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A(lgebraic)QFT
I In a QFT on a manifold M, a field operator φ(f ) =

∫
f (x)φ(x) dx

smeared by a test function f is considered to be localized within
supp f ⊂ M. Typically, φ(f ) is an unbounded self-adjoint operator
on a Hilbert space of states H. (Ex: free relativistic field)

I The operators A(U) localized within U ⊆ M are closed under
products. In more detail, A(U) is a non-commutative ∗-algebra.

I These algebras have special properties, like monotonicity
A(U) ⊂ A(V ) when U ⊂ V and microcausality [A(U),A(V )] = 0
when U and V are spacelike separated.

I AQFT takes the algebras A(U) (U ⊂ M) of localized quantum
observables as fundamental, satisfying some axioms, and
separates out finding their representations π : A(U)→ Op(H).

I In general, there are many inequivalent representations of the
same algebra of observables. Different physical vacuum states
may belong to inequivalent representations (thermal states,
spontaneously broken symmetries, non-equilibrium states).
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Perturbative AQFT and (infinite) Renormalization
I Consider an interacting Lagrangian L[φ] = L0[φ] + λLI [φ], where L0[φ] is

free and λ is a formal coupling parameter.
I Starting with free quantum fields φ(x), try to make sense of the interacting

fields φI(x) via Bogoliubov’s formula (Feynman diagrams)

TLI (φI(x)φI(y) · · · ) =
(
T e

i
~
∫

M λLI [φ] dx
)−1
T
[
(φ(x)φ(y) · · · ) e

i
~
∫

M λLI [φ] dx
]

I Work over formal power series C[[~, λ]]. Ignores convergence.
I Replace λ→ λ(x) by test function. Separates UV and IR problems.

I Want: Time-ordered products Tk+1[φ(x)LI [φ](y1) · · · LI [φ](yk )] are
well-defined (free field algebra)-valued distributions. Then φI(x) is
well-defined order-by-order, to all orders.

I Key observation: Tk [A(x1) · · ·B(xk )] = A(x1)Tk−1[ · · ·B(xk )] if x1 is
chronologically later than (x2, . . . , xk ).
Epstein-Glaser: causality + Tk−1 =⇒ Tk [A(x1) · · ·B(xk )] outside
∆k = {x1 = · · · = xk}!
UV renormalization: extend distribution Tk [A(x1) · · ·B(xk )] from Mk \∆k
to Mk . Always possible, under reasonable hypotheses!

I Elementary example: “ 1
x ”→ 1

x+i0 + cδ(x)
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Nonlinear Local Observables and Hadamard States
I Warning: typical integraction LI [φ] = “φ(x)4” 6= φ(x)φ(x)φ(x)φ(x). OK if

x1 6= · · · 6= x4, but UV divergence if x1, x2, x3, x4 → x !
I To start the Epstein-Glaser induction, we still need a rule for

T1(local, nonlinear, classical) 7→ (free quantum observable)

Typical notation: T1(A(x)) = :A(x): (Wick ordering)
I In QFT on Minkowski space, Wick ordering, aka normal ordering, aka vacuum

subtraction has multiple equivalent definitions:
I Momentum cutoff:

φ(x) 7→ φ(x)Λ =

∫
|k|<Λ

√
~

2ωk
(âk e−iωkt + â†−k e+iωkt )eik·x dk

φ(x)2 7→ :φ(x)2: = lim
Λ→∞

φ(x)2
Λ − ~F (~,Λ).

I Point splitting:
:φ(x)φ(y): = φ(x)φ(y)− ~

( 1
~ 〈φ(x)φ(y)〉Fock

)
, then let y → x .

