Finite renormalizations in locally covariant perturbative algebraic QFT [arXiv:1411.1302] w/ Valter Moretti [arXiv:1710.01937] w/ Alberto Melati, Valter Moretti

Igor Khavkine

Institute of Mathematics Czech Academy of Sciences, Prague

27 May 2021 Mathematical Physics seminar Charles University, Prague

A(lgebraic)QFT

- In a QFT on a manifold *M*, a field operator φ(f) = ∫ f(x)φ(x) dx smeared by a test function *f* is considered to be **localized** within supp f ⊂ M. Typically, φ(f) is an unbounded self-adjoint operator on a Hilbert space of states H. (Ex: free relativistic field)
- ▶ The operators A(U) localized within $U \subseteq M$ are closed under products. In more detail, A(U) is a **non-commutative** *-algebra.
- These algebras have special properties, like monotonicity A(U) ⊂ A(V) when U ⊂ V and microcausality [A(U), A(V)] = 0 when U and V are spacelike separated.
- ▶ AQFT takes the algebras $\mathcal{A}(U)$ ($U \subset M$) of **localized quantum observables** as fundamental, satisfying some axioms, and separates out finding their representations $\pi : \mathcal{A}(U) \to Op(\mathcal{H})$.
- In general, there are many inequivalent representations of the same algebra of observables. Different physical vacuum states may belong to inequivalent representations (thermal states, spontaneously broken symmetries, non-equilibrium states).

Perturbative AQFT and (infinite) Renormalization

- Consider an interacting Lagrangian L[φ] = L₀[φ] + λL_I[φ], where L₀[φ] is free and λ is a formal coupling parameter.
- Starting with free quantum fields φ(x), try to make sense of the interacting fields φ_l(x) via Bogoliubov's formula (Feynman diagrams)

$$\mathcal{T}_{\mathcal{L}_{l}}(\phi_{l}(x)\phi_{l}(y)\cdots) = \left(\mathcal{T}e^{\frac{i}{\hbar}\int_{M}\lambda\mathcal{L}_{l}[\phi]\,\mathrm{d}x}\right)^{-1}\mathcal{T}\left[\left(\phi(x)\phi(y)\cdots\right)e^{\frac{i}{\hbar}\int_{M}\lambda\mathcal{L}_{l}[\phi]\,\mathrm{d}x}\right]$$

- ▶ Work over formal power series $\mathbb{C}[[\hbar, \lambda]]$. Ignores convergence.
- ▶ Replace $\lambda \rightarrow \lambda(x)$ by test function. Separates UV and IR problems.
- Want: Time-ordered products *T*_{k+1}[φ(x)L_l[φ](y₁) · · · L_l[φ](y_k)] are well-defined (free field algebra)-valued distributions. Then φ_l(x) is well-defined order-by-order, to all orders.

► Key observation: T_k[A(x₁) ··· B(x_k)] = A(x₁)T_{k-1}[··· B(x_k)] if x₁ is chronologically later than (x₂,...,x_k).

Epstein-Glaser: causality + $\mathcal{T}_{k-1} \implies \mathcal{T}_k[A(x_1) \cdots B(x_k)]$ outside $\Delta_k = \{x_1 = \cdots = x_k\}!$

UV renormalization: extend distribution $\mathcal{T}_k[A(x_1) \cdots B(x_k)]$ from $M^k \setminus \Delta_k$ to M^k . Always possible, under reasonable hypotheses!

• Elementary example: " $\frac{1}{x}$ " $\rightarrow \frac{1}{x+i0} + c\delta(x)$

Nonlinear Local Observables and Hadamard States

- ▶ Warning: typical integraction $\mathcal{L}_{I}[\phi] = "\phi(x)^{4"} \neq \phi(x)\phi(x)\phi(x)\phi(x)$. OK if $x_{1} \neq \cdots \neq x_{4}$, but UV divergence if $x_{1}, x_{2}, x_{3}, x_{4} \rightarrow x!$
- > To start the Epstein-Glaser induction, we still need a rule for

