Local and gauge invariant observables in gravity

Igor Khavkine

Department of Mathematics University of Trento

17 Sep 2014 Operator and Geometric Analysis on Quantum Theory Levico Terme, Italy

The need for local observables

Consider a Classical or a Quantum Field Theory on an n-dim. spacetime M.

- ▶ In QFT, $\langle \hat{\phi}(x) \hat{\phi}(y) \rangle$ is singular for some pairs of (x, y).
- ▶ In classical FT, $\{\phi(x), \phi(y)\}$ is singular for some pairs of (x, y).
- Instead, use smearing

$$\phi(\tilde{\alpha}) = \int_{M} \phi(x) \alpha(x) \,\mathrm{d}\tilde{x}$$

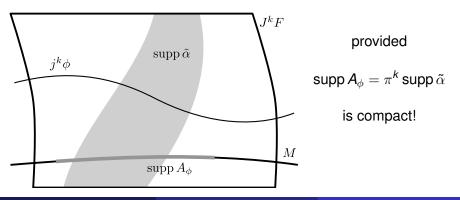
so that $\langle \hat{\phi}(\tilde{\alpha}) \hat{\phi}(\tilde{\beta}) \rangle$ and $\{ \phi(\tilde{\alpha}), \phi(\tilde{\beta}) \}$ are always finite, provided

- $\tilde{\alpha}, \tilde{\beta}$ are **smooth** *n*-forms on *M*,
- $\tilde{\alpha}$, $\tilde{\beta}$ have **compact** supports.
- Smoothness diffuses singularities.
 Compactness ensures convergence of all integrals.
- Support of a functional: supp $\phi(\tilde{\alpha}) = \operatorname{supp} \tilde{\alpha} \subset M$.

Local observables

- Field ϕ is a section of some bundle $\pi \colon F \to M$ ($\pi^k \colon J^k F \to M$).
- Local observables may be non-linear and depend on derivatives (jets). An *n*-form α̃ = α(x, φ(x), ∂φ(x), ···) dx̃ on J^kF

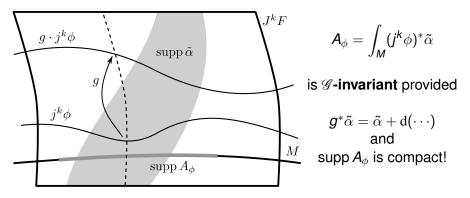
defines a local observable
$$A_{\phi} = \int_{M} (j^{k} \phi)^{*} \tilde{\alpha},$$



Igor Khavkine (Trento)

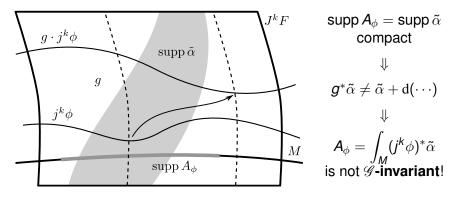
Local observables in gauge theory (no gravity)

- ► Let 𝔅 be the group of gauge transformations.
- Gauge transformations $g \in \mathscr{G}$ act on $J^k F$ (hence $j^k \phi \mapsto g \cdot j^k \phi$).
- ▶ No gravity: \mathscr{G} fixes the fibers of $\pi^k : J^k F \to M$.



No (such) local observables in gravity

- Gravity is General Relativity (GR), $F = S^2 T^* M$, $\mathscr{G} = \text{Diff}(M)$.
- Diffeomorphisms do not fix the fibers of π^k: J^kF → M. In fact, diffeomorphisms act transitively on these fibers.
- M is never compact, as needed by global hyperbolicity.



Relaxing locality: an explicit example

• Take dim M = 4. Write the **dual Weyl tensor** as

$$\overset{*}{W}_{ab}{}^{cd} = W_{abc'd'}\varepsilon^{c'd'cd} = \varepsilon_{aba'b'}W^{a'b'cd}.$$

Make use of curvature scalars (Komar-Bergmann 1960-61)

$$b^{1} = W_{ab}{}^{cd}W_{cd}{}^{ab}, \qquad b^{3} = W_{ab}{}^{cd}W_{cd}{}^{ef}W_{ef}{}^{ab}, b^{2} = W_{ab}{}^{cd}\overset{*}{W}_{cd}{}^{ab}, \qquad b^{4} = W_{ab}{}^{cd}W_{cd}{}^{ef}\overset{*}{W}_{ef}{}^{ab}.$$

- ▶ Let φ be a **generic** metric (det $|\partial b^i / \partial x^j| \neq 0$) and let $\beta = (b^1[\varphi](x), b^2[\varphi](x), b^3[\varphi](x), b^4[\varphi](x))$ for some $x \in M$.
- Take a: ℝ⁴ → ℝ, with sufficiently small compact support containing β, let α̃ = a(b) db¹ ∧ db² ∧ db³ ∧ db⁴ on J^{k≥2}F

and
$$A_{\phi} = \int_{M} (j^{k} \phi)^{*} \tilde{\alpha}.$$

A_φ is well-defined on a Diff-invariant neighborhood U ∋ φ among all metrics φ such that R[φ]_{ab} = 0. A_φ is Diff-invariant.

