
On Extreme Computational Complexity
of the Einstein Equations

Michal Křížek

Abstract We show how to explicitly express the first of the 10 Einstein partial
differential equations to demonstrate their extremely large general complexity. Con-
sequently, it is very difficult to use them, for example, to realistically model the
evolution of the Solar system, since their analytical solution even for at least two
massive bodies is not known. Significant computational problems associated with
their numerical solution are illustrated as well. Thus, we cannot verify whether the
Einstein equations describe the motion of two or more bodies sufficiently accurately.
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1 Historical Facts of Importance

Karl Schwarzschildwas probably thefirst scientistwho ever realized that our universe
at any fixed time might be non-Euclidean and that it can be modeled by the three-
dimensional hypersphere S

3 or the three-dimensional hyperbolic pseudosphere H
3,

see his paper Schwarzschild and Über das zulässige Krümmungsmaaß des Raumes
(1900) from 1900. In 1915, he became famous, since he calculated the first nontrivial
solution of the Einstein vacuum equations (see (6) below).

On November 18, 1915, Albert Einstein submitted his famous paper Einstein
(1915b) about Mercury’s perihelion shift. Here the gravitational field is described
by the following equations using the present standard notation and the Einstein
summation convention:
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�κ

μν,κ − �λ
μκ�κ

λν = 0, κ, λ, μ, ν = 0, 1, 2, 3, (1)

where

�κ

μν := 1

2
gκλ(gνλ,μ + gλμ,ν − gμν,λ) (2)

are the Christoffel symbols of the second kind (sometimes also called the connection
coefficients), gμν = gμν(x0, x1, x2, x3) are components of the unknown 4 × 4 twice
differentiable symmetric metric tensor of the spacetime of one time variable x0 and
three space variables x1, x2, x3, and

det(gμν) = −1. (3)

Furthermore, gμν is the 4 × 4 symmetric inverse tensor to gμν . For brevity, the
first classical derivatives of a function f = f (x0, x1, x2, x3) are denoted as f,κ :=
∂ f/∂xκ . For simplicity, the dependence of all functions on the spacetime coordinates
will be often not indicated. Note that the infinitesimally small spacetime distance ds
is usually expressed by physicists as follows: ds2 = gμνdxμdxν .

On November 20, 1915, David Hilbert submitted the paper Hilbert (1915) which
was published on March 31, 1916. He did not require the validity of the restric-
tive algebraic constraint (3). Using a variational principle, he derived the following
complete equations for the gravitational field (see Fig. 1):

Rμν := �κ

μν,κ−�κ

μκ,ν + �λ
μν�

κ

λκ − �λ
μκ�κ

λν = 0. (4)

The doubly underlined terms do not appear in (1). The number of the Christoffel
symbols in (1) is 10(4 + 4 × 4) = 200. From (2) we observe that (4) is a system
of nonlinear second-order partial differential equations. Its left-hand side Rμν is at
present called the Ricci tensor and the equations Rμν = 0 are called the Einstein
vacuum equations.

Fig. 1 Hilbert’s original paper Hilbert (1915, p. 402)
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By Sauer (1999, p. 569), Hilbert’s knowledge and understanding of the calculus
of variation and of invariant theory readily put him into a position to fully grasp
the Einstein gravitational theory. Hilbert’s original paper (see Fig. 1) contains the
Ricci tensor Rμν from (4) denoted by Kμν (K is the Ricci scalar) and the Christoffel

symbol �κ

μν denoted by−
⎧
⎨

⎩

μν

κ

⎫
⎬

⎭
. Hilbert’s paper was submitted for publication five

days earlier than Einstein’s note Einstein (1915a).
On November 25, 1915, Albert Einstein submitted a three and a half page note

Einstein (1915a) which contains the same expression of the Ricci tensor as in (4). The
way in which the Einstein equations (see (16) below) were derived is not described
there. Einstein’s short note Einstein (1915a) was published already on December 2,
1915, i.e. within one week. One can easily see that the classical Minkowski metric

gμν = diag(−1, 1, 1, 1), (5)

where all non-diagonal entries are zeros, is a trivial solution to the Einstein vacuum
equations (4) since all the Christoffel symbols (2) are zeros.

On January 13, 1916, Karl Schwarzschild submitted the paper Schwarzschild
(1916b) containing the first nontrivial static spherically symmetric solution of the
Einstein vacuum equations. At present his solution is usually written as follows:

gμν = diag

(

−r − S

r
,

r

r − S
, r2, r2 sin2 θ

)

, (6)

where all non-diagonal entries are zeros, S ≥ 0 is a fixed real constant, and the
standard spherical coordinates

x1 = r cosϕ cos θ, x2 = r sin ϕ cos θ, x3 = r sin θ,

are employed, r > S, ϕ ∈ [0, 2π), and θ ∈ [0, π ]. The metric tensor (6) is called the
exterior Schwarzschild solution of the Einstein equations (4). We see that for S = 0
the formula (6) reduces to the Minkowski metric in the spherical coordinates. Note
that already on December 22, 1915, Karl Schwarzschild wrote a letter to Einstein
announcing that he was reading Einstein’s paper on Mercury and found a solution to
field equations (see Vankov 2011 for this letter). This solution is very similar to (6).

Finally, on March 20, 1916, Albert Einstein submitted his fundamental work
Einstein (1916), where the general theory of relativity was established. One year
later, Einstein in (1952) added the term 	gμν to the right-hand side of his field
equations (see (25) below) and Willem de Sitter (1917) found their vacuum solution
which describes the behavior of the expansion function of the entire universe.

