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PREFACE

“Will you sign the blueprint?” is the favorite question of Professor Ivo Babuska,
the question well known among the participants of many conferences and seminars.
This question expresses the philosophy of Ivo Babuska’s professional life. His ex-
perience tells him that it is not enough to model real processes on a computer but
that it is extremely important to assess the quality of the result obtained. Only then
you can sign the blueprint. Unfortunately, there are examples of blueprints signed
without care of the reliability of the results, blueprints that caused fatal failures and
huge damage in practice.

Ivo Babuska



Ivo Babuska, a mathematician recognized all over the world, was born on
March 22, 1926 in Praha (Prague). One of the aims of the conference Applications of
Mathematics 2015, organized by the Institute of Mathematics of the Czech Academy
of Sciences, was to remember all the achievements Ivo Babuska has realized so far.
We appreciate not only his theoretical results in the finite element method and
in computational mathematics in general, but also his role of mentor of several
dozens of PhD students and his position of a wise man who can predict the future
of computational mathematics, present his visions to his colleagues, and successfully
lead them to progress in this field.

Many papers have already been written about the life and work of Ivo Babuska.
He is still very active in mathematics and publishes new results. Although his cur-
riculum vitae has been published in various journals and proceedings many times,
let me provide you with at least some principal biographical data and some of
Babuska’s outstanding mathematical results. More information can be found on
the site users.ices.utexas.edu/~babuska/ or in biographical papers.

Ivo Babuska studied civil engineering at the Czech Technical University in Prague,
received his MS (Ing.) degree in 1949 and the PhD degree in Technical Science
(Dr. tech.) in 1951. Then he studied mathematics at the Central Mathematical
Institute in Prague as a graduate student of Professor V. Knichal. From 1951 he was
a research fellow at the Institute. The Institute changed its name to the Mathemat-
ical Institute of the Czechoslovak Academy of Sciences in 1953 (now the Institute of
Mathematics of the Czech Academy of Sciences).

In 1955 Ivo Babuska received the PhD (CSc.) degree in Mathematics and in 1960
the D.Sc. (DrSc.) degree which was in Czechoslovakia (as well as is now in the
Czech Republic) awarded for the highest scientific achievements. From 1955 to 1968
he was the Head of Department of Constructive Methods of Mathematical Analysis
of the Mathematical Institute. It was my privilege to work on my MS thesis at
this Department during my studies at Charles University in Prague and to become
a member of the Department in 1964. Later I also became Ivo Babuska’s graduate
student.

All Tvo Babuska’s biographies mention his first important computational achieve-
ment in 1953-1956 when he was the leader of a numerical group that analyzed the
technology of constructing the 91 meter high gravitational Orlik Dam on the Vltava
River in Bohemia. The mathematical problem was to solve a nonlinear partial differ-
ential equation. Let me stress that all the computations were carried out by a team
of people on mechanical desk calculators since no better devices were available in
Czechoslovakia that time. The mathematical and numerical problems treated in the
project provided many fruitful topics for investigation and initiated the research in
a general theory of numerical stability of algorithms.

Ivo Babuska is the Honorary Editor of the journal Applications of Mathematics
(formerly Aplikace matematiky) that he established in Prague in 1956. He was
one of the founders of the EQUADIFF international scientific meetings that are
still taking place. The first international EQUADIFF Conference on Differential

i



Equations was held in Prague in 1962. Later this series of conferences merged with
another FEuropean series bearing the same name.

Ivo Babuska was appointed professor at Charles University in Prague in 1968.
The same year he arrived in the United States and became a professor at the In-
stitute for Physical Science and Technology and the Department of Mathematics of
the University of Maryland at College Park. His interest in applied and numerical
analysis brought him to the finite element method. He has achieved numerous bright
results in the method itself, in its hp-version, in its reliability, a priori and a posteriori
estimations, and adaptive approaches. These are recognized all over the world and
belong to the fundamentals of the method. Moreover, Ivo Babuska has accomplished
excellent results in several other branches of computational mathematics.

Ivo Babuska belongs among the founders of the Finite Element Circus, an infor-
mal meeting which, for more than 40 years, takes place twice a year.

From 1989, when the political situation in Czechoslovakia changed, he could
resume visiting Prague. In 1994, he established the Prize for Young Czech Scientists
in the field of numerical analysis and computational mechanics that is funded by his
own means and awarded annually.

In 1995, Ivo Babuska became a senior research scientist and Robert Trull Profes-
sor at the Institute for Computational Engineering and Sciences at the University of
Texas at Austin.

Along with his other activities, he has been involved in mentoring several dozens
of graduate students, see genealogy.math.uni-bielefeld.de/genealogy. He is
a member of editorial boards of numerous mathematical and engineering journals.

Ivo Babuska has received recognition and various awards for his scientific work.
A brief supplement to the long list of his honors obtained before 2005 includes the
following: Member of the U.S. National Academy of Engineering (2005), Member
of the Academy of Medicine, Engineering, and Science of Texas (2005), Honorary
Diploma of the Czech Society of Mechanics (2005), Honorary Medal De scientia et
humanitate optime meritis, the highest award provided by the Czech Academy of Sci-
ences (2006), Congress Medal of the 7th World Congress of Computational Mechanics
in Los Angeles, International Association for Computational Mechanics (2006), Hon-
orary Doctor of Science at the Czech Technical University in Prague (2007), Leroy
P. Steele Prize for Lifetime Achievement, American Mathematical Society (2012),
Neuron Award for Contribution to Science, Neuron Fund, Prague (2014).

Ivo Babuska’s name is inseparably connected with the development of the finite
element method. His theoretical results are widely used, directly or indirectly, in
engineering practice. He has been invited for numerous lectures at conferences all
over the world. The list of Ivo Babuska’s monographs and papers in the Mathematical
Reviews contains more than 300 items.

We must not omit a particular source of Ivo Babuska’s scientific success, the
family background provided by his wife Renata. They have a daughter and a son

and four grandchildren.
* ok ok
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To commemorate the significant life jubilees of Ivo Babuska, Milan Prager, and
Emil Vitasek, the Institute of Mathematics of the Czech Academy of Sciences orga-
nized the International Conference Applications of Mathematics 2015 on the premises
of the Institute in Zitnd 25, Prague 1 from November 18 to 21, 2015 (see website
am2015.math.cas.cz).

The Scientific Committee consisted of
Mark Ainsworth (Brown University, Providence, RI, U.S.A.)
Jan Brandts (University of Amsterdam, the Netherlands)
Jan Chleboun (Czech Technical University, Prague, Czech Republic)
Miloslav Feistauer (Charles University, Prague, Czech Republic)
Jaroslav Haslinger (Charles University, Prague, Czech Republic)
Sergey Korotov (Basque Center for Applied Mathematics, Bilbao, Spain)
Qun Lin (Academy of Mathematics and System Science, Beijing, China)
Hans-Goerg Roos (Technical University, Dresden, Germany)
Theofanis Strouboulis (Texas A&M University, College Station, TX, U.S.A.)
Martin Stynes (National University of Ireland, Cork, Ireland)
Takuya Tsuchiya (Ehime University, Matsuyama, Japan)
Shuhua Zhang (Tianjin University of Finance and Economics, China)

Zhiming Zhang (Wayne State University, Detroit, MI, U.S.A.)
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The Local Organizing Committee (Academy of Sciences) consisted of
Hana Bilkova
Michal Kftizek
Karel Segeth (Chair)
Jakub Sistek
Tom4&s Vejchodsky

The Organizing Committee is grateful to all authors for their contributions, to
Project RVO 67985840 (Institute of Mathematics, Czech Academy of Sciences), and
to Grant MTM2011-24766 (MICINN, Spain).
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Ivo Babuska, Milan Prager, and Emil Vitasek deserve our congratulations and
our sincere wishes of good health, optimistic mind, family happiness, and yet more
scientific achievements.

Karel Segeth, on behalf of the Organizing Committee
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MY WONDERFUL NUMERICAL ANALYSIS TEACHERS —
MILAN PRAGER AND EMIL VITASEK

Michal Krizek
Institute of Mathematics, Academy of Sciences

Zitna 25, CZ — 11567 Prague 1, Czech Republic
krizek@math.cas.cz

1. Numerical analysis at the Faculty of Mathematics and Physics

In 1970 I began to study mathematics at the Faculty of Mathematics and Physics
at Charles University in Prague. In the third year, we had to choose one of the fol-
lowing specializations: algebra, mathematical analysis, applied mathematics, prob-
ability theory and statistics, topology, geometry, and numerical mathematics. My
mother advised me at that time to choose numerical mathematics, since this was
apparently a very new and modern discipline. I obeyed her suggestion, although
I had absolutely no idea what this branch of science dealt with.

At the first numerical mathematics lecture Dr. Milan Prager showed us how to
calculate the integral

1

1
[n:—/ xz"e"dz > 0. (1)
€Jo

First, using integration by parts, he derived the recurrence formula (cf. [14, p.505])
I,=1—-nl,,, n=12 ..., (2)

and then he said that for simplicity we will evaluate the individual integrals only
to three decimal places. Gradually he calculated on the blackboard the following
values:

I=1-—¢1=0632, I =1—0.632 = 0.368, L=1-2-0.368 = 0.264,
I;=1-3-0264=0.208, I,=1—4-0.208=0.168, Is=1—5-0.168 = 0.16,
Ig=1-6-016=0.04, I;=1—7-0.04=0.72.
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Slowly I began to get bored and in my mind I wondered: That, that is the modern
mathematical discipline? Then a big surprise came. Dr. Prager calculated

Iy=1-—8-0.72 = —4.76

and said: Notice, dear students, that we have got a negative value, while the in-
tegral (1) is certainly positive. This is a completely unacceptable numerical result.
I immediately thought that the absurd negative number must be just a result of
rounding errors, and I began to suspect what numerical analysis is about. At that
time, of course, I had no idea about the instability of scheme (2) that was examined
by Renata Babuskova in her 1964 paper [5] (cf. also [1, p. 102]).

The above numerical phenomenon happens due to the fact that at each step we
subtract two numbers of almost the same size. Then the difference contains only
a few nonzero significant digits in computer arithmetic that necessarily leads to loss
of accuracy. A very similar recurrence to (2) was examined by Muller [7].

I do also remember very well my first seminar on numerical mathematics. With
Dr. Jitka Segethova we calculated the values of polynomials using Horner’s scheme
on large and heavy mechanical calculators that were powered by an electrical engine.
Nevertheless, on the ground floor of our building on the Lesser Town Square there
already was a big mainframe electronic computer Minsk 22. Here I used ALGOL 60
(Algorithmic Language) to program simple numerical algorithms that Dr. Prager
taught us. Minsk 22 had 64 KB of memory, input via punched tape, and was
very slow. Moreover, approximately every 20 minutes computer calculations crashed
due to MACHINE ERROR. So basically it was not possible to perform any longer
calculation. We learned also the machine code to speed up computations.

In the fourth year of my studies, the numerical mathematics was taught by
Dr. Emil Vitések. In fact, the recurrence (2) was invented by him (see [1]). He lec-
tured by heart using no written notes and with great enthusiasm. His performance
was truly wonderful, logically assembled, and understandable. He concentrated on
solving partial differential equations by the finite difference method, which is a sort
of forerunner of my favorite finite element method. In particular, I was charmed by
the convergence proof of the finite difference method that he presented to us.

2. Department of Constructive Methods of Mathematical Analysis

During my military service in 1975-1976, I received a letter initiated by Dr. Prager,
whether I wanted to start postgraduate studies at the Mathematical Institute of the
Czechoslovak Academy of Sciences. Because I had not negotiated any further job
after completing my military service, I agreed, and certainly at present I do not re-
gret that decision. Therefore, in September 1976 I began postgraduate studies with
Dr. Prager at the Department of Constructive Methods of Mathematical Analysis,
where he was the Head during the period 1969-1994. His Deputy was Dr. Vitasek.
The Department was located at the rear of the Opletalova street no. 45. Dr. Prager
and Dr. Vitasek shared the front room, where also our Numerical Analysis Seminars

Vil



were held. I did not understand the first several lectures there and I have to admit
that it took me quite a long time to follow the issues that were investigated in our
Department. I started to read at that time the recent paper [12] on overimplicit mul-
tistep methods for ordinary differential equations written by M. Prager, J. Taufer,
and E. Vitasek.

For my Candidate of Sciences examination I studied the classical 1966 monograph
Numerical processes in differential equations [3] by Ivo Babuska, Milan Préger, and
Emil Vitasek. It already contained the description of the finite element method for
elliptic boundary value problems — my favorite topic. Contour lines of the standard
piecewise linear finite element basis functions are illustrated in [3, p.305]. This
picture serves, in fact, as the LOGO of our Numerical Analysis Seminar and also of
this Conference. Some other linear and bilinear finite element basis functions were
already sketched in their previous book [2] published in the Czech language.

Both the monographs [2] and [3] begin with the recurrence (2). However, there
are other nice and illustrative numerical examples — for instance, the investigation of
numerical instability of successive performance of the following arithmetic operations

S (((((1:2)-2):3)-3):4) - 4.

Various numerical results of this expression were obtained by Karel Segeth on differ-
ent computers involving thousands of divisions and multiplications [3, p.6]. I liked
such examples very much. Later I wrote the article [6] jointly with M. Prager and
E. Vitasek on the reliability of numerical computations. We systematically col-
lected many other pathological examples, where the numerical solution behaves in
an unpredictable manner. This resulted in another article [19] with Dr. Vitdsek and
I continue with this activity ever today. The main reason is that programmers should
not always believe their computer outputs, in particular, if they are not familiar with
numerical analysis topics like finite precision arithmetic, theory of rounding errors,
ill-conditioned problems, and so on.

In our Department there has always been a great friendly and creative atmo-
sphere. I can begin to describe what I have learned from my numerical analysis
teachers in over 40 years. Dr. Milan Préger significantly contributed to the issue of
numerical modelling in electrical engineering. Together we dealt with several real-
life technical problems for the Research Institute VUSE Béchovice. In particular,
Dr. Prager numerically calculated the magnetic field inside large oil-immersed trans-
formers. Then I used his results on the density of heat sources to calculate the
temperature distribution in the magnetic core. With Dr. Vitasek I discussed the
various theoretical aspects of numerical methods that I applied. He wrote a whole
series of monographs (see [2], [3], [4], [16], [17]) devoted to numerical methods. They
originated from our Department in Opletalova street without any personal computers
and internet.

Allow me to finish this section by a funny story. A Vietnamese aspirant once
visited our Department and was looking for Dr. Vitasek. Dr. Prager told him that
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Milan Prager

Dr. Vitasek is lecturing in Italy and will return after three weeks. However, the
Vietnamese aspirant did not understand well, he leaned in a large armchair and
said: Never mind, I'll wait.

3. Milan Prager — Curriculum vitae

RNDr. Milan Prager, CSc., was born on April 21, 1930 in Prague. After grammar
school in Smichov in 1940-1948 he became a student of mathematics at the Faculty
of Science of Charles University in Prague. His studies ended in 1952 when he passed
the leaving State Examination. During the period 1952-1954 he worked at the Fac-
ulty of Mechanical Engineering of the Czech Technical University in Prague as an
assistant in the Mathematical Department, and then became a postgraduate student
of Ing. Dr. Ivo Babuska at the Mathematical Institute of the Czechoslovak Academy
of Sciences in Prague (1954-1957). He received the scientific title Candidate of
Sciences (CSc. ~ PhD.) in the year 1959, and stayed to work at the Mathemati-
cal Institute as a researcher, senior researcher (1965), and chief researcher (1977).
From 1971 to 1992 he was the Head of the Department of Constructive Methods
of Mathematical Analysis. He retired in 1996, but still worked part-time at the
Mathematical Institute until 2005. During this period he published several valuable
papers, see e.g. [9], [10], [11]. He is still interested and participates in our regular
Friday seminar Current problems in numerical analysis.

The main subject of scientific interest of Dr. Prager is the theory of numerical
methods for solving differential equations. He has published about 40 original math-
ematical papers, conference articles, co-authored the 1964 monograph! Numerical

!The logo from the front page of this Proceedings was taken from [3, p.305]. It shows the
support of a linear finite element basis function with its contour lines.
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Dr. Milan Prager lecturing at our Numerical Analysis Seminar

solutions of differential equations [2] and the 1966 monograph Numerical processes
in differential equations [3], which was translated into Russian in 1969, see [4]. He
also wrote a chapter in the world wide known Rektorys’ Survey of applicable mathe-
matics [14], which was published in two English and six Czech edition series. Another
important accomplishment is his textbook Numerical mathematics I [8].

Dr. Prager participated in numerous domestic and international scientific meet-
ings and research visits. Let us name, for instance, a few series of Equadiff Con-
ferences. He was also a lecturer at the postgraduate course at the University of
Zagreb, the Istituto per le Applicazioni del Calcolo in Rome, at Chalmers University
of Technology in Gothenburg, at the Royal Institute of Technology in Stockholm and
in many other places in former Czechoslovakia.

In addition, Dr. Prager was always intensely concentrated on educational activi-
ties and organization of scientific meetings. During the period 1967-1990 he taught
fundamentals of numerical methods at the Faculty of Mathematics and Physics of
Charles University in Prague. He is the author of lecture notes on this topic and
translated with Dr. Emil Vitasek the comprehensive Ralston’s guide A first course
of numerical analysis [13]. Dr. Prédger was the advisor of my Candidate of Sciences
thesis An equilibrium finite element method in three-dimensional elasticity defended
in 1980. Its co-advisor was his colleague Ivan Hlavacek. Dr. Prager led theses of
other four scientific aspirants: Michal Ko¢vara, Stanislav Mika, Karel Visnak, Jan
Vlcek, and successfully trained several master students.

Milan Préager was a member of the final state examination committee at Charles



Emil Vitasek

University in Prague, a member of the committee for candidate and doctoral disser-
tations, a member of the National Commission on issues of information technology,
and many others. He was also a co-organizer of more than ten years of popular
summer school “Programs and Numerical Algorithms” traditionally held at various
locations of Jizera Mountains.

It would take a long time to enumerate what Milan Prager has done for math-
ematics and for the Institute of Mathematics. Let us mention also his interests
that go far beyond mathematics. For example, he has a deep knowledge about his-
tory, cartography and music, he likes to solve various puzzles and cross-words, he is
a very good chess player and played for many years in the chess section of Prague
universities.

4. Emil Vitasek — Curriculum vitae

RNDr. Emil Vitések, CSc., was born on May 29, 1931 in Ceské Budéjovice. After
high school in Ptrerov, where he graduated in 1950, he began to study mathematics
at the Faculty of Science of Charles University, which in 1953 changed to the Faculty
of Mathematics and Physics. After his studies he joined the Mathematical Institute
of the Czechoslovak Academy of Sciences in 1954 as a research assistant in the
department of Ing. Dr. Ivo Babuska. Under Dr. Babuska’s leadership, he attained
the Candidate of Sciences degree CSc. in 1960. Dr. Vitasek became a researcher and
later a senior researcher. He is still actively working at the Institute of Mathematics

(see e.g. [18]).
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Dr. Emil Vitasek lecturing at our Numerical Analysis Seminar

His mathematical research is associated with the numerical solution of differential
equations, in particular, numerical methods for time-dependent equations, i.e. ordi-
nary and parabolic equations. There he employed his deep knowledge of mathemat-
ical and functional analysis. His first papers are associated with the calculations of
the Dam Orlik on the Vltava river. Then he dedicated himself to the study of nu-
merical stability. He was one of those who developed the theory of transfer boundary
conditions for boundary value problems for ordinary differential equations. At the
same time he dealt with problems associated with engineering practice. He published
about 60 original scientific papers and held lecture courses in Croatia, Sweden, and
Italy. He was invited to give plenary lectures at several national and international
conferences.

Dr. Vitasek is a member of the Editorial Board of Applications of Mathematics
since 1971. He is the author of a chapter in the Survey of applied mathematics. He
contributed three chapters to its last edition [14] and was the Associate Editor of its
two volumes. He is also a co-author of the book Numerical solutions of differential
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equations (1964), which has been revised and expanded to the English version Nu-
merical processes in differential equations (1966) and was published in 1969 and in
Russian translation (see [2], [3], [4]).