I For higher powers of φ, must subtract lower powers of φ with singular coefficients.
I Point splitting: Generalizes to curved spacetimes (M,g), but there is no preferred

vacuum state 〈−〉(M,g)!
I Hadamard states: Preferred class of states 〈−〉Ω such that
〈φ(x)φ(y)〉Ω ∼ ~H(M,g)(x , y) + l.o.tΩ. H(M,g)(x , y) depends only on local geometry.
Wick ordering: :φ(x)2: = limy→x φ(x)φ(y)− ~H(M,g)(x , y).
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Short summary on pAQFT
Theorem (Main theorem of perturbative renormalization)
Given a free QFT, there always exists a renormalized Tk≥1. Given two
renormalized time-ordered products, Tk≥1 and T ′k≥1 and an interaction
LI [φ], the difference can be absorbed by a finite renormalization:

T ′LI
[AI(x)BI(y) · · · ] = TLI+O(~)[(AI(x) + O(~))(BI(y) + O(~)) · · · ]

I Special features:
I No path inegral.
I No Euclidean Wick rotation.
I Mathematically precise framework for textbook QFT.

I Surveys and summaries:
I Hollands, Renormalized quantum Yang-Mills fields in curved spacetime

RMP (2009) 20 1033 0705.3340
I Brunetti et al., Advances in Algebraic Quantum Field Theory

Springer (2015)
I Fröb, Anomalies in Time-Ordered Products and Applications to the

BV-BRST Formulation of Quantum Gauge Theories
CMP (2019) 372 281 1803.10235
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Finite Renormalization vs Anomalies
I If O is any classical local observable, then any quantization

prescription O 7→ :O: suffers from ambiguities. Why not use
:O:′ = :O: + O(~)? These are finite renormalizations!

I This is a manifestation of the well-known operator ordering
ambiguity in quantum mechanics. Quantization is not unique!

I An unlucky quantization can result in anomalies:
I Internal or gauge symmetries not preserved.
I Conservation laws violated (e.g., ∇aTab 6= 0).

I Can anomalies be cancelled by exploiting ambiguities? A
precise classification of the ambiguities is necessary to answer
the question.

I Renormalization ambiguities on curved spacetime:
I How much does the definition depend on the vacuum state?
I Is the definition local?
I Is the definition covariant?
I How much more ambiguity compared to Minkowski spacetime?
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Finite Renormalization on Minkowski Spacetime

I Sub-singular Wick ordering subtractions are not unique, changing
them, generally produces

:φk :′ = :φk : +
∑
i<k

Zi :φ
i :

where the Zi :φ
i : are the finite renormalization counter-terms.

I On Minkowski space, there are many ways to constrain them:
I Poincaré invariance.
I Uniqueness of Fock vacuum.
I Scaling dimensions.
I Internal symmetries (e.g., φ 7→ −φ). Etc.

I Examples for the free scalar field, L = −1
2(∂φ)2 − 1

2m2φ2:
I φ4 7→ :φ4: + Z1m2:φ2: + Z2m4

I (∂φ)2 7→ :(∂φ)2: + Z1m2:φ2: + Z2m4

I ∂aφ∂bφ 7→ :∂aφ∂bφ: + Z1ηabm2:φ2: + Z2ηabm4
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Locally Covariant Fields on Curved Spacetime

I Our work is in the framework of Locally Covariant QFT on Curved
Spacetimes (Hollands-Wald, Brunetti-Fredenhagen-Verch, . . . ).

I A QFT is an assignment of a ∗-algebra of observables to a
spacetime, (M,g)→ A(M,g). It is locally covariant if
I a causal isometric embedding (M,g)→ (M ′,g′) induces an

injective homomorphism A(M,g)→ A(M ′,g′);
I these homomorphisms respect spacelike commutativity, time slice

property.
I A local field (M,g) 7→ Φ(M,g) is a distribution on M valued in
A(M,g). It is locally covariant when Φ(M,g)(f ) ∈ A(M,g)
respects the inclusions and isomorphisms induced by isometries.

I In categorical language, A is a covariant functor from
spacetimes to algebras and Φ is a natural transformation from
the functor of test functions to the algebra functor A.
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Result of Hollands and Wald (2001) [arXiv:gr-qc/0103074]
I Consider a massive, curvature coupled scalar field

L = −1
2

(∇φ)2 − 1
2

m2φ2 − ξRφ2.

I To any polynomial P(φ), we can associate a locally covariant local
field :P(φ): that essentially reduces to the corresponding Wick
polynomial on Minkowski space.