 $\mathcal{T}_1(\text{local, nonlinear, classical}) \mapsto (\text{free quantum observable})$

Typical notation: $T_1(A(x)) = :A(x):$ (Wick ordering)

- In QFT on Minkowski space, Wick ordering, aka normal ordering, aka vacuum subtraction has multiple equivalent definitions:
 - Momentum cutoff:

$$\begin{split} \phi(\mathbf{x}) &\mapsto \phi(\mathbf{x})_{\Lambda} = \int_{|\mathbf{k}| < \Lambda} \sqrt{\frac{\hbar}{2\omega_{\mathbf{k}}}} (\hat{a}_{\mathbf{k}} e^{-i\omega_{\mathbf{k}}t} + \hat{a}^{\dagger}_{-\mathbf{k}} e^{+i\omega_{\mathbf{k}}t}) e^{i\mathbf{k}\cdot\mathbf{x}} \, \mathrm{d}\mathbf{k} \\ \phi(\mathbf{x})^2 &\mapsto :\phi(\mathbf{x})^2 := \lim_{\Lambda \to \infty} \phi(\mathbf{x})^2_{\Lambda} - \hbar F(\hbar, \Lambda). \end{split}$$

Point splitting:

 $:\phi(x)\phi(y):=\phi(x)\phi(y)-\hbar\left(rac{1}{\hbar}\langle\phi(x)\phi(y)
angle_{\mathsf{Fock}}
ight),\quad ext{then let }y o x.$

- For higher powers of ϕ , must subtract **lower powers** of ϕ with **singular coefficients**.
- ▶ Point splitting: Generalizes to curved spacetimes (M, g), but there is no preferred vacuum state (-)_(M,g)!
- ► Hadamard states: Preferred class of states $\langle \rangle_{\Omega}$ such that $\langle \phi(x)\phi(y) \rangle_{\Omega} \sim \hbar H_{(M,g)}(x,y) + \text{l.o.t}_{\Omega}$. $H_{(M,g)}(x,y)$ depends only on local geometry. Wick ordering: $:\phi(x)^2 := \lim_{y \to x} \phi(x)\phi(y) - \hbar H_{(M,g)}(x,y)$.

Short summary on pAQFT

Theorem (Main theorem of perturbative renormalization)

Given a free QFT, there always exists a renormalized $\mathcal{T}_{k\geq 1}$. Given two renormalized time-ordered products, $\mathcal{T}_{k\geq 1}$ and $\mathcal{T}'_{k\geq 1}$ and an interaction $\mathcal{L}_{l}[\phi]$, the difference can be absorbed by a finite renormalization:

 $\mathcal{T}'_{\mathcal{L}_{l}}[A_{l}(x)B_{l}(y)\cdots] = \mathcal{T}_{\mathcal{L}_{l}+O(\hbar)}[(A_{l}(x)+O(\hbar))(B_{l}(y)+O(\hbar))\cdots]$

Special features:

- No path inegral.
- No Euclidean Wick rotation.
- Mathematically precise framework for textbook QFT.

Surveys and summaries:

- Hollands, Renormalized quantum Yang-Mills fields in curved spacetime RMP (2009) 20 1033 0705.3340
- Brunetti et al., Advances in Algebraic Quantum Field Theory Springer (2015)
- Fröb, Anomalies in Time-Ordered Products and Applications to the BV-BRST Formulation of Quantum Gauge Theories CMP (2019) 372 281 1803.10235

Finite Renormalization vs Anomalies

- If O is any classical local observable, then any quantization prescription O → :O: suffers from ambiguities. Why not use :O:' = :O: + O(ħ)? These are finite renormalizations!
- This is a manifestation of the well-known operator ordering ambiguity in quantum mechanics. Quantization is not unique!
- An unlucky quantization can result in anomalies:
 - Internal or gauge symmetries not preserved.
 - Conservation laws violated (e.g., $\nabla^a T_{ab} \neq 0$).
- Can anomalies be cancelled by exploiting ambiguities? A precise classification of the ambiguities is necessary to answer the question.
- Renormalization ambiguities on curved spacetime:
 - How much does the definition depend on the vacuum state?
 - Is the definition local?
 - Is the definition covariant?
 - How much more ambiguity compared to Minkowski spacetime?