We should also mention the long-term pedagogical activity of Dr. Vitasek. He
lectured on Numerical mathematics at the Faculty of Mathematics and Physics for
more than 20 years, and then at the University of West Bohemia in Pilsen. He was
the advisor of several Master students and four PhD students: L'ubor Malina, Has-
san Nasr, Jan Saféf, Jif{ Taufer. His fifth student Marian Brezina defended PhD in
USA. In connection with these activities two of his monographs in the field of numer-
ical mathematics appeared: Numerical methods [16] and Foundations of the theory
of numerical methods for solving differential equations [17]. Another important ac-
complishment are his three textbooks. The first one Numerical mathematics I —
Numerical solution of differential equations [15] was published by Charles University.
The other two were published by the University of West Bohemia: Selected chapters
from the theory of numerical methods for the solution of differential equations and
Introduction to the theory of generalized functions that discusses the foundations of
the theory of distributions. He also translated with Dr. Prager the famous mono-
graph by A. Ralston: A first course in numerical analysis [13]. Dr. Vitdsek was
a member of the board of examiners for the Final State Exams and the board for
the Rigorous Exams.

Emil Vitasek is a researcher with wide interests connected mainly with technical
problems. He has a deep knowledge of aviation, but also of modern history and
literature. He won the Czechoslovak national championship in correspondence chess.
Anyone who comes to him with any problem, whether mathematical or generally
human, finds that he is always a patient and attentive listener. Finally, we would
like to mention his continuous aversion against the communist regime.

5. Felicitations

We all wish to Dr. Milan Prager and Dr. Emil Vitasek to their jubilees a good
health and great satisfaction for a number of happy years.
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Abstract: We will study discontinuous dynamical systems of Filippov-type.
Mathematically, Filippov-type systems are defined as a set of first-order dif-
ferential equations with discontinuous right-hand side. These systems arise in
various applications, e.g. in control theory (so called relay feedback systems),
in chemical engineering (an ideal gas—liquid system), or in biology (predator-
prey models). We will show the way how to extend these models by a set of al-
gebraic equations and then study the resulting system of differential-algebraic
equations. All MATLAB simulations are performed in modified version of the
program developed by Petri T. Piiroinen and Yuri A. Kuznetsov published in
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1. Introduction

There are a variety of engineering problems involving dynamical systems. In
recent years, the need to describe systems with a discontinuity in the state vari-
ables has emerged. The theory of the non-smooth systems has been introduced and
thoroughly studied in [9]. From recent years, let us mention the book [5].

In addition to dynamical systems described by ordinary differential equations
there are also models that require the use of differential equations along with alge-
braic ones. These are so-called differential algebraic equations (DAEs).

From the dynamical point of view, the essential differences between differential-
algebraic equations (DAEs) and explicit ordinary differential equations (ODEs) arise
in so-called singular problems, which lead to new dynamic phenomena such as those
displayed at impasse points or singularity-induced bifurcations.

The origins of DAEs theory can be traced back to the work of K. Weierstrass
and L. Kronecker on parameterized families of bilinear forms [20, 14]. In terms of



matrices, pencils were applied to the analysis of linear systems of ordinary differ-
ential equations with a possibly singular leading coefficient matrix by F.R. Gant-
macher [10, 11]. Another milestone is the work of P. Dirac on generalized Hamil-
tonian systems [6, 7, 8]. The key ideas supporting what nowadays is known as the
differentiation index of a semi-explicit DAEs can be found in these references. The
work of Dirac was mainly motivated by applications in mechanics. A large amount of
research on differential-algebraic equations has also been motivated by applications
in circuit theory. The differential-algebraic form of circuit equations is naturally due
to the combination of differential equations coming from reactive elements with alge-
braic (non-differential) relations modeling Kirchhoff laws and device characteristics.

To “measure” how difficult is to solve a DAEs system, the concept of indices has
been introduced. There are different indices (Kronecker index, strangeness index,
differentiation index, perturbation index, etc.), and the choice of the index depends
on the DAEs and on the application, for which it is used (see [13, 19]).

If the model with DAEs features a discontinuity, then we have to modify the
non-smooth dynamical systems theory to include DAEs. We will extend the theory
of the non-smooth systems, namely the theory of Filippov systems, to the systems
with DAEs. Finally, we will apply this theory to some application from chemical
engineering.

2. Filippov systems

Let ¢ be a continuous and differentiable scalar function, ¢ : D C R"” — R, n > 2.
The function ¢ divides the region D into three parts:

S1={xeDCR": p(x) > 0},

So={x €D CR": p(x) <0},
Y={xeDCR": p(x) =0}

Let us assume that the function ¢ has a non-vanishing gradient V¢ on the bound-
ary >. We define the Filippov system F on D =57 U Sy U X as

f(l)(X) , XES,
F:i=1{ fOKx), xex, (1)
£ (X) , XE Sy,

where x(t) € R?, £ : R* — R, i = 0, 1,2, are sufficiently smooth functions in all
arguments, and ¢t € R. We suppose that the state space D = S; U Sy U X, D C R”,
the vector fields f) on S; and f® on S, are given.

We have to define the vector field f(®) that determines the behavior of the sys-
tem (1) on the boundary 3. There are several possible scenarios that occur if the
trajectory with an initial condition xq ¢ > reaches the boundary . Let for example
xo € S1. The trajectory can cross the boundary from S; to S, turn back to Sy,



or it can even slide along the boundary . The direction in which the trajectory
continues after a contact with ¥ is affected by both vector fields £ and f®).
Let us define a scalar function o(x), x € X, as the product of dot products in R”

(%) = (Vo (x), £ (x)) - (Vo (x), f (x)). (2)

The sign of the function o(x) determines the behavior of the trajectory after a contact
with the boundary >. Let us use this sign as a criterion for the identification of two
types of sets on the boundary >, a crossing set ¥, and a sliding set >,

Y.CY={xeX:o(x) >0}

Y, CEx={xeX:o(x) <0}
The vector field £(©) on the boundary ¥ is defined as follows:

e on X,

1
£0O0) — 5 (f(l) + f(2)) 7 (3)

e on ¥, the vector field f© is defined as a convex combination

(Vip, D)

0 —_ (1 _ 1) (2) _
£O = (1= \) D £ A fO?), A_<V%ﬂn_f®y

0<A<I. (4)

V() Vi(x)
£(1) (x)

£(2)(x)

Sy 51 £2)(x)

Ye={xeX:0(x) >0} Ys={xeX:0(x) <0}

Let us note that Y. contains those points x € ¥ in which both vectors f(!)(x)
and f®(x) head to the same region. The set ¥, = {x € ¥ : o(x) < 0} contains
those points x € ¥ in which all other cases of configuration occur.

The equation (4) is called the Filippov convex combination. Let us note that it
is not the only possibility how to define the vector field on the boundary . Another
possibility is for example to apply the so-called Utkin’s equivalent control method,
see e.g. [5].

Remark 2.1 Formula (4) follows from the fact that the trajectory slides along the
sliding set, i.e., the vector field £(°)(x) must be tangent to ¥,

(Vo(x),f0(x)) =0, VxeX,. (5)



On the sliding boundary > special points, so called sliding points, can be de-
tected. Let us classify some of them.

e Singular sliding point is a point x € >, such that
(Vo(x),fP(x)) =0 and also (Ve(x), fP(x)) =0.
At these points, both vectors f(!)(x) and f?)(x) are tangent to X,.
e The point x € ¥, is a generic pseudo-equilibrium if
fOx)=0, fO(x)#0, fPx)#0.
At these points, the vectors fM)(x) and f?(x) are anti-collinear.
e In a boundary equilibrium x € ¥, one of the vectors f!)(x) vanishes,

fUx)=0 or fP(x)=0.

e The point x € ¥, is a tangent point if both f1)(x) # 0, f@(x) # 0 and
(Vo(x), fU(x)) =0 or (Ve(x), £2(x)) = 0.

In this case, both vectors f(!)(x), f(?)(x) are nonzero, but one of them is tangent
to 2. The tangent point terminates X4 in X, i.e., the sliding set ¥; can be
delimited solely by computing all tangent points.

3. Filippov systems with DAEs

Differential algebraic equations have become a widely accepted tool for the mode-
ling and simulation of constrained dynamical systems in numerous applications, such
as mechanical multibody systems, electrical circuit simulation, chemical engineering,
control theory, fluid dynamics, and many other areas.

Let us have a general nonlinear system of differential-algebraic equations

F(t,z,2) =0, (6)

where F: IxU xV = R" tel, zt) e U, z(t) € V,z: I — R"is an unknown
function, z € CY(I,R"), I C R is a compact interval, U,V C R" are open regions.

Let the equation (6) be equipped with the initial condition

z(ty) = zo, to € I, 29 € R™. (7)



Definition 3.1 Let the system of differential-algebraic equations (6), (7) be uniquely
solvable. We define the so-called derivative array equations as

F(t,z,z)
LF(t,z,2
Fé(tazaia---az(prl)) = o (: ) g (8)
7 F(t,2,2)

ditf

where we can expand the term £;F(t,2,2) using the chain rule:

d
EF(t’ 2,72) =F(t,z,2) + F,(t,2,2)z + F;(t,2,2)z.

Other terms can be treated similarly.

In derivative array equations (8), let us formally replace z(t) by v(t) € R™ and
(z(t),..., 2V (t)) by w(t) € W, W C R In this setting, a given (¢, z) is said to be
consistent if there exists a (t,z,v,w) € [ x U x V x W for which F,(t,z,v,w) = 0.

Definition 3.2 The smallest number v € Ny for which F,(¢,z, v, w) = 0 holds for
every consistent (¢,z), is called the differentiation index of (6).

The idea behind the differentiation index framework is, roughly speaking, to
define the index of (6) as the number of differentiations needed to write z in terms
of (¢, z). Further details can be found in [13] or in [19].

In many technical applications a very common form of DAEs is the so called
semi-explicit DAEs that provides a significant simplification of the fully nonlinear
system. Therefore, in what follows we will explore this particular type of DAEs.

Let us consider DAEs (6). In z(t) = (x(t),y(t)) € R™"* we distinguish two types
of variables, in particular x(t) € R™ are called differential variables, and y(t) € R,
k =mn — m, are called algebraic variables.

We rewrite (6) with the new variables x(¢), y(¢) as the semi-explicit DAEs:

x = f(x,y), 9)
0 = g(xy), (10)

where f : UXxV - R" g:UxV =R x: I U, y: I —V,xeCY{(I,R"
I C R is a compact interval, U C R™ and V C R¥ are open regions, [18]

The proof of the following Theorem and more information can be found in
e.g. [19, 13].

0]

Theorem 3.1 Consider the semi-explicit differential algebraic equation (9)—(10).
Then (9)-(10) has the differentiation index v = 1 if and only if the Jacobi matrix
gy(x,y) is regular for all consistent points (x,y) € U x V.
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Remark 3.1 1In (9),(10) the differential part of DAEs is denoted by f, the algebraic
part by g.

Let us suppose that our system of DAEs (9),(10) has differentiation index v = 1.
It implies that the Jacobi matrix gy, (x,y) is regular for all consistent points (x,y) €
U x V. Thus according to the Implicit Function Theorem, there exists a function
h: R™ — R¥ such that y = h(x), and

g(x, h(x)) =0, VxeUCR™.

We substitute y = h(x), x € R™, into (9) and obtain
% = £(x, h(x)), (11)

where x € U C R™.
The equation (11) is a system of ODEs on the (n — k)-dimensional manifold

M = {(x,y) € R"": g(x,y) =0}, m+k=n. (12)

Let again a continuous and differentiable scalar function ¢ : D C R™* — R
divide the region D C R™** into three parts:
S ={(x,y) € D CR™*: p(x, y) >0},
Sy ={(x,y) € D CR™*: p(x, y) <0},
Y ={(x,y) €D CR": px,y)=0}.
We define a Filippov system F on D = 57 U .S, U as

. F(l)(X, y)> (Xa Y) € Sl f(l)
F: {X} = FOx,y), (x,y)ex F¥= {gu’)] . i=0,1,2,
F(Z)(Xa Y)a (Xa Y) € 5
where x(t) € R™, y(t) € RF, t € R, f® : R™ x RF — R™, gV : R™ x RF — R, i =

0,1, 2, are sufficiently smooth functions in all arguments.
Similarly as in generic Filippov systems, we define the function

o(x,y) = (Ve(x, y), FU(x, y)) - (Vo(x, ¥), FP (x, y)).
that divides the boundary > into a crossing set >, and a sliding set X,
ECQZ:{(X7y>€E:O-(X7y)>O}a

Y, CY={(xy) €eX:0(x,y) <0}

6



On ¥, we set FO) =

combination

(FD + F®), on X, we define the vector field F(*) as a convex

N |

Ve, FW)

© _ (1 - PO @ y_
FO = (1-)\)FY +\F ’A_(V%FW—F®Y

0<A<1. (13)

According to the convex combination (13), we can couple the differential parts of
DAEs given by f), £2)and separate them from the coupling of the algebraic parts
given by g, g@ ie.,

£fO = (1 =M\ fD 4 A, (14)
g? = (1-1)g"W+xg?. (15)

The coupling of the differential equations of DAEs (14) is the same as in Section 2,
but the coupling of the algebraic equations (15) is much more difficult. We don’t
a priori know which equations couple together, because here we don’t have derivatives
on the left side of the equations.

There are different ways to deal with this problem. Some authors prefer to pair
only differential equations of DAEs and then add to them all algebraic equations.

We prefer to pair algebraic equations, too. This, however, requires more infor-
mation about the system F. Usually, we model some real applications and therefore
each equation (differential or algebraic) has a physical meaning. In that case, we
couple together the algebraic equations with the same physical meaning. Otherwise
we could obtain unreasonable results. For more details and examples of coupling,
see [13].

Let
M; ={(x,y) € R™Tk . g(i)(x, y)=0}, i=1,2, (16)

be (n—k)-manifolds, where n = m+k. In Figure 1, the evolution of the trajectory on
the manifolds M; and M is shown. The trajectory starts with the initial condition
(x(to), ¥(to)) = (x0, Yo) € M; and crosses the boundary ¥ to the manifold M at the
crossing point (x(t.), y(t.)) = (Xe, ¥e). The subscript e denotes the so-called event,
here the event is the contact of the trajectory with the boundary. In the following
example, we illustrate the behavior of trajectories on manifolds M; and M.

Example 3.1 Let us have the Filippov system

:tl F(l)(xla Ta, y) ) @(Ila T2, y) < 07
Foo| iz | = (17)
0 F(Q)(‘Tla T2, y) ) @(xlv T2, y) > 07

7



Figure 1: Evolution of the trajectory on the manifolds M; and M.

where

Fi(z1, 22, y) =

F2(331, T2, ?J) =

3331
I

X
3371
X1

M4

(x(t), y(t))

(x(te), y(te))

Y NM; N M,

— 3z + y+15 } £(1)
- Ty — 2 )

—y } g
—+ 3.732 + 2y —1 } f(Q)
+ T2 — 3y s

+ y } g®

Let the function ¢ : R**! — R be defined as

90(551, T2, y) = X1.

(18)

(19)

(20)

Because V(x1, 9, y) = (1, 0, 0) and x; = 0 for (xy, x9, y) € 3, the scalar function

o(x1, xe9, y) has the form

o(z1, T2, y) = (—3z2+y + 15)(3x2 + 2y — 1).

The function ¢ divides the boundary ¥ into two sets:

Zc g Z - {(Ila T, y) € Z : U(‘/E17 T2, y) > 0}7

ZS g Z — {(xla T, y) € Z : U(Ila Zo, y) S 0}

On X;, we set

FO —

(1-XN)FD 4 AF@,

8



Figure 2: The phase portrait of the Filippov system in Example.

where
. —3$2 + Yy + 15

- —6xy—y+16°
In Figure 2, the initial condition for each trajectory is depicted with the small blue

circle. The yellow and green planes are the (n — k)—dimensional manifolds M; and
Mg, n = 3, k= ]_,

My = {(z,y) €R*: y =z}, My={(z,9) eR’: y=—m}. (21)

A

The boundary ¥ is depicted as the intersection of manifolds M; and M. On the
boundary 3, there are two tangent points T; and Ty that delimit the set of sliding.

4. Soft drink process

The process of manufacturing soft-drink depicted in Figure3 is based on the
reaction between C'O, and water:

COQ + HQO — HQCOg. (22)



Dissolved C'O9
— Water — (COs

H>CO;4

COy COsq
Water Water

(a) (b)

Figure 3: The soft-drink process.

To simplify the model, we will suppose that

- The system contains only components CO,, HyO and HyCO3 (denoted by
indices 1, 2 and 3, respectively).

- Intermediate ionisation reactions and dissociation of HoC'O3 are ignored.

- In the liquid there are no gas bubbles.

- The valve dynamics is ignored.

- The flow rate through the valve is proportional to the difference of the tank
pressure P and the outlet pressure Ppy.

- The temperature T', the molar inflow rates [} and F3, the outlet pressure, valve
coefficients kg and kp and the valve opening X are all constant.

Let
M, = M (t), My = Ms(t), M; = M;(t),

be the total molar hold-ups of COy, H,O and H,COs, respectively. For a fixed ¢, let
us define a scalar function ¢ = o(M;, My, Mj),

M. M
o(My, My, Ms) = — + =V, (23)
PL Pa

where py,, p, are molar densities of water and acid, respectively. The volume of the
whole tank is equal to V' and the part of the volume that is below the opening of
the dip tube is denoted as Vy, 0 < V; < V.

Similarly as in [4] and [2], in the tank two systems take place: the liquid model
(the liquid leaves the tank) if (M, My, M3) > 0 or the gas model (the gas leaves
the tank) for o(Mj, My, M3) < 0. The acid phase consists of HyCO3, H,O and
dissolved C'O5 while the gas phase contains only C'O,. As a consequence, the liquid
model is described by 3 ODEs and 6 algebraic equations, the gas model needs also
3 ODEs but only 4 algebraic equations. Let us give the list of these equations.

10



Differential equations:

Liquid model : @(M;, My, M3) > 0 Gas model : (M, My, M3) <0

dM; B dM; _
_dt —Fl—Ll—TV, dr —Fl G TV7
dIMQ dle

=5 —Ly—17rV =F —rVv
az 2 2 — TV, dt 2 — TV,
dM; dM;

=-L Vv =rV
at sV a

The molar flow rates of the components through the valve are denoted L, Lo and Ls
in the liquid model and G in the gas model. The rate r of the reaction (22) is given
by

M, M.
= Ke ! 2, where k. is the rate constant. (24)
V2
Algebraic equations:
Liquid model : (M, Ms, M3) > 0 Gas model : (M7, My, M3) <0
0= M, — (M, + M,), 0= M, — (M, + M,),
0= P — O'Mg ’ 0= P — O'Mé 7
Mg—f—Mg—f-Mg MZ+M2+M3
MRT M, M. MRT My, M.
on—< 1R +—2+—3), 0:V—( BT My | 3),
P PL  Pa P L Pa
M, L,
O = —_— 5 0 - G - k X P - POU 9
M+ My+M; Ly + Ly + Ls X t)
M3 Ls

0

T Myt My+ Ms L+ Lot Ls’

O0=Ly+ Lo+ L3 — kp X(P — Poy),
P and T means pressure and temperature in the tank, the hold-ups of C'O5 in liquid
and gas are denoted M, and M,, the constant X is a valve opening, R is a gas
constant and o is Henry’s constant for COs.

The straightforward computation shows that both the system of DAEs for the

gas mode and the system of DAEs for the liquid model have differentiation index
v=1,[13].

Let us denote x = (x1, 9, x3) the differential variables, y = (y1, 2, Y3, Ya, Us, Us)
the algebraic ones.
For differential variables in both models we set

ry: =M, x9:=My, and z3:= Msj.

As the algebraic variables are concerned, we have to distinguish the models. In the
gas model the algebraic variables are y = (y1, Y4, s, Ys) and we substitute

Y1 ‘= CTY7 Yy 1= Mg, Ys 1= Mg, and Ye ‘= P.