I The assignment of the field is not unique. Under technical
conditions, the ambiguity is precisely characterized as follows:
Given two prescriptions : · · · : and : · · · :′, there exists a sequence
of coefficients Ck such that for each n:

:φn:′ − :φn: =
n−1∑
k=0

(
n
k

)
Cn−k :φk : (setting ~ = 1),

with each Ck = Ck [g,m2, ξ] a scalar diff-op. that depends
polynomially on the local Riemann tensor R and its derivatives,
depends polynomially on m2 and depends analytically on ξ.
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Problems with Hollands & Wald
I The result of H-W is intuitive and appealing, reducing to the

folklore result on Minkowski spacetime.
I But: no vectors Bµ or spinors ψ, no derivatives ∂µφ, no time

ordered products T (:φ2(x): :ψ̄γµ∇µψ(y):), no covariance for
background gauge field transformations
(M,g,A) 7→ (M,g,A + ∂u).

I H-W do claim a reasonable result that covers some of these
cases, but for a proof they only say that it should be analogous to
the scalar case.

I The technical conditions involve analyticity in an essential and
technically cumbersome way. It is unnatural in smooth differential
geometry.

I Goal: Eventually address all these issues.
But for now, just generalize to Wick powers of bosonic
vector-valued fields and eliminate the analyticity axiom.
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Existence vs Classification

I In [arXiv:gr-qc/0103074] H-W classified the renormalization
ambiguities, conditional on the existence of at least one
construction consistent with their axioms.

I There is an obvious candidate construction scheme: point split
Hadamard parametrix regularization scheme.

I In the later work [arXiv:gr-qc/0111108], the proved existence, by
showing this method to be consistent with the axioms.

I In our work (with V. Moretti and/or A. Melati), we have restricted
our attention to classification, while existence is left to future
work. It is expected that the Hadamard regularization scheme will
still work.
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Our Axioms / Renormalization Conditions
I We can essentially reproduce the H-W result, with updated

axioms:
I normalization, :φ: = φ
I commutators, [:A(x):, φ(y)] = i :{A(x), φ(y)}:
I completeness, ∀x : [A, φ(x)] = 0 ⇐⇒ A = α1
I scaling, (g, φ, t) 7→ (µ−2g, µdφφ, µdt t)

=⇒ :φk : 7→ µkdφ(:φk : + O(logµ))
I locality and covariance
I smoothness, ω(:Ag,t(x):) is jointly smooth in (x , s) under smooth

compactly supported variations of (gs, ts), for some non-empty
class of states ω (e.g., Hadamard).

I Leibniz rule, perturbative agreement (not explicitly used)
I The technical analyticity requirement of H-W (analyticity upon

restriction to analytic (g,m2, ξ)) has been replaced by our
smoothness axiom with respect to (g, t).

I Also, φ = (φi), t = (tj) could be any natural multi-component
field. We restrict to tensor fields.
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Conditions on the background fields

I The components of the dynamical fields may have different
scaling degrees, µdφφ = (µdiφi). We do not need to require any
conditions on the weights di .

I The components of the background fields may also have different
scaling degrees, µdtt = (µsj tj). Each tj is a component of a
covariant tensor of rank `j . A background field t is admissible if

`j + sj ≥ 0 (for all j).

When the equality `j + sj = 0 holds, the component tj is said to be
marginal. We denote by z = (tj)marginal the marginal components.

I Example: m2 (` = 0, s = 2), ξ (` = 0, s = 0), gab (` = 2, s = −2)
I In the physics literature, the scaling weights di and sj are

sometimes called the mass dimension.
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Theorem (Kh-Melati-Moretti)
Let φ be a multicomponent locally covariant tensor field, coupled to
admissible background tensor fields t, with marginal components z.
Let {:φn:}n=1,2,... and {:φn:′}n=1,2,... be two families of Wick powers of
φ. Then there exists a family of locally-covariant c-number fields
{Ck}k=1,2,..., such that C1 = 0 and, for every k = 1,2, . . .,

(i) :φi1 · · ·φin :′ = :φi1 · · ·φin : +
n−1∑
k=0

(
n
k

)
:φ(i1 · · ·φik : Cn−k

ik+1···in)[g, t] ,

(ii) each Ck
i1···ik [g, t] is homogeneous of appropriate degree,

(iii) more precisely Ck
i1···ik [g, t] =

∑Nk
j=1 ck

j [g, t](Pk
j )i1···ik [g, t] for

equivariant polynomials Pk
j [g, t]=Pk

j (g−1, ε,R,∇R, t,∇t, · · · ),
with smooth invariant invariant scalar ck

j [g, t] = ck
j (z)

coefficients.