Finite Renormalization on Minkowski Spacetime

 Sub-singular Wick ordering subtractions are not unique, changing them, generally produces

$$:\phi^k:'=:\phi^k:+\sum_{i\leq k}Z_i:\phi^i:$$

where the $Z_i:\phi^i$: are the finite renormalization counter-terms.

- On Minkowski space, there are many ways to constrain them:
 - Poincaré invariance.
 - Uniqueness of Fock vacuum.
 - Scaling dimensions.
 - Internal symmetries (e.g., $\phi \mapsto -\phi$). Etc.

• Examples for the free scalar field, $\mathcal{L} = -\frac{1}{2}(\partial \phi)^2 - \frac{1}{2}m^2\phi^2$:

•
$$\phi^4 \mapsto :\phi^4: + Z_1 m^2: \phi^2: + Z_2 m^4$$

- $\blacktriangleright \ (\partial\phi)^2 \mapsto :(\partial\phi)^2 :+ Z_1 m^2 :\phi^2 :+ Z_2 m^4$
- $\blacktriangleright \partial_a \phi \partial_b \phi \mapsto : \partial_a \phi \partial_b \phi : + Z_1 \eta_{ab} m^2 : \bar{\phi}^2 : + Z_2 \eta_{ab} m^4$

Locally Covariant Fields on Curved Spacetime

- Our work is in the framework of Locally Covariant QFT on Curved Spacetimes (Hollands-Wald, Brunetti-Fredenhagen-Verch, ...).
- ▶ A QFT is an assignment of a *-algebra of observables to a spacetime, $(M, \mathbf{g}) \rightarrow \mathcal{A}(M, \mathbf{g})$. It is **locally covariant** if
 - a causal isometric embedding (M, g) → (M', g') induces an injective homomorphism A(M, g) → A(M', g');
 - these homomorphisms respect spacelike commutativity, time slice property.
- ▶ A local field $(M, \mathbf{g}) \mapsto \Phi_{(M, \mathbf{g})}$ is a distribution on M valued in $\mathcal{A}(M, \mathbf{g})$. It is **locally covariant** when $\Phi_{(M,g)}(f) \in \mathcal{A}(M, \mathbf{g})$ respects the inclusions and isomorphisms induced by isometries.
- In categorical language, A is a covariant functor from spacetimes to algebras and Φ is a natural transformation from the functor of test functions to the algebra functor A.

Result of Hollands and Wald (2001) [arXiv:gr-qc/0103074]

Consider a massive, curvature coupled scalar field

$$\mathcal{L} = -\frac{1}{2} (\nabla \phi)^2 - \frac{1}{2} m^2 \phi^2 - \xi R \phi^2.$$

- To any polynomial P(φ), we can associate a locally covariant local field :P(φ): that essentially reduces to the corresponding Wick polynomial on Minkowski space.
- The assignment of the field is not unique. Under technical conditions, the **ambiguity** is precisely characterized as follows: Given two prescriptions : . . . : and : . . . :', there exists a sequence of coefficients C_k such that for each n:

$$:\phi^{n}:'-:\phi^{n}:=\sum_{k=0}^{n-1}\binom{n}{k}C_{n-k}:\phi^{k}:\quad (\text{setting }\hbar=1),$$

with each $C_k = C_k[\mathbf{g}, m^2, \xi]$ a **scalar** diff-op. that depends **polynomially** on the local Riemann tensor **R** and its derivatives, depends **polynomially** on m^2 and depends **analytically** on ξ .

