} - g_{bc} h_{ad} - g_{ad} h_{bc} + g_{bd} h_{ac}), \\ \mathcal{K}_{2}[r] &= 3 \nabla_{[a} r_{bc]de}, \\ &\cdots \\ \mathcal{K}_{i}[b] &= (i+1) \nabla_{[a_{0}} b_{a_{1} \cdots a_{i}]bc} \quad (i \geq 2). \end{split}$$

is already known to be a **full compatibility complex**. Our method is not necessary, but can reproduce the same result.

These formulas work in any signature and dimension n.

Lorentzian: Minkowski or (Anti-)de Sitter space with Λ = (n-1)(n-2)/2 α.
 Riemannian: *n*-sphere (α > 0), *n*-dimensional hyperbolic space (α < 0).

Example: (anti-)de Sitter (maximal symmetry)

The simplest example is of a constant curvature space, identified by

$$C[g] := R_{abcd}[g] - \alpha(g_{ac}g_{bd} - g_{ad}g_{bc}) = 0.$$

The Calabi complex (reviewed in [arXiv:1409.7212])

$$\begin{split} \mathcal{K}_{1}[h] &= \dot{C}[h] = \nabla_{(a} \nabla_{c}) h_{bd} - \nabla_{(b} \nabla_{c}) h_{ad} - \nabla_{(a} \nabla_{d}) h_{bc} + \nabla_{(b} \nabla_{d}) h_{ac} \\ &+ \alpha (g_{ac} h_{bd} - g_{bc} h_{ad} - g_{ad} h_{bc} + g_{bd} h_{ac}), \\ \mathcal{K}_{2}[r] &= 3 \nabla_{[a} r_{bc]de}, \\ &\cdots \\ \mathcal{K}_{i}[b] &= (i+1) \nabla_{[a_{0}} b_{a_{1} \cdots a_{i}]bc} \quad (i \geq 2). \end{split}$$

is already known to be a **full compatibility complex**. Our method is not necessary, but can reproduce the same result.

- These formulas work in any signature and dimension n.
 - Lorentzian: Minkowski or (Anti-)de Sitter space with Λ = (n-1)(n-2)/2 α.
 Riemannian: *n*-sphere (α > 0), *n*-dimensional hyperbolic space (α < 0).

Newest example: Kerr rotating black hole [arXiv:1910.08756]

Kerr spacetime: Lorentzian ($\mathbb{R}^2 \times S^2$, *g*), outside horizon.

- 4-dimensional, asymptotically flat, Einstein vacuum ($R_{ab} = 0$)
- explicit form of g_{ab}: not important here
- stationary (time symmetry), rotating (one symmetry axis)
- dim ker K = 2 uniformly (Killing vectors)
- ► Killing-Yano 2-form ≅ Killing 2-spinor (hidden symmetry)
- algebraically special curvature R_{abcd}
- spinor calculus adapted to geometry (!)

Other spacetimes in the same class:

- Kerr-de Sitter, Kerr-anti-de Sitter (not asymptotically flat)
- Kerr-Newman-((A)dS) (electrically charged)

Primer on spinor calculus

- ▶ Basic fact: $\mathfrak{so}(1,3) \cong \mathfrak{sl}(2,\mathbb{C})$ and $\mathfrak{so}(1,3)_{\mathbb{C}} \cong \mathfrak{sl}(2,\mathbb{C}) \oplus \mathfrak{sl}(2,\mathbb{C})'$
- fundamental irreps: $(1, 0) : \psi_A, (0, 1) : \psi_{A'}$ on \mathbb{C}^2
- invariant pairing: $\epsilon^{AB} = -\epsilon^{BA}$
- ► all irreducible representations: (k, l) : $\psi_{(A_1 \dots A_k)(A'_1 \dots A'_l)}$
- ▶ spinor bundle on (M, g): SO $(g)_{\mathbb{C}}$ -tensors $\iff \mathfrak{sl}(2, \mathbb{C})$ -spinors
- Levi-Civita connection: $\nabla_a \leftrightarrow \nabla_{AA'}$

Translation:

	ϕ	$\psi_{{\it A}{\it A}'}$	Ф _{АВА' В'}	ψ_{AB}	$\psi_{A'B'}$	Ψ_{ABCD}	$\Psi_{A'B'C'D'}$
spinor	(0,0)	(1,1)	(2,2)	(2,0)	(0,2)	(4,0)	(0,4)
$\text{tensor}_{\mathbb{C}}$	\mathbb{C}			+ <i>i</i> *	<i>i</i> *	+ i*	
	ϕ	Va	S_{ab}	\mathcal{Y}_{ab}	$\overline{\mathcal{Y}}_{ab}$	\mathcal{W}_{abcd}	$\overline{\mathcal{W}}_{\textit{abcd}}$
	scalar	vector	symmetric traceless 2-tensor	anti- self-dual 2-form	self-dual 2-form	anti- self-dual Weyl	self-dual Weyl

Spinor calculus on Kerr

- Basic geometric objects:
 - ► Killing 2-spinor κ_{AB} , $\overline{\kappa}_{A'B'}$ (Killing-Yano 2-form)
 - Killing vectors: $\xi_{AA'}, \zeta_{AA'}$
 - ► Ricci scalar, traceless Ricci tensor: $\Lambda = 0$, $\Phi_{ABA'B'} = 0$
 - Weyl curvature: Ψ_{ABCD} , $\overline{\Psi}_{A'B'C'D'}$
 - Involutivity: $\nabla_{EE'}(\kappa,\xi,\zeta,\Psi) = O(\kappa,\xi,\zeta,\Psi)$

Fundamental spin operators:

$$\begin{array}{c|c} \nabla_{\mathcal{A}\mathcal{A}'} & \nabla^{\mathcal{A}}_{\mathcal{A}'}(-)_{\mathcal{A}\cdots} & \nabla_{(\mathcal{A}}^{\mathcal{A}'}(-)_{\mathcal{B}\cdots}) \\ \hline \nabla_{\mathcal{A}}^{\mathcal{A}'}(-)_{\mathcal{A}'\cdots} & \mathscr{D} & \mathscr{C} \\ \nabla^{\mathcal{A}}_{(\mathcal{A}'}(-)_{\mathcal{B}'\cdots}) & \mathscr{C}^{\dagger} & \mathscr{T} \end{array}$$

Example: 4-dimensional de Rham complex (d₀, d₁, d₂, d₃)

$$\begin{bmatrix} (0,0) \end{bmatrix} \xrightarrow{\begin{bmatrix} \mathscr{T} \end{bmatrix}} \begin{bmatrix} (1,1) \end{bmatrix} \xrightarrow{\begin{bmatrix} \mathscr{C}^{\dagger} \\ \mathscr{C} \end{bmatrix}} \begin{bmatrix} (0,2) \\ (2,0) \end{bmatrix} \xrightarrow{\begin{bmatrix} \mathscr{C} & -\mathscr{C}^{\dagger} \end{bmatrix}} \begin{bmatrix} (1,1) \end{bmatrix} \xrightarrow{\begin{bmatrix} \mathscr{D} \end{bmatrix}} \begin{bmatrix} (0,0) \end{bmatrix}$$

Sought canonical form: $K \rightsquigarrow \mathbb{D}_0, \mathbb{D}_i = \begin{vmatrix} \xi \\ \zeta \end{vmatrix} \otimes d_i.$

- Spinor calculus on Kerr implemented in MATHEMATICA, on top of xAct, by Aksteiner & Bäckdahl. Some packages public, some private. [arXiv:1601.06084]
 Geometric ingredients:
 - **b** special spinors: κ, ξ, ζ, Ψ
 - ▶ spin operators: $\mathcal{D}, \mathcal{C}, \mathcal{C}^{\dagger}, \mathcal{T},$
 - Killing vector sub-bundle span{ξ, ζ}: inclusion, projection, orthogonal projection

We obtained compact formulas for all
 the operators in the reduction diagram using these ingredients.

- With U₀ and V₀, the other operators follow by **explicitly factoring** through K and D₀. This was the most work intensive part, including some guessing/verifying.
- Following the general approach, we obtained compact formulas for the full compatibility complex K_i.
- More explicit factorizations showed the equivalence of K₁ ~~~ K̃₁ with convenient formulas previously published in [PRL (2018) **121** 051104] by Aksteiner & Bäckdahl, but not proven to be complete until now!