The outline of this paper is as follows. In Sect. 2, we prove that the Schwarzschild
solution (6) satisfies (4), but does not satisfy (1). In Sect. 3, we introduce the Einstein
equations and in Sect. 4, we show that they have an extremely complicated explicit
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expression. In Sect. 5, we investigate their enormous computational complexitywhen
they are solved numerically. Finally, in Sect. 6, we present some concluding remarks.

2 Exterior and Interior Schwarzschild Solution

Classical relativistic tests McCausland (1999), Misner et al. (1997), Will (2014)
(such as bending of light, Mercury’s perihelion shift, gravitational redshift, Shapiro’s
fourth test of general relativity) are based on verification of very simple algebraic
formulae derived by various simplifications and approximations of the Schwarzschild
solution (6) which is very special and corresponds only to one spherically symmetric
nonrotating body. Therefore, in this section we present several theorems on the
Schwarzschild solution.

Einstein and also Schwarzschild assumed that the gravitational field has the fol-
lowing properties:

1. It is static, i.e., all components gμν are independent of the time variable x0.
2. It is spherically symmetric with respect to the coordinate origin, i.e., the same

solutions will be obtained after a linear orthogonal transformation.
3. The equations gρ0 = g0ρ = 0 hold for any ρ = 1, 2, 3.
4. The spacetime is asymptotically flat, i.e., the metric tensor gμν tends to the

Minkowski metric in infinity.

Theorem 1 The exterior Schwarzschild solution (6) with S > 0 satisfies
Eqs. (4), but does not satisfy (1).

Proof We will proceed in three steps:

1. At first, we recall the following definition of the Christoffel symbols of the first
kind:

�λμν := 1

2
(gλμ,ν + gνλ,μ − gμν,λ). (7)

From this and the relation gμν = gνμ we find that the Christoffel symbols are, in
general, symmetric with respect to the second and third subscript

�λμν = 1

2
(gλν,μ + gμλ,ν − gνμ,λ) = �λνμ. (8)

Using (7) and (6), we obtain

�001 = 1

2
g00,1 = −r − (r − S)

2r2
= − S

2r2
,

�100 = −1

2
g00,1 = S

2r2
,

�111 = 1

2
g11,1 = − S

2(r − S)2
,
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�122 = −1

2
g22,1 = −r,

�133 = −1

2
g33,1 = −r sin2 θ,

�221 = 1

2
g22,1 = r,

�233 = 1

2
g33,2 = r2 sin θ cos θ,

�331 = 1

2
g33,1 = r sin2 θ,

�332 = 1

2
g33,2 = r2 sin θ cos θ

and the other components �λμν = �λνμ are zeros.
2. Similarly to (8) we can find that the Christoffel symbols of the second kind are

symmetric with respect to the second and third (lower) indices and by (2) and (7)
we have

�κ

μν = gκλ�λμν.

Since the metric tensor (6) is diagonal, its inverse reads

gμν = diag

(

− r

r − S
,
r − S

r
,
1

r2
,

1

r2 sin2 θ

)

(9)

and all non-diagonal entries are zeros. From this and Step 1 we get

�0
01 = g00�001 = S

2r(r − S)
,

�1
00 = g11�100 = S(r − S)

2r3
,

�1
11 = g11�111 = − S

2r(r − S)
,

�1
22 = g11�122 = −(r − S),

�1
33 = g11�133 = −(r − S) sin2 θ,

�2
12 = g22�221 = 1

r2
r = 1

r
,

�2
33 = g22�233 = sin θ cos θ,

�3
31 = g33�331 = 1

r2 sin2 θ
r sin2 θ = 1

r
,

�3
32 = g33�332 = 1

r2 sin2 θ
r2 sin θ cos θ = cotan θ

and the other components �κ

μν = �κ

νμ are zeros.
3. Finally, we will evaluate all entries of the Ricci tensor defined in (4). In particular,

by (9) and Step 2 we obtain
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R00 = �κ

00,κ−�κ

0κ,0 + �λ
00�

κ

λκ − �λ
0κ�κ

λ0

= �1
00,1+�1

00(�
2
12 + �3

13) − 2�1
00�

0
01

= S2r3 − S(r − S)6r2

4r6
+ S(r − S)

2r3

(
1

r
+ 1

r

)

− 2
S(r − S)

2r3
S

2r(r − S)

= r S

2r4
− 3S(r − S)

2r4
+ S(r − S)

2r3
2

r
− S2

2r4
= 0,

where the doubly underlined terms correspond to the doubly underlined terms in
(4). From this it is obvious that the Schwarzschild solution (6) does not satisfy
(1), since S(r − S)/r4 �= 0 for S > 0. (Note that (3) is not valid.)
Similarly, we find that

R11 = �κ

11,κ−�κ

1κ,1 + �λ
11�

κ

λκ
− �λ

1κ
�κ

λ1

= �1
11,1−�0

10,1 − �1
11,1 − �2

12,1 − �3
13,1 + �1

11(�
0
01 + �2

12 + �3
13)

− �0
01�

0
01 − �2

12�
2
12 − �3

13�
3
13

= S(2r − S)

2r2(r − S)2
+ 2

r
− S

2r(r − S)

(
S

2r(r − S)
+ 2

r

)

− S2

4r2(r − S)2
− 2

r2
= 0,

R22 = �κ

22,κ−�κ

2κ,2 + �λ
22�

κ

λκ
− �λ

2κ
�κ

λ2

= �1
22,1−�3

23,2 + �1
22(�

2
12 + �3

13) − 2�2
21�

1
22 − �3

23�
3
23

= −1 + 1

sin2 θ
− (r − S)

2

r
+ 2

r
(r − S) − cotan2θ = 0,

R33 = �κ

33,κ−�κ

3κ,3 + �λ
33�

κ

λκ
− �λ

3κ
�κ

λ3

= �1
33�

3
13 + �2

33�
3
23 − �3

31�
1
33 − �3

32�
2
33 = 0,

and the other non-diagonal entries of Rμν are also zeros.