Result of Hollands and Wald (2001) [arXiv:gr-qc/0103074]

Consider a massive, curvature coupled scalar field

$$\mathcal{L} = -\frac{1}{2} (\nabla \phi)^2 - \frac{1}{2} m^2 \phi^2 - \xi R \phi^2.$$

- To any polynomial P(φ), we can associate a locally covariant local field :P(φ): that essentially reduces to the corresponding Wick polynomial on Minkowski space.
- The assignment of the field is not unique. Under technical conditions, the **ambiguity** is precisely characterized as follows: Given two prescriptions : . . . : and : . . . :', there exists a sequence of coefficients C_k such that for each n:

$$:\phi^{n}:'-:\phi^{n}:=\sum_{k=0}^{n-1}\binom{n}{k}C_{n-k}:\phi^{k}:\quad (\text{setting }\hbar=1),$$

with each $C_k = C_k[\mathbf{g}, m^2, \xi]$ a **scalar** diff-op. that depends **polynomially** on the local Riemann tensor **R** and its derivatives, depends **polynomially** on m^2 and depends **analytically** on ξ .

Problems with Hollands & Wald

- The result of H-W is intuitive and appealing, reducing to the folklore result on Minkowski spacetime.
- But: no vectors B_μ or spinors ψ, no derivatives ∂_μφ, no time ordered products T(:φ²(x)::ψ̄γ^μ∇_μψ(y):), no covariance for background gauge field transformations (M, g, A) → (M, g, A + ∂u).
- H-W do claim a reasonable result that covers some of these cases, but for a proof they only say that it should be analogous to the scalar case.
- The technical conditions involve analyticity in an essential and technically cumbersome way. It is unnatural in smooth differential geometry.
- Goal: Eventually address all these issues.
 But for now, just generalize to Wick powers of bosonic vector-valued fields and eliminate the analyticity axiom.

Existence vs Classification

- In [arXiv:gr-qc/0103074] H-W classified the renormalization ambiguities, conditional on the existence of at least one construction consistent with their axioms.
- There is an obvious candidate construction scheme: point split Hadamard parametrix regularization scheme.
- In the later work [arXiv:gr-qc/0111108], the proved existence, by showing this method to be consistent with the axioms.
- In our work (with V. Moretti and/or A. Melati), we have restricted our attention to classification, while existence is left to future work. It is expected that the Hadamard regularization scheme will still work.

Our Axioms / Renormalization Conditions

- We can essentially reproduce the H-W result, with updated axioms:
 - normalization, $:\phi:=\phi$
 - commutators, $[:A(x):, \phi(y)] = i: \{A(x), \phi(y)\}:$
 - completeness, $\forall x : [A, \phi(x)] = 0 \iff A = \alpha 1$
 - ► scaling, $(\mathbf{g}, \phi, \mathbf{t}) \mapsto (\mu^{-2}\mathbf{g}, \mu^{d_{\phi}}\phi, \mu^{d_{\mathbf{t}}}\mathbf{t})$ $\implies :\phi^{k}: \mapsto \mu^{kd_{\phi}}(:\phi^{k}: + O(\log \mu))$
 - Iocality and covariance
 - smoothness, ω(:A_{g,t}(x):) is jointly smooth in (x, s) under smooth compactly supported variations of (g_s, t_s), for some non-empty class of states ω (e.g., Hadamard).

Leibniz rule, perturbative agreement (not explicitly used)

- The technical analyticity requirement of H-W (analyticity upon restriction to analytic (g, m², ξ)) has been replaced by our smoothness axiom with respect to (g, t).
- Also, \(\phi = (\phi_i)\), \(t = (t_j)\) could be any natural multi-component field. We restrict to tensor fields.

Our Axioms / Renormalization Conditions

- We can essentially reproduce the H-W result, with updated axioms:
 - normalization, $:\phi:=\phi$
 - commutators, $[:A(x):, \phi(y)] = i: \{A(x), \phi(y)\}:$
 - completeness, $\forall x : [A, \phi(x)] = 0 \iff A = \alpha 1$
 - ► scaling, $(\mathbf{g}, \phi, \mathbf{t}) \mapsto (\mu^{-2}\mathbf{g}, \mu^{d_{\phi}}\phi, \mu^{d_{\mathbf{t}}}\mathbf{t})$ $\implies :\phi^{k}: \mapsto \mu^{kd_{\phi}}(:\phi^{k}: + O(\log \mu))$
 - Iocality and covariance
 - smoothness, ω(:A_{g,t}(x):) is jointly smooth in (x, s) under smooth compactly supported variations of (g_s, t_s), for some non-empty class of states ω (e.g., Hadamard).
 - Leibniz rule, perturbative agreement (not explicitly used)
- The technical analyticity requirement of H-W (analyticity upon restriction to analytic (g, m², ξ)) has been replaced by our smoothness axiom with respect to (g, t).
- Also, \(\phi = (\phi_i)\), \(t = (t_j)\) could be any natural multi-component field. We restrict to tensor fields.