11



In the liquid model y = (y1, Y2, U3, Y4, Us, Ys), Where we substitute

Yy = L17

Yo = L27

Yz = L37

Ya := M,

go

Ys = M@a

and yg:=P.

We extend the functions £V, £?) g g to all variables from liquid and gas model
(x,y) = (21, %2, 3, Y1, Y2, Y3, Y4, Y5, Ys ). LThen we can define the Filippov system F

FO(x,y),
FO(x,y),
FO(x,y),

(Xa Y) € Sla

(Xa Y) € Z7 F(Z) =

[ £@)
g

<X7 Y) € S2

where we set x = (21,22, 23) and y = (Y1, Y2, Y3, Y1, Y5, ¥s), and

fV(x,y) =

12

MMy T r MMy T
M1M2 2 M1M2
Fy — i C O y) = | - Ly~ K,
2 — K v (Y) 2 2 — R v
M1M2 M1M2
c _L cT -
| BTy ] | “hs T ey
_yl_kGX(y6_P0ut) 1
T1 — (Y5 + Ya)
g (z,y) = yo— U5 :
6 y5+l’2+$3
V—(“RT+E+§%
L Yo PL Pa/) |
r X2 _ Y2 T
Ys +T2+23 Y1 +Y2+ys3
xs3 _ Y3
Ys T T2+ T3 Y1+ Y2+ Y3
Y1+ Y2 +ys — kX (ys — Pout)
g (7y) xl—(y5+y4)
y_L
0 y5—|—x2+x3
V—(leT—{—%%—E)
L Ys PL Pa J

],i:QLZ (25)

. (26)

(27)

(28)



We apply the routine described in Section 3 to our system and obtain the convex

combination of the differential part:

. L1L2
Ty = Fl—yl—fiCTx,x
: 172
Ty = —Ay2+ FQI,_::CT’
: 172
T3 = —Ays+ ey
where -
- Fypa + fﬁcw(m - Pa).
Y2Pa + Y3PL
The convex combination of the algebraic part is
0 — L2 _ Yo
Ys + T2+ 13 Y1 +ya s
0 — X3 _ Y3 ’
Ys +T2+T3 Y1+ Y2+ Y3
0 = (1=X) (= kaX(ys — Pour)) + A (Y1 + 2 +ys — kX (ys — Pout))
0 = @1 —(ys + ),
0 = yg— %%
Ys + T2 + X3
0 = V- (mlRT+ﬁ+ﬁ)
Ye PL  Pa
Parameter Value Meaning
Fy (mol/s) 0.5 molar inflow of CO,
F; (mol/s) 7.5 molar inflow of water
pr (mol/l) 50 molar density of water
Pa (mol/?) 16 molar density of acid
Vv (¢) 10 volume of the tank
Vi (0) 2.25 volume below the outlet tube
T(K) 293 absolute temperature
P,y (atm) 1 pressures in the outlet
X 1.0 valve opening
kr, (mol/atm/s) 2.5 valve coef. for the liquid flow
ke (mol/atm/s) 3.0 valve coef. for the gas flow
ke (€/mol/s) 0.433/4000 rate constant
o (atm) 1640 Henry’s constant for COx

R (¢ atm/mol/K)

0.0820574587

gas constant

Table 1: The parameters used for the simulation of the system.
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150 200 250 300
t M

Figure 4: Soft-drink process: a)-c) The integral curves of the state variables
My, My and Mj;. d) The trajectory of the system (25) starting at the point
(0.72, 95, 0).

The behavior of the solution of the Filippov system (25) depends on thirteen
parameters Fi, Fo, pr, pa, V, Va, T, Pous, X, kL, ka, ke, 0, for a particular values used in
simulations, see Table 1.

In Figure 4 a)—c), the integral curves of the state variables M;, My and M3 are
depicted. In Figure 4 d), the trajectory in coordinates (M, My, Mj) starting at
the point (0.72, 95, 0) is drown, and the boundary ¥ (red plane) is shown. On the
boundary ¥, the generic pseudo-equilibrium P was detected.

5. Conclusions

In the paper, we gave a brief overview of the theory of Filippov dynamical sys-
tems for ordinary differential equations. Many specific applications for example in
chemical engineering are based on models of differential algebraic equations, i.e., the
problem formulation contains both differential equations and algebraic equations.
We show that also in this case the system can be seen as a dynamical system of
Filippov type.

As a practical example, a model of the gas-liquid system with a reaction is pre-

14



sented. This system can’t be formulated as a Filippov system with ODEs only. An
extension of the Filippov systems theory is necessary. By using a modified Filippov
convex method, the integral curves of both differential and algebraic variables can
be obtained.

Let us remark that the study of the gas-liquid system is just the first step towards
modeling of the real HDPE (High Density Polyethylene) reactor.

In the future, we intend to perform additional studies of Filippov systems with
DAEs. Till now, there are assumptions that are too restrictive. Deeper understand-
ing of the behavior of non-smooth dynamical systems defined by DAEs is required.

In simplified model, the generic pseudo-equilibrium P on the boundary > acted
as an attractor for the whole state space, see [2, 3]. We want to find out whether
this also applies in a more general model.

All MATLAB simulations were performed in a modified version of the program
developed by Petri T. Piiroinen and Yuri A. Kuznetsov [17].
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1. Introduction

Simulation of free surface pipe or open channel flow plays an important role
in many engineering applications such as storm sewers, waste or supply pipes in
hydroelectric installations, etc.

The free surface flows are described by a newtonian, viscous and incompressible
fluid through the three-dimensional incompressible Navier-Stokes equations. The use
of the full three-dimensional equations leads to time-consuming simulations. There-
fore, for specific applications such as shallow water, one can proceed to a model
reduction preserving some of the main physical features of the flow leading to the
so-called shallow water equations. This is one of the most challenging issues that we
address with the obvious consequence to decrease the computational time. During
these last years, many efforts were devoted to the modelling and the simulation of
free surface water flows (see for instance [14, 13, 6, 5, 10, 9, 8, 11, 1, 7, 2, 3] and the
reference therein).

The classical shallow water equations are wusually derived from the
three-dimensional Navier-Stokes equations (or the two-dimensional Navier-Stokes
equations) by vertical averaging. It leads to a two-dimensional or a one-dimensional
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shallow water model. For instance, Gerbeau and Perthame [10] study the full
derivation of the one-dimensional shallow water equations from the two-dimensional
Navier-Stokes equations while [11] considers the two-dimensional equations obtained
from the three-dimensional one. In both cases, the so-called “motion by slices” is
obtained. This property ensures that the horizontal velocity does not depend upon
the vertical coordinate. As a consequence, one can perform the model reduction
by vertical averaging. Following the applications under consideration, one can take
into account as a source term the Coriolis effects, the topography, the friction, the
capillary effects, the geometry, etc.

Unlike the previous works, we propose to study the full derivation of a one-
dimensional free surface flows for pipe and open channel from the
three-dimensional Navier-Stokes equations. In particular, we propose to revisit
the work by Bourdarias et al. [3] done in the context of the three-dimensional Euler
equations. The use of the Navier-Stokes equations with suitable boundary conditions
allows first to establish the crucial “motion by slices” property, and second to include
the friction (linear or non-linear) into the derivation. Let us emphasize that it was
not possible to deal with in the framework of Bourdarias et al. [3]. More precisely,
this property was assumed from the beginning and the friction was added to the
obtained averaged equations.

The paper is organized as follows. In Section 2, we recall the full incompressible
Navier-Stokes equations defining the boundary conditions including a general friction
law, and we fix the notations. The “motion by slices” property under large Reynolds
number flows is obtained through the hydrostatic equations (approximation) in Sec-
tion 3. Next, these equations are averaged through the pipe or open channel section
assumed to be orthogonal to the main flow direction. Finally, we obtain the one-
dimensional free surface model. Since the constructed model is similar to the one
by Bourdarias et al. [3], the issues of the numerical approximation is not addressed
here. Please, refer to [1] or [4].

2. The incompressible Navier-Stokes equation and its closure

In this section, we fix the notations of the geometrical quantities involved to
describe the thin domain representing a pipe or an open channel. In particular,
without loss of generality (see Remark 2.1), we consider the case of pipe with circular
section.

2.1. Geometrical settings

Let us consider an incompressible fluid confined in a three-dimensional rigid do-
main P representing a pipe or a channel, of length L:

P = {(z,y,2) €eR* z €[0,L], (y,2) € Qlx)}
where the section Q,(z), z € [0, L], is

(2) ={(y.2) €R*% y € [a(z,2), B(z, 2)], z € [0,2R(x)]}
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as displayed on figure 1(a). Both flows and pipe are assumed to be oriented in the
i-direction.
With these settings, we define the free surface section by

At,x) = () N{(y,2) eR}0< 2 < Ht,w,y)}, t>0, z€0,L]

assumed to be orthogonal to the main flow direction. H(¢,z,y) is the local water
elevation from the surface z = 0 in the Q,(z)-plane. R(x) stands for the radius of
the pipe section S(x) = TR*(z), a(z,2) (resp. B(z,z2)) is the left (resp. the right)
boundary point at elevation 0 < z < 2R(z) as displayed on figure 1(b).

On the wet boundary (part of the boundary in contact with water), we define
the coordinate of a point m € 9Q(¢t, z) := Ty(t,x), t > 0, z € [0, L], by (y, ¢(z,v))
where

Fb(t’x) = {(ya 2) S R2; Z = go(x,y) < H(t,l‘,y)} :

m
Then, we note n = m] the outward unit vector at the point m € 9Q(t, z), « € [0, L]
m

as represented on figure 1(b). The point m also stands for the vector wm where
w(x,0,b(x)) defines the main slope elevation of the pipe with ¢'(z) = sin 6(z).

On the free surface, we define the coordinate of a point m € 9€Q(t, z) := I'f,(t, x),
t>0,z€l0,L], by (y, H(t,x,y)) where

Lys(t,x) = {(y,2) € R z=H(t,z,y)} .

Finally, we note
h(t, z,y) = H(t,z,y) — (. y)

the local elevation of the water.

(a) Configuration (b) Q-plane

Figure 1: Geometric characteristics of the pipe

Remark 2.1 One can easily adapt this work to any realistic pipe or open chan-
nel by defining appropriately the previous quantities. For instance, in the case of
“horseshoe” section (see figure 2(a)), the section €,(z), x € [0, L], is given by

Qp(l') = QH(.’L') N QR(.’L')
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where
Qp(z) = {(y,2) € R%y € [a(x, 2), B(x, 2)], z € [0, H(z)]}
and

Qr(z) ={(y,2) €R% y € [a(, 2), B(x, 2)], =z € [H(2), R(2)]} .

H is the height of the trapezoidal basis and R is the radius of the upper part of the
“horseshoe”. A second example is represented on figure 2(b).

H(x)
Bz, 2)

(a) “horseshoe” section (b) open channel

Figure 2: Example of a pipe and a open channel geometry

2.2. The water flow model

In the domain P, we assume that the flow is incompressible and the pipe is
always partially filled (otherwise we have to deal with pressurized flows that we omit
here, please see [3] for details). Thus, we consider the incompressible Navier-Stokes
equations with a prescribed general wall law conditions including friction on the wet
boundary and a no stress one on the free surface. We complete the system with
inflows and outflows conditions at the upstream and downstream ends.

The governing equations for the motion of an incompressible fluid in [0, 7] x P,
T > 0 are given by

div(pou) = 0, (1)
O(pou) + div(pou ® u) — dive — poF' = 0,
where u = ) is the velocity fields with u the i-component and v = ( 5} )
the Q- component po is the density of the fluid at atmospheric pressure and F =
—sin 9
—g is the external gravity force of constant g. The total stress tensor
cosé’
can be ertten
N 210, u R(u)" (2)
R(u) —ply 4+ 2uD,, (V)
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where 5 is the identity matrix, p is the dynamical viscosity and R(u) is defined by
R(u) = pu(Vyu+0,v). Vy u= ( gyz > is the gradient of u with respect to (y, z).
Noting X* the transpose of X, we de;ine the strain tensor D, .(v) with respect to
the variable (y, 2):

2D, .(u) = V,.v+V, V.

2.3. The boundary conditions

The Navier-Stokes system (1)—(2) is completed with suitable boundary conditions
to introduce the border friction term on the wet boundary. On the free surface, we
prescribe a no-stress condition.

On the wet boundary
For pipe flow calculations, the Darcy-Weisbach equation, valid for laminar as well
as turbulent flows, is generally adopted. Roughly speaking, such formula relates
losses h occurred during flows and it reads:
2
oo LU
D 2g
where L, D, U are the pipe length, the pipe diameter and the velocity. The friction
factor C'y, rather being a simple constant, turns out to be a factor that depends upon
several parameters such as the Reynolds number R, the relative roughness 9, the
Froude number F,., the Mach number M,, geometrical parameters, etc., and cannot
be set as a constant. Following the type of the material, rough or smooth pipe,
leaves C'y depend upon less quantities and lead to several expressions. An empirical
transition function for the region between smooth pipes and the complete turbulence
zone has been proposed by Colebrook:

1 0.861 1) n 2.51
—— = —0.861n
\/CTc 3.7D Re\/CTc

where 0 is the roughness of the material.

Because of the extreme complexity of the rough surfaces, most of the advances in
understanding have been developed around experiments leading to charts such as the
Moody-Stanton diagram, expressing C as a function of the Reynolds number R.,
the relative roughness and some geometrical parameters depending on the material.
This yields to several formula depending on the modelling, for instance Chézy and
Manning which are well-known by the engineers community, see for instance [16, 15].

For laminar flow, the effects of the material roughness can be ignored due to
a presence of a thin laminar film at the pipe wall. Then, it can be shown that

64
the Darcy-Weisbach equation reduces to Cy = T that we note Cy = Cj in the

sequel. And, the losses are directly proportional to the velocity. When increasing the
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Reynolds number R., the thin laminar film becomes unstable and causes turbulence
increasing the head loss. Thus, the dependence on the Reynolds number R, can be
neglected and the head loss is almost directly proportional to U?. The value of the
friction factor, that we note C'y = C in the sequel, can be read on diagrams.

In particular, this motivates the use of the following general friction law:

k(u)u = C¢(Ju))u = Cu+ Cilulu, C; > 0,C; >0 (3)

where C} stands for the friction factor. We do not intend in this work to define
precisely the friction law but instead, we want to directly include it in its general
form to explicitly show its dependency on physical parameters in the present model
reduction.

Thus, on the inner wall 0Q,(z), Vz € (0,L), we assume a wall-law condition
including a general friction law:

(a(u)nb) “ Ty, = pOk(u)u “Thy, T E (07 L)v (ya Z) € Fb(x)a 1=1,2

where T, is the i vector of the tangential basis and n; stands for the unit outward

normal vector:
1 _
@ +non \ D

with n = (—?yw) the outward normal vector in the €2)-plane. Writing the wall-law

condition in its vectorial form (i.e. the tangential constraints),

o(u)n, — (o(w)ny - mp) 0y, = pok(u)u, t >0, z € (0,L), (y,2) € Ih(t,z) ,

one can split up the i—component and the (j, k)—components. Thus, the wall-law
boundary conditions are

R(w) 0 (01— (0,9)?) + 240, (Dy-(v)n -1 — dyu (- m))

= (n ‘n+ (&p(ﬁ)Q)g/z pok(uw)u | (4)
2:“’(80090)2 (Dy,z(v)n - n) + C%(,DR(U) (n ‘n— (83&(’0)2)
=(n-n+ (3190)2)3/2 pok(V)v . (5)

supplemented with a no-penetration condition:
u-n,=0 t>0, z€(0,L), (y,2) € [',(¢,2)

1.e.
udpp=v-n, t>0, v (0,L), (y,2) € Tp(t,x) . (6)
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On the free surface boundary
For the sake of simplicity, on the free surface we assume a no-stress condition:

c(W)N/* =0, t >0, € (0,L), (y,2) € Tss(t, 2)

where

1 — _
NTs = ( 8$H> where ny, = ( 8yH>
\/(895H)2 + 1Ny Ny Ny 1

is the outward normal vector to the free surface.
Finally, as done before, splitting up the horizontal and the €),-component, the
free surface boundary conditions read

(p —2p0,u)0, H + R(u) -nps =0, (7)
R)OH + (p — 20Dy (v))ps = 0 0

Introducing the indicator function ® of the fluid region

I <z <
q)(t,x’y’z):{ 1 1f@($ay)\Z\H(t,x,y)7

0 otherwise

and because of the incompressibility condition, the divergence equation can be ex-
pressed as follows:

0y ® + 0, (Pu) + divy ,(Pv) =0 . 9)

3. The averaged model

The technique presented in this section is the one introduced by Gerbeau and
Perthame [10] in the context of the reduction of the two-dimensional incompressible
Navier-Stokes model to the one-dimensional shallow water equations. Here, instead,
we proceed to the reduction of the three-dimensional incompressible Navier-Stokes
equations to a one-dimensional shallow water equations.

3.1. Dimensionless Navier-Stokes equations

Thus, in the sequel we consider the non-dimensional form of the Navier-Stokes
system using the shallow water assumption by introducing a “small” parameter so
that

D W
L U
where U, V. = (V,W) are the characteristic speeds in the i—direction and the
(j, k)—direction.

€= —K<<1
N U
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We introduce a characteristic time 7" and a characteristic pressure P such that

L -
T = — and P = pyU?. The dimensionless quantities of time #, coordinate (Z, 7, Z)

and velocity field (@, ?,w), noted temporarily by a *, are defined by

-t o r Yy z o U v W
tzfa (xayaz): <27575>7 (U,U,’UJ): (ﬁaW?W)
with the modified friction factor Cy/U that we write in the sequel Cy.
Let us define the following non-dimensional numbers:

F,.  Froude number following the (2-plane . F.=U/\/gD,
Fr, Froude number following the i-direction : Fp =U/+/gL,
R. Reynolds number with respect to p : Re=poUL/p.

Using these new variables in Equations (1), dropping the *, ordering the terms
with respect to e, the dimensionless incompressible Navier-Stokes system becomes:

div(u) = 0

-1

(10)

R
O (u) + 0y (u?) + divy .(uv) + 0yp = +div, . (?un) (11)

vy7zp e _COS 9($) + RE,Q(u>

R.1(u) = R (9, (20,u) + div, . (9,v)) = O(R;)

(00 (Vyou+£%0,v) + divy. (2Dy.(v)))
—&2 (04(v) + O (uv) + div, (Vv V)) |
e |

= O(R;")+0() .
The first component of the wall-law boundary condition (4) becomes:

Re_lv A (n-n+ 62(3x<p)2)3/2 iU”)u
e 7 a (n-n—e2(0,9)?)

Rl 20, (Dy.(v)n-n—0,u (n-n))
e (n-n—22(0,9)?)