- Spinor calculus on Kerr implemented in MATHEMATICA, on top of xAct, by Aksteiner & Bäckdahl. Some packages public, some private. [arXiv:1601.06084]
- Geometric ingredients:
 - special spinors: κ, ξ, ζ, Ψ
 - ▶ spin operators: $\mathscr{D}, \mathscr{C}, \mathscr{C}^{\dagger}, \mathscr{T},$
 - Killing vector sub-bundle span{ξ, ζ}: inclusion, projection, orthogonal projection

We obtained compact formulas for all
 the operators in the reduction diagram using these ingredients.

- With U₀ and V₀, the other operators follow by **explicitly factoring** through K and D₀. This was the most work intensive part, including some guessing/verifying.
- ► Following the general approach, we obtained compact formulas for the full compatibility complex K_i.
- More explicit factorizations showed the equivalence of K₁ ~~~ K̃₁ with convenient formulas previously published in [PRL (2018) **121** 051104] by Aksteiner & Bäckdahl, but not proven to be complete until now!

- Spinor calculus on Kerr implemented in MATHEMATICA, on top of xAct, by Aksteiner & Bäckdahl. Some packages public, some private. [arXiv:1601.06084]
- Geometric ingredients:
 - special spinors: κ, ξ, ζ, Ψ
 - spin operators: D, C, C[†], T,
 - Killing vector sub-bundle span{ξ, ζ}: inclusion, projection, orthogonal projection

We obtained compact formulas for all
the operators in the reduction diagram using these ingredients.

- With U₀ and V₀, the other operators follow by explicitly factoring through K and D₀. This was the most work intensive part, including some guessing/verifying.
- ► Following the general approach, we obtained compact formulas for the full compatibility complex K_i.
- More explicit factorizations showed the equivalence of K₁ ~~~ K̃₁ with convenient formulas previously published in [PRL (2018) **121** 051104] by Aksteiner & Bäckdahl, but not proven to be complete until now!

- Spinor calculus on Kerr implemented in MATHEMATICA, on top of xAct, by Aksteiner & Bäckdahl. Some packages public, some private. [arXiv:1601.06084]
- Geometric ingredients:
 - special spinors: κ, ξ, ζ, Ψ
 - spin operators: D, C, C[†], T,
 - Killing vector sub-bundle span{ξ, ζ}: inclusion, projection, orthogonal projection

We obtained **compact formulas** for all the operators in the reduction diagram using these ingredients.

- With U₀ and V₀, the other operators follow by explicitly factoring through K and D₀. This was the most work intensive part, including some guessing/verifying.
- Following the general approach, we obtained compact formulas for the full compatibility complex K_i.
- More explicit factorizations showed the equivalence of K₁ ~~~ K̃₁ with convenient formulas previously published in [PRL (2018) **121** 051104] by Aksteiner & Bäckdahl, but not proven to be complete until now!

- Spinor calculus on Kerr implemented in MATHEMATICA, on top of xAct, by Aksteiner & Bäckdahl. Some packages public, some private. [arXiv:1601.06084]
- Geometric ingredients:
 - special spinors: κ, ξ, ζ, Ψ
 - spin operators: D, C, C[†], T,
 - Killing vector sub-bundle span{ξ, ζ}: inclusion, projection, orthogonal projection

We obtained compact formulas for all
 the operators in the reduction diagram using these ingredients.

- With U₀ and V₀, the other operators follow by explicitly factoring through K and D₀. This was the most work intensive part, including some guessing/verifying.
- Following the general approach, we obtained compact formulas for the full compatibility complex K_i.
- More explicit factorizations showed the equivalence of K₁ ~~~ K̃₁ with convenient formulas previously published in [PRL (2018) **121** 051104] by Aksteiner & Bäckdahl, but not proven to be complete until now!