Differential invariants of fields (algebra)

- ▶ In any gauge theory, the group \mathscr{G} of gauge trans. acts on $J^k F$.
- **Differential invariants**: scalar \mathscr{G} -invariant functions on $J^k F$.
- **Theorem** (Lie-Tresse 1890s, Kruglikov-Lychagin 2011):
 - (generically) all differential invariants (all $k < \infty$) are generated by
 - a finite number of invariants and
 - a finite number of differential operators satisfying
 - a finitely generated set of differential identities.
- Examples
 - Non-gauge theory: every function on $J^k F$.
 - Yang-Mills theory: invariant polynomials of curvature d_AA.
 - Gravity: curvature scalars, built from Riemann R, ∇R , $\nabla \nabla R$, ...
- Gauge invariant observables: let α̃ = a(b¹,..., b^m) db¹ ∧···∧ dbⁿ, for some a: ℝ^m → ℝ and differential invariants bⁱ, i = 1,..., m ≥ n,

then
$$A_{\phi} = \int_{M} (j^{k} \phi)^{*} \tilde{\alpha}$$
 is well-defined and gauge invariant,

provided supp $[(j^k \phi)^* \tilde{\alpha}]$ is compact.

Moduli spaces of fields (geometry)

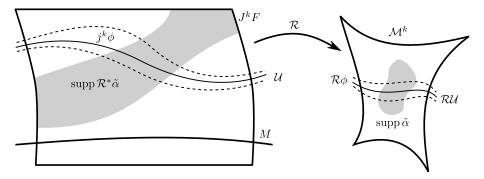
- In any gauge theory, the group \mathscr{G} of gauge trans. acts on $J^k F$.
- **Moduli space**: quotient space $\mathcal{M}^k = (J^k F \setminus \Sigma^k) / \mathscr{G}$ (Σ^k is singular).
- Differential invariants are coordinates, separating points, on \mathcal{M}^k .
- Denote by R: J^kF → M^k the quotient map. Two (generic) field configurations φ and φ are gauge equivalent iff the images of Rφ(M) and Rφ(M) coincide as submanifolds of M^k (for high k).
- Differential identities among differential invariants define a PDE *E^k* on *n*-dimensional submanifolds of *M^k*, identifying submanifolds like *R*φ(*M*).
- ► Finite generation means that there exists a k' such that all M^k and E^k (k > k') can be recovered from M^{k'} and E^{k'}.
- Choose compactly supported *n*-form α̃ on M^k and U such that φ ∈ U implies Rφ(M) ∩ supp α̃ is compact. Then U is G-invariant,

$$A_{\phi} = \int_{M} (j^{k} \phi)^{*} \mathcal{R}^{*} \tilde{\alpha}$$
 is well-defined and gauge invariant,

and the A_{ϕ} separate \mathscr{G} -orbits in \mathcal{U} .

New notion of local and gauge invariant observables

- A_φ may only be defined on an open subset U ⊂ S of (covariant) phase space. Local charts!
- ► $A_{\phi} = \int_{M} (j^{k} \phi)^{*} \tilde{\alpha}$, with $j^{k} \phi(M) \cap \text{supp } \tilde{\alpha}$ compact for every $\phi \in U$.
- A_{ϕ} is gauge invariant if $\tilde{\alpha} = \mathcal{R}^* \tilde{\beta}$ of some *n*-form $\tilde{\beta}$ on \mathcal{M}^k .



▶ **NB:** Two metrics ϕ and ψ are Diff-equivalent iff $\mathcal{R}\phi = \mathcal{R}\psi$ in \mathcal{M}^k .

Poisson brackets

- Poisson brackets of gauge invariant observables are well-defined intrinsically, but require care to compute.
- ► 1st possibility. Use hyperbolic gauge fixing to obtain Peierls bracket E(-, -),

$$\{A_{\phi}, B_{\phi}\} = E(A'_{\phi}, B'_{\phi}) = \int_{M \times M} A'_{\phi}(x) \cdot E_{\phi}(x, y) \cdot B'_{\phi}(y),$$

where $A_{\phi+t\psi} = A_{\phi} + tA'_{\phi}(\psi) + O(t^2)$ and $A'_{\phi}(\psi) = \int_M A'_{\phi}(x) \cdot \psi(x)$, with $A'_{\phi}(x)$ a compactly supported distribution.

- ► 2nd possibility. Use the reduced equation *E^k* on *M^k* and apply the Peierls formalism (write as hyperbolic PDE + constraints, linearize, compute Green functions).
- For gravity: 1st possibility is well understood. 2nd possibility not yet explored.

Conclusion

- Local gauge invariant observables are important in both Classical (non-perturbative construction) and Quantum (perturbative or semi-classical renormalization) Field Theory.
- Usual restriction on "compact support" excludes gravitational gauge theories.
- Relaxing the support conditions opens the door to a large class of gauge invariant observables (even for gravitational theories), defined using **differential invariants** or **moduli spaces** of fields. They separate gauge orbits on open subsets of the phase space.
- > The **Peierls formalism** computes their Poisson brackets.
- Limitations:
 - Observables may not be globally defined on all of phase space.
 - Naive approach separates only generic phase space points (e.g., metrics without isometries).
 - Need to connect with operational description of observables.

Thank you for your attention!