= —K(u)+0(e)+O(eR?")

where we make use of the notations

K(u)=+vn- n%u and V,.u-n:=0dyu
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which are respectively the friction term and the normal derivative of u in the €2,-
plane.
The second component of the wall-law boundary condition (5) becomes:

e (n-n + 2(0:9)*) " ot

R;'V,.

oVt o0 -1~ (0]

2R 10,0 (D, (Vin—n) (14
— ’ —e“0,v-n
Ozp(n - m — e2(0:0)?)
= O(*) +O(’R. 1)
On the free surface, the boundary conditions (7)-(8) are now
R'Vy.u-np = —¢*((p—2R,'0,u)0,H + R;'0,v - ny,) (15)
= 0(%),

(p—2R.'D,.(v))ny, = —(R'V,.u+e*R;'0,v) 0, H . (16)

Thanks to the relations (15) and (16), the pressure on the free surface satisfies the
following equality

p (s -ny,) — 2R;1Dw(v)nf5 ‘N = g2 (&UH)2 (p— 2Re_18$u) = 0(52) . (17)

3.2. First order approximation

As emphasized before in Section 2.3, when increasing the Reynolds number R.,
we observe instabilities at the pipe wall leading to turbulent flows. Assuming the
characteristic length of the thin unstable film is larger than the relative roughness of
the pipe, one can always assume some smallness of the friction law (see for instance
[16, 15]). In particular, it motivates, for large Reynolds number R., the following
asymptotic assumptions:

R'=euy, K=c¢cK, (18)

where g is some viscosity constant and K is the asymptotic friction law

Ko(u) =+v/n-n k(u)u . (19)

Under these conditions, the Archimedes principle is applicable and induces small
vertical accelerations. As a consequence, one can drop all terms of order O(g?) in
Equations (10)—(12). Then, taking the formal limit as ¢ goes to 0, we deduce the
hydrostatic equations

Op(u:) +divy ,(v.) = 0 (20)
Or(us) + 0, (u?) + divy , (uev.) + Oppe. = _ o 02@) div, . <@Vy,zu5> (21)
F7 €
0
vy,zpe = COSQ(JZ‘) (22)
_ 7
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Let us emphasize that even if this system results from a formal limit, we note its
solution (pe, u., v.) due to the explicit dependency on ¢ in the term div, , <@VWUE>
€

in Equation (21). At zero order, this term will be precisely the friction at the wet
boundary through the condition (13). In particular, the boundary conditions write

e on the wet boundary; conditions (13)-(14) are

%VWUE n=Ko(u:) +0(), t>0, 2€(0,L), (y,2) € Typ(t,z) . (23)
e on the free surface boundary; conditions (15)-(16) and (17) are

€

%VWUE nl*=0(), t>0,v€(0,L), (y,2) € Tjs(t,z) . (24)

1
Next, identifying terms at order — in Equations (20)—(22), thanks to Equa-
£
tions (23) and (24), we obtain the so-called “motion by slices”

us(t,x,y,2) = ug(t,x)+ O(e) (25)

for some function uy = ug(t, x), by solving formally the Neumann problem for ¢ > 0,
z € (0,L)

{ divy, (noVy.u) = O(e), (y,2) € Q(t,x)
MOanue = 0(5) ’ (y,Z) € aQ(t,ZL‘)

One one hand, the following approximation at first order holds

uz—:(ta L, Y, Z) ~ u_z-:(ta .I')

1
where U (t, ) = ———— / ue(t, z,y, 2) dy dz is the mean speed of the fluid over
1Q:(t, 2)| Jo.t0)

the wet section. Consequently, one can approximate at first order the non-linear term
as follows
2w . (26)

On the other hand, using the second component of Equations (22), we may write

cosf(x
azpz-:(taxayVZ) - - F2( ) + O(8> :

Then, fixing y and integrating this equation for £ € [z, H(t, z,y)], keeping in mind
the identity (17), we obtain

cos 6
2

T

pe(t,z,y,2) = (He(t,x,y) — 2) + O(e) .

26



Moreover, using the first component of Equations (22) leads to
H.(t,x,y) = H.(t,z,0) + O(e) . (27)
As a consequence, we recover the classical hydrostatic pressure

cos
F?

pe(t,z,y,2) ~ (H.(t,2,0) — 2) , (28)

Finally, in view of the the definition of the water elevation H. (27), the wet section
is approximated at first order as follows, ¢t > 0,z € [0, L]:

Q.(t, ) ={(y,2) € R* afr,2) <y < B(z,2) and 0 < 2 < H.(t,2,0)} (29)

: . 0
and the outward unit normal vector to the free surface ny, is now n/* = ( ) as

displayed on figure 3.

Figure 3: First order approximation of the wet area

In the sequel, due to its dependency at first order, we write H.(t, z,y) by H.(t, z).

3.3. The free surface model

By virtue of the relations (25)-(29), integrating Equations (20)-(22) over the
cross-section €,(t, z), the free surface model immediately follows.

First, let us recall that m = (y, p(z,y)) € 0§,(x) stands for the vector wm and

m . )
n= ﬁ for the outward unit normal vector to the boundary I', at the point m in
m

the Q,-plane as displayed on figure 1(b).
Second, let us introduce A(t, z) and Q(t, z) the conservative variables of wet area
and discharge defined by the following relations:

A(t,x):/g( )dydz (30)
e(t,x
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and
Q(t,z) = A(t, z)u:(t, x) (31)

where

1
us(t,r) = t,x,y, z)dyd

is the mean speed of the fluid over the section Q. (¢, z).

Equation of the conservation of the momentum and the kinematic bound-
ary condition

Let v be the vector field ( 5} ) Integrating the equation of conservation of the

mass (9) on the set:
Qz) = {(y.2); alz,2) <y < Blz,2), 0< 2 < oo},

we get the following equation:

/ 0y (¢) + 0z (pu.) + divy . (¢v.) dydz = 0,A+ 0,Q — (ue0,m —v.)-nds .
Q(x)

00 (t,z)
(32)
Now, integrating Equation (9) on (¢, x), we get:

H.(t,x) B(z,z)
/ at/ dydz + 0,Q + / (ve —u0,m) -nds =0
0 «

(z,2) 00 (t,x)
where
H.(t,x) B(z,z)
/ 8t/ dydz = O,A — o(x, He(t, x))0h
0 a(z,z)
with o(x, H.(t,z)) is the width at the free surface elevation as displayed on figure 3.
Then, one has:

Oh(A) +0,(Q) — / (Om + u.0,m — v,) - ng‘s ds
rls(ta) (33)
—/ (u0,m — v.) -nds = 0.
Fb(tvz)

Keeping in mind the no penetration condition (6) and comparing Equations (32)
and (33), we finally derive the kinematic boundary condition at the free surface:

/f (Om + u.0,m —v,.) -nl*ds =0 (34)
Lé(tx)

le.

OH: +u.(z=H.)0,H. —w.(2=H.)=0.
Finally, gathering Equations (33) and (34), we get the equation of the conservation
of the mass:

(A) +0,(Q) = 0. (35)
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Equation of the conservation of the momentum
In order to get the equation of the conservation of the momentum of the free surface
model, we integrate each term of Equation (21) over sections €. (¢, z) as follows:

/ Ou(uue) + 0u () + divy.. (uev,) + Dop. dydz = / L
Q(tz) S~ S—~— ——— =~ Qc(t,x) FL

al a as aq

/ divy: (209, 2u.) dyds .
Qc( €

t,ﬂ?) - -

~~
ae

By virtue of relations (25), (26) and (28), we successively get:

Computation of the term / a,dydz
Qe (t,x)
The pipe being non-deformable, only the integral at the free surface is non zero
since
/ u: Oym - nds = 0.
Fb(t,ac)
Thus, we get:
/ O(ue) dydz = 8t/ ue dydz — / Uz Oym - ngs ds.
Q. (t,2) Q. (t,2) s (t,z)
Computation of the term / as dydz
Qe (t,x)
/ Op(u2)dydz = 0, / u? dydz — / u?0,m - nl*ds
Qe (t,z) Qe (t,z) Tl (t,x)
— u?@xm -nds.
Fb(tﬂ?)
Computation of the term / asdydz
Qe (t,x)

/ divy . (ueve) dydz = / UV + nfs ds + / UV - N dS.
Q. (t,x) rfs(t,z) Ty (t,7)

Summing the result of the previous step a; + as + a3, we get:

2
/ aj + as + ag dydz = 0,(Q) + 0, (Q—) (36)
Qe (t,x) A

where A and @ are given by (30) and (31).
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Computation of the term / aydydz

Qe (t,x)

For the pressure term p. given by the relation (28), (¢, x) fixed, we have:

H. (t,x) B(z,z)
[ amdya: = [ [ o dya:
Qe (t,z) 0 ) a(z,z)

Finally, we have:

H.(t,x

= o(x, 2)0pp- dydz

H.(t,x) H.(t,x)
_ / 9, (poo (. 2)) dx — / P00z, 2) dz
0 0

= 0, peo(z, z) dydz
Qe (t,z)

H(t,x)
- / paaz0($, 2) dz — azHE(ta x)ps\z:Hg(t,m)
0

cos 0(x) cos 0(x)

s s

Oppe dydz = 0 (gl z, A )—gl z, A 37

where [ is the hydrostatic pressure:

H.(A)
I(z, A) = /0 (H.(A) — 2)o(z, 2) dz.

The term 5 is the pressure source term:

H.(A)
Lz, A) = /o (H.(A) — 2)0,0(x, 2) dz.

which takes into account of the section variation through the term 0,0 (z, ).

Computation of the term / as dydz

We have:

Qe (t,x)

/ gsinfdydz = gAsin6. (38)
Qe (t,x)

Computation of the term / ag dydz

We have:

Qe (t,x)

/ div, . <@un€) dydz = / @Vy,zus -nf*ds+ / @VWUE ‘nds
Qe (t,x) € ng(t,a}) € Ty (t,x) €

(39)
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where /f @Vy,zus -n!*ds = 0 due to the boundary condition (24). Using the
Fss(tﬂ?) €
boundary conditions (23) and the approximation (25), the second integral writes

/ @VWUE ‘nds = / Ko(ues) ds = AK (u;)
Ty(t,x) € Ty (t,z)

where
be(t,z) ds

K(z,u;) = Ko(uz) "

ds

with / ds is the wet perimeter P, (i.e. the portion of the perimeter where the
Fb(t7x)

wall is in contact with the fluid) and thus is nothing but the so-called

A
Jryea) @5
hydraulic radius. This quantity was introduced by engineers as a length scale for
non-circular ducts in order to use the analysis derived for the circular pipes (see
for instance [16, 17]). Let us outline that this factor is naturally obtained in the
derivation of the averaged model and holds for any realistic pipe or open channel
(see Remark 2.1).

Then, gathering results (35) and (36)—(39), we get the equation of the conserva-
tion of the momentum. Finally, multiplying by poU?/L , the shallow water equations
for free surface flows are:

2
Q) + 0 (% + gl cos 9) = —gAsinf + glycos — gAK (z,Q/A) (40)

This model takes into account the slope variation, change of section and the
friction due to roughness on the inner wall of the pipe. This system was formally
introduced by the author in [7] and [3] in the context of unsteady mixed flows in
closed water pipes assuming the motion by slices that we have now justified here
with the friction term.

We have proposed a finite volume discretisation of the free surface model intro-
ducing a new kinetic solver in [2, 4] based on the kinetic scheme of Perthame and
Simeoni [12]. We have also proposed a new well-balanced VFRoe scheme [1]. These
numerical schemes have been validated in [4] in a channel with varying width on
a trans-critical steady state with shock. Several test cases have been passed with
success through comparison with an exact solution or a code to code comparison,
see for instance [1, 2].

4. Conclusions and perspectives

Finally, we have performed an asymptotic analysis of the three-dimensional in-
compressible Navier-Stokes equation with a general wall-law conditions including
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friction and free surface boundary conditions in the shallow water limit. We have
considered the three-dimensional incompressible hydrostatic approximation with fric-
tion boundary conditions and free surface boundary conditions and we have inte-
grated these equations along the €2 sections to get the one-dimensional free surface
model. In particular, we have shown that the free surface model (40) is an ap-
proximation of O(e) of the hydrostatic approximation (20)—(22) and therefore of
the three-dimensional incompressible Navier-Stokes equations (10)-(12). Except the
three-dimensional model reduction to a one-dimensional one, we have shown how to
integrate correctly a general friction law into the model derivation. The next step
and the work in progress will consist in studying the rigorous limit.
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1. Continuous maximum/minimum principles

Consider the following boundary-value problem of elliptic type: Find a function
u € C%(Q) such that

—Au+cu=f in Q and g—u:g on 0, (1)
n

where Q € R?%is a bounded domain with Lipschitz continuous boundary 052, n is the
unit outward normal to 0€2, and the reactive coefficient ¢(z) > 0 for all x € §2. The
boundary condition in (1) is commonly called the the Neumann boundary condition.
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The additional assumptions on the data of the problem will be given in appropriate
places of the paper later on.

First, we prove the continuous mazimum/minimum principles for problem (1) in
the following form.

Theorem 1. Assume that in (1) the functions ¢, f € C(Q),g € C(09Q), and c(x) >
¢, >0 for all x € Q), where ¢, is a positive constant. Let

g(s) < —g. <0 for all se€ 09, (2)

where g, s a positive constant. Then the following a priori upper estimate (contin-
uous maximum principle) for the classical solution of problem (1) is valid for any
x e

u(z) < I?G%X % (3)
Now, let
g(s) > g >0 for all se 09, (4)

where g, is a positive constant. Then the following a priori lower estimate (contin-
UouS MINIMUM principle) for the classical solution of problem (1) is valid for any
x e

()

Proof. First, we prove estimate (3). If w attains its maximum at some interior
point xy € 2, then all the first order partial derivatives u,,(xy) = 0, and all the
second order partial derivatives uy ., (x9) <0 for i =1,2,...,d. Therefore, from the
equation in (1) and the positivity of ¢ we observe that u(zg) < f(x¢)/c(xo). Now
we claim that under the assumptions of the theorem the maximum of u cannot be
attained on the boundary. Indeed, if u attains its maximum at some boundary point
sp € 052, then, unavoidably, 0 < g—z(so) = ¢(s0), which contradicts the assumption
on g in (2).

Obviously, estimate (5) can be proved in a similar way under conditions in (4). O

In what follows we will always assume that the following condition on the coeffi-
cient ¢ holds

c(z) > e, >0 foral zeQ, (6)

where ¢, is a positive constant.

The main goal of the paper is to construct suitable discrete analogues of (3)
and (5), called the discrete mazimum/minimum principles, and find practical con-
ditions on the numerical schemes, namely the finite element method (FEM) and the
finite difference method (FDM), providing their validity.
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In most of available papers devoted to maximum principles for elliptic problems,
see e.g. [9, 11] and references therein, continuous maximum (and minimum) princi-
ples usually take a form of implications involving certain sign-conditions. For exam-
ple, for the equation from (1) combined with vanishing Dirichlet boundary condition,
the maximum principle reads as follows:

f(z) <0 in Q = maﬁxu(m) <0. (7)
re
However, the implications with sign-conditions (like in (7)) have been recently gen-
eralized in [6, 7] to more general situations for problems with Dirichlet and Robin
boundary condition. In this work we consider the case of Neumann problem and
perform an analysis of some FE and FD schemes in the context of discrete maxi-
mum/minimum principles.

Remark 1. We mention that discrete maximum principles, besides their practical
importance for imitating the nonnegativity of nonnegative physical quantities in
numerical simulations, have been often used for proving stability and finding the
rate of convergence of FD approximations, see e.g. [1, 2, 4], and for proving the
convergence of FE approximations in the maximum norm, see e.g. [1, 5].

2. Discrete maximum principle

After discretization of problem (1) by many popular numerical techniques (e.g. by
FEM and FDM) we arrive at the problem of solving N x N system of linear algebraic
equations

Au=F, (8)
where the vector of unknowns u = [uy,...,uy]? approximates the unknown solu-
tion u at certain selected points By, ..., By of the solution domain {2 and its bound-
ary 00, and the vector F = [F}, ..., Fy|T approximates (in the sense depending on

the nature of the actual numerical method used) the values f(B;) and g(B;).
In what follows, the entries of matrix A are denoted by a,;, and all matrix and
vector inequalities appearing in the text are always understood component-wise.

Definition 1. The square N x N matrix M is called monotone if
Mz>0 =— z>0. (9)
Equivalently, monotone matrices are characterized as follows (see e.g. [2, p. 119]).

Theorem 2. The square N x N matriz M is monotone if and only if M is nonsin-
gular and M~ > 0.

Definition 2. The square N x N matrix M is called M-matriz if it is monotone
and its entries m;; < 0 for 7 # j.

It is obvious that for M-matrix M = (m;;), we have m;; >0 foralli=1,..., N.
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Definition 3. The square N x N matrix M (with entries m;;) is called strictly
diagonally dominant (or SDD in short) if the values

N
0;(M) := |my| — Z |m;j| >0 forall i=1,...,N. (10)

=1,

In [17] the following result is proved.

Theorem 3. Let matriz A in system (8) be SDD and M-matriz. Then the following
two-sided estimates for the entries of the solution u are valid

L L
min <wu; £ max

=Le-N G (A) T T ELLN §5(A)

i=1,...,N. (11)

As the estimates in (11) resemble the estimates in (3) and (5), it is natural to
give the following definition.

Definition 4. We say that the solution u of system (8) with an SDD matrix A sat-
isfies the discrete mazimum principle corresponding to continuous maximum princi-
ple (3), if the upper estimate in (11) is valid, and, in addition, the following inequality

K, f(@)

max < max

i=1..N 0;(A) T zeq c(T)

(12)

holds. Similarly, we say that the solution u of system (8) with an SDD matrix A
satisfies the discrete minimum principle corresponding to continuous minimum prin-
ciple (5), if the lower estimate in (11) is valid, and, in addition, the following in-
equality

(13)
holds.

Remark 2. In case of earlier versions of continuous and discrete maximum principles
no estimates like (12) and (13) were, in fact, needed as one dealt there with various
implications involving the sign-conditions only (cf. [4, 5, 13, 9]).

Remark 3. The validity of relations (12) and (13) is important for producing con-
trollable numerical approximations, because under these conditions the approximate
solutions (obtained by the FEM or the FDM for example) stay within the same
bounds as the exact solutions and these bounds are a priori known from the contin-
uous problem.
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3. DMPs for the finite element (FE) schemes

The standard FE scheme is based on the so-called variational formulation of (1),
which reads: Find v € H'(2) such that

a(u,v) = F(v) Vo € HY(Q), (14)

where

a(u,’u):/Vu-Vvdx—i-/cuvdx, F(U):/fvdx+/ guds. (15)
Q Q 0 o9

The existence and uniqueness of the weak solution u is provided by the Lax-Milgram
lemma, the Friedrichs-type inequalities, and the assumption on ¢ (6) (cf. [14,
Chapt. 2]). (Actually, for the well-posedness in above, one can require less smooth-
ness from the problem data, e.g. that ¢ € L>(Q), f € L*(Q2), g € L*(99) only.)

Let 75, be a FE mesh of Q with interior nodes By, ..., B, lying in  and boundary
nodes B, 41,...,B, 0 lying on 0€2. The elements of 7, will be denoted by the
symbol T, possibly with subindices. Further, let the basis functions ¢, ¢o, . . ., ¢, e,
associated with these nodes, have the following properties

(bl(B]):aU, ’i,jzl,...,n—l—na, (bZZOlHﬁ, ’izl,...,n—l—na,

n+n8

Y $i=1inQ, (16)
=1

where 9;; is the Kronecker delta. Note that these properties are easily met for ex-
ample for the lowest-order simplicial, block, and prismatic finite elements. The basis
functions ¢y, ¢, . .., ¢, ne are spanning a finite-dimensional subspace Vj, of H(€).

The FE approximation of u is defined to be a function u;, € V}, such that
a(up, vp) = F(vp)  Yop € Vp, (17)

whose existence and uniqueness are also provided by the Lax-Milgram lemma.

n4+n?
Remark 4. Algorithmically, u, = > w;¢;, where the coefficients u; are the entries
i=1
of the solution u of system (8) with a;; = a(¢;, ¢;), F; = F(¢;), and N = n+n?. It
is clear that, if properties (_16) hold, the FE approximation w; satisfies the bounds
from (11) at each point of 2 if all its nodal values u; do satisfy them.

Lemma 1. Assume that problem (1) under condition (2) is solved by the FEM with
basis functions satisfying (16). In addition, let the matriz A in the resulting system
Au =F be such that a;; <0 fori # j. Then A is SDD and estimates (11) are valid.
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Proof. From (15) and (2), it clearly follows that a; = a(¢;,¢;) > 0 for all i =
L...,n+n% If a;; <0 (i # j), we observe for i = 1,...,n + n? that

nJrn‘9 nJrn‘9

5;i(A) = Z ag; = a(¢y, Z ¢;) = algi, 1) = /Qc@d:c > 0, (18)

where the last (strict) inequality holds due to (2). Thus, the matrix A is always
SDD for our type of problems. Moreover A is the Minkowski matrix, i.e. M-matrix
(cf. [2, pp. 119-120]). Hence, estimates (11) are valid, due to Theorem 3, with ¢;(A)
computed as in (18). O

The proofs of further estimates (12) and (13) strongly depend on the way we
compute a;; and F} in real calculations. Below we consider in detail only the following
representative case.

Theorem 4. Assume that the coefficient ¢ is a positive constant and that all en-
tries a;; and F; in system (8) are computed exactly. Then estimates (12) and (13),
and therefore discrete mazimum and minimum principles, corresponding to (3)
and (5), correspondingly, are valid provided a;; < 0 for i # j, and the relevant sign
condition on g holds.

