A look at the geometry of the 5-dimensional charged rotating black hole [arXiv:2112.13266]

Igor Khavkine

joint work w/ M.B.Fröb (Leipzig), T.Málek, V.Pravda

Institute of Mathematics
Czech Academy of Sciences (Prague)

05 Apr 2022
GR Seminar
Charles University, Prague

Black Hole Geometry Ansatz

- Ansatz for 5d charged rotating BH with equal angular momenta. [Kunz, Navarro-Lérida et al. $(2005, \ldots)$]:

$$
\begin{aligned}
& \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-f \mathrm{~d} t^{2}+\frac{m}{f}\left(\mathrm{~d} r^{2}+r^{2} \mathrm{~d} \theta^{2}\right) \\
& +\frac{n}{f} r^{2}\left[\sin ^{2} \theta\left(\mathrm{~d} \phi-\frac{\omega}{r} \mathrm{~d} t\right)^{2}+\cos ^{2} \theta\left(\mathrm{~d} \psi-\frac{\omega}{r} \mathrm{~d} t\right)^{2}\right] \\
& +\frac{m-n}{f} r^{2} \sin ^{2} \theta \cos ^{2} \theta(\mathrm{~d} \phi-\mathrm{d} \psi)^{2} \\
& A=A_{\mu} \mathrm{d} x^{\mu}=a_{0} \mathrm{~d} t+a_{\phi}\left(\sin ^{2} \theta \mathrm{~d} \phi+\cos ^{2} \theta \mathrm{~d} \psi\right)
\end{aligned}
$$

t - time, r - (Kunz) radial, θ - polar, ϕ, ψ - azimuthal coordinates. f, m, $n, \omega, a_{0}, a_{\phi}$ depend only on $r \rightsquigarrow$ numerical solution

- Naive boundary conditions:
- asymptotic flatness $(r=\infty): f, m, n \sim 1, \omega, a_{0}, a_{\phi} \sim 0$
- regular horizon $\left(r=r_{\mathrm{H}}\right):|\omega|,\left|a_{0}\right|,\left|a_{\phi}\right|<0, f, m, n, a_{\phi}^{\prime}=0$
- Q: Algebraic type (bulk, horizon)? Other geometric properties?

Problem With Radial Coordinate

Naive attempts at constructing horizon-penetrating coordinates revealed problems. Same problem occurred when matching known solutions.

charged $\hat{Q} \neq 0$, non-rotating $\hat{J}=0$	uncharged $\hat{Q}=0$, rotating $\hat{J} \neq 0$
$f=\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{4}}$	$f=\frac{\Sigma^{2}-\hat{M} r^{2}}{\Sigma^{2}+a^{2} \hat{M}}$
$r^{2} m=r^{2} f$	$r^{2} m=\Sigma f$
$r^{2} n=r^{2} f$	$r^{2} n=\frac{\Sigma^{2}-\hat{M} r^{2}}{\Sigma}$
$\omega=0$	$\frac{\omega}{r}=\frac{a \hat{M}}{\Sigma^{2}+a^{2} \hat{M}}$
$a_{0}=\frac{\hat{Q}}{r^{2}}$	$a_{0}=0$
$a_{\phi}=0$	$a_{\phi}=0$
$\hat{M}=r_{+}^{2}+r_{-}^{2}, \quad \hat{Q}=\frac{\sqrt{3}}{2} r_{+} r_{-}$	$\Sigma=r^{2}+a^{2}$

r - known regular radial coordinate. The Kunz radial coordinate

$$
r=r_{H} \sqrt{\frac{\sqrt{r^{2}-r_{-}^{2}}+\sqrt{r^{2}-r_{+}^{2}}}{\sqrt{r^{2}-r_{-}^{2}}-\sqrt{r^{2}-r_{+}^{2}}}}=r_{H}+\mathcal{O}\left(\sqrt{r-r_{+}}\right) \quad \text { is singular! }
$$