Conditions on the background fields

- The components of the dynamical fields may have different scaling degrees, μ^{d_φ}φ = (μ^{d_i}φ_i). We do not need to require any conditions on the weights d_i.
- ► The components of the background fields may also have different scaling degrees, µ^{dt}t = (µ^{sj}t_j). Each t_j is a component of a covariant tensor of rank ℓ_j. A background field t is admissible if

$$\ell_j + s_j \ge 0$$
 (for all *j*).

When the equality $\ell_j + s_j = 0$ holds, the component t_j is said to be **marginal**. We denote by $\mathbf{z} = (t_j)_{\text{marginal}}$ the marginal components.

- ► Example: m^2 ($\ell = 0, s = 2$), ξ ($\ell = 0, s = 0$), g_{ab} ($\ell = 2, s = -2$)
- In the physics literature, the scaling weights d_i and s_j are sometimes called the mass dimension.

Theorem (Kh-Melati-Moretti)

Let ϕ be a multicomponent **locally covariant** tensor field, coupled to **admissible** background tensor fields **t**, with marginal components **z**. Let $\{:\phi^n:\}_{n=1,2,...}$ and $\{:\phi^n:'\}_{n=1,2,...}$ be two families of Wick powers of ϕ . Then there exists a family of locally-covariant *c*-number fields $\{C_k\}_{k=1,2,...}$, such that $C_1 = 0$ and, for every k = 1, 2, ...,

(i)
$$:\phi_{i_1}\cdots\phi_{i_n}:'=:\phi_{i_1}\cdots\phi_{i_n}:+\sum_{k=0}^{n-1}\binom{n}{k}:\phi_{(i_1}\cdots\phi_{i_k}:C^{n-k}_{i_{k+1}\cdots i_n}[\mathbf{g},\mathbf{t}],$$

- (ii) each $C_{i_1\cdots i_k}^k[\mathbf{g},\mathbf{t}]$ is homogeneous of appropriate degree,
- (iii) more precisely $C_{i_1\cdots i_k}^k[\mathbf{g},\mathbf{t}] = \sum_{j=1}^{N_k} c_j^k[\mathbf{g},\mathbf{t}](P_j^k)_{i_1\cdots i_k}[\mathbf{g},\mathbf{t}]$ for equivariant polynomials $P_j^k[\mathbf{g},\mathbf{t}] = P_j^k(\mathbf{g}^{-1},\varepsilon,\mathbf{R},\nabla\mathbf{R},\mathbf{t},\nabla\mathbf{t},\cdots)$, with smooth invariant invariant scalar $c_j^k[\mathbf{g},\mathbf{t}] = c_j^k(\mathbf{z})$ coefficients.

N.B.: For mixed Bose-Fermi fields ϕ , it suffices to use **fermionic signs**, $X_{(i_1 \dots i_n)} = \sum_{\sigma \in S_n} (-)^{\sigma} X_{\sigma i_1 \dots \sigma i_n}$. But **spin equivariance** needs more attention!

Notes on the proof (1 of 4)

We closely follow the structure of our previous work on scalars (which followed the original H-W proof, with greater attention to detail).

Starting from **normalization**, use induction on **commutators** and **completeness** to get

$$:\phi_{i_1}\cdots\phi_{i_n}:'=:\phi_{i_1}\cdots\phi_{i_n}:+\sum_{k=0}^{n-1}\binom{n}{k}:\phi_{(i_1}\cdots\phi_{i_k}:C^{n-k}_{i_{k+1}\cdots i_n}[\mathbf{g},\mathbf{t}],$$

with *c*-number coefficients $C_{i_{k+1}\cdots i_n}^{n-k}[\mathbf{g},\mathbf{t}]$.

