The geometry of analytic structures

Igor Khavkine

Institute of Mathematics Czech Academy of Sciences, Prague

17 Aug 2021 *Finite-infinite workshop* Wolfgang Pauli Institute, Vienna

A Canonical Example: Complex Structure

- \mathfrak{C} complex holomorphic atlas on a C^{∞} manifold M: local charts $z: \mathbb{C}^n \to M$, with holomorphic transitions.
- ► Holonomic Frames: Jacobians of local charts $T \mathfrak{C} \ni Tz = Z \colon M \to FM \subset T^{\oplus 2n}M$ of the frame bundle. Holonomic sections are described by a (1st order) PDE $\mathcal{H} \subset J^{\infty}FM$.
- ► *G*-structure (order-1): Pointwise, $T\mathfrak{C} = J^1\mathfrak{C}/\mathfrak{C}$ defines a sub-bundle $\mathcal{C} \subset FM = J^0FM$, a principal $[GL(2n, \mathbb{R}) \supset GL(n, \mathbb{C}) = G]$ -bundle.
- Strict Integrability ⇒ Formal Integrability: Existence of holonomic sections Z: M → C, implies non-empty (H ∩ J[∞]C) ⊂ J[∞]FM (equivalently, the intrinsic torsion τ_C = 0).
- ► Geometric Objects: Principal *G*-bundle $C \iff$ adapted $J_x \in \text{End}(T_xM)$, $J_x^2 = -\text{id.}$ Vanishing $\tau_c = 0 \iff$ vanishing *Nijenhuis tensor* $N_J = 0$.
- ► Formal integrability \implies Strict Integrability (Newlander-Nirenberg'57): $N_J = 0$ implies existence of adapted holonomic local frames $Z: M \rightarrow C$.

Analytic Structure

Structure Group: $An(n, \mathbb{R})$ analytic local diffeomorphisms $\mathbb{R}^n \to \mathbb{R}^n$ fixing 0.

- ▶ \mathfrak{A} real analytic atlas on a C^{∞} manifold *M*: local charts $x : \mathbb{R}^n \to M$, with real analytic transitions.
- ► Holonomic Frames: Jacobians of local charts $T\mathfrak{A} \ni Tx = X : M \to FM \subset T^{\oplus n}M$ of the frame bundle.
- G-structure (order-∞): Pointwise, J[∞] 𝔅/𝔅 defines a sub-bundle*
 𝗚 ⊂ J[∞] FM, a principal [An(n, ℝ) = G]-bundle.
- Formal Integrability: Analog of $\tau_A = 0$?
- Strict Integrability: if defined, does \(\tau_A = 0\) imply existence of adapted holonomic frames?
- Geometric Objects: Analogs of $J^2 = -id$ and $N_J = 0$?

* Germ vs Jet subtlety!

Strict Integrability: Street's Theorem

Definition (Nelson'59)

Let a frame $(X_i)_i$ and a function u be C^{∞} on a C^{∞} manifold M. The function u is *X*-analytic when $|X_{i_1} \cdots X_{i_N}(u)| < N! r^N$ locally uniformly on M.

Theorem (Street 2018, arXiv:1808.04635)

Let $(X_i)_i$ be a C^{∞} frame on a C^{∞} manifold M. If the structure functions c_{ij}^k in $[X_i, X_j] = c_{ij}^k X_k$ are X-analytic, then there exists a C^{ω} sub-atlas on M making $(X_i)_i$ a C^{ω} frame.

Conclusion: given a local solution frame $j^{\infty}X(M) \subset A \subset J^{\infty}FM$, there exists also a local adapted holonomic frame $j^{\infty}\tilde{X}(M) \subset A \cap H$. In other words, A is strictly integrable!

Q: (IK 2014) ∃"Newlander-Nirenberg" for real analytic structures? MO172729 **A:** (Street 2018)

Formal Integrability \implies Strict Integrability

- Formal integrability: $A \subset J^{\infty} FM$ is formally integrable (as a PDE) when the Cartan connection leaves A invariant.
- ► Torsion freeness: The derivatives $X_{i_1} \cdots X_{i_N}(c_{i_j}^k)$ in Street's condition can be computed pointwise from $j^{\infty}X$ and the condition is $An(n, \mathbb{R})$ -invariant. Hence, it is a property of $\mathcal{A} \subset J^{\infty}FM$ and is a good candidate for torsion freeness (analog of $\tau_{\mathcal{A}} = 0$)!

Theorem

If $\mathcal{A} \subset J^{\infty}FM$ is formally integrable and torsion free, then there locally exist $j^{\infty}X(M) \subset \mathcal{A}$.

Proof: The fibers of \mathcal{A} are not so big, so we can rescue Frobenius's theorem for the Cartan connection. Let $X^{\infty} \colon M \to \mathcal{A}$ be any non-holonomic local section of \mathcal{A} and $X \colon M \to FM$ its lowest projection. Identify $J^{\infty}FM \cong (J^{\infty}\mathbb{R}_M)^{\oplus n^2}$ via $\tilde{X}_i = v_i^j X_j$.