Therefore, (4) is satisfied. �

Theorem 1 nicely demonstrates Schwarzschild’s ingenuity to find a nontrivial
solution to a very complicated system of partial differential equations (4) for an arbi-
trary constant S > 0 (see also Křížek 2019a, Appendix). For a spherically symmetric
object of mass M > 0, the constant

S = 2MG

c2
(10)
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Fig. 2 Spherical shell
between two concentric
spheres

is called its Schwarzschild gravitational radius, whereG is the gravitational constant
and c is the speed of light in a vacuum.

Denote by
Sμν = −�κ

μκ,ν + �λ
μν�

κ

λκ

the doubly underlined terms in (4). By Einstein (1915a) one additional algebraic
condition (3) surprisingly guarantees that 10 differential operators Sμν = Sνμ simul-
taneously vanish when (4) is valid. This implies (1).

For positive numbers r0 < r1 consider the spherical shell {(x1, x2, x3) ∈ E
3 | r20 ≤

(x1)2 + (x2)2 + (x3)2 ≤ r21 }with interior radius r0 and exterior radius r1 (see Fig. 2).
It is a region between two concentric spheres. Its volume in the Euclidean space E

3

around the mass M is equal to

V = 4

3
π

(
r31 − r30

)
.

However, the spacetime around themassM is curved. Therefore, we have to consider
the proper (relativistic) volume defined as

Ṽ :=
∫ r1

r0

r2
√

r

r − S
dr ×

∫ π

0

(∫ 2π

0
sin θ dϕ

)

dθ = 4π
∫ r1

r0

r2
√

r

r − S
dr.

In Křížek and Křížek (2018), we prove the following astonishing theorem.

Theorem 2 If M > 0 and r0 > S are any fixed numbers satisfying (10), then

Ṽ − V → ∞ as r1 → ∞.

We observe that the difference of volumes Ṽ − V increases over all limits for
r1 → ∞, which is quite surprising property. Namely, Theorem 2 can be applied,
for instance, to a small imperceptible pinhead, since the fixed mass M > 0 can
be arbitrarily small. Consequently, a natural question arises whether the exterior
Schwarzschild solution (6) approximates reality well.
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In 1916, Karl Schwarzschild (1916a) found the first nonvacuum solution of the
Einstein equations, cf. (12) below. He assumed that the ball with coordinate radius
r0 > 0 is formed by an ideal incompressible nonrotating fluidwith constant density to
avoid a possible internal mechanical stress in the solid that may have a nonnegligible
influence on the resulting gravitational field. Then by Ellis (2012) (see also Florides
1974, p. 529; Stephani 2004, p. 213; Interior 2020) the corresponding metric is given
by

gμν = diag

⎛

⎝−1

4

(

3

√

1 − S

r0
−

√

1 − Sr2

r30

)2

,
r30

r30 − Sr2
, r2 sin2 θ, r2

⎞

⎠ , (11)

where r ∈ [0, r0]. Themetric tensor (11) is called the interior Schwarzschild solution,
see Stephani (2004, p. 213). It is again a static solution, meaning that it is independent
of time. To avoid the division by zero in the component g11, we require

r30
r30 − Sr2

=
(

1 − Sr2

r30

)−1

> 0 for all r ∈ [0, r0]

which leads to the inequality
r0 > S.

Hence, we can define the composite Schwarzschild metric gμν by (6) for r > r0 and
by (11) for r ∈ [0, r0]. It is easy to check that gμν is continuous everywhere.

Theorem 3 The composite Schwarzschildmetric gμν is not differentiable for r = r0.

Proof We will show that the component g11 is not differentiable. From (6) and (11)
we observe that the first classical derivative does not exist at r = r0 (see Fig. 3).
Namely, the component g11(r) of the interior solution (11) is an increasing function
on [0, r0], whereas from (6) we see that the one-sided limit of the first derivative of
the component g11(r) = r/(r − S) of the exterior solution is negative

lim
r→r+

0

∂g11
∂r

(r) < 0.

All Riemannian spacetime manifolds have to be locally flat which is not true in this
case. �

The piecewise rational function g11 cannot be smoothed near r0, since then the
Einstein equations would not be valid in a close neighborhood of r0. Thus we observe
that the composite Schwarzschild solution (6)+(11) is not a global solution of an
idealized spherically symmetric star and its close neighborhood (see Fig. 2).
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3 Einstein Equations of General Relativity

The Einstein field equations consist of 10 equations (cf. Einstein 1916) for 10 com-
ponents of the unknown twice differentiable symmetric metric tensor gμν

Rμν − 1

2
Rgμν = 8πG

c4
Tμν, μ, ν = 0, 1, 2, 3, (12)

where Rμν is the symmetric Ricci tensor defined by (4), the contraction

R = gμνRμν (13)

is the Ricci scalar (i.e. the scalar curvature), and Tμν is the symmetric tensor of
density of energy and momentum. Let us emphasize that the 10 Einstein equations
(12) are not independent, since the covariant divergence of the right-hand side is
supposed to be zero (see, e.g., Misner et al. 1997, p. 146), i.e.,

T μν
,ν := T μν

,ν + �μ
λνT

λν + �ν
λνT

μλ = 0, (14)

where T μν = gκμgλνTκλ. The covariant divergence of the Ricci tensor is nonzero, in
general, but the covariant divergence of the whole left-hand side of (12) is zero auto-
matically for gμν smooth enough, e.g., if the third derivatives of gμν are continuous
(which is not the case sketched in Fig. 3). Therefore, we have only six independent
equations in (12). The number of independent components of the metric tensor is
also six, since we have four possibilities of choosing four coordinates.