Proof. Let us prove first (12) under condition g(s) < —g, < 0. In view of (18),
(15), (2), and the first mean value theorem for integration, we get

5i(A) Jo coida T fydidr
* Zd
_ f (@) Jo dda Smaxf(g),
C fQ gbld{L' e C
where z* is some point from  and i is an arbitrary index from the set {1,...,n+n?}.
Similarly, we can prove (13) under condition g(s) > g, > 0. O

Remark 5. In fact, the entries a;; can always be computed exactly if ¢ is a positive
constant, and the entries F; can be computed exactly if the functions f and g are
piecewise polynomials for example. If ¢ is not constant, and f and g are general
functions, then for computations of entries (which are sums of integrals over {2 and
its boundary 0f2) in system (8), we should use, in practice, special quadrature rules,
and, thus, each such a case requires a separate analysis in the context of discrete
maximum,/minimum principles (cf. [10]).

Remark 6. Various geometric conditions on FE meshes guaranteeing the validity of
the requirement a;; < 0 for i # j are presented e.g. in [3, 8, 12].
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4. DMPs for some finite difference (FD) schemes

On the base of several representative FD schemes, we shall demonstrate how
the discrete maximum /minimum principles from Definition 4 can be proved also for
finite difference approximations.

First, consider problem (1) posed in one-dimensional domain Q2 = (0, 1). For the
governing equation at the interior nodes we shall employ the following standard FD
discretization: +9

—Yi—1 Yi — Yit1

52 + ciyi = [i (19)

where i = 1,....,n— 1, h = 1/n, ¢; and f; denote the values of functions ¢ and f,

respectively, at the node ¢h. The Neumann boundary condition is discretized as
follows:

Yo — Y1 _ Ya — Ya—1
n 9o, . G-
The resulting FD system of linear equations is of size (n + 1) x (7 + 1). However,
its matrix is not SDD as, due to equations (20), the corresponding sums of entries
of the matrix in the first and the last rows are zeros, so we cannot immediately use
Theorem 3.

However, we notice that, e.g. under the sign-condition g < —g, < 0 (used to
prove the continuous maximum principle), it follows from (20) that yo < y; and
Yn < Yn—_1, and it is thus sufficient to get a suitable upper estimate only for the
entries y1,...,ys—1. Further, we form the reduced system of equations of the size
(n—1)x(n—1) for finding (and estimating) v, . .., ya—; using discretization (19)—(20).
This reduced system will consist of 7 — 3 equations (19), for ¢ = 2,..., 7 — 2, and
two following equations

(20)

Y1 — Y2
2
—Ya—2 + Ya-1 9
h? h’
obtained by combining (20) and (19) for ¢ = 1 and ¢ = » — 1. It is clear that
the corresponding sums 6;(A) = ¢;, ¢ = 1,...,n — 1, and, therefore, the matrix
of the reduced system is SDD and it is also M-matrix. Further, due to the sign-
condition on g we observe that the entries of the right-hand side of the reduced
system F; < f;, i = 1,...,n — 1. Therefore, estimates (11) and (12) are valid,
i.e. the discrete maximum principle holds. The discrete minimum principle can be
proved similarly under the condition g > g, > 0.

Consider now the two-dimensional case. Let, for simplicity, the solution domain
be a square, i.e. Q = (0,1) x (0,1). Using the same step-size h = 1/n in both
directions and the classical 5-point FD stencil, we arrive at the following interior
equations inside of Q

+ 11 :f1+g—]fa

+ Cho1Yi—1 = fa-1+

Vi1 — Yit1,j — Yij—1 — Yij+1 + 4y
12

+¢ijYi; = fij (21)
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where now 7,5 = 1,...,7 — 1 and ¢; ; and f; ; denote the values of functions ¢ and f,
respectively, at the node (ih, jh).

The first order accurate FD discretization of the Neumann boundary condition
on 02 (consisting of four intervals in this case) reads as follows:

Lhyl = gio, % = Giny i=1,2, i — 1, (22)
y’,_yy- yﬁ,_yﬁ—, . o
% = 90,55 ]le = 0Gnj, ] = 1727 ey — 17 (23>

where g, ; denotes the value of g at the node (ih, jh). We notice that we do not deal
with the corner points of {2 in our case as the normal vectors are not well defined at
these points.

We see again, that the matrix of the full system is not SDD, however, just the
same trick as in the one-dimensional case can be used. And the following results can
be easily proved.

Theorem 5. The FD discretization (21)—(23) has the following properties:

a) it approzimates a sufficiently smooth solution u with the first order of accuracy,
b) the reduced FE matriz is SDD and is M-matriz,

c) the discrete mazimum/minimum principles are valid provided the relevant con-
ditions on g hold.

The approximation (22)-(23) (and (20)) of the Neumann boundary condition
has only the first order of accuracy, which is not consistent with the second order of
accuracy of the FD discretization for the governing differential equation. Therefore,
we shall present and analyse another FD scheme, now with an increased accuracy
of approximation for the Neumann boundary condition. We discuss in detail only
the more complicated 2D case, because the analysis of 1D case is similar. So, let us
approximate the Neumann boundary condition on the boundary of 2 = (0,1) x (0, 1)
in the following manner:

e on the part of the boundary with z = 0 as

Yo —Yui P (Yoie1 = 2y05 + Yo h
th 1]_5( 0,5+1 h(z)] 0,5 1)+§Co,jy0,j:
. )
:g07j+§f0,j7 j:17277ﬁ_1
e on the part of the boundary with z =1 as
o — U1 h (Ynia1 — 2Un i+ Us i h
Yn,j hy 1,5 _5(3/ ,j+1 Zi/ﬂ,]_'_y 2J 1)+§Cﬁ,jyﬁ,j:
(25)

h _ .
:gﬁ,j+§fﬁ,j7 j:1727"'7n_1'
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e on the part of the boundary with y = 0 as

Yio —Yin M (Yir10 = 2010 + Yim10 n Ec o
h 2 52 2 ,0Yi,0 (26>
h
:gi,0+§fi,07 Z:1,2,,7A7,—1
e on the part of the boundary with y = 1 as
Yir — Yia—1 N Yivrn — 2Yin + Yi-1a h .
— 5 + 5CiaYin =
h 2 h? 2 T (27)

h
:gi,fz+§fi,ﬁ, i=1,2,...,7—1.

Theorem 6. The FD discretization (21), (24)—(27) has the following properties:

a) it approximates a sufficiently smooth solution u with the second order of accu-
racy,

b) the resulting FD matriz A is SDD and M -matriz,

c) the discrete mazimum/minimum principles are valid provided the relevant con-
ditions on g hold.

Proof. We shall prove the statement a) only for the case of the part of the boundary
with = = 1, because the proofs for the other cases are similar. Clearly, it is sufficient
to show the second order of accuracy at the boundary nodes only. Let us define

o L gh) —u(l—h,jh)
i = h
B g (u(l, (j+1)h) — 2u(f1L>2Jh) +u(l, (j - 1)h)> . (28)

+ Re(1, a1, b — g0, 0) = 2F(L ).

Using the Taylor expansion, we get

1,9h) —u(l — h,g

+ O(h?), (29)
(L,gh)

u(l, (j +1)h) — 2u(l, jh) + u(l, (j — 1h)
2
where symbols like 0;u and 0;;u denote the partial derivatives of u as usual. Hence,
putting (29) and (30) into (28), we obtain

= (0%,u) | 1w TOM?), (30)

h
U, =(Ou—g) ‘(Ljh) -3 (8flu + 8§2u —cu + f) + O(hQ), (31)

lan
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Due to the boundary condition in (1), and the relation 2%(1,y) = d1u(1,y), the first
term in the right-hand side of (31) vanishes. The second term is also equal to zero.
This shows the validity of the statement a).

To prove the statement b), it is enough to show the diagonal dominance at the
boundary nodes only. For convenience, we introduce the index k£ to have the single-
index numbering of all the nodes of our domain (in order to keep the consistency with
the “single-index” definition of d;(A)) in which the indices 1,2,...,n* are preserved
for n* interior nodes and the indices n* + 1,...,n* + n® are used for n® boundary
nodes. Then we have that

5k(A):ng>0 for k=n*+1,...,n" +n°. (32)

Therefore, under our assumptions A is SDD matrix and M-matrix.
To prove the statement c), one observes that for the right-hand side of the re-
sulting FD system we have

h
F,=fi for k=1,...,n", andFk:gk+§fk for k=n*+1,...,n"+n’ (33)

Due to the property b), Theorem 3 can now be used. To get estimates (11) and (12),
we use the corresponding sign-conditions on g. O

5. Final remarks

It would be interesting to obtain suitable practical conditions guaranteeing the
validity of our variant of discrete maximum/minimum principles also for various
hp-versions of FEM (see [16]), and analyse the case of elliptic problems with full
diffusive tensors (cf. [15]).
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Abstract: A Fourier approximation method is used for modeling and simu-
lation of fully nonlinear steady waves. The set of resulting nonlinear equations
are solved by Newton’s method. The shoaling of waves is simulated based
on comparisons with experimental data. The wave heights and the angles of
breaking are analysed until the limit of inadequacy of the numerical method.
The results appear quite close to those criteria predicted by the theory of com-
pletely nonlinear surface waves and contribute to provide information on the
study of the relationship between computational modeling and the theory of
steady waves.
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1. Introduction

Waves in water are natural phenomena which have been extensively studied.
The knowledge about its properties is of fundamental importance in several socio-
economical activities, such as coastal environment protection, industrial activities
in deep waters, where an analysis of the impact and force of waves is of extreme
importance. Other not less important activities are applications to sailing, sediment
transport prediction and conversion of waves energy into electrical energy.

The study of wave shoaling and breaking has a deserved remarkable place in
this context, given that the energy of waves is intrinsically associated to the wave’s
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height. Experimental, analytical and computational methods have been used for
investigation of these phenomena. A certain amount of experimental data about
wave shoaling is known. Among these, the field data in [11] and the laboratory
measurements in [6] are classical and used for validation of numerical methods. More
recently Tsai et al. [17] examined criteria used in wave breaking via experimental
results. In their work, steeper bottoms have been studied.

From the analytical and computational points of view, the paper by Rienecker
and Fenton [14] has been one of the first work to propose a method for the simu-
lation of steady completely nonlinear water waves. Denominated as Fourier meth-
ods, this technique does not assume analytical approximations and the solution of
the nonlinear equations for the dynamics of waves is expressed by a Fourier series.
The nonlinear equations obtained are resolved numerically by Newton’s method.
A great number of subsequent papers propose improvements and extension of Fourier
methods to the study of nonlinear free surface waves. Gimenez-Curto and Corniero
Lera [10] present procedures to reduce the computation time of Fourier methods for
very long waves. Assuming Fourier’s expansions of superior orders and including
nonlinear interactions of arbitrary order, Dommermuth and Yue [3, 18] expanded
Fourier methods via a spectral method of superior order and calculated the evolution
of nonlinear waves in several cases, including the interaction between two waves.

Approaches with analytical approximations for the calculation of nonlinear waves
have also been used [19]. Freilich and Guza [9] use variants of Boussinesq equations
to study the shoaling of waves. Fenton [7] deduced expressions of fifth order based
on Stoke’s theory and presented numerical results, comparing them to experimental
data. In this same context, Pihl et. al. [13] examined the shoaling of waves described
by an approximation of sixth order in the presence of a current.

For studies of nonlinear waves dynamics with a more computational emphasis, we
cite Drimer and Agnon [4], which uses the boundary element method and the work
of Bingham and Zhang [1] for an approach of the problem through finite differences
of higher order. Finally, Ducrozet et. al. [5] make a comparative study of two fast
methods for the problem of nonlinear surface waves: the higher order spectral method
and the higher order method of finite differences.

In this paper, we solved the problem of steady completely nonlinear surface waves
by Fourier methods combined with Newton’s method [2]. No analytical approxima-
tion is done and we assume that in a bottom with declivity, waves in any depth behave
as if the bottom were horizontal. The approximation by Fourier series showed to be
a very powerful tool since it allows the direct calculation of accurate solutions, even
for high waves and for every wavelength, except for a soliton’s limit. We explored
this characteristics to study with a certain level of detail, the phenomenon of wave
shoaling.

The mathematical model and the non-dimensionalisation are presented with de-
tails in section 2. The approximation used for nonlinear steady waves is described in
section 3, where we also present the computational approach. On section 4, the addi-
tional modeling and the method to examine the shoaling of waves are examined. In
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subsection 5.1, the numerical results obtained are compared with experimental data.
The maximum height and angle of wave breaking are examined computationally in
subsections 5.2 and 5.3, respectively. Final conclusions are given in section 6.

2. Mathematical model

The mathematical description of the propagation of gravity waves on the wa-
ter surface usually requires some assumptions about the water properties and the
motion performed by it. Thus, we consider a homogeneous, incompressible fluid
with non-rotational motion, where the main restoring force is due to the gravita-
tional acceleration. Additionally, the viscosity and the surface tension are neglected.
Moreover, we will not consider wind forcing.

We consider two-dimensional steady waves in water of finite depth and formulate
the problem in terms of the stream function ¢. In what follows, we will use the same
framework as in [14].

We will use symbol * will denote dimensional variables and all variables are
non-dimensionalised with respect to the acceleration of gravity g*, and to the av-

*

erage depth, B*. Thus, consider the changes of variables x = %—:, Yy = %—*, n = g—*,

Vv = \/;p:?, = \/f:?, R = gf;*. The spatial coordinates x and y indicate the
horizontal and vertical direction with the origin of the Cartesian system lying at
the water bottom. Here, n is the water surface, ¢ is the stream function, ) is the
volumetric flow rate per unit wavelength normal to the plane zy and R is the total

energy of the system.

Other non-dimensional variables relevant to the problem are the wave velocity
c = %, the wavenumber k is defined by k& = k*f* = i—’fﬁ*, where \* is the

wavelength, the wave period is given by 7 = 7*, /%—i, and the so called arbitrary

reference level D, is non-dimensionalised by D = ?* .

We denote by (u,v) the components of the velocity vector u and the stream

function 1 is defined such that v = g—z and v = —g—f. W(x,y) satisfies Laplace’s
equation

0 0% )

w—f‘a—wzo n O<y<77(3:). (1)

The boundary conditions that must be satisfied by the stream function are

w(%o) =0, (2>

at the origin (background) and

P(x,n(x) = -Q, (3)

on the free surface y = n(z).

47



In equation (3), it is assumed that water flow of moving from right to left is in the
negative direction. On the free surface, the pressure is constant so that Bernoulli’s

equation gives:
a 2
o\, (90
Oz dy

The boundary conditions involving the wave periodicity are given by:

+n=R. (4)

27
A= — 5
k ) ( )
and
A= cT. (6)

Next we define the contours of conditions, the condition of periodicity and some
additional equations involving wave height, volume flow and wave speed, it is possible
to obtain a closed system of variables that can be solved by Newton’s method. We
will describe, in the next section, how to to accomplish this, essentially by expanding
the stream function v, in Fourier series.

3. Approximation of fully nonlinear steady waves

We present now the problem of fully nonlinear steady waves. The approxi-
mation of the solution is obtained by a spectral method combined with Newton’s
method [2, 14].

We expand ¢ (z,y) as

sinh jk _
W(z,y) = Boy + Z B; i shjk:ly) cos jkx (7)

for the Fourier coefficients B;. This representation of the stream function assumes
symmetry about the wave crest. The description below, in this section, is essentially
the one given in [14]. We present some of the details here for completeness.

Note that the above expansion satisfies the Laplace’s equation (1) and the bound-
ary condition (2). The boundary condition (3) requires that

N ‘
sinh jkn ,
B B———— kx = — 8

0n+]zl ]COShjkD COS] x Q’ ( )

and the equation (4) takes the form

2

h
k;z sin J]W? sin jkx

cosh jkn 4
By+k | Bj———— k =R
7 cosh jkD ot Z COSRLN ’

?cosh jkD

for all z.
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In these approximations, we observe that the arguments of sinh jkn, cosh jkn and
cosh 7kD grow up rapidly with j. To avoid instability and numerical errors in the
divisions in (9), we use the approximation

cosh jkn sinh jkn
cosh jkD  cosh jkD

for sufficiently large values of j.

The choice of an appropriate value for the parameter D is important. We will
adopt the non-dimensional value D = 1, suggested by Rienecker & Fenton [14], which
corresponds to a value of relative water depth and characterises a regime of of water
intermediate.

We will now impose equations (8) and (9) on 2N collocation points over one wave-
length. This allows a discretisation of the problem. By symmetry, we can work with
only N + 1 points from the wave crest to the trough. Thus, we use the discretization
Ty = %, m = 0,1,...,N. From \ = 2?” it follows that kx,, = %F. Moreover,
we abbreviate the notation of n(x,,), u(Zm, Ym) € V(Tm, Ym) tO N, Uy, and vy,. Thus,
from (8) and (9), we have:

~ exp [jk(n — D)], (10)

smhjknm jmm
Bonm — = 0, 11
o +Z coshjk:D S( N Q@ (11)
L, 1,
- . o — = 0, 12
5Um + 5 Vm TN R 0 (12)

form=20,1,..., N, where

N
Uy = BO+ijB- i

! cosh jkD o
sinh jkny, [ gmz
= k — ).
! Z 7 cosh jkD o ( N
We now have 2N +2 nonlinear equations. However, these involve 2N +5 variables,
which are n;, B;,(j = 0,1,...,N), k,@Q and R. Thus, in principle, we need three

further equations.
As the mean non-dimensionalised wave height is unity, we can write

ndS =1, (13)
J

where S is the horizontal distance from the crest to the trough of the wave. Dis-
cretisation zy and xzxn represent the abscissas of these extremities and using the
trapezoidal rule in (13), we have

cosh jkn,, (jmﬁ)

N-1
no+77N+2an]—1=0' (14)
j=1

2N
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In certain situations can solve the problem of nonlinear waves for prescribed
values of the height H and the wave period 7. The height H is merely the difference
between the elevation of the crest 79 and the height of the wave trough 7y. Hence,

no—nn —H =0. (15)
By combining equations (5) and (6), which involve the wave period, we have,
ker —2m = 0. (16)

We obtained then, from (14)— (16), three new equations. We introduced, however,
a new variable to the system; the wave velocity c¢. Therefore, let us analyse in more
detail this quantity.
Let cg the Eulerian mean velocity cg of fluid. For steady waves, we have the
relation [14]
c—cE—l—Bon. (17)

Alternatively, one can consider the drift velocity ¢, of the fluid particle, which is
the mass transport velocity. In steady wave regime, with unit mean depth, volume
flow @) is equal to the mean velocity by which the fluid particle moves. Therefore,
the speed of mass transport can be given by

c—cs— @ =0. (18)

Finally, the 2N + 6 equations (11), (12),(14)—(16), (17) or (18) form a closed
system for the variables (n;, B;(j =0,1,...,N),k,Q, R, c).

4. Wave shoaling

The shoaling of waves occurs when they propagate in intermediary waters in
a variable depth zone, gradually decreasing. In this study, it is assumed that the
changes in depth occur in a smooth way. Thus, it can be assumed that the wave
does not reflect and can adapt to the new depth. Due to energy conservation, when
the group velocity, Cy, decreases, the wave tends to increase its height, or to shoal,
until the subsequent wave break.

By using the wave refraction theory, it can be shown that the wave period is also
constant during the process of shoaling. This follows from the conservation of crests
for steady waves.