Cartan connection transport equation for scalars:

$$\partial_{\nu} \boldsymbol{U}_{\mu_1 \cdots \mu_N} = \boldsymbol{U}_{\nu \mu_1 \cdots \mu_N} \cdots \cdots$$

Formal Integrability \implies **Strict Integrability Proof:** ... Change the fiber coordinates pointwise to $u_l = u_{i_1 \dots i_N} = X_{(i_1}^{\infty} \dots X_{i_N}^{\infty}(u)$. Equivalent Cartan transport equation:

$$X_{j}^{\nu}\partial_{\nu}u_{l} = u_{jl} + \sum_{|\mathcal{H}| \leq |\mathcal{I}|} P_{j:l}^{\mathcal{H}}u_{\mathcal{H}} = (\Delta \cdot u^{\infty} + P \cdot u^{\infty})_{j:l}.$$

Define the analytic norms $||u|| = \sum_{N=0}^{\infty} \frac{r^N}{N!} \sum_{|H|=N} |u_H|$. Street's pointwise condition implies the estimates

$$\|\Delta\|_{r,s}, \|P\|_{r,s} \leq \frac{Ce^{-1}}{\log s - \log r}.$$

Finish by invoking the following

Theorem (Ovsyannikov'65, Trèves'68) Let $(V_{\alpha})_{\alpha}$ be a scale of Banach spaces, $V_{\alpha} \subset V_{\beta}$ and $\|-\|_{\beta} < \|-\|_{\alpha}$, $\alpha > \beta$. The equation $\dot{v} = Q(t)v$, $v(0) = v_0 \in \bigcup_{\alpha} V_{\alpha}$ will have a unique C^0 in time t local solution when $\|Q(t)\|_{\beta,\alpha} \leq \frac{Ce^{-1}}{\alpha-\beta}$. Moreover, the solution satisfies $\|v(t)\|_{\beta} \leq \|v_0\|_{\alpha} \left(1 - \frac{C|t|}{\alpha-\beta}\right)^{-1}$. Also, when Q(t) = Q(t,p) is C^1 in parameters $p \in \mathbb{R}^k$ with $\|\partial_p Q(t,p)\|_{\beta,\alpha} \leq \frac{Ce^{-1}}{\alpha-\beta}$, then the solution v(t,p) is C^1 in (t,p).

Geometric Structures: Analytic Structures in the Wild?

Theorem (Nelson'59, Kotake-Narasimhan'62)

On \mathbb{R}^n , let $B = \sum_{N=0}^k B^{\mu_1 \cdots \mu_N} \partial_{\mu_1} \cdots \partial_{\mu_N}$ be elliptic with analytic coefficients. Then analytic is equivalent to B-analytic,

$$u|_{\Omega} \text{ analytic } \iff \sup_{x \in \Omega} |B^N u(x)| \le (kN)! r^{kN}.$$

- Hypothesis: B elliptic on M + (some condition): B-analytic \leftarrow analytic w.r.t unique analytic atlas.
- ► Counterexample: $B = h\partial_x h^{-1}$, where h = h(x) is non-analytic on \mathbb{R} . Then u is B-analytic $\iff u = hv$ for v analytic.
- Observation (DeTurk-Kazdan'81): A smooth Riemannian Einstein metric, R[g] = cg, on a compact manifold M is analytic in Riemann normal coordinates.
 - Q: Does the Einstein equation define a "natural" analytic structure?

Discussion

- Analytic structure can be thought of geometrically!
- Interesting interplay of new and classic results from analysis and geometry (Nelson'59, Kotake-Narasimhan'62, Ovsyannikov'65, Street 2018).
- Work in progress:
 - Elliptic operator + (what condition?) analytic structure
 - Analytic vector bundle structure?
 - ▶ * Germ vs Jet: $X = \partial_x$ and $\tilde{X} = (1 + \varepsilon e^{-x^{-2}})\partial_x$ have $\mathcal{A} = \tilde{\mathcal{A}} \subset J^{\infty} F \mathbb{R}!$ But germ₀($An(1, \mathbb{R}) \cdot X$) ≠ germ₀($An(1, \mathbb{R}) \cdot \tilde{X}$). What is a better way to define $\tilde{\mathcal{A}}$?

More examples/counter-examples?

Discussion

- Analytic structure can be thought of geometrically!
- Interesting interplay of new and classic results from analysis and geometry (Nelson'59, Kotake-Narasimhan'62, Ovsyannikov'65, Street 2018).
- Work in progress:
 - Elliptic operator + (what condition?) analytic structure
 - Analytic vector bundle structure?
 - ▶ * Germ vs Jet: $X = \partial_x$ and $\tilde{X} = (1 + \varepsilon e^{-x^{-2}})\partial_x$ have $\mathcal{A} = \tilde{\mathcal{A}} \subset J^{\infty} F \mathbb{R}!$ But germ₀($An(1, \mathbb{R}) \cdot X$) ≠ germ₀($An(1, \mathbb{R}) \cdot \tilde{X}$). What is a better way to define $\tilde{\mathcal{A}}$?

More examples/counter-examples?

Thank you for your attention!

References

- Dennis M. Deturck and Jerry L. Kazdan. Some regularity theorems in Riemannian geometry. Annales scientifiques de l'École Normale Supérieure, 14:249–260, 1981.
- Takeshi Kotake and Mudumbai S. Narasimhan. Regularity theorems for fractional powers of a linear elliptic operator. Bulletin de la Société Mathématique de France, 79:449–471, 1962.
 - Edward Nelson. Analytic vectors. *The Annals of Mathematics*, 70:572–615, 1959.
- L. V. Ovsyannikov. Singular operator in the scale of Banach spaces. Doklady Akademii Nauk SSSR, 163:819–822, 1965.
- B

Brian Street. Coordinates adapted to vector fields III: Real analyticity, 2018. arXiv:1808.04635.

François Trèves.

Ovcyannikov theorem and hyperdifferential operators, volume 46 of Notas de Matemática.

IMPA, Rio de Janeiro, 1968.