Finally, the contravariant symmetric 4 × 4 metric tensor gμν which is inverse to
the covariant metric tensor gμν satisfies

gμν = g∗
μν

det(gμν)
, det(gμν) :=

∑

π∈S4
(−1)sgn πg0ν0g1ν1g2ν2g3ν3, (15)

where the entries g∗
μν form the 4 × 4 matrix of 3 × 3 algebraic adjoints of gμν , S4 is

the symmetric group of 24 permutations π of indices (ν0, ν1, ν2, ν3), sgn π = 0 for

Fig. 3 Behavior of the
non-differentiable
component g11 = g11(r) of
the composite metric tensor
from (6) and (11)
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an even permutation and sgn π = 1 for an odd permutation. Notice that the constant
on the right-hand side of (12) is very small in the SI base units implying that the
Ricci curvature tensor Rμν is also very small (if components of Tμν are not too large).

Einstein (1915a) presented the field equations (12) in an equivalent form which
is at present written as follows:

Rμν = 8πG

c4

(

Tμν − 1

2
Tgμν

)

, (16)

where T := Tμνgμν = T μ
μ denotes the trace of Tμν . To see that (16) is equivalent

with (12), we multiply (12) by gμν . Then the traces of the corresponding tensors
satisfy

−R = R − 2R = 8πG

c4
T .

Theorem 4 If gμν is a solution to (12), then (−gμν) also solves (12).

Proof From (2) we find that the Christoffel symbols remain the same if we replace
gμν by (−gμν), namely,

�κ

μν = 1

2
(−gκλ)(−gνλ,μ − gλμ,ν + gμν,λ).

Using (4), we find that the Ricci tensor Rμν in (12) does not change as well. Con-
cerning the second term on the left-hand side of (12), we observe from (13) that(− 1

2 Rgμν

)
also remains unchanged if we replace gμν by (−gμν). �

Example 1 For comparison, we also note that the first-order classical derivatives
of the Newton potential u for the situation sketched in Fig. 2 are continuous. It is
described by the Poisson equation

�u = 4πGρ, (17)

where ρ is the mass density. Let the right-hand side f = 4πGρ be spherically sym-
metric and such that f (r) = 1 for r ∈ [0, 1] and f (r) = 0 otherwise. The Laplace
operator in spherical coordinates reads

�u = ∂2u

∂r2
+ 2

r

∂u

∂r
+ 1

r2

(
∂2u

∂θ2
+ cotan θ

∂u

∂θ
+ 1

sin2 θ

∂2u

∂ϕ2

)

.

The term in parenthesis on the right-hand side is zero for the spherically symmetric
case. By the well-known method of variations of constants, we find the following
solution to the Poisson equation (17):
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u(r, ϕ, θ) =

⎧
⎪⎨

⎪⎩

1

6
r2 − 1

2
for r ∈ [0, 1],

− 1

3r
otherwise.

Hence, both u and ∂u/∂r are continuous at r0 = 1.

4 Explicit Form of the First Einstein Equation

In this section, wewant to point out the extreme complexity of the Einstein equations.
In (12), the dependence of the Ricci scalar R and the Ricci tensor Rμν on the metric
tensor gμν is not indicated. Therefore, the Einstein equations (12) seem to be quite
simple (see Misner et al. 1997, p. 42). To avoid this deceptive opinion, we will show
now how to derive an explicit form of the first Einstein equation.

First, we shall consider only the casewhen Tμν = 0 (andwithout the cosmological
constant Einstein 1952). Multiplying (12) by gμν and summing over all μ and ν, we
obtain by (13) that

0 = gμνRμν − 1

2
Rgμνgμν = R − 1

2
Rδμ

μ = R − 1

2
4R,

where δμ
ν is the Kronecker delta. Thus, R = 0 and the Einstein vacuum equations

can be rewritten in the well-known form

Rμν = 0. (18)

Theunknownmetric tensor gμν is not indicated.Concerningnonuniqueness expressed
by Theorem 4, we observe from (2) that we can add any constant to any component
gμν = gνμ and the Einstein equations Rμν = 0 will still be valid.

Equation (18) looks seemingly very simple, since the unknown metric tensor gμν

is not indicated there. So now we will rewrite it so that this metric tensor appears
explicitly there. Using (4), we can express the first Einstein equation of (18) as
follows:

0 = R00 = �κ

00,κ − �κ

0κ,0 + �λ
00�

κ

λκ
− �λ

0κ
�κ

0λ

= �0
00,0 + �1

00,1 + �2
00,2 + �3

00,3 − �0
00,0 − �1

01,0 − �2
02,0 − �3

03,0

+ �0
00

(
�0

00 + �1
01 + �2

02 + �3
03

) + �1
00

(
�0

10 + �1
11 + �2

12 + �3
13

)

+ �2
00

(
�0

20 + �1
21 + �2

22 + �3
23

) + �3
00

(
�0

30 + �1
31 + �2

32 + �3
33

)