Reparametrized Ansatz

- The singular Kunz coordinate r explicitly appears in the Einstein-Maxwell equations.
- Q: Can near-horizon expansions be trusted? Are the BH equations well-posed?
- Reparametrize ansatz by absorbing all explicit radial factors:

$$
\begin{aligned}
& \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-f \mathrm{~d} t^{2}+\frac{\mathrm{m}}{f}\left(\frac{(\mathrm{rdr})^{2}}{\mathrm{~N}}+\mathrm{d} \theta^{2}\right) \\
&+ \frac{\mathrm{N}}{\mathrm{~m}}\left[\sin ^{2} \theta(\mathrm{~d} \phi-\varpi \mathrm{d} t)^{2}+\cos ^{2} \theta(\mathrm{~d} \psi-\varpi \mathrm{d} t)^{2}\right] \\
&+\frac{\mathrm{m}^{2}-f \mathrm{~N}}{\mathrm{~m} f} \sin ^{2} \theta \cos ^{2} \theta(\mathrm{~d} \phi-\mathrm{d} \psi)^{2} \\
& \mathrm{~m}=m r^{2}, \quad \varpi=\frac{\omega}{r}, \quad \mathrm{~N}=\frac{m n r^{4}}{f}, \quad \frac{(\mathrm{rdr})^{2}}{\mathrm{~N}}=\frac{(\mathrm{d} r)^{2}}{r^{2}}
\end{aligned}
$$

From now on set $\mathrm{R}=\mathrm{r}^{2}$ and use $(-)^{\prime}=\frac{\mathrm{d}}{\mathrm{dR}}(-)$.

Reduced Einstein-Maxwell Equations (EME)

R-autonomous conservation laws (\hat{Q} - charge, \hat{J} - angular momentum, $r_{-}<r_{+}$- horizons):

$$
\begin{aligned}
& N^{\prime \prime}=2 \Longrightarrow \quad N=\left(R-r_{+}^{2}\right)\left(R-r_{-}^{2}\right) \\
& \left(\frac{\mathrm{N}}{f}\left(a_{0}^{\prime}+\varpi a_{\phi}^{\prime}\right)\right)^{\prime}=0 \Longrightarrow \quad \frac{\mathrm{~N}}{f}\left(a_{0}^{\prime}+\varpi a_{\phi}^{\prime}\right)=-\hat{Q} \\
& \left(\frac{\mathrm{~N}^{2}}{f \mathrm{~m}} \varpi^{\prime}+4 \hat{Q} a_{\phi}\right)^{\prime}=0 \Longrightarrow \frac{\mathrm{~N}^{2}}{f \mathrm{~m}} \varpi^{\prime}+4 \hat{Q} a_{\phi}=-2 \hat{J}
\end{aligned}
$$

R-autonomous 2nd order BVP (between infinity $R=\infty$ and outer horizon $R=r_{H}^{2}=r_{+}^{2}$):

$$
\begin{aligned}
f^{2} m\left(\frac{\mathrm{~m}}{f^{2}} f^{\prime}\right)^{\prime}-m m^{\prime}\left(\frac{\mathrm{m}^{\prime}}{\mathrm{m}}-2 \frac{\mathrm{~N}^{\prime}}{\mathrm{N}}\right) f-\left(4 \frac{\mathrm{~m}^{2}}{\mathrm{~N}}-f\right) f & =\frac{8}{3} \frac{f \mathrm{~m}}{\mathrm{~N}}\left(2 \mathrm{~m}^{2}\left(a_{\phi}^{\prime}\right)^{2}-f a_{\phi}^{2}\right)-\frac{4 \hat{Q}^{2}}{3} \frac{f^{2} \mathrm{~m}^{2}}{\mathrm{~N}^{2}} \\
f \mathrm{~m}\left(\frac{\mathrm{~N}}{\mathrm{~m}} \mathrm{~m}^{\prime}\right)^{\prime}+\left(\frac{f^{2} \mathrm{~N}}{\mathrm{~m}^{2}}-2 f\right) \mathrm{m} & =\frac{4}{3} f\left(2 m^{2}\left(a_{\phi}^{\prime}\right)^{2}-f a_{\phi}^{2}\right)+\frac{4 \hat{Q}^{2}}{3} \frac{f^{2} \mathrm{~m}}{\mathrm{~N}}+4 \frac{f^{2} \mathrm{~m}^{2}}{\mathrm{~N}^{2}}\left(\hat{J}+2 \hat{Q} a_{\phi}\right)^{2} \\
\mathrm{~m}\left(m a_{\phi}^{\prime}\right)^{\prime}-f a_{\phi} & =2 \hat{Q} \frac{f \mathrm{~m}^{2}}{\mathrm{~N}^{2}}\left(\hat{J}+2 \hat{Q} a_{\phi}\right)
\end{aligned}
$$