The phenomenon of incident waves shoaling on a coastal region has been well
approximated by Rienecker& Fenton [14], assuming that if the bottom’s inclination
is less than 4,5° the wave acts as if it is steady and with a constant local depth.
Employing this hypothesis, a simple approximation neglects the dissipation by fric-
tion with the bottom and assumes that the wave period and the energy flux remain
constant from a depth to another. That is, we assume that the conservation of crests
occurs and there is no reflection of energy with decreasing of depth.
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4.1. Method

To describe the shoaling of waves, due to the reduction of depth, the system of
equations presented in section 3 must be extended to include the additional variables;
the wave height H and the average flux of energy F', of which the non-dimensional
value can be written as [14]:

F = %c3—gc2Q+c(2R—1—%QBO—F) ~Q(R—1), (19)

where

—_ 1
T TON

N-1
773+77?v+2277?] ~

j=1
The solution of the system from the starting depth provides the flux of energy ac-
cording to equation (19). We will model the shoaling of waves by using a discrete
and finite number of depths. For successive depths, the period and the flux of energy
will be preserved, while the wave height H will be the variable of the problem. Thus,
we must include in the system, additional equations to specify the wave height for
the starting depth and the flux of energy for subsequent depths.

The additional equations are

1 1 —
f2N+7=§CB—§CQQ+C(23—1—§QBO—U2) —QR-1)—-F=0

and
H; .
fonys = H — —-=0 for the initial depth, and
o
fonis = F—Fy=0 for the subsequent depths,

where Fj is the non-dimensional energy flux. We use Newton’s method to solve the
resulting discrete system.

An initial estimate for the energy flux is given as a function of the other variables.
From Stokes approximation, we have

[ 7 c2H?sinh k cosh k + k
8 7 sinh? k .

This estimate is necessary only for the first depth. Subsequently, for small changes
in the depth, the following solution can be used as a good starting approximation
for the problem, provided that the change in depth is calculated in the new non-
dimensionalisation.

Suppose that the sub-index 1 is the solution for a certain depth and sub-index 2,
the starting approximation of the next depth. Thus, the change of depth occurs as
follows, 775 = 7} - r. That is, » = 73 /7} is the ratio between the successive depths.
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To obtain a satisfactory starting estimation of the variables to be used in the
new depth, we assume the change in depths to be smooth. With this, we neglect
the reflection of waves and we can use the last solution obtained as a good starting
approximation for the next depth, as long as it is non-dimensionalised according to
the new depth. That is,

H: H H.n* H
H2 p— _*2 et _—*1 = %nl — H2 — _1’
2 Up) M2 T
1
>k * =%\ 5
Co = 62;: 011201(97712 — 02—%,
(9m5)>  (9m3)%  (973)° e
*—k *—k k —
ko = k3my = k75 = ﬁ_ing = ko = kyr,
1
1
Q2 = 82 T = 81 lel[g_(*nl)l] — QQZQ_j7
9m)32  [9(m3)3)2 9(775)3]° r
R R* R, — 1on* Ri—1
b up aqns r

For the next non-dimensionalisations, the spatial discretisation is required, indicated
by j, for j =1,2,..., N. We will have

B* B* B* nF
(Bj)2 = ( 132 _ 131 - ])_15]771 = (Bj)2=-—71
gns ams qns r2

As the origin of the system is at the water bottom, the non-dimensional form of the
free surface elevation is expressed as

j j )1 — 13 N, — 1
(e =1+ 0002 _q Wy M=ty i
2 T2 b r

Yet, despite these remain constant, the non-dimensional energy flow and wave period
are

1
2

F )% F 3 (—=*\5 F
B LI T 1/)[9_(:)1)1] — -0
el ple*m)02  plg®(m3)%)? re
: % e
Ty =Ty (_%) =7 (_%) =7 (g—ﬁi) — T = T—i
Up) Up ams T2
5. Results

On this section we will show the results obtained. These are organised in 10 cases
on which we have experimental data for comparison. These cases, described in detail
below, are referenced as waves 1 to 3 and from 4(a) to 4(g).
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5.1. Comparison with experiments

For comparison with the experiments, we will use wave data obtained in beaches
and in testing tanks. These experiments were originally related in Hansen e Svend-
sen [11] and in Eagleson [6] and were used in comparisons with other methods and
theories. See, for example [14] and [16].

The experimental data were obtained from uniform beach slope of 1/35 [11] and
from slope of 1/15 [6] in laboratory tanks. The data were collected until the wave
breaking, point in which the modeling presented in this paper is no longer applicable.

Wave | Hy To Hf (mm) 75 (s)
1T 031 572 03 1
2 0,13 9,55 39 1,67
310,14 1904 42 3.33

Table 1: Initial values of heights and periods for waves 1 to 3. Experimental data of
Hansen e Svendsen [11].

For the first simulations we used the parameters D = 1, the number N of terms
for the Fourier’s expansions in (11) and (12) equals to 16 and r = 0,999. In table 1,
we summarised the cases of waves 1 to 3 which we are now going to examine with
the simulations done with the present method.

In figures 1(a) and 1(b) we show, respectively, the wave height and its phase
velocity as a function of depth, for wave 1. With non-dimensional values of the
initial height and the initial period, given respectively, by Hy = 0,31 and 7 = 5, 72,
an excellent agreement between the simulation and the experimental data is visually
observed, before the wave breaks.

Wave 2 is shorter and has a greater initial period. The comparison for this case
is represented in figure 2.

In figure 3, similar comparisons are done for wave 3 which presents a significantly
greater period than the former ones. Again, we observe that the simulations present
a good agreement with the experimental data. Particularly, the shoaling of waves is
remarkable, with the decrease of the depth, in all cases until values very close to the
point of break of the wave.

In the following cases, we show the comparison with experimental data [6], ob-
tained in a wave tank with uniform slope of 1/15. Seven simulations are reported,
where the dimensional parameters that define them are in table 2. In this table it is
also shown the values of initial waves steepness, which is given by ¢ = %, according
to Eagleson [6] and according to our numerical simulations. The reference level is
D =1 in all cases except in case (f), where D = 0,9. This difference is due to the
wave height being a little smaller, in this case. The number of terms on the Fourier
expansions used for the next simulations is N = 32.
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Figure 1: (a) Wave height as a function of water depth. (b) Phase velocity of the
wave function of depth for wave 1. The solid line indicates the data obtained from
numerical simulations with the present method and the points indicate the data
obtained experimentally by [11].
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Figure 2: Wave height as a function of water depth for wave 2. The solid line
indicates the data obtained from numerical simulations with the present method and
the points indicate the data obtained experimentally by [11].

Figure 4 shows the wave shoaling coefficient, given by Hio, as a function of the
respective relative water depth for waves 4(a) to 4(g). This coefficient represents
only the relation of the wave height with the decrease of the depth, while the relative
depth, indicates if the wave is in shallow, intermediate or deep waters. In all 7 cases,
we had an intermediate water regime according to the ratio 0,05 > i— < 0,5. We
observed on this regime a simulated shoaling very close to reality.

On next subsections we analyses with detail the height and the shape of the waves
close to their break, using the computational tool we developed and validated here.
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indicates the data obtained from numerical simulations with the present method and
the points indicate the data obtained experimentally by [11].

Wave | 77§ (feet) H (feet) 75 (s) H{ /A (according to [6]) | H{/A§ (simulated)
4(a) 1,75 0,230 0,938 0,0528 0,051739
4(b) 1,75 0,234 1,101 0,0396 0,039545
4(c) 1,75 0,357 1,105 0,0598 0,059963
4(d) 1,75 0,440 1,235 0,0611 0,061695
4(e) 1,75 0,354 1,389 0,0420 0,041634
4(f) 1,75 0,186 1,428 0,0209 0,021037
4(g) 1,75 0,265 1,684 0,0237 0,023999

Table 2: Initial values of water depth, the height, the period and the slope according
to the experimental data of [6] and the slope calculated by the present method.

5.2. Breaking height

Waves propagating in the shoaling zone, in intermediate waters, become unstable
and break when the velocity of the water particle on the wave crest becomes equal
or greater than the phase velocity of the wave. At breaking, the wave height is
limited by the depth and the wavelength. For a given depth and wave period, there
is a maximum limit for the wave height, called wave breaking height. According to
Stoke’s theory, in intermediate waters, the breaking height is % = 0,78 [15, p. 06].

In our model, n(x) is by definition only defined for each x. Therefore, the method
used for the solution will not apply until the physical limit of the wave break. Before
the break, the wave surface becomes multivalued and thus not modelled by a function.
In the specific case of Newton’s method, it will diverge.

We defined as computational wave breaking height and denoted by (%I—) , the
b
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Figure 4: Wave’s shoaling coefficient a function on the depth of water to the
waves 4 (a) to 4 (g) (see table 2). The solid line indicates the data obtained from
numerical simulations with the present method and the points indicate the data
obtained experimentally by [6].

last height for which there has been convergence of Newton’s method described in
subsection 4.1.
Figure 5 shows the evolution of parameter height by depth, given by H*/7*, the

computation wave breaking height <1%r> as a function of parameter 77/), and the

depth relative to the wavelength. In this figure, cases of waves 1, 2 and 3 are shown.

On curve 5(a) with height and initial period Hy = 0,31 and 7 = 5, 72 respectively,
the initial relative depth is i—g = 0,214 and the relative depth on the wave break is
? = 0,13256. This indicates that the whole shoaling process until the break of the
wave happened in intermediate waters.

On curve 5(b), representing wave 2, the initial relative depth is ?—g =0,1128 and
the relative depth on the wave break is ? = 0,0516. This wave also had the process
of shoaling and breaking in intermediate waters, but it breaks practically in shallow
waters and with a greater height.

The wave represented on curve 5(c) is significantly longer and presents practi-

cally all of its shoaling process in shallow waters, breaking with <g> = 0,755 on
b

a relative depth of ? ~ 0,027. We observed that the model and the computational
method predict a breaking height very close to the observed experimentally.
The cases referred to waves 4(a) to 4(g) on table 2 are represented and summarised
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Figure 5: The evolution of the parameter H*/7* and computational wave’s breaking

height, (Iﬁ{—) a function of depth relative to the wavelength, 77/A. In figure (a), we
b

show the results referring to figure 1, in figure (b), referring to figure 2 e in figure (c),

referring to figure 3.

in figure 6. We can verify that all the shoaling processes until the break of the waves,
occur in intermediate waters. Furthermore, we see that the computational breaking
heights are so that % ~ 0,7. This is a value that reaffirms the good performance of

the method to model the phenomenon of wave shoaling.

5.3. Waves profile and their breaking angles

By using Stokes theory, it can be shown [12] that the breaking angle of a wave
is 120°. We are going to use the spectral method described in this paper to estimate
the computational breaking angle o, i.e., the one until when we can obtain convergence
of Newton’s method used for solving the system of nonlinear equations which governs
the water waves.

Figures 7 to 9 represent the cases of waves 1 to 3, respectively.

Figures are double: part (I) shows the wave profile on the initial instant and
part (II), at the moment of the computational wave break. A horizontal straight line
is included in all figures to represent the average depth. To estimate the value o, we
used a straight line passing by three points next to the crest, using symmetry, and
calculated the line’s angular coefficient.

[t can be verified that the way the wave shoals depends directly on the wavelength.
For waves of greater length, we note that the wave’s trough becomes horizontally
longer. With this, the crest has a more pronounced increase on the wavelength.
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We can observe that the computational breaking angles of waves 1, 2 and 3 were
134,12°,142,64° and 126, 20° respectively. The first two are in intermediate waters,
while wave 3, which propagates in shallow waters, has the smaller breaking angle.

We then revisited the cases of waves 4(a)-4(g), presented in subsection 5.1 and
showed at table 2. Table 3 shows the heights and periods of waves at the initial
moment, apart from the water depths and computational breaking angles. The
initial depth is equal to 7§ = 1,75 feet, in all cases.

Wave | Hi (feet) 75 (s) 7f(feet) a (degrees)
4(a) 0,230 0,938  0,3817 124,14
Ab) | 0234 1,101 04110 123,60
4(c) 0,357 1,105  0.6066 122,48
4(d) 0,440 1,235 0,7140 119,30
Ale) | 0354 1,389 06591 124,48
4(f) 0,186 1,428  0,3989 130,49
4(g) 0,265 1,684 0,5644 128,58

Table 3: Data for the wave profiles. The values of the initial heights and initial wave
periods as well as the water depths and angles formed on the crests of the waves at
the moment when they break.
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Figure 10: Profile of waves of the case (d) of table 3: Figure (I) shows the wave profile
at the initial moment and the figure (II) shows the wave profile at the moment of
the break.
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To calculate the breaking angles in all cases given at table 3, tree points subse-
quent to the wave crest were used. We notice that all breaking angles were practically
identical and slightly greater than the limit for the breaking angle given in the liter-
ature.

Figure 10 shows the profile of the waves of case 4(d) at table 3. The remaining
cases have a similar graphical aspect.

Thus as waves 1, 2 and 3, waves 4(a)-4(g) present a common characteristic of
shoaling which is the decrease in the wavelength and an increase in its height, with
the trough becoming horizontally longer. This is the eminent and favourable aspect
to the wave break.

6. Conclusion

A Fourier approximation method was employed for modeling and simulating fully
nonlinear steady water waves. The resulting set of nonlinear equations was solved
by Newton’s method. After a careful non-dimensionality, we assumed that in an
inclined bottom, the waves, in any depth, behave as in horizontal bottoms. An
iterative method was described for the study of wave shoaling.

A set of experimental data was used to define the initial states in 10 study cases.
From those, we could validate the method which presented excellent agreement with
the measurements. An analysis of the so called wave breaking height and compu-
tational breaking angle was done and values were obtained for comparison between
simulations and the theoretical criteria of breaking height and angle. These results,
therefore contribute to the knowledge of existing relationships between analytical-
computational approximation methods and the theory of nonlinear surface waves.
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Abstract: We consider a contact problem of planar elastic bodies. We adopt
Coulomb friction as (an implicitly defined) constitutive law. We will investi-
gate highly simplified lumped parameter models where the contact boundary
consists of just one point. In particular, we consider the relevant static and
dynamic problems. We are interested in numerical solution of both problems.
Even though the static and dynamic problems are qualitatively different, they
can be solved by similar piecewise-smooth continuation techniques. We will
discuss possible generalizations in order to tackle more complex structures.
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1. Introduction

Let us consider elastic two-dimensional bodies in mutual contact. The relevant
mathematical description consists in modeling of both non-penetration conditions
and a friction law. The widely accepted Coulomb friction law represents a serious
mathematical and numerical problem. We adopt a discretization via (mixed) Finite
Element Method (FEM). The key parameters are degrees of freedom and the number
of nodes on the contact boundary. The problems depend on a positive parameter
called friction coefficient F.

We have in mind numerical solution of both

1. the static, parameter dependent contact problems with Coulomb friction, see
e.g. [7,6,4, 11, 5],

2. the dynamic (i.e. time dependent) contact problems with a friction, see e.g. [9]
and with Coulomb friction, [10].
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The dynamic solvers use time-stepping schemes (with a fixed stepsize). As a rule,
the schemes have to be stabilized. The above authors advocate the stabilization via
a mass redistribution.

In this contribution we consider a case-study problem with just one point on
the contact boundary. We analyze both static and dynamic formulations, see [7]
and [10]. You may think of toy-problems (lumped parameter models) which reflect
the reality qualitatively.

The plan is as follows: In Section 2, we consider the static problem (both the case-
study and the example of a real structure). The problem is parameter-dependent in
order to model a continuous evolution. The natural numerical tools are continuation
(path-following) techniques. The underlying message is: If we learn to solve the
toy-problem we get important clues for solving large scale problems. In Section 3 we
formulate the dynamic case-study problem. We discuss two numerical techniques:
An event-driven algorithm (Section 4) and a time-stepping algorithm (Section 5). In
Conclusions (Section 6), we hint at the fact that continuation techniques (Section 2)
and, because time is also a parameter, event-driven algorithms and time-stepping
algorithms (Section 4 and Section 5) are closely related.

2. The static problem

As a case study, we consider a static finite element model of Coulomb friction
with one contact point, see [7]: Find (u,, u,, Ay, )\T)T e R4

bUV—CUT—fV—)\,, =
_Cuu+bu7_f7_)\7 =

>\z/ - P(—oo,O](
Ar = Pz 7

(1)

y—TUy) =

o O o O

A
Ar —TUy) =
Parameters of the model are as follows: The nonnegative friction coefficient F, and
the stiffness matrix A,

A:[b c], b:_/\—|—3V’ c:/\—H/,
c b 2 2

where A\ and v are positive parameters (Lamé coefficients). The operators P(_
and Pi_z|x, |75, are piecewise linear projectors, see Figure 1. The arguments of
both projectors depend on a positive parameter r, that can be arbitrary but fixed.

The system (1) models one linear finite element which rests on a rigid foundation,
see Figure 2. The problem is as follows: Given a load f = (f,, f;)" € R?, the normal
and the tangential load components, find

e u, and u, i.e., the normal and the tangential displacement

e )\, and )\, i.e., the normal and the tangential stress components.
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Figure 1: Projectors  — P_s (), © — P, (x), 1 = F|A\,|.
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Figure 2: FEM interpretation.
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Figure 3: Contact of two elastic bodies Q' (the upper body) and Q?, along the contact
boundary. The loading is due to the surface traction. Discretization: n = 1320
(degrees od freedom), m = 30 (number of nodes on the contact boundary). On the
right: Resulting deformation.
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The system (1) is solvable for any given load f € R? nevertheless the solution may not
be unique. In [6], we proposed path following techniques to find non-unique solutions.
The aim was to investigate the model (1) subject to a parameter-dependent force
ie, a = f,(a) and a — f.(a). We developed a numerical technique based on
piecewise-smooth continuation. Starting from this comparatively simple model (1)
we generalized the continuation technique for problems of practical interest that
involve several thousands elements, see [4, 5]. We also refer to [11] for an alternative
approach.

Just to illustrate the technique, we consider the example formulated in [4], see
Figure 3. The aim is to investigate dependence of this particular contact problem
on the friction coefficient F. The relevant continuation technique is described in [5].
For an illustration of this new technique see Figure 4 and Figure 5. Note that there
are three basic contact modes: no contact, contact-stick and contact-slip, see

e.g. [6, 4].

3. The dynamic problem
As a case study, we consider a dynamic finite element model of Coulomb friction
with one contact point, see [10] and Figure 2: We seek for time-dependent functions

Uy, Ury Ay, Ar 2 [0,T] — R such that

wLio |20 -LO1-E] @

ull(t
“M() € Nt w1 3)
: /
A-(t) € F A (t) Signu (t) (4)
52(106 55105
450 == == =f-zzzzzzzzzz==== 451 /7'::::_‘...-.""3333332‘:3::&:::
ar j’ /"1 4 ,'l ,'/‘
35p ,! ! Sl A
sf ~ 3 : '
S e i S ol
:’ . 2 < 2t t
. —mmrrrrrrrrrrsss-s- |t b L R R
150 1 L5 ¢
. R g iy g ) . G+ & 4= — 4 — — & — — —— - — 44— — —
05 ;3 05F -I
o' od ‘ ‘ ‘ ‘ ‘ ‘
) 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

Figure 4: The solution path related to the nodal point Nol9 consists of three
branches. They are initialized by points marked by asterisks. Parameter is 5 = F,
the friction coefficient. On the right: An illustrations of the adaptive stepsize re-
finement of the algorithm. The curves interpretations: solid (no contact), dashed

(contact-stick) and dash-dotted (contact-slip).
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Figure 5: The solution path related to the nodal point No20 (on the left) and the
nodal point No21 (on the right). Parameter: § = F. The curves interpretations:
solid (no contact), dashed (contact-stick) and dash-dotted (contact-slip).

almost everywhere (a.e.) in [0, 7]. The initial value condition

8] [
is satisfied for any given u® € R?, v € R%2. The unknowns of the model are
e u,(t) and u,(t) i.e., the normal and the tangential displacement
e )\, (t) and A\,(t) i.e., the normal and the tangential stress components.

The data are the given f,(t) and f.(¢) i.e., normal and tangential load components.
Parameters of the model: The nonnegative friction coefficient F, and the mass

and stiffness matrices
a 0 b ¢
M=[g ] a=|0n]

At

-

where p, [, A and v are positive parameters (the density, the diameter of the element,
and two Lamé coefficients).

