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Black Hole Geometry Ansatz
▶ Ansatz for 5d charged rotating BH with equal angular momenta.

[Kunz, Navarro-Lérida et al. (2005, . . . )]:

ds2 = gµν dxµ dxν = −f dt2 +
m
f

(
dr 2 + r 2 dθ2

)
+

n
f

r 2
[
sin2 θ

(
dϕ− ω

r
dt
)2

+ cos2 θ
(

dψ − ω

r
dt
)2

]
+

m − n
f

r 2 sin2 θ cos2 θ (dϕ− dψ)2

A = Aµ dxµ = a0 dt + aϕ

(
sin2 θ dϕ+ cos2 θ dψ

)
t – time, r – (Kunz) radial, θ – polar, ϕ, ψ – azimuthal coordinates. f , m,

n, ω, a0, aϕ depend only on r ⇝ numerical solution

▶ Naive boundary conditions:
▶ asymptotic flatness (r = ∞): f ,m,n ∼ 1, ω,a0,aϕ ∼ 0
▶ regular horizon (r = rH): |ω|, |a0|, |aϕ| < 0, f ,m,n,a′

ϕ = 0

▶ Q: Algebraic type (bulk, horizon)? Other geometric properties?
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Problem With Radial Coordinate
Naive attempts at constructing horizon-penetrating coordinates revealed problems.
Same problem occurred when matching known solutions.

charged Q̂ ̸= 0, non-rotating Ĵ = 0 uncharged Q̂ = 0, rotating Ĵ ̸= 0

f =
(r2 − r2

+)(r2 − r2
−)

r4

r 2m = r2f

r 2n = r2f

ω = 0
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√
3

2
r+r−
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r 2m = Σf
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Σ
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r
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aM̂
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a0 = 0

aϕ = 0

Σ = r2 + a2

M̂ = (r+ + r−)2, a := Ĵ/M̂ =
√

r+r−
r – known regular radial coordinate. The Kunz radial coordinate

r = rH
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is singular!
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Reparametrized Ansatz
▶ The singular Kunz coordinate r explicitly appears in the

Einstein-Maxwell equations.
▶ Q: Can near-horizon expansions be trusted?

Are the BH equations well-posed?
▶ Reparametrize ansatz by absorbing all explicit radial factors:

ds2 = gµν dxµ dxν = −f dt2 +
m
f

(
(r dr)2

N
+ dθ2

)
+

N
m

[
sin2 θ (dϕ−ϖ dt)2 + cos2 θ (dψ −ϖ dt)2

]
+

m2 − fN
mf

sin2 θ cos2 θ (dϕ− dψ)2

m = mr2 , ϖ =
ω

r
, N =

mnr4

f
,

(r dr)2

N
=

(dr)2

r2

From now on set R = r2 and use (−)′ = d
dR(−).

Igor Khavkine (CAS, Prague) 5d charged rotating black hole GR Seminar, Prague 05/04/2022 3 / 9



Reduced Einstein-Maxwell Equations (EME)
R-autonomous conservation laws (Q̂ – charge, Ĵ – angular momentum, r− < r+ – horizons):

N′′ = 2 =⇒ N = (R − r2
+)(R − r2

−)(
N
f
(a′

0 +ϖa′
ϕ)

)′
= 0 =⇒ N

f
(a′

0 +ϖa′
ϕ) = −Q̂(

N2

fm
ϖ′ + 4Q̂aϕ

)′

= 0 =⇒ N2

fm
ϖ′ + 4Q̂aϕ = −2Ĵ

R-autonomous 2nd order BVP (between infinity R = ∞ and outer horizon R = r2
H = r2

+):
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f 2N
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)
m =

4
3

f
(

2m2(a′
ϕ)

2 − fa2
ϕ

)
+

4Q̂2

3
f 2m
N

+ 4
f 2m2
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R-autonomous 1st order constraint:

C := −m2(a′
ϕ)

2 + fa2
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with compatibility condition (C/f 2)′ = 0 mod BVP
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Asymptotic Flatness
Find Bondi coordinates (u±, r, θ, ϕ±, ψ±) at null infinity such that [Satishchandran-Wald 2019]

gµν =


−1 ±1 0 0 0
±1 0 0 0 0
0 0 r2 0 0
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Combine asymptotic flatness with Frobenius method at singular point R = ∞:

Bondi coordinates asymptotic flatness w/ EME analysis
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√
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2 free BVP integration constants + external parameters
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Horizon Regularity
Find Kruskal-like coordinates (U,V , θ,Φ,Ψ) covering the past/future horizons and the
bifurcation sphere. Both gµν and Aµ must be smoot at the horizon R = r2

H (rH = r+ > r−).

Combine horizon regularity with Frobenius method at singular point R = r2
H (ρ = R − r2

H):

Kruskal-like coordinates horizon regularity w/ EME analysis

U =
√

R/r2
H − 1 eκt/2O(1)

V =
√

R/r2
H − 1 e−κt/2O(1)

θ = θ

Φ = ϕ−ϖ(r2
H)t

Ψ = ψ −ϖ(r2
H)t

f = O(ρ)

m = O(ρ)

aϕ = O(1)
N = O(ρ)

ϖ = O(1)
a0 = O(1)

f = f (1)ρ+ f (2)ρ2 + f (3)ρ3 +O
(
ρ4
)

m = m(1)ρ+O
(
ρ2
)

aϕ = a(0)
ϕ +O(ρ)

N = (r2
+ − r2

−)ρ+ ρ2

ϖ = ϖ(0) +O(ρ)

a0 = a(0)
0 +O(ρ)

4 free BVP integration constants + external parameters
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Well-Posedness
▶ Unique solution of 2nd order 3 × 3 BVP: generic intersection of 2-param. family

with 4-param. family in 6-param. solution space.
▶ External charges M̂, Ĵ, Q̂ determine solution: shift r2

− 7→ 0 by R-autonomy, then
invert r2

H := r2
+ ↭ M̂.
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Normalized f ,m, aϕ vs r2
H/R; extrapolated outer BVP to seed inner IVP.
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Algebraic Type

▶ Past/future horizon (R = r2
H): Type II — one of the Kruskal-like dU

or dV is a Weyl aligned null direction (WAND)
▶ Bifurcation sphere: Type D — both dU and dV are WANDs
▶ Bulk, outside the horizon: not Type II —

off-shell case-by-case analysis of 5d Bel-Debever criteria; [Ortaggio 2009]

compatibility with EME ruled out by checking against the general
O
(
R−5) asymptotic solution, unless Ĵ = 0 or Q̂ = 0 both of which

are Type D.
▶ Ricci Rµν and Maxwell Fµν : Type D
▶ gµν ̸= ηµν − 2Hkµkν : The spacetime is not Kerr-Schild (w.r.t

Minkowski metric) with null geodesic kµ. [Ortaggio-Pravda-Pravdová 2009]
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Discussion

▶ The original works on the 5d charged rotating black hole
(inadvertently?) used a singular r coordinate.

▶ We have confirmed the well-posedness of the reduced
Einstein-Maxwell equations w.r.t a regular r coordinate, with
regularity at the horizon and asymptotic flatness at null infinity.

▶ Frobenius analysis of the singular points at r = ∞ and r = rH
opens door to more robust numerical methods.

▶ We have confirmed the geometric horizon conjecture
(algebraically special Weyl tensor on the horizon).
[Coley-McNutt-Shoom 2017]

▶ The spacetime is not Kerr-Schild with geodesic WAND.

Thank you for your attention!
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