- Spinor calculus on Kerr implemented in MATHEMATICA, on top of xAct, by Aksteiner & Bäckdahl. Some packages public, some private. [arXiv:1601.06084]
- Geometric ingredients:
 - special spinors: κ, ξ, ζ, Ψ
 - spin operators: D, C, C[†], T,
 - Killing vector sub-bundle span{ξ, ζ}: inclusion, projection, orthogonal projection

We obtained compact formulas for all
 the operators in the reduction diagram using these ingredients.

- With U₀ and V₀, the other operators follow by **explicitly factoring** through K and D₀. This was the most work intensive part, including some guessing/verifying.
- Following the general approach, we obtained compact formulas for the full compatibility complex K_i.
- More explicit factorizations showed the equivalence of K₁ + K₁ with convenient formulas previously published in [PRL (2018) **121** 051104] by Aksteiner & Bäckdahl, but not proven to be complete until now!

Igor Khavkine (CAS, Prague)

- A full compatibility complex K_i can be practically constructed for K on any spacetime of sub-maximal (but uniform) symmetry.
- The core of the calculation consists of explicitly identifying integrability conditions of the Killing equation K[v] = 0 and putting it into the canonical form, e.g., of a flat connection.
- The construction outputs a homotopy equivalence of K_i with a twisted de Rham complex, which witnesses the completeness of each K_i.
- Newest application: rotating Kerr black hole (together with Aksteiner, Andersson, Bäckdahl and Whiting [arXiv:1910.08756]).
- **TODO:** extend to other geometries, Myers-Perry, Kerr-Newman, ...
- **TODO:** connect with non-linear version of the question

- A full compatibility complex K_i can be practically constructed for K on any spacetime of sub-maximal (but uniform) symmetry.
- The core of the calculation consists of explicitly identifying integrability conditions of the Killing equation K[v] = 0 and putting it into the canonical form, e.g., of a flat connection.
- The construction outputs a homotopy equivalence of K_i with a twisted de Rham complex, which witnesses the completeness of each K_i.
- Newest application: rotating Kerr black hole (together with Aksteiner, Andersson, Bäckdahl and Whiting [arXiv:1910.08756]).
- **TODO:** extend to other geometries, Myers-Perry, Kerr-Newman, ...
- **TODO:** connect with non-linear version of the question

- A full compatibility complex K_i can be practically constructed for K on any spacetime of sub-maximal (but uniform) symmetry.
- The core of the calculation consists of explicitly identifying integrability conditions of the Killing equation K[v] = 0 and putting it into the canonical form, e.g., of a flat connection.
- The construction outputs a homotopy equivalence of K_i with a twisted de Rham complex, which witnesses the completeness of each K_i.
- Newest application: rotating Kerr black hole (together with Aksteiner, Andersson, Bäckdahl and Whiting [arXiv:1910.08756]).
- **TODO:** extend to other geometries, Myers-Perry, Kerr-Newman, ...
- **TODO:** connect with non-linear version of the question

- A full compatibility complex K_i can be practically constructed for K on any spacetime of sub-maximal (but uniform) symmetry.
- The core of the calculation consists of explicitly identifying integrability conditions of the Killing equation K[v] = 0 and putting it into the canonical form, e.g., of a flat connection.
- The construction outputs a homotopy equivalence of K_i with a twisted de Rham complex, which witnesses the completeness of each K_i.
- Newest application: rotating Kerr black hole (together with Aksteiner, Andersson, Bäckdahl and Whiting [arXiv:1910.08756]).
- TODO: extend to other geometries, Myers-Perry, Kerr-Newman, ...
- **TODO:** connect with non-linear version of the question

- A full compatibility complex K_i can be practically constructed for K on any spacetime of sub-maximal (but uniform) symmetry.
- The core of the calculation consists of explicitly identifying integrability conditions of the Killing equation K[v] = 0 and putting it into the canonical form, e.g., of a flat connection.
- The construction outputs a homotopy equivalence of K_i with a twisted de Rham complex, which witnesses the completeness of each K_i.
- Newest application: rotating Kerr black hole (together with Aksteiner, Andersson, Bäckdahl and Whiting [arXiv:1910.08756]).
- TODO: extend to other geometries, Myers-Perry, Kerr-Newman, ...
- **TODO:** connect with non-linear version of the question

Thank you for your attention!