N.B.: For mixed Bose-Fermi fields φ, it suffices to use fermionic signs,
X(i1···in) =

∑
σ∈Sn

(−)σXσi1···σin . But spin equivariance needs more attention!
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Notes on the proof (1 of 4)
We closely follow the structure of our previous work on scalars (which
followed the original H-W proof, with greater attention to detail).

Starting from normalization, use induction on commutators and
completeness to get

:φi1 · · ·φin :′ = :φi1 · · ·φin : +
n−1∑
k=0

(
n
k

)
:φ(i1 · · ·φik : Cn−k

ik+1···in)[g, t] ,

with c-number coefficients Cn−k
ik+1···in [g, t].

For scalar φ and t = (m2, ξ), we get the H-W formula

:φn:′ − :φn: =
n−1∑
k=0

(
n
k

)
Cn−k [g,m2, ξ] :φk : .
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Notes on the proof (2 of 4)

Using locality and smoothness, we conclude that the coefficients
(g, t) 7→ Ck [g, t] are local and regular, hence Ck (x ,g, ∂g, . . . , t, ∂t, . . .).

Theorem (Peetre-Slovák)
A map C∞ → C∞ that is local (compatible with restriction to smaller
domains) and regular (maps smooth families to smooth families) must
be a smooth differential operator of locally bounded order.

I Original result for linear maps, Peetre (1959, 1960).
I Extension to nonlinear maps, Slovák (1988).
I Great exposition, Navarro-Sancho [arXiv:1411.7499].

Key place where the analyticity was previously used by H-W.
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Notes on the proof (3 of 4)

Theorem (Thomas Replacement)
A smooth homogeneous tensor function of g, ∂g, . . . T, ∂T, . . . is
equivariant under diffeomorphisms iff it is a smooth homogeneous
pointwise g-isotropic function of R, ∇R, . . . T, ∇T, . . . and ε.

I Original, T.Y. Thomas (1920s). More modern, Slovák (1992).
I Concise, self-contained proof (our paper).

Using covariance (under diffeomorphisms) and scaling, the structure
of the differential operators Ck can be refined to

u · Ck [g, t] = u · Ck (x ,g, ∂g, . . . , t, ∂t, . . .)

= Pk
g(R,∇R, · · · , t,∇t; u) ,

where Pk
g are homogeneous g-isotropic scalar functions, which is

linear in u auxiliary tensors.
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Notes on the proof (4 of 4)
Theorem (Luna, Richardson 1970s + incremental improvement)
A smooth equivariant function on fin.dim. O(g) or SO(g) reps is a linear combination
of polynomial equivariants with coefficients essentially smooth functions of
polynomial scalar invariants.

Theorem (FFT of Invariant Theory, Weyl 1930)
Scalar g-isotropic polynomials are generated by (a) outer products, (b) index
contractions with g, (c) index contractions with ε.

Theorem (Folklore)
A positive weight, homogeneous function that is smooth around zero is a polynomial.

Thus, with only admissible background fields t,

u · Ck [g, t] = Pk
g(R,∇R, . . . , t,∇t, . . . ; u)

is a sum of homogeneous invariant polynomials, whose coefficients are (locally)
smooth functions of (finitely many) invariant scalar polynomials in (marginal
components) z.
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Example: scalar Klein-Gordon, with derivative
Scalar Scalar Klein-Gordon in n-dimensions:

�gφ−m2φ+ ξR φ = 0 ,
(

Φ = (φ,∇aφ), Φ 7→ µ
n−2

2 Φ
)
.