The symbols Sign and N1 denote multivalued mappings Sign : R = R and
Ng: : R = R called signum and normal cone, respectively, see e.g. [1]. We skip
formal definitions. Instead, we introduce equivalent formulations via variational
inequalities:

The condition (3) is called the complementarity condition. 1t can be interpreted
as the no contact or the contact

MA(t) =0 for w,(t) <0 ...no contact (©)
A (1) <0 for wu,(t) =0 ...contact

s C
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with the rigid foundation. The condition (4) reads as

A(t) = F (L) for . (t) >0
A (1) = —]:/\ (t) for ul (t)<0 (7)
AB] < —F A for uft) =0

One can easily conclude that
1. In the case of no contact in (6), the condition (7) yields A, (t) = \.(t) =0

2. In the case of contact in (6), the condition (7) can be interpreted as

A-(t) = F (L) for w!(t) >0 ...contact-slip
A (t) = —]:/\ (t) for wl/(t) <0 ...contact-slip (8)
A ()] < =F A (t) for u' (t)=0 ...contact-stick

The aim is to solve the initial value problem (2)—(5). We consider two kinds of
algorithms: In Section 4, we introduce an event driven algorithm and in Section 5
we sketch a time-stepping algorithm.

In the following, let us relabel the state variables x; = u,, 1o = u/

Ty =ul.

vy L3 = Ur,

4. The event-driven algorithm

The idea is a dynamical simulation of the particular solution modes contact
and no contact. They are defined by different systems of ordinary differential equa-
tion (i.e., different vector fields). Then the solution modes should be concatenated
according certain rules (continuity of displacements).

The mode contact is modeled as a Filippov system, see e.g. [3, 1]. Details can be
found in Supplement 7, see the system (12). In this solution mode we have A, (t) < 0
on an open time interval ¢ > 0. It can be shown that z;(t) = x(t) = 0, and
A (t) = —cas(t) — f,(t) < 0. We distinguish two cases:

o If z1(t) = 22(t) = 0 and w4(¢) = 0 then the body is in contact-stick regime,
o If z1(t) = x5(t) = 0 and x4(¢) # 0 then the body is in contact-slip regime.

The dynamical simulation of the contact mode is bases on the Filippov convex method
and its modifications, [3, 1]. In forthcoming experiments we used the open-source
software [12] which is based on the MATLAB ODE suit [15] with an adaptive stepsize.

The mode no contact is modeled as two coupled linear oscillators where A, (t) =
Ar(t) =0, z1(t) < 0 on an open time-interval ¢ > 0, see Supplement 7, the system
(14)&(15).

The coupling of the modes contact and no contact can be viewed as an hy-
brid impact model, [1]. Why do we call the algorithm an event-driven algorithm?
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Changing particular modes is linked to the sign-changes of functions ¢t — (),
t—= A(t) = —cas(t) — f,(t) and t — z4(¢). The MATLAB ODE suit [15] provides
an efficient tool called event location to localize sign-changes of functionals in space
and time.

The given acting force f, and f, in (2) may be time dependent. In following
examples we let the tangential component f, = f,(¢) to be periodic and the normal
component f, to be fixed. We model the action of the craftsman instrument called
‘Jack plane’.

Example 4.1 Contact only

Data: a=1,b=-12,c=1, F =04,

a periodic forcing: f-(t) = sin(wt), w = 1/6, f,(t) = f, = 1.3, a ‘Jack plane’ model.
The initial condition: [0,0,0,0.1]. The time-span: [0,T], T = 10 - 2w—”

The relevant results are shown in Figure 6 and Figure 7. The value of f, is sufficiently
large and the instrument rests on the foundation for all time.
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0.2 1 -0.21

-0.31 q -0.3r

-0.4 -0.4

-08 -06 04 02 0 0.2 0.4 06 0 50 100 150 200 250 300 350 400
T3 t

Figure 6: f, = 1.3. On the left: A phase plot of x4 versus z3. On the right: A plot
of x4 versus time ¢t. Contact regime: If x4(f) = 0 then contact-stick. If z4(¢) # 0
then contact-slip.

Example 4.2 Coupling of the modes contact and no contact

Data: a=1,b=-12,c=1, F =0.3,

a periodic forcing: f-(t) = sin(wt), w =1/6, f,(t) = f, = 0.5, a ‘Jack plane’ model.
The initial condition: [0,0,0,0.1]. The time-span: [0,T], T = 10 - %’T

The relevant results are shown in Figure 8 and Figure 9. This time f, is small enough

and the instrument is lifted from the foundation for particular time periods. The
‘Jack plane’ is bouncing on the foundation.
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Figure 7: f, = 1.3. A plot of A, versus time ¢. Note that A,(¢) < 0 characterizes the
contact mode. On the right: A plot of A, versus time ¢, a zoom.
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Figure 8: f, = 0.5. On the left: A phase plot of z; versus z,. Observe that x; < 0,
an impact at z; = 0. On the right: A phase plot of x3 versus x4. Legend: contact
... black, no contact ... gray.
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Figure 9: f, = 0.5. On the left: A plot of A\, versus time ¢. On the right: A plot of
A, versus time ¢, a zoom. Legend: contact ... black, no contact ... gray.
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5. The time-stepping algorithm

Consider the initial value problem (2)—(5). In [10], there was proposed a natu-
ral time discretization of this problem via mid-point rule with a fixed stepsize dt.
At each time step, the algorithm identifies the solution mode (namely, the options
contact, contact — stick and contact — slip) and propose the solution update.
The identification is unique provided that the stepsize dt is sufficiently small. (Note
that we used the scheme without mass-redistribution, [10]). Let us run the mid-point
algorithm using the same data as in Example 4.1. We expect qualitatively similar
plots as in Figure 6 and Figure 7.

Example 5.3 Contact only, see Example 4.1

Data: a=1,b=—-1.2, c=1, F = 0.4, time increment dt = 0.001,

a periodic forcing: f-(t) = sin(wt), w = 1/6, f,(t) = f, = 1.3, a "Jack plane’ model.
The initial condition: [0,0,0,0.1]. The time-span: [0,T], T = 10 - %’T

In Figure 10, on the left, there is a plot of initial stages of x, computed via the
mid-point rule. Note that corresponding zoom in Figure 6, on the right, computed via
the event-driven algorithm would look much the same. Remarkable are the run-time
differences: 2495.6 seconds (the mid-point rule) vs 2.3 seconds (the event-driven
algorithm). The zoom in Figure 10 reveals that the numerical solution oscillates
between the stages contact-slip and contact-stick (see the isolated dots). In
that case, the remedy is to guide the solution to remain in regime contact-stick. It
can be done by adapting slightly the original code in [10] e.g., in case contact-stick
we set directly x4 = 0. We call the resulting algorithm the stabilized mid-point rule.
In Figure 11, we plot x4 versus ¢ computed via stabilized mid-point rule. Due to the
setting of Example 5.3, i.e. contact only, we have just two competing modes namely
contact-slip and contact-stick depicted by dashed and solid curves. Elapsed
time was 64.841882 seconds (stabilized mid-point rule, 0 < ¢ < 380, dt = 0.001).

The above stabilization technique can be related to the approach by [2, 14].
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Figure 10: f, = 1.3, time increment dt = 0.001. On the left: The solution via
mid-point rule. A plot of x4 versus ¢t as 0 < ¢t < 8. On the right: a zoom.
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Figure 11: f, = 1.3, time increment dt = 0.001. The solution via stabilized mid-
point rule. Legend: contact-stick ... solid, contact-slip ... dashed curves. On
the left: the initial stages 0 <t < 9. On the right: The periodic pattern of the limit
set, 250 <t < 350.

6. Conclusions

We considered simplified models (i.e., lumped parameter models) for both the
static, see (1), and the dynamic friction model, see (2)—(5).

The static model (1) is piecewise smooth, parameter dependent. It can be solved
by continuation techniques. The dynamic model (2)—(5) is piecewise smooth dynam-
ical system where time ¢ is a parameter. The approaches to numerical solution (the
event-driven algorithm in Section 4 and the time-stepping algorithm in Section 5)
can be viewed as approximations of discrete time, piecewise-smooth dynamical sys-
tems. Both the static and dynamic problems can be solved by similar (continuation)
techniques in spite of the fact that both models are qualitatively different. The con-
tinuation techniques for solving the static case-study model (1) can be extended to
higher dimensions. We hope for such an extension for dynamic contact problems
which would deal with structures as in Figure 3.

Comparison of the event-driven algorithm and the time-stepping algorithm: In [8],
we compared an event-driven algorithm (based on the software in [12]) and a time-
stepping algorithm (based on implicitly defined law of Coulomb friction, [14, 2, 13])
for the Dry-friction model (in 2-D) i.e., the model of a slide fastener. The comparison
in [8] argue strongly for an event-driven algorithm:

1. In [12], there is implemented an adaptive stepsize refinement. As a conse-
quence, the solver reduces the computational costs.

2. The solution modes are clearly distinguished and precisely localized (in case of
Dry friction we distinguish just contact — slip and contact — stick modes).

Coming back to the algorithms formulated in Section 4 and Section 5, respec-
tively: The event-driven algorithm seems to be superior to the time-stepping algo-
rithm. The argument for this statement is the same as the above. Mind you the
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failure in Figure 10, on the left. It can be fixed, see Figure 11. Nevertheless, there
is a space for improvements as the mode identification is concerned.

On the other hand, the event-driven algorithm uses built-in MATLAB routines
namely, the routines concerning the stepsize control, see [15]. When thinking about
possible generalizations of event-driven algorithms in order to deal with real struc-
tures as in Figure 3, one has to programm adaptive step refinement or event-location
routines himself. In principle, it is possible. In the continuation context, the key
algorithms are already developed, see Figure 4, on the right.

7. Supplement: Modelling the modes contact and no contact

This supplement pertains to Section 4, giving particular details. Basically, we

shall follow [8].

7.1. The contact mode

Assume that the body is in contact with the rigid foundation at a particular time
Y > 0 and on an open non-empty time interval Z(¢°). It means that the equations (2)
together with the conditions {\, () <0, u,(t) = 0} and (8) are satisfied for ¢ € Z(t°).
The system (2) consists of two equations:

aun(t) = bu, (t) + cu-(t) + f,(t) + A\ (¢) 9)

au!(t) = cuy (£) + bur () + £ (£) + Ao (1) (10)

Since u,(t) = 0 for all t € Z(ty) then u//(t) = 0 for all t € Z(ty). The equation (9)
reduces to an algebraic constraint:

)\z/(t> = _CUT(t) - le(t)a )\l/(t) <0 (11>
for t € Z(¢"). From (10) and (8), we conclude that
1. If ul > 0 then A\, = FX\,, see (8). The equations (10)&(11) yield

b—F 1
Wl = ———u 4+~ (f; = Ff,)

2. If u, <0 then A\, = —F\,, see (8). Due to the equations (10)&(11)
y o b+ Fe

Ur

1
UT+a(fT+-7'—fV)
3. If w, = 0 then |\;| < —F\,, see (8). In a spirit of the Filippov convex
method [3, 1] we consider the convex combination of the right-hand sides of
the above equations

L (1—2\)Fc+b

1 1—2\
w; = ur + —fr +
a a

Ff,, Ael0,1].
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Let us relabel the state variables =y = u,, xo = ul,, 3 = u, and x4 = u.

Accordingly, we introduce vector fields F} : R> — R5 and F, : R® — R as

i} 0 i i} 0 i
0 0
ja i ja i

1 — s 9 =
b— Fc 1 b+ Fe 1
z3+—(fr —Ff) z3+—(fr +Ff)

a a a

L 1 i L 1 i

where f, = f;(t) = f:(x5), fu, = fu(t) = f,(x5). The vector fields F; and Fp
are autonomous (which was the condition to use the ready-made software [12]).
Nevertheless, we can recover time ¢ easily.

Moreover, we define the level-set operator Hiy : R> — R,

le(l') = X4 .

The fields £} and F3, respectively, are defined on

S| = {x cR®: Hyy(z) > O} end Sy = {x €R’: Hy(z) < 0} )
The set X159 = {z € R® : Hyy(z) =0} is the discontinuity surface. We consider the
Filippov system

x’—{ Fi(z) for €5

Fy(x) for x €Sy (12)

For a given initial condition z° € R, the Filippov’s convex method, e.g. [3, 1, 12],
gives the solution of the system (12) on a time span for which the body stays in
contact with the rigid obstacle i.e.,

M) = —cas(t) — £ (8) < 0.
It means that the initial condition 2° € R® has to satisfy

2’ = [O,O,xg,xg,tO}T ;=) — f,(t") <0. (13)

7.2. The no contact mode

Recall the original meaning of the state variables 7 = w,, xo = ul,, x3 = u,
and x4 = u.. Assume that the body is not in contact with the rigid foundations at
a particular time t° > 0 and on an open non-empty time interval Z(°). Due to (6)
(the option no contact) we can claim that {\,(t) = 0,u,(t) < 0} for t € Z(ty). We
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already noted that A\, () = A\, (t) = 0 for ¢t € Z(t°), as a consequence of (7). Hence,
the system (2) reduces to equations

aul(t) = bu, (t) + cur (t) + £, (1) (14)

aul(t) = cu, (t) + bu(t) + f-(t) (15)

for ¢t € Z(t°) provided that u,(t) < 0. We formulate (14)&(15) as an autonomous
system adding an extra equation ¢ = 1. Coming back to the variable z € R% we
introduce the vector field F; : R® — R as

X2

b c 1
-2+ —x3+ —f,(z5)
a a a

F3 = Ty

c b 1
—x1 + —x3 + — fr(z5)
a a a

1

The field F3 is defined on

S3:{$ER5233'1<0}.
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Abstract: The error correcting codes are a common tool to ensure safety in
various safety-related systems. The usual technique, employed in the past, is
to use two independent transmission systems and to send the safety relevant
message two times. This article focuses on analysis of the detection properties
of this strategy in the binary symmetrical channel (BSC) model.

Besides, various modifications of the mentioned technique can be used. Their
impact on the detection properties can be significant, positively or negatively.
This article demonstrates one of these modifications.

Keywords: error correcting code, undetected error, message repetition

MSC: 62P30, 94A40, 94B70

1. Introduction

Communication safety is a small, but important part of the safety of every
electronics-based system, particularly in railway interlocking systems. A special
position in this issue has the safety code, because it is the unique tool to protect
messages against corruption.

The basic motivation for this paper was the cooperation on design of interlocking
systems. The communication protocol, used by our partner, includes sending the
safety relevant messages twice using two transmission lines. It turns up, that safety
analysis of this simple approach is not quite simple.

The first part of the article describes some basic terms of coding theory. The
second part introduces the concept of probability of undetected error in the binary
symmetrical channel as a basic tool for evaluating detection quality of the code. The
next part investigates the main approaches to message doubling. The problem of
calculating the probability of an undetected error in these cases is studied.
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2. Coding theory

This section defines the basic terminology for linear binary codes and the related
binary symmetrical channel (BSC) model. The “code-related” terminology in this
paper is based on terms used in the mathematical coding theory (see for example [2]).

2.1. Linear binary codes

A linear binary (n, k)—code K is any k—dimensional subspace of the space (Z5)".
Traditionally, binary vectors from (Zs)™ are called words; the words from the code K
are the code words. In an (n,k)—code the code word length is n, the number of
information bits is equal to k£ and the number of redundant bits is equal to ¢ = n—k.
Any linear (n, k)—code K can be described by its generator matriz, whose rows are
exactly the words forming a basis of the subspace K.

In practice, usually the code word of an (n, k)—code is created by the addition
of ¢ bits (the redundant or control part of the code word) to a word of length k (the
information part of the code word). This technique is called a systematic encoding,
the code is a systematic code. A generator matrix of the systematic code has the
form G = (E|B), where E denotes the identity matrix of the order k and B is some
k X ¢ matrix.

2.2. Error detection

During the transfer of a message unwanted modifications can occur. Usually, it is
supposed that a number of bits is preserved and these modifications are manifested
by altered bit(s). The adverse situation occurs, when the modification during transfer
unfortunately creates another code word, different from the sent one. The receiver
has no possibility to recognize this state.

This scenario is dangerous and results in an undetected error. The probability of
such an undetected error of the detection codes used in safety relevant applications
(including transportation control) is a very important safety parameter.

We define the Hamming weight of a word as the count of non-zero bits in the
word. Then we define the minimal distance of a linear code as the smallest non-zero
Hamming weight of its code word.

The minimal distance of a linear code sets the ability of the code to detect some
classes of transmission errors. A code with a minimal distance d will detect all errors
with at most d — 1 modified bits in the transmitted code word (see [2, 3]).

For a more detailed description of the code, a weight structure of the code is
defined as a vector A = (Ap, A1, As, ..., A,), where A; denotes the number of code
words with Hamming weight equal to ¢. For linear codes, the weight structure is
fully sufficient for the description of its ability to detect errors.
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3. Probability of undetected error

The most useful approach for measuring the detection properties of a code uses
its maximal value of the probability of undetected error in a binary symmetrical
channel.

3.1. Description of the BSC model

The binary symmetrical channel (BSC) is a simple probabilistic model based on
a bit (binary symbol) transmission. The BSC model does not describe the reality
completely, but it is an appropriate tool for comparison of the detection properties
of the codes.

In this model the probability of an error is supposed to be independent from one
bit to the next one. The probability p. that the bit changes its value during the
transmission (bit error rate) is the same for both possibilities (0 — 1 and 1 — 0).
The probability that the code word with n symbols is corrupted exactly in ¢ symbols
is then equal to

Pe(l=p)" " (1)

The probability of an undetected error in the BSC model for a linear binary
code K with code words of length n and with minimal Hamming distance d is given
by the following formula

Pud<Ka pe) = Zn:pze (1 - pe)nii Aia (2)

i=d

where A; is the number of code words with exactly 7 nonzero symbols and p, is the
bit error rate in the BSC channel.

For every linear (n,k)—code the value of the function P, (K, .) for p. = 1/2 is
equal to (28 — 1)/2™ and this is a local maximum of this function. Although the
use of a transmission channel with bit error rate near to 1/2 is virtually excluded,
the standard EN 50159 for safety-related communication in railway applications [1]
recommends not to use a better detection estimate than this value for calculations
in a safety model.

Actually, for the codes used in safety relevant applications it is necessary to
know (or, at least, estimate) an upper bound of the function P,4(K.) on the entire
interval [0,1/2]. In particular, it is recommended to use codes with a monotone
function P,4(K,.) or, at least, this function should not exceed the value P,4(K,1/2)

(see [1]).

3.2. Indirect calculation using dual code

The formula (2) for the probability of an undetected error of a code is quite
simple in principle. However, the coefficients A; (the number of code words with
i nonzero symbols) cannot be expressed by some elegant formula (with exception of
rare family of codes). They have to be calculated by counting the weight of every
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individual code word. As the number of code words is equal to 2¥, these calculations
are not feasible for long code words.

To get more effective calculations, it is useful to apply the MacWilliams Identity,
which links the weight structure of the given code and its dual code. These compu-
tations use another representation of the weight structure by the weight enumerator
pw(z, K). It is the following formal polynomial:

n

pw(K,z) =) Az’ (3)
i=0
3.2.1. Dual code

We define for the binary words u = ujus ... u, and v = vivy ... 0,

u-v =Y u- v (4)
i=1

This bilinear form is usually referred as inner product, despite it does not satisfy
condition that from u - u = 0 follows v = (0,0,...,0). This is a consequence of the
fact that in the space Zs it is 1 +1 = 0.

A dual code to the linear binary (n, k)—code K is alinear binary (n, n—k)—code K=+
consisting from all words u € (Z2)", whose inner product with every code word from
the code K is equal to zero:

u€ K+ <= wu-v=0forevery v € K. (5)

If the code K is a systematic code with generator matrix G = (F|B), where
E is the identity matrix and B is some k X ¢ matrix, then the dual code K+ has
a generator matrix G+ = (BT|E), where BT is the transposed of the matrix B.
3.2.2. MacWilliams Identity

The following formula is the MacWilliams Identity for binary codes:

1—x
2"pw(K+, 2) = (14 2)" (K ) . 6
pw(K™,2) = (1+2)"pw (K, 7= (6)
The advantage of this formula is that the dual code has much fewer code words
(2n~* << 2k because typically, n — k = ¢ << k) and then it is significantly easier
to compute the weight distribution for a dual code.