− �0
00�

0
00 − �0

01�
1
00 − �0

02�
2
00 − �0

03�
3
00 − �1

00�
0
01 − �1

01�
1
01

− �1
02�

2
01 − �1

03�
3
01 − �2

00�
0
02 − �2

01�
1
02 − �2

02�
2
02 − �2

03�
3
02

− �3
00�

0
03 − �3

01�
1
03 − �3

02�
2
03 − �3

03�
3
03,
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where the underlined terms cancel. Hence, the first Einstein equation can be rewritten
by means of the Christoffel symbols in the following way:

0 = R00 = �1
00,1 + �2

00,2 + �3
00,3 − �1

01,0 − �2
02,0 − �3

03,0

+ �0
00(�

1
01 + �2

02 + �3
03) + �1

00(−�0
10 + �1

11 + �2
12 + �3

13)

+ �2
00(−�0

20 + �1
21 + �2

22 + �3
23) + �3

00(−�0
30 + �1

31 + �2
32 + �3

33)

− 2�1
02�

2
01 − 2�1

03�
3
01 − 2�2

03�
3
02 − (�1

01)
2 − (�2

02)
2 − (�3

03)
2. (19)

Using (2) and the symmetry of gμν , we obtain

2�κ

μν = gκ0(gμ0,ν + gν0,μ − gμν,0) + gκ1(gμ1,ν + gν1,μ − gμν,1)

+ gκ2(gμ2,ν + gν2,μ − gμν,2) + gκ3(gμ3,ν + gν3,μ − gμν,3).

Thus, by (18), we can express the first Einstein equation R00 = 0 by means of the
metric coefficients and their first- and second-order derivatives as follows:

0 = 4R00 = 2
[
g10,1 g00,0 + g11,1 (2g01,0 − g00,1) + g12,1 (2g02,0 − g00,2) + g13,1 (2g03,0 − g00,3)

+ g10g00,01 + g11(2g01,01 − g00,11) + g12(2g02,01 − g00,21) + g13(2g03,01 − g00,31)

+ g20,2 g00,0 + g21,2 (2g01,0 − g00,1) + g22,2 (2g02,0 − g00,2) + g23,2 (2g03,0 − g00,3)

+ g20g00,02 + g21(2g01,02 − g00,12) + g22(2g02,02 − g00,22) + g23(2g03,02 − g00,32)

+ g30,3 g00,0 + g31,3 (2g01,0 − g00,1) + g32,3 (2g02,0 − g00,2) + g33,3 (2g03,0 − g00,3)

+ g30g00,03 + g31(2g01,03 − g00,13) + g32(2g02,03 − g00,23) + g33(2g03,03 − g00,33)

− g10,0 g00,1 − g11,0 g11,0 − g12,0 (g02,1 + g12,0 − g01,2) − g13,0 (g03,1 + g13,0 − g01,3)

− g10g00,10 − g11g11,00 − g12(g02,10 + g12,00 − g01,20) − g13(g03,10 + g13,00 − g01,30)

− g20,0 g00,2 − g21,0 (g01,2 + g21,0 − g02,1) − g22,0 g22,0 − g23,0 (g03,2 + g23,0 − g02,3)

− g20g00,20 − g21(g01,20 + g21,00 − g02,10) − g22g22,00 − g23(g03,20 + g23,00 − g02,30)

− g30,0 g00,3 − g31,0 (g01,3 + g31,0 − g03,1) − g32,0 (g02,3 + g32,0 − g03,2) − g33,0 g33,0

− g30g00,30 − g31(g01,30 + g31,00 − g03,10) − g32(g02,30 + g32,00 − g03,20) − g33g33,00
]

+ (g00g00,0 − g01g00,1 − g02g00,2 − g03g00,3)

×
[
g10(2g10,1 − g11,0) + g11g11,1 + g12(2g12,1 − g11,2) + g13(2g13,1 − g11,3)

+ g20(g10,2 + g20,1 − g12,0) + g21g11,2 + g22g22,1 + g23(g13,2 + g23,1 − g12,3)

+ g30(g10,3 + g30,1 − g13,0) + g31g11,3 + g32(g12,3 + g32,1 − g13,2) + g33g33,1
]

+ (g10g00,0 + g11g11,1 − g12g11,2 − g13g11,3)

×
[
−g00g00,1 − g01g11,0 − g02(g12,0 + g02,1 − g10,2) − g03(g13,0 + g03,1 − g10,3)

+ g10(2g10,1 − g11,0) + g11g11,1 + g12(2g12,1 − g11,2) + g13(2g13,1 − g11,3)

+ g20(g10,2 + g20,1 − g12,0) + g21g11,2 + g22g22,1 + g23(g13,2 + g23,1 − g12,3)

+ g30(g10,3 + g30,1 − g13,0) + g31g11,3 + g32(g12,3 + g32,1 − g13,2) + g33g33,1
]
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+
[
g20g00,0 + g21(2g01,0 − g00,1) + g22(2g02,0 − g00,2) + g23(2g03,0 − g00,3)

]

×
[
−g00g00,2 − g01(g21,0 + g01,2 − g20,1) − g02g22,0 − g03(g23,0 + g03,2 − g20,3)

+ g10(g20,1 + g10,2 − g21,0) + g11g11,2 + g12g22,1 + g13(g23,1 + g13,2 − g21,3)

+ g20(2g20,2 − g22,0) + g21(2g21,2 − g22,1) + g22g22,2 + g23(2g23,2 − g22,3)

+ g30(g20,3 + g30,2 − g23,0) + g31(g21,3 + g31,2 − g23,1) + g32g22,3 + g33g33,2
]

+
[
g30g00,0 + g31(2g01,0 − g00,1) + g32(2g02,0 − g00,2) + g33(2g03,0 − g00,3)