R-autonomous 1st order constraint:

$$
\begin{aligned}
& \mathrm{C}:=-\mathrm{m}^{2}\left(a_{\phi}^{\prime}\right)^{2}+f a_{\phi}^{2}-\mathrm{m}+\frac{f \mathrm{~N}}{4 \mathrm{~m}}+\hat{Q}^{2} \frac{f \mathrm{~m}}{\mathrm{~N}}+\frac{f \mathrm{~m}^{2}}{\mathrm{~N}^{2}}\left(\hat{J}+2 \hat{Q} a_{\phi}\right)^{2} \\
&+\frac{\mathrm{Nm} m^{\prime}}{8}\left(\frac{f^{\prime}}{f}-2 \frac{\mathrm{~m}^{\prime}}{\mathrm{m}}+4 \frac{\mathrm{~N}^{\prime}}{\mathrm{N}}\right)-\frac{\mathrm{Nm} f^{\prime}}{8 f}\left(2 \frac{f^{\prime}}{f}-\frac{\mathrm{m}^{\prime}}{\mathrm{m}}+2 \frac{\mathrm{~N}^{\prime}}{\mathrm{N}}\right)=0
\end{aligned}
$$

Asymptotic Flatness

Find Bondi coordinates ($u_{ \pm}, \mathrm{r}, \theta, \phi_{ \pm}, \psi_{ \pm}$) at null infinity such that [Satishchandran-Wald 2019]

$$
\begin{array}{rl}
g_{\mu \nu} & =\left(\begin{array}{ccccc}
-1 & \pm 1 & 0 & 0 & 0 \\
\pm 1 & 0 & 0 & 0 & 0 \\
0 & 0 & r^{2} & 0 & 0 \\
0 & 0 & 0 & r^{2} \sin ^{2} \theta & 0 \\
0 & 0 & 0 & 0 & r^{2} \cos ^{2} \theta
\end{array}\right)+\left(\begin{array}{ccccc}
\mathcal{O}\left(r^{-2}\right) & \mathcal{O}\left(r^{-2}\right) & \mathcal{O}\left(r^{-1}\right) & \mathcal{O}\left(r^{-1}\right) & \mathcal{O}\left(r^{-1}\right) \\
\mathcal{O}\left(r^{-2}\right) & 0 & 0 & 0 & 0 \\
\mathcal{O}\left(r^{-1}\right) & 0 & \mathcal{O}\left(r^{0}\right) & \mathcal{O}\left(r^{0}\right) & \mathcal{O}\left(r^{0}\right) \\
\mathcal{O}\left(r^{-1}\right) & 0 & \mathcal{O}\left(r^{0}\right) & \mathcal{O}\left(r^{0}\right) & \mathcal{O}\left(r^{0}\right) \\
\mathcal{O}\left(r^{-1}\right) & 0 & \mathcal{O}\left(r^{0}\right) & \mathcal{O}\left(r^{0}\right) & \mathcal{O}\left(r^{0}\right)
\end{array}\right) \\
A_{\mu} & =\left(\mathcal{O}\left(r^{-2}\right)\right. \\
0 & \mathcal{O}\left(r^{-1}\right) \\
\mathcal{O}\left(r^{-1}\right) & \left.\mathcal{O}\left(r^{-1}\right)\right)
\end{array}
$$

Combine asymptotic flatness with Frobenius method at singular point $\mathrm{R}=\infty$:

Bondi coordinates	asymptotic flatness	$\mathrm{w} / \mathrm{EME}$ analysis
$\mathrm{d} u_{ \pm}=\mathrm{d} t \pm \sqrt{\frac{\mathrm{m}}{\mathrm{N}} \frac{\mathrm{dR}}{2 f}}$	$f=1+\mathcal{O}\left(\mathrm{R}^{-1}\right)$	$f=1-\frac{M}{\mathrm{R}}+\mathcal{O}\left(\mathrm{R}^{-2}\right)$
$\mathrm{r}=\sqrt{\mathrm{R}}$	$\mathrm{m}=\mathrm{R}+\mathcal{O}\left(\mathrm{R}^{0}\right)$	$\mathrm{m}=\mathrm{R}-\frac{1}{2}\left(\hat{M}+\mathrm{r}_{+}^{2}+\mathrm{r}_{-}^{2}\right)+\mathcal{O}\left(\mathrm{R}^{-1}\right)$
$\theta=\theta$	$a_{\phi}=\mathcal{O}\left(\mathrm{R}^{-1 / 2}\right)$	$a_{\phi}=\frac{a_{\phi}^{(-1)}}{\mathrm{R}}+\mathcal{O}\left(\mathrm{R}^{-2}\right)$
$\mathrm{d} \phi_{ \pm}=\mathrm{d} \phi \pm \varpi \sqrt{\frac{\mathrm{m}}{\mathrm{N}} \frac{\mathrm{dR}}{2 f}}$	$\mathrm{~N}=\mathrm{R}^{2}+\mathcal{O}\left(\mathrm{R}^{1}\right)$	$\mathrm{N}=\mathrm{R}^{2}-\left(\mathrm{r}_{+}^{2}+\mathrm{r}_{-}^{2}\right) \mathrm{R}+\mathrm{r}_{+}^{2} \mathrm{r}_{-}^{2}$
$\mathrm{~d} \psi_{ \pm}=\mathrm{d} \psi \pm \varpi \sqrt{\frac{\mathrm{m}}{\mathrm{N}} \frac{\mathrm{dR}}{2 f}}$	$\varpi=\mathcal{O}\left(\mathrm{R}^{-3 / 2}\right)$	$\varpi=\frac{\hat{J}}{\mathrm{R}^{2}}+\mathcal{O}\left(\mathrm{R}^{-3}\right)$
$a_{0}=\mathcal{O}\left(\mathrm{R}^{-1}\right)$	$a_{0}=\frac{\hat{Q}}{\mathrm{R}}+\mathcal{O}\left(\mathrm{R}^{-2}\right)$	

2 free BVP integration constants + external parameters

Horizon Regularity

Find Kruskal-like coordinates $(U, V, \theta, \Phi, \Psi)$ covering the past/future horizons and the bifurcation sphere. Both $g_{\mu \nu}$ and A_{μ} must be smoot at the horizon $\mathrm{R}=\mathrm{r}_{\mathrm{H}}^{2}\left(\mathrm{r}_{\mathrm{H}}=\mathrm{r}_{+}>\mathrm{r}_{-}\right)$.

Combine horizon regularity with Frobenius method at singular point $\mathbf{R}=\mathrm{r}_{\mathrm{H}}^{2}\left(\rho=\mathbf{R}-\mathrm{r}_{\mathrm{H}}^{2}\right)$:

Kruskal-like coordinates	horizon regularity	w/ EME analysis
$U=\sqrt{\mathrm{R} / \mathrm{r}_{\mathrm{H}}^{2}-1} e^{\kappa t / 2} \mathcal{O}(1)$	$f=\mathcal{O}(\rho)$	$f=f^{(1)} \rho+f^{(2)} \rho^{2}+f^{(3)} \rho^{3}+\mathcal{O}\left(\rho^{4}\right)$
$V=\sqrt{\mathrm{R} / \mathrm{r}_{\mathrm{H}}^{2}-1} e^{-\kappa t / 2} \mathcal{O}(1)$	$\mathrm{m}=\mathcal{O}(\rho)$	$\mathrm{m}=\mathrm{m}^{(1)} \rho+\mathcal{O}\left(\rho^{2}\right)$
$\theta=\theta$	$\mathrm{N}=\mathcal{O}(1)$	$\mathrm{a}_{\phi}=a_{\phi}^{(0)}+\mathcal{O}(\rho)$
$\Phi=\phi-\varpi\left(\mathrm{r}_{\mathrm{H}}^{2}\right) t$	$\varpi=\mathcal{O}(1)$	$\mathrm{N}=\left(\mathrm{r}_{+}^{2}-\mathrm{r}_{-}^{2}\right) \rho+\rho^{2}$
$\Psi=\psi-\varpi\left(\mathrm{r}_{\mathrm{H}}^{2}\right) t$	$\varpi=\varpi(0)+\mathcal{O}(\rho)$	
	$a_{0}=\mathcal{O}(1)$	$\varpi=a_{0}=a_{0}^{(0)}+\mathcal{O}(\rho)$

4 free BVP integration constants + external parameters

Well-Posedness

- Unique solution of 2 nd order 3×3 BVP: generic intersection of 2-param. family with 4-param. family in 6-param. solution space.
- External charges $\hat{M}, \hat{J}, \hat{Q}$ determine solution: shift $r^{2} \mapsto 0$ by R-autonomy, then invert $r_{H}^{2}:=r_{+}^{2} \longleftrightarrow \hat{M}$.

$$
\hat{M}=5 . \hat{Q}=2 . \hat{J}=1 . r_{H}=1.32464
$$

Normalized f, m, a_{ϕ} vs $\mathrm{r}_{\mathrm{H}}^{2} / \mathrm{R}$; extrapolated outer BVP to seed inner IVP.

Algebraic Type

- Past/future horizon ($\mathrm{R}=\mathrm{r}_{\mathrm{H}}^{2}$): Type II — one of the Kruskal-like $\mathrm{d} U$ or $\mathrm{d} V$ is a Weyl aligned null direction (WAND)
- Bifurcation sphere: Type D - both $\mathrm{d} U$ and $\mathrm{d} V$ are WANDs
- Bulk, outside the horizon: not Type II -off-shell case-by-case analysis of 5d Bel-Debever criteria; [0rtaggi 2009] compatibility with EME ruled out by checking against the general $\mathcal{O}\left(\mathrm{R}^{-5}\right)$ asymptotic solution, unless $\hat{J}=0$ or $\hat{Q}=0$ both of which are Type D.
- Ricci $R_{\mu \nu}$ and Maxwell $F_{\mu \nu}$: Type D
- $g_{\mu \nu} \neq \eta_{\mu \nu}-2 H k_{\mu} k_{\nu}$: The spacetime is not Kerr-Schild (w.r.t Minkowski metric) with null geodesic k_{μ}. [Ortaggio-Pravda-Pravdovà 2009]

Discussion

- The original works on the 5d charged rotating black hole (inadvertently?) used a singular r coordinate.
- We have confirmed the well-posedness of the reduced Einstein-Maxwell equations w.r.t a regular r coordinate, with regularity at the horizon and asymptotic flatness at null infinity.
- Frobenius analysis of the singular points at $r=\infty$ and $r=r_{H}$ opens door to more robust numerical methods.
- We have confirmed the geometric horizon conjecture (algebraically special Weyl tensor on the horizon).
[Coley-McNutt-Shoom 2017]
- The spacetime is not Kerr-Schild with geodesic WAND.

Discussion

- The original works on the 5d charged rotating black hole (inadvertently?) used a singular r coordinate.
- We have confirmed the well-posedness of the reduced Einstein-Maxwell equations w.r.t a regular r coordinate, with regularity at the horizon and asymptotic flatness at null infinity.
- Frobenius analysis of the singular points at $r=\infty$ and $r=r_{H}$ opens door to more robust numerical methods.
- We have confirmed the geometric horizon conjecture (algebraically special Weyl tensor on the horizon).
[Coley-McNutt-Shoom 2017]
- The spacetime is not Kerr-Schild with geodesic WAND.

Thank you for your attention!