4. Message doubling

A natural procedure to ensure authenticity of the message is to use two inde-
pendent transmission systems and to send the safety relevant message twice. The
received message is considered undamaged only if both copies are delivered and theirs
contents are matching.
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The situation with a missing message is trivial, so we focus only on the case
when both copies arrived and their length is preserved (verification of the correct
length of the message is done by other techniques). In the BSC model (independent
transmission of single symbols — bits), it is equivalent to a serial transmission using
a single transmission channel.

4.1. Repetition of the message

A plain repetition of the message with length equal to k is represented by the
linear binary (2k, k)—code with binomial weight structure, where

Ay = (1) forj=0,... .k (7)
Agj_l = 0 fOI'j: 1,...,]{3. (8)

The minimal distance of the code is equal to 2, which is insufficient for most purposes.

More useful is a repetition of the message already protected by some linear
code. Consider a binary message of length k. This message we protect by a lin-
ear binary (n, k)-code K4 with minimal distance d and with known weight structure
A = (Ap, A1, As, ..., A,). Then we send this message twice.

This procedure corresponds to the protection of the message with linear binary
(2n, k)—code Kp. The minimal distance of this code is equal to 2d and its weight
structure, denoted as D = (Dy, Dy, Da, ..., D,), is given by the weight structure of
the code K 4:

ng: Aj forj:0,...,n (9)
D2j71 = 0 fOI'j = 1,...,77,. (10)
The probability of undetected error in the BSC of the code Kp is then

Sy n—1i - ] n—i\2

Pua(Kp,pe) = Y pb(1=p)" " Dy = (b (1= pe)"™") A (11)
i=2d i=d
Obviously, we have

Pud(KD7') < Pud(KA,.). (12)

The following graph illustrates the situation for one sample code with length
n = 32 and with ¢ = 8 control bits. (Note: it is a shortened cyclic code generated
by the polynomial 28 + z7 + 2% + 1 — for explanation see e. g. [3].) The upper curve
represents the probability of an undetected error for the sample code, the lower curve
represents the corresponding probability with repetition of the message. The vertical
axis is in logarithmic scale.

Let us consider the lower bound of the function Pg(K4,.) as a Agp?(1 —p,
The ratio between the lower bounds for the codes Kp and K4 is pd(1 — p.)"~%, and
the minimal improvement is obtained for p. = d/n. Hence with increased length n
the maximal value of the lower bound decreases significantly slower than the value
P.i(Kp,pe). From this it is evident that the minimal distance is a very important
parameter, which has a dominant influence to the detection properties of doubling
messages.

y
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Figure 1: The probability of an undetected error for the sample code (upper curve)
and for the same code combined with repetition of the message. Horizontal axis: bit
error rate p,, vertical axis: logarithm of probability of undetected error P,4(pe).

4.2. Double encoding of the message

In some situations a more sophisticated approach can be useful. We protect
a binary message M of length k by a linear binary (n,k)—code K4 with known
weight structure A = (Ao, A1, Ag, ..., Ay); we denote this encoded message by M 4.
Then we repeat this procedure with the original message M and with another linear
binary (n,k)—code Kp with weight structure B = (By, By, Ba, ..., B,); denote the
encoded message by Mp. Finally we send both messages M4 and Mpg using two
separate transmission lines.

One advantage of this approach is that the received messages are “signed” — if
one of the messages M4 and Mp is wrong, we know on which transmission line (or
in which encoder) the failure occurred. More important, this technique protects
against the situation, when two copies of one received message are handled as two
independent messages.

4.2.1. Weight structure

The two-transmission-lines configuration is in the BSC model equivalent with
transmission of concatenated messages M, and Mpg. This corresponds with some
linear binary (2n, k)—code K 4. Unfortunately, the weight structure of the code K ap
cannot be derived from the weight structures of the codes K4 and Kpz. However,
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the number of information bits k is equal for all three codes K4, Kp and K45 and
therefore if the calculation of the weight structure of the codes K 4, K g is manageable,
then for the code K 45 the computation is practicable as well.

The questionable situation occurs, when the number of information bits & is too
high and it is impossible to generate 2* code words in a reasonable time. The dual
codes to the K4 and Kp are (n,n — k)—codes, and if the number of the redundant
bits ¢ = n — k is acceptably small, it is possible to compute the weight structures
of these duals and then use the MacWilliams identity (6) to compute the weight
structures of the codes K4 and Kp.

However, the dual code to the code K45 is a (2n,n + ¢)—code and generation of
the 2" code words may be impossible, as in a typical case the number of information
bits k is considerably greater than the number of control bits ¢ = n—k. This problem
can be solved by utilization of the special form of the code dual to K4p.

Let us assume that the codes K, and Kpg are systematic codes. This is a rea-
sonable assumption, because every linear code is equivalent with a systematic code.
Then the codes K4 and Kp have generator matrices in the form G4 = (F]A) and
Gp = (F|B), respectively. A generator matrix of the code K4p is Gap = (F|A|E|B),
and there exists an equivalent generator matrix (F|F|A|B). Then a generator matrix
of the dual code K4 has the following form:

FE EF 0 O
Gip=1| 4" | 0 E 0 |, (13)
BT 0 0 FE
where 0 denotes a zero matrix.
The matrix .
. [ A E 0
(o n) (1)

derived from the Gp, is a generator matrix of some (k + 2c¢,2c)—code K*. In
the favourable case it is acceptable to generate 22¢ code words and enumerate their
weights.

Computation of the weight structure of the code K 4p is based on more detailed
information about weights of the code words of the code K*. Rather than the weight
structure we compute a matrix of weight structures. We split a code word into two
parts: the information part of length 2¢ and the control part of length k. Then we
construct a matrix N = (n;;), where n;; is the number of code words of the code K*
with weight of the information part equal to ¢ and weight of the control part equal
to J.

Every code word of the code K4p is the sum of two words v + w:

e v = (u,u,0), where u is an arbitrary binary word of length k& and o is a zero

vector of length 2¢, and

e w = (wy,0,wy), where (wy,ws) is a code word of the code K* (w; consists of
its first k bits, wy is the rest) and o is a zero vector of length k.
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Consider a word w with weight of w; equal to ¢ and weight of ws equal to j. We
add to this word every possible word of the type v = (u,u,0). For every position,
where it is one in the word w; and zero in the word u, the weight of the sum v + w

increases by 2. Then, for given w there exist (ﬁ:) words with weight @ 4+ j + 2m.

The number of these words w is 2/n;;. Adding these contributions for all indices i
and j we obtain the desired weight structure of the code K4z and finally by means
of the MacWilliams Identity (6) the weight structure of the code Kp.

This procedure is quite complicated, nevertheless, our computations show, that
for a code with 16 control bits it is fully manageable on ordinary personal computer.

4.2.2. Upper estimate of P,;(Kp,.)

In case the enumeration of the 22¢ code words of the code K* is computationally
too difficult, but 2¢ code words of the codes K4 and Kp is still computationally
accessible, we can estimate the maximal value of P,4(K ap,.) by the following con-
struction.

We use the known weight structures A = (Ag, 41, ..., A,) of the code K4 and B =
(Bo, By, ..., By) of the code Kp to create a new weight structure C' = (Cy, C4, . .., C,)
of the fictive code Ky. The value of C; we define as the maximum value of A;, B;.
Then we consider doubling of the message with this fictive code Ky as described
in Section 4.1 and enumerate the upper bound of the P,4(Ky,.). This is the upper
bound for the function P,4(Kap,.) as well.

5. Conclusions

Repetition of the message is a natural and undemanding method of protecting its
content. In the safety relevant applications it is not a sufficient technique. Therefore,
more sophisticated variations of this principle can be useful as additional defence.

Providing the probabilistic analysis of the code using some of these variants of
message doubling is surprisingly complicated. Nevertheless, an effective, though not
elegant, method for necessary computations was developed.
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1. Introduction

Modelling moving interfaces is an important issue in many research fields and in
several real world applications. In many natural phenomena the front propagates
into systems characterized by randomness and therefore the motion of the front gets
a random character. Here a novel formulation for modelling random front motion is
presented and its application to wildland fire propagation discussed.

Wildland fire propagation is a complex multi-scale, as well as a multi-physics and
multi-discipline process, strongly influenced by the atmospheric wind. Wildland fire
is fed by the fuel on the ground and displaced, beside meteorological and orographical
factors, also by the hot air that pre-heats the fuel and aids the fire propagation. Heat
transfer is turbulent due to the heat release in the Atmospheric Boundary Layer and
the fire-induced flow. Moreover, fire generates firebrands which after landing on the
ground act as new sources of fire. Both turbulence and jump-length of firebrands
are random processes that affect the fireline propagation.

Fire propagation has been mainly modelled in the literature by using methods
for simulating moving interfaces as the Eulerian level set method (LSM) [17], see
e.g. [6, 7], or the Lagrangian discrete event system specification (DEVS) [4, 11] with
the fire propagation solver ForeFire, see e.g. [3, 2|, and reaction-diffusion type equa-
tions, see e.g. [1, §].

These two approaches, namely that based on moving interface methods and that
based on reaction-diffusion equations, are considered alternatives to each other be-
cause the solution of the reaction-diffusion equation is generally a continuous smooth
function that has an exponential decay, and it is not zero in an infinite domain, while
methods for simulating moving interfaces are associated to an indicator function that
is 1 in the inner domain and 0 outside. However, when random processes (as for
example hot air turbulent convection and fire spotting) are taken into account ac-
cording to the proposed formulation, these two approaches can indeed be considered
complementary and reconciled.

2. Random front model formulation

The proposed approach is based on the idea to consider the motion of the front
split into a drifting part and a fluctuating part and the front position is split cor-
respondingly. This splitting allows specific numerical and physical choices that can
improve the algorithms and the models. In particular, the drifting part can be re-
lated to existing methods for moving interfaces, for example, the Eulerian LSM [17]
or the Lagrangian DEVS [4, 11], and this permits the choice of the best method
for any specific application. The fluctuating part is the result of a comprehensive
statistical description of the system which includes the random effects in agreement
with the physical properties of the system.

The resulting averaged process emerges to be governed by an evolution equation
of the reaction-diffusion type. Hence, following the proposed approach, when fronts
propagate with a random motion, models based on methods for moving interfaces and
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those based on reaction-diffusion equations can indeed be considered complementary
and reconciled.

Let I' be a simple closed curve, or an ensemble of simple non-intersecting closed
curves, representing a propagating interface in two dimensions, and let S be the
domain of interest S C R2. In the case of I' being an ensemble of n curves, the
ensemble of the n interfaces is considered to be an interface.

The subset of the domain S corresponding to the region €2 enclosed by I' may be
conveniently identified by an indicator function I : S x [0, +oo[— {0, 1} defined as
follows

1, x e,
Io(z,t) = (1)
0, elsewhere.

In the case of a front line I' made of more than one closed curve, the domain €2 is
not simply connected, resulting in more than one sourrounded area evolving inde-
pendently.

The indicator function Iq at time ¢t = 0, i.e. Io(x,t = 0), describing the initial
topology of the front, is indicated in the following as I, (x).

Let X“(t, @) = T(t,To) + n“ be the w-realization of a random trajectory driven
by the random noise 7. For every realization, the initial condition is stated to be

X“(0,%y) =Ty. Using the sifting property of é-function, i.e. g(x) :/g(i) d(x — =) dz,

the evolution in time of the w-realization of a random front contour v*(x, t) is given
by

Pl t) = [ (@) Sl — X(t,30)) dao. 2)
S
which in terms of the random indicator Ig.(x,t) reads
Toe(z,t) = / T (o) (2 — X (1, 70)) d
S
= (= X1, 30)) dm = / Sz — X(LE)dE,  (3)
Qo Q(t)

dx
where an incompressibility-like condition d—_o =1 is assumed.
T

Let @e(x,t) : S x [0, +00o[— [0, 1] be an effective indicator. It may be defined as
(@, t) = (Too(@, 1)) = </ (5(:1:—X”(t,f))d§> :/ Oz — X°(1, 7)) dF
Q(t) Q(t)
~ | t@it)dz = | 1o@.0f(@ido)dz. (4)
Q@) s
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where (-) is the ensemble average and f(x;t|Z) = (§(x—X“(t,T))) is the probability
density function (PDF) of fluctuations of the perimeter around the contour I'(¢).

Since the present approach is formulated to study the effects of an underlying dif-
fusive process in front propagation, according to classical properties of diffusion, the
resulting PDF f(«;t|®) of the stochastic process X“ is considered to be unimodal
and its mean and median are coincident. This means that f(x;t|Z) is a symmet-
ric probability distribution which normalizes after integration both over x and .
Consequently, values of the effective indicator ¢.(x,t) range in the compact inter-
val [0, 1].

The front line I'(¢) can be obtained by existing methods for moving interfaces,
as for example the already mentioned LSM or DEVS. For a deterministic motion,
it holds f(x;t|x) = 6(x — @) and the result reduces to that of the chosen moving
interface method, i.e. Io(x,t).

The evolution of the effective indicator ¢.(x,t) can be estimated by applying
in (4) the Reynolds transport theorem [12]

O = a—fdiJr Vz- [V(Z,t)f(z; t|zT)] dx . (5)

Let f(x;t|Z) be the solution of the evolution equation,

of

5y =Ef f@i0@) =5z — ). (6)

with & = £(x) a generic evolution operator not acting on both Z and ¢, then equa-
tion (5) becomes the following reaction-diffusion type equation

0pe
ot

— &gt / Vo V@S] e, (7)

where V' (x,t) is the expansion velocity of the domain €)(¢) determined by d&/dt =
V(z,t) = V(&,t) n and n is the normal to the front contour.

Finally, the front line is obtained by choosing an arbitrary threshold value ¢
which serves as the criterion to mark the inner region Q. (t) = {@ € S|p.(x,t) > ¢}

The above formulation has been considered for applications to diffusive media
governed by fractional differential equations [9, 10]. In the following section, the
application to wildland fire propagation is discussed.

3. Application to wildland fire propagation

In wildland fire propagation modelling, both the LSM and DEVS are adopted to
simulate the evolution of the burning area, see e.g. [6, 7| and [3, 2|, respectively. The
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present approach can be used with both the methods to include random processes
such as turbulence and fire spotting.

In particular, let X“(t,Zo) = Z(t, To) + x* + & be the w-realization of a random
trajectory driven by the random noises y and £ corresponding to turbulence and
fire spotting, respectively. For every realization, the initial condition is stated to
be X“(0,%y) = @, Average turbulent fluctuations are zero, i.e. (x) = 0, and
fire spotting is assumed to be independent of turbulence and to be a downwind
phenomenon such that ¥ = (¥ ny, where /¢ is the landing distance from the main
fireline such that (¢) > 0 and ny is the mean wind direction.

The modelling of the random processes is handled by the PDF f(x;t|x), account-
ing for the sum of the two independent random variables (Z + x) and &, representing
turbulence and fire spotting respectively. This means that f(x;¢|Z) is determined
by the convolution between the PDF corresponding to (Z + x), hereinafter labeled
as GG, and the PDF corresponding to &, hereinafter labeled as q.

Since fire spotting is assumed to be an independent downwind phenomenon, the
effect of fire spotting is accounted for only the leeward part of the fireline. Taking
into account previous assumptions f(x;t|T) results in

/ Glx—x —Iny;t)ql;t)dl, if n-ny >0,
0

f(@;tlT) = (8)

G(x —T; ), otherwise .

Since the effective fireline contour ¢.(x,t) is a smooth function continuously
ranging from 0 to 1, a criterion to mark burned points have to be stated. For
example, points @ such that ¢.(x,t) > ¢ = 0.5 are marked as burned and the
effective burned area emerges to be Q. (t) = {x € S|p.(x,t) > " = 0.5}. However,
beside this criterion, a further criterion associated to an ignition delay due to the
pre-heating action of the hot air or to the landing of firebrands is introduced. Hence,
in the proposed modelling approach, an unburned point « will be marked as burned
when one of these two criteria is met.

This ignition delay, due to a certain heating-before-burning mechanism, can be
depicted as an accumulation in time of heat [13, 14], i.e.

vt = [ plan) . )

where 1(x,0) = 0 corresponds to the unburned initial condition and 7 is a character-
istic ignition delay that can be understood as an electrical resistance. Since the fuel
can burn because of two independent pathways, i.e. hot-air heating and firebrand
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landing, the resistance analogy suggests that 7 can be approximatively computed as
resistances acting in parallel, i.e.

1 1 1 Tr 4+ T
S AL (10)
T Th Tf ThTf

where 75, and 74 are the ignition delays due to hot air and firebrands, respectively.
The amount of heat is proportional to the increasing of the fuel temperature
T(x,t), then
T(x,t) —T(x,0)
Tign — T(2,0)

b(@.t) o T(x.1) < Tign, (11)

where Tjg, is the ignition temperature.

Finally, when ¢ (x,t) = 1 the ignition temperature isassumed tobereached, so
that anew ignition occurs in (z,t) and, with reference to (4), the modelled fire goes
on by setting Io(x,t) =1. Then, as a consequence of the heating-before-burning mech-
anism described in (9), the domain §2(¢) is established as Q(t) ={x € S|lo(x,t) =1}
which is hard to be analytically evaluated but numerically computed only. The ex-
pansion velocity of the domain Q(t) in the normal direction is stated by means of
the prescription of the so-called Rate Of Spread (ROS).

4. Numerical simulations

To estimate the performance of the LSM based model and DEVS based model
coupled with the random processes a series of simulation experiments are conducted.
For LSM, a formulation developed in References [7, 6] is followed, while for DEVS,
ForeFire fire simulator [3] is used. Both these models have a different formulation to
incorporate the nature of vegetation and slope hence, it is tried to parametrise both
models in an identical setup.

In the present study, for brevity no particular type of vegetation is defined and
simulations are carried out with a pre-defined value of ROS. It is assumed that
the ROS remains constant for a particular terrain. It is emphasised that these are
simplified and idealised test cases and no attempt is made to choose the parameters
for a realistic setup. The present scope of this work is to provide a first look into
the investigation of comparing LSM and DEVS based fire simulations with random
processes.

A flat area of hypothetical homogeneous vegetation spread over a domain size of
5000 m x 5000 m is selected for simulations. Different values of the ROS are utilised
for different test cases. The ROS is assumed to be 0.05ms™! in no wind conditions
while, in the presence of wind, it is estimated by the 3% ROS model [2]:

ROS =0.03U - #, (12)
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where, U is the mean wind velocity. Since, 3% ROS considers the propagation
only towards the mean wind direction, in order to study the evolution of the fireline
towards the flank and rear the following ROS is also considered [6]:

e+ aVToosd, 6 <E, -

ROS(U,0) = 2
(U,0) {50(04+(1—a)]sin9\), if 0] > T,

where, ¢, is the flank velocity and (ag,) is the rear velocity with « € [0,1], and 6 is
defined as the angle between the normal to the front 7 and the mean wind direction
ny. For the present setup, we assume the values @ = 0.8, n = 3, a = 0.5 m"/2s7 /2,
£, =0.2ms™ .

In LSM, the domain is discretised with a Cartesian grid of 20m in both z and y
directions, while for DEVS the resolution of the simulation is defined in the terms
of quantum distance Ag and perimeter resolution Ac [3]. The quantum distance Ag
is defined as the maximum allowable distance to be covered by a particle at each
advance, while a measure of Ac is used to decompose/regenerate/coalesce two par-
ticles on propagation. The choice of Ag and Ac is dependent on the type of problem,
and in the present study two sets of values are used. The simulation is performed
with Ag = 4m, Ac = 18 m for zero wind; and Aqg = 0.3m, Ac = 8 m in the presence
of wind. To avoid instability in the presence of wind, Agq is chosen to be of a much
higher resolution than the wind data (20m in this setup). The time is advanced
according to the events in ForeFire, and the simulation can move ahead according
to a user defined time. To facilitate a comparison between the two models, the sim-
ulation in DEVS model is advanced by the time step computed according to the
Courant—Friedrichs-Lewy (CFL) criteria in LSM.

The mean wind, wherever used, is assumed to be constant in magnitude and
direction. The turbulence is modelled according to a bi-variate Gaussian PDF

N (z -7+ (-7’
Glx—=;t) = 2mo?(D) exp {— 202(1) } , (14)

where 0?2 is the particle displacement variance related to