]

×
[
−g00g00,3 − g01g01,3 − g02(g32,0 + g02,3 − g30,2) − g03g33,0

+ g10(g30,1 + g10,3 − g31,0) + g11g11,3 + g12(g32,1 + g12,3 − g31,2) + g13g33,1

+ g20(g30,2 + g20,3 − g32,0) + g21(g31,2 + g21,3 − g32,1) + g22g22,3 + g23g33,2

+ g30(2g30,3 − g33,0) + g31(2g31,3 − g33,1) + g32(2g32,3 − g33,2) + g33g33,3
]

− 2
[
g10g00,2 + g11(g01,2 + g21,0 − g02,1) + g12g22,0 + g13(g03,2 + g23,0 − g02,3)

]

×
[
g20g00,1 + g21g11,0 + g22(g02,1 + g12,0 − g01,2) + g23(g03,1 + g13,0 − g01,3)

]

− 2
[
g10g00,3 + g11(g01,3 + g31,0 − g03,1) + g12(g02,3 + g32,0 − g03,2) + g13g33,0

]

×
[
g30g00,1 + g31g11,0 + g32(g02,1 + g12,0 − g01,2) + g33(g03,1 + g13,0 − g01,3)

]

− 2
[
g20g00,3 + g21(g01,3 + g31,0 − g03,1) + g22(g02,3 + g32,0 − g03,2) + g23g33,0

]

×
[
g30g00,2 + g31(g01,2 + g21,0 − g02,1) + g32g22,0 + g33(g03,2 + g23,0 − g02,3)

]

−
[
g10g00,1 + g11g11,0 + g12(g02,1 + g12,0 − g01,2) + g13(g03,1 + g13,0 − g01,3)

]2

−
[
g20g00,2 + g21(g01,2 + g21,0 − g02,1) + g22g22,0 + g23(g03,2 + g23,0 − g02,3)

]2

−
[
g30g00,3 + g31(g01,3 + g31,0 − g03,1) + g32(g02,3 + g32,0 − g03,2) + g33g33,0

]2
. (20)

Now we should substitute all entries of (20) with double upper indices for (15).
For instance, the entry g11 in the second line of (20) could be rewritten by means of
the Sarrus rule for 3 × 3 symmetric matrices g∗

11 by

g11 = g∗
11

det(gμν)

= g00g22g33 + 2g02g03g23 − g00(g23)2 − g22(g03)2 − g33(g02)2
∑

π∈S4(−1)sgn πg0ν0g1ν1g2ν2g3ν3
, (21)

where the sum in the denominator contains 4! = 24 terms. Note that the optimal
expression for the minimum number of arithmetic operations to calculate the inverse
of a 4 × 4 matrix is not known, yet. The other nine entries g00, g01, g02, g03, g12,
g13, g22, g23, and g33 can be expressed similarly.



16 M. Křížek

However,wehave to evaluate also thefirst derivatives of gμν . Consider for instance
the entry g11,1 in the first line of (20). Then by (21) we get

g11,1 = ∂

∂x1

(
g∗
11

det(gμν)

)

=
(

1
∑

π∈S4(−1)sgn πg0ν0g1ν1g2ν2g3ν3

(
g00g22g33 + 2g02g03g23

− g00(g23)
2 − g22(g03)

2 − g33(g02)
2
))

,1

=
[(

g00,1g22g33 + 2g02,1g03g23 − g00,1(g23)
2 − g22,1(g03)

2 − g33,1(g02)
2

+ g00g22,1g33 + 2g02g03,1g23 + g00g22g33,1 + 2g02g03g23,1 − 2g00g23,1

− 2g22g03,1 − 2g33g02,1
)

(
∑

π∈S4
(−1)sgn πg0ν0g1ν1g2ν2g3ν3

)

−
(
g00g22g33 + 2g02g03g23 − g00(g23)

2 − g22(g03)
2 − g33(g02)

2
)

×
∑

π∈S4
(−1)sgn π

(
g0ν0,1g1ν1g2ν2g3ν3 + g0ν0g1ν1,1g2ν2g3ν3

+ g0ν0g1ν1g2ν2,1g3ν3 + g0ν0g1ν1g2ν2g3ν3,1
)]

×
(

∑

π∈S4
(−1)sgn πg0ν0g1ν1g2ν2g3ν3

)−2

. (22)

Substituting all gμν and also its first derivatives into (20), we get the explicit
form of the first Einstein equation R00 = 0 of the second order for 10 unknowns
g00, g01, g02, . . . , g33. It is evident that such an equation is extremely complicated.
Relation (19) takes only four lines, relation (20) takes 40 lines and after substitution
of all entries with determinants given by (21), (22), etc., into (20), the Eq. (18) for
the component R00 of the Ricci tensor will occupy at least 10 pages. The other nine
equations Rμν = 0 can be expressed similarly.

The explicit expression of the left-hand side of (12) for a given covariant
divergence-free Tμν �= 0 in terms of the unknown components of gμν is even more
complicated. Using (13) and (20)–(22), we still have to express the term − 1

2 Rgμν

similarly. Up to now, nobody has calculated how many terms the Einstein equations
really contain, in general.
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5 Computational Complexity of the Einstein Equations

According to (20)–(22), we observe that the Einstein equations are highly nonlinear.
From the end of Sect. 4, we find that the explicit form of all 10 equations (12) will
occupy at least one hundred pages. For comparison note that the Laplace equation
�u = 0 has only three terms ∂2u/∂x2i , i = 1, 2, 3, on its left-hand side and the
famous Navier-Stokes equations have 24 terms.