Admissible: m2 (`+ s = 0 + 2), ξ (`+ s = 0 + 0); marginal: ξ.

 :φ2:′

:φ∇aφ:′

:∇(aφ∇b)φ:′

=

 :φ2:
:φ∇aφ:

:∇(aφ∇b)φ:

+

 α1m2 + α2R + Aξ,m2

β1∇aR + Bξ,m2

gab
(
γ1m4 + γ2m2R + γ3R2)+

(
γ4m2 + γ5�

)
Rab + Cξ,m2


with smooth {α, β, γ}j = {α, β, γ}j(ξ), where also

A
ξ,m2 = α3∇

a
ξ∇aξ + α4�ξ ,

B
ξ,m2 = β2∇am2 + β3m2∇aξ

+ β4R∇aξ + β5Rab∇
b
ξ

+ β6(∇b
ξ∇bξ)∇aξ + β7�ξ∇aξ

+ β8∇
b
ξ∇(b∇a)ξ + β9∇a�ξ ,

C
ξ,m2 = γ6∇(aξ∇b)m2 + γ7m2∇(aξ∇b)ξ + γ8R∇aξ∇bξ + γ9Rab(∇ξ)2

+ γ10Rc(a∇b)ξ∇
c
ξ + γ11gab∇

c
ξ∇cm2 + γ12gabm2(∇ξ)2

+ γ13gabR(∇ξ)2 + γ14gabRbc∇bξ∇cξ + γ15∇(a∇b)m2

+ γ16m2∇(a∇b)ξ + γ17�ξ∇(a∇b)ξ + γ18R∇(a∇b)ξ + γ19Rab�ξ

+ γ20gab�m2 + γ21gabm2�ξ + γ22gab(�ξ)2 + γ23gabR�ξ

+ γ24∇(aξ∇b)�ξ + γ25∇(a∇b)�ξ

+ γ26gab∇
c
ξ∇c�ξ + γ27gab�

2
ξ .
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Example: Vector Klein-Gordon
Vector Klein-Gordon in n-dimensions:

�gAa −m2Aa + ξb
aR Ab = 0 ,

(
Ab 7→ µ

n−2
4 Ab

)
.

Admissible: m2 (`+ s = 0 + 2), ξb
a (`+ s = 2− 2); marginal: ξb

a .

:AaAb:′ = :AaAb: + (y1m2 + y2R)gab + y3Rab + (y4m2 + y5R)ξab + Bξ ,

where

Bξ = y6gab�ξ
c
c + y7∇(a∇b)ξ

c
c + y8gab∇

c
ξ

d
d∇cξ

d
d + y9gcd∇(aξ

cd∇b)ξ
c
c

+ y10

(
∇(a∇b)ξcd

)
ξ

cd + y11∇(aξ
cd∇b)ξcd + y12gab (�ξcd ) ξcd + y13gab∇

c
ξde∇cξ

de

+ y14ξab�ξ
c
c + y15ξab∇

c
ξ

d
d∇cξ

d
d + y16�ξab + y17ξab (�ξcd ) ξcd + y18ξab∇

c
ξde∇cξ

de

+ y19ξcd∇(aξ
cd∇b)ξ

c
c + y20ξcdξef∇(aξ

ef∇b)ξ
cd
,

with smooth yj = yj(tr ξ = ξa
a , tr ξ2 = ξb

aξ
a
b , tr ξ3, . . . , tr ξn) (locally).

Stable orbit types are separated by the matrix discriminant

p0(ξ) = disc(ξ) = det
(

tr ξi+j−2
)n

i,j=1
.
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Discussion

I In Kh-Moretti (2016) and Kh-Melati-Moretti (2019) we have
revisited the classification of finite renormalizations of locally
covariant bosonic fields. We have replaced the H-W analyticity
axiom by a smoothness axiom, and carefully generalized to
dynamical and background tensor fields.

I Reminder: need to check that the smoothness axiom is verified!
I Remark: need incremental improvents in smooth invariant theory.
I It remains to generalize the results to tensor and spinor fields,

background gauge fields, Wick products with derivatives and
time ordered products.

Thank you for your attention!
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