For scalar ϕ and $\mathbf{t} = (m^2, \xi)$, we get the H-W formula

$$:\phi^{n}:'-:\phi^{n}:=\sum_{k=0}^{n-1}\binom{n}{k}C_{n-k}[\mathbf{g},m^{2},\xi]:\phi^{k}:.$$

Notes on the proof (2 of 4)

Using **locality** and **smoothness**, we conclude that the coefficients $(\mathbf{g}, \mathbf{t}) \mapsto C^k[\mathbf{g}, \mathbf{t}]$ are *local* and *regular*, hence $C^k(x, \mathbf{g}, \partial \mathbf{g}, \dots, \mathbf{t}, \partial \mathbf{t}, \dots)$.

Theorem (Peetre-Slovák)

A map $C^{\infty} \to C^{\infty}$ that is **local** (compatible with restriction to smaller domains) and **regular** (maps smooth families to smooth families) must be a smooth differential operator of locally bounded order.

- Original result for linear maps, Peetre (1959, 1960).
- Extension to nonlinear maps, Slovák (1988).
- ► Great exposition, Navarro-Sancho [arXiv:1411.7499].

Key place where the **analyticity** was previously used by H-W.

Notes on the proof (3 of 4)

Theorem (Thomas Replacement)

A smooth homogeneous tensor function of \mathbf{g} , $\partial \mathbf{g}$, ..., \mathbf{T} , $\partial \mathbf{T}$, ... is equivariant under diffeomorphisms iff it is a smooth homogeneous pointwise \mathbf{g} -isotropic function of \mathbf{R} , $\nabla \mathbf{R}$, ..., \mathbf{T} , $\nabla \mathbf{T}$, ... and ε .

- Original, T.Y. Thomas (1920s). More modern, Slovák (1992).
- Concise, self-contained proof (our paper).

Using **covariance** (under diffeomorphisms) and **scaling**, the structure of the differential operators C^k can be refined to

$$u \cdot C^{k}[\mathbf{g}, \mathbf{t}] = u \cdot C^{k}(x, \mathbf{g}, \partial \mathbf{g}, \dots, \mathbf{t}, \partial \mathbf{t}, \dots)$$
$$= P_{\mathbf{g}}^{k}(\mathbf{R}, \nabla \mathbf{R}, \cdots, \mathbf{t}, \nabla \mathbf{t}; u),$$

where P_g^k are **homogeneous g-isotropic scalar** functions, which is **linear** in *u* auxiliary tensors.

Notes on the proof (4 of 4)

Theorem (Luna, Richardson 1970s + incremental improvement)

A smooth equivariant function on fin.dim. O(g) or SO(g) reps is a linear combination of **polynomial equivariants** with coefficients essentially **smooth** functions of **polynomial scalar invariants**.

Theorem (FFT of Invariant Theory, Weyl 1930)

Scalar **g**-isotropic **polynomials** are generated by (a) outer products, (b) index contractions with **g**, (c) index contractions with ϵ .

Theorem (Folklore)

A positive weight, homogeneous function that is smooth around zero is a polynomial.

Thus, with only admissible background fields t,

$$u \cdot C^{k}[\mathbf{g}, \mathbf{t}] = P^{k}_{\mathbf{g}}(\mathbf{R}, \nabla \mathbf{R}, \dots, \mathbf{t}, \nabla \mathbf{t}, \dots; u)$$

is a sum of **homogeneous invariant polynomials**, whose coefficients are (locally) **smooth functions** of (finitely many) **invariant scalar polynomials** in (marginal components) **z**.

Notes on the proof (4 of 4)

Theorem (Luna, Richardson 1970s + incremental improvement)

A smooth equivariant function on fin.dim. O(g) or SO(g) reps is a linear combination of polynomial equivariants with coefficients essentially smooth functions of polynomial scalar invariants.