Let n denote the number of mass bodies. If n = 0, then the simplest solution to
the Einstein equation is the Minkowski metric (5). If n = 1, then there are several
other simple solutions to (12) that use spherical or axial symmetry of one body,
e.g., the Schwarzschild metrics (6) and (11), or the Kerr metric Misner et al. (1997,
p. 878). However, these solutions are local, not global (cf. Theorem 3). Moreover,
the analytical solution of (12) is not known for two or more mass bodies. Thus, we
have a serious problem to verify whether the Einstein equations describe well the
n-body problem for n > 1 (e.g., in the Solar system).

There are many numerical methods for solving partial differential equations such
as the finite difference method, the finite volume method, the boundary element
method, the finite element method Brandts et al. (2020), etc. For the numerical
solution of the Einstein equations, we have to include back all arguments of the
functions

gμν = gμν(x
0, x1, x2, x3),

gμν,κ = gμν,κ(x0, x1, x2, x3),

gμν,κλ = gμν,κλ(x
0, x1, x2, x3)

appearing in (20)–(22) for all μ, ν, κ, λ = 0, 1, 2, 3.
For example, in the simplest setting of the finite difference method one has to

establish a four-dimensional regular space-time mesh, e.g., with N 4 mesh points

(x0i , x
1
j , x

2
k , x

3
l ) for i, j, k, l = 1, 2, . . . , N .

Then the 10 values gμν(x0, x1, x2, x3), their 40 = 10 × 4 first derivatives and 100 =
10 × (1 + 2 + 3 + 4) second derivatives (of the Hessian) appearing in (20)–(22)
have to be replaced by finite differences at all mesh points. For instance, the second
derivative g00,11 appearing in the second line of (20) can be approximated by the
standard central difference as

g00,11(x
0
i , x

1
j , x

2
k , x

3
l )

≈ g00(x0i , x
1
j + h, x2k , x

3
l ) − 2g00(x0i , x

1
j , x

2
k , x

3
l ) + g00(x0i , x

1
j − h, x2k , x

3
l )

h2
,

where h = N−1 is the discretization parameter. The huge system of nonlinear partial
differential equations described in Sect. 4 would then be replaced by a much larger
system of nonlinear algebraic equations for approximate values of the metric tensor
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at all mesh points. In particular, at each mesh point, the corresponding discrete
Einstein equationswill bemuch longer than theEinstein equations themselveswritten
explicitly. Hence, for example, if N ≈ 100, the discrete system on each time level
will occupy millions pages of extremely complicated and highly nonlinear algebraic
equations.

It iswell known that explicit numericalmethods for solving evolution problems are
unstable. Therefore, one should apply implicit methods. Nevertheless, up to now, we
do not know any convergent and stable method that would yield a realistic numerical
solution of the above systemwith guaranteed error bounds of discretization, iteration,
and rounding errors.

Moreover, there are large problems with initial conditions. Since (12) is a second-
order hyperbolic systemof equations, one should prescribe initial conditions for all 10
components gμν and all their 40 first derivatives. However, this is almost impossible
if all data are not spherically symmetric. The main reason is that spacetime tells
matter how to move and matter tells spacetime how to curve Misner et al. (1997).
So the initial space manifold is a priori not known, in general. Thus we also have
serious problems to prove the existence and uniqueness of the solution of the Einstein
equations and compare their solution with reality. There are similar large problems
with boundary conditions and the divergence-free right-hand side (14) of the Einstein
equations (12).

Another non-negligible problem lies in the nonuniqueness of topology. The reason
is that the knowledge of the metric tensor gμν does not determine uniquely the
topology of the corresponding space-time manifold. For instance, the Euclidean
space E

3 has obviously the same metric gμν = δμν , μ, ν = 1, 2, 3, as S
1 × E

2 but
different topology for a time-independent case with Tμν = 0 in (12). Here S

1 stands
for the unit circle. Hence, solving the Einstein equations does notmean that we obtain
the shape of the associated space-time manifold. Other examples can be found in
Misner et al. (1997, p. 725).

6 Concluding Remarks

Validation and verification of problems of mathematical physics and their computer
implementation is a very important part of numerical analysis. We always encounter
two basic types of errors: modeling error and numerical errors (such as discretization
error, iteration error, round-off errors, and also undiscovered programing bugs). Val-
idation tries to estimate the modeling error and to answer the question: Do we solve
the correct equations?On the other hand, verification tries to quantify the numerical
errors and to answer the question: Do we solve the equations correctly?

There is a general belief in the current astrophysical community that the Einstein
equations best describe gravity Křížek (2019a). However, their extreme complexity
prevents from verifying whether they model, for instance, the Solar system better
than Newtonian n-body simulations with n > 1. Hence, in this case the Einstein
equations are, in fact, non-computable by present computer facilities, and thus non-
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testable in their general form. Moreover, from the previous exposition it is obvious
that by (12) we are unable to calculate trajectories of the Jupiter-Sun system, even
1mm of Jupiter’s trajectory, for example. The reason is that the mass of Jupiter is not
negligible with respect to the Sun’s mass. On the other hand, such trajectories can
be calculated numerically very precisely by the n-body simulations (e.g., with n = 8
planets) even though their analytical solution is not known. Thus the modeling error
e0, which is the difference between observed trajectories and the analytical solution,
is also not known. However, the modeling error e0 can be easily estimated by the
triangle inequality

|e0| ≤ |e1| + |e2|,

where e1 is the numerical error and e2 is the total errorwhich is the difference between
observed and numerically calculated trajectories.