Theorem (FFT of Invariant Theory, Weyl 1930)

Scalar **g**-isotropic **polynomials** are generated by (a) outer products, (b) index contractions with **g**, (c) index contractions with ϵ .

Theorem (Folklore)

A positive weight, homogeneous function that is smooth around zero is a polynomial.

Thus, with only admissible background fields t,

$$u \cdot C^{k}[\mathbf{g}, \mathbf{t}] = P^{k}_{\mathbf{g}}(\mathbf{R}, \nabla \mathbf{R}, \dots, \mathbf{t}, \nabla \mathbf{t}, \dots; u)$$

is a sum of **homogeneous invariant polynomials**, whose coefficients are (locally) **smooth functions** of (finitely many) **invariant scalar polynomials** in (marginal components) **z**.

Example: scalar Klein-Gordon, with derivative Scalar Scalar Klein-Gordon in *n*-dimensions:

$$\Box_{\mathbf{g}}\phi - m^{2}\phi + \xi \mathbf{R}\phi = \mathbf{0}, \quad \left(\Phi = (\phi, \nabla_{\mathbf{a}}\phi), \ \Phi \mapsto \mu^{\frac{n-2}{2}}\Phi\right).$$

Admissible: $m^2 (\ell + s = 0 + 2), \xi (\ell + s = 0 + 0);$ marginal: ξ .

$$\begin{bmatrix} :\phi^2:'\\ :\phi\nabla_a\phi:'\\ :\nabla_{(a}\phi\nabla_b)\phi:'\end{bmatrix} = \begin{bmatrix} :\phi^2:\\ :\phi\nabla_a\phi:\\ :\nabla_{(a}\phi\nabla_b)\phi:\end{bmatrix} + \begin{bmatrix} \alpha_1m^2 + \alpha_2R + A_{\xi,m^2}\\ \beta_1\nabla_aR + B_{\xi,m^2}\\ g_{ab}\left(\gamma_1m^4 + \gamma_2m^2R + \gamma_3R^2\right) + \left(\gamma_4m^2 + \gamma_5\Box\right)R_{ab} + C_{\xi,m^2} \end{bmatrix}$$

with **smooth** $\{\alpha, \beta, \gamma\}_j = \{\alpha, \beta, \gamma\}_j(\xi)$, where also

$$\begin{split} C_{\xi,m^2} &= \gamma_6 \nabla_{(a} \xi \nabla_{b)} m^2 + \gamma_7 m^2 \nabla_{(a} \xi \nabla_{b)} \xi + \gamma_8 R \nabla_a \xi \nabla_b \xi + \gamma_9 R_{ab} (\nabla \xi)^2 \\ A_{\xi,m^2} &= \alpha_3 \nabla^a \xi \nabla_a \xi + \alpha_4 \Box \xi , \\ B_{\xi,m^2} &= \beta_2 \nabla_a m^2 + \beta_3 m^2 \nabla_a \xi \\ &+ \gamma_{10} R_{c(a} \nabla_{b)} \xi \nabla^c \xi + \gamma_{11} g_{ab} \nabla^c \xi \nabla_c m^2 + \gamma_{12} g_{ab} m^2 (\nabla \xi)^2 \\ &+ \gamma_{13} g_{ab} R (\nabla \xi)^2 + \gamma_{14} g_{ab} R^{bc} \nabla_b \xi \nabla_c \xi + \gamma_{15} \nabla_{(a} \nabla_b) m^2 \\ &+ \beta_4 R \nabla_a \xi + \beta_5 R_{ab} \nabla^b \xi \\ &+ \beta_6 (\nabla^b \xi \nabla_b \xi) \nabla_a \xi + \beta_7 \Box \xi \nabla_a \xi \\ &+ \beta_8 \nabla^b \xi \nabla_{(b} \nabla_a) \xi + \beta_9 \nabla_a \Box \xi , \\ &+ \gamma_{26} g_{ab} \nabla^c \xi \nabla_c \Box \xi + \gamma_{27} g_{ab} \Box^2 \xi . \end{split}$$

Example: Vector Klein-Gordon

Vector Klein-Gordon in *n*-dimensions:

$$\Box_{\mathbf{g}} \mathbf{A}_{\mathbf{a}} - m^2 \mathbf{A}_{\mathbf{a}} + \xi_{\mathbf{a}}^b \mathbf{R} \, \mathbf{A}_b = \mathbf{0} \,, \quad \left(\mathbf{A}_b \mapsto \mu^{\frac{n-2}{4}} \mathbf{A}_b \right) \,.$$

Admissible: m^2 ($\ell + s = 0 + 2$), ξ_a^b ($\ell + s = 2 - 2$); marginal: ξ_a^b .

 $:A_aA_b:' = :A_aA_b: + (y_1m^2 + y_2R)g_{ab} + y_3R_{ab} + (y_4m^2 + y_5R)\xi_{ab} + B_\xi,$ where

$$\begin{split} B_{\xi} &= y_6 g_{ab} \Box \xi_c^c + y_7 \nabla_{(a} \nabla_{b)} \xi_c^c + y_8 g_{ab} \nabla^c \xi_d^d \nabla_c \xi_d^d + y_9 g_{cd} \nabla_{(a} \xi^{cd} \nabla_{b)} \xi_c^c \\ &+ y_{10} \left(\nabla_{(a} \nabla_{b)} \xi_{cd} \right) \xi^{cd} + y_{11} \nabla_{(a} \xi^{cd} \nabla_{b)} \xi_{cd} + y_{12} g_{ab} (\Box \xi_{cd}) \xi^{cd} + y_{13} g_{ab} \nabla^c \xi_{de} \nabla_c \xi^{de} \\ &+ y_{14} \xi_{ab} \Box \xi_c^c + y_{15} \xi_{ab} \nabla^c \xi_d^d \nabla_c \xi_d^d + y_{16} \Box \xi_{ab} + y_{17} \xi_{ab} (\Box \xi_{cd}) \xi^{cd} + y_{18} \xi_{ab} \nabla^c \xi_{de} \nabla_c \xi^{de} \\ &+ y_{19} \xi_{cd} \nabla_{(a} \xi^{cd} \nabla_{b)} \xi_c^c + y_{20} \xi_{cd} \xi_{ef} \nabla_{(a} \xi^{ef} \nabla_{b)} \xi^{cd} \,, \end{split}$$

with **smooth** $y_j = y_j(\operatorname{tr} \boldsymbol{\xi} = \xi_a^a, \operatorname{tr} \boldsymbol{\xi}^2 = \xi_a^b \xi_b^a, \operatorname{tr} \boldsymbol{\xi}^3, \dots, \operatorname{tr} \boldsymbol{\xi}^n)$ (locally). Stable orbit types are separated by the **matrix discriminant**

$$p_0(\xi) = \operatorname{disc}(\xi) = \operatorname{det}\left(\operatorname{tr} \xi^{i+j-2}\right)_{i,j=1}^n$$

Discussion

- In Kh-Moretti (2016) and Kh-Melati-Moretti (2019) we have revisited the classification of finite renormalizations of locally covariant bosonic fields. We have replaced the H-W analyticity axiom by a smoothness axiom, and carefully generalized to dynamical and background tensor fields.
- **Reminder:** need to check that the smoothness axiom is verified!
- **Remark:** need incremental improvents in smooth invariant theory.
- It remains to generalize the results to tensor and spinor fields, background gauge fields, Wick products with derivatives and time ordered products.

Discussion

- In Kh-Moretti (2016) and Kh-Melati-Moretti (2019) we have revisited the classification of finite renormalizations of locally covariant bosonic fields. We have replaced the H-W analyticity axiom by a smoothness axiom, and carefully generalized to dynamical and background tensor fields.
- **Reminder:** need to check that the smoothness axiom is verified!
- **Remark:** need incremental improvents in smooth invariant theory.
- It remains to generalize the results to tensor and spinor fields, background gauge fields, Wick products with derivatives and time ordered products.

Thank you for your attention!