Classical relativistic tests are based on verification of very simple algebraic for-
mulae (see, e.g., (23) below) derived by various simplifications and approximations
of the Schwarzschild solution (6) of the Einstein equations (12) which is very spe-
cial and corresponds only to the exterior of one spherically symmetric body, that
is n = 1. However, we cannot test good approximation properties of the Einstein
equations (12) by means of one particular exterior Schwarzschild solution. Such an
approach could be used only to disprove their good modeling properties of reality.
Analogously, good modeling properties of the Laplace equation �u = 0 cannot be
verified by testing some of its trivial linear solutions, since there exist infinitely many
other nontrivial solutions.

In Einstein (1915b), Einstein replacedMercury by amassless point, the position of
theSunwasfixed, and the other planetswere not taken into account (seeKřížek (2017)
for many other simplifications that were done). To express the gravitational field,
Einstein used Eqs. (1) instead of (4) forμ = ν = 0. This important fact is suppressed
(cf. Theorem 1). In this way, Einstein derived under various further approximations
the following formula for the relativistic perihelion shift ofMercury Einstein (1915b,
p. 839):

ε = 24π3 a2

T 2c2(1 − e2)
= 5.012 × 10−7 rad, (23)

where T = 7.6005 × 106 s is the orbital period, e = 0.2056 is the eccentricity of
its elliptic orbit, and a = 57.909 × 109m is the length of its semimajor axis. From
this he got an idealized value of the perihelion shift 43′′ per century. However, this
number does imply that the system (12) describes trajectories of planets better than
Newtonian mechanics as demonstrated in Sects. 4 and 5.

Note that Paul Gerber in 1898 derived the following formula for the speed of light
by means of retarded potentials (see Gerber 1898):

c2 = 24π3 a2

T 2(1 − e2)�
,
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where � is the perihelion shift of Mercury during one orbital period. We see that
this formula is the same as (23). So the corresponding tests of the general theory of
relativity based on (4) or by the Einstein system (1) yield the same values as tests of
the Gerber theory of retarded potentials. So which theory is correct?

A shift (advance) of the line of apsides of binary pulsars cannot be derived simi-
larly to Mercury’s perihelion shift, since the analytical solution of the corresponding
two-body problem with nonzero masses is not known. Thus, only some heuristic
formulae can be employed to this highly nonlinear problem. Recent observations of
gravitational waves also do not confirm that (12) models reality well, since these
waves are described by a simplified linearized equations with the D’Alembert oper-
ator. For a collision of two black holes a post-Newtonian approach was employed
(see, e.g., Mroué et al. 2013). Moreover, a large gravitational redshift was not taken
into account Křížek and Somer (2018). Abbott et al. (2016) considered only the
cosmological gravitational redshift z = 0.09 of a binary black hole merger, but they
forgot that the redshift of any black hole is z = ∞. In Křížek and Somer (2018), we
demonstrate that the resulting black hole masses were overestimated approximately
twice.

Note also that Fig. 4, which should illustrate the propagation of gravitational
waves, contradicts the general theory of relativity. To see this, denote by d the coordi-
nate distance of two black holes and by T their orbital period. Multiply the inequality

π > 2

by d/T . Then we immediately get a contradiction

v = πd

T
>

2d

T
= |AB|

T
= c, (24)

where v is the orbital velocity, c the speed of gravitationalwaves (equal to the speed of
light), and |AB| is the distance of two consecutive maximum amplitudes of the right
black hole as indicated in Fig. 4. However, v ≤ 1

3c by Abbott et al. (2016). Figure4
shows only a dipole character of gravitationalwaves and not their proclaimed quadru-
pole character. Furthermore, the double Archimedean spiral illustrating gravitational
waves has by definition a different shape near the center.

Finally, we would like to emphasize that no equation of mathematical physics
describes reality absolutely exactly on any scale. Therefore, eachmathematicalmodel
has only a limited scope of its application. In particular, also the Einstein equations
with cosmological constant 	 �= 0 (see Einstein 1952)

Rμν − 1

2
Rgμν + 	gμν = 8πG

c4
Tμν (25)

should not be applied to the entire universe as it is often done, since they are nonlinear
and thus not scale invariant. Note that the observable universe is at least 15 orders of
magnitude larger than one astronomical unit.
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Fig. 4 Popular illustration implying that the orbital velocity v of binary black holes is larger than
the speed of light c, see (24)

There are only three maximally symmetric three-dimensional manifolds S
3, E

3,
H

3 that are used to model a homogeneous and isotropic universe for a fixed time. In
this case, the Einstein equations lead to the famous Friedmann ordinary differential
equation Křížek and Somer (2016), i.e.

Einstein equations + maximum symmetry =⇒ Friedmann equation. (26)

The Friedmann equation is applied to calculate luminosity distances of type Ia super-
novae. On the basis of these distances, it is claimed that the Einstein equations well
describe the entire universe. This is a typical circular argument.

The current cosmological model, which is based on the Friedman equation, pos-
sesses over 20 paradoxes (see, e.g., Křížek 2019a; Křížek and Somer 2016; Vavryčuk
2018). From this and implication (26), it is evident that the Einstein equations should
not be applied to modeling the entire universe. During its expansion, the topology
cannot change. The most probable model is S

3 whose present radius is very roughly
R = 1026 m, the volume is 2π2R3 and the total mass is estimated to 2 × 1053 kg.
However, radius increases with time. So during the Big Bang, the topology of the
universe should also be S

3. By Křížek (2019b) the maximum mass density is about
1018 kg/m3 which would correspond to the radius R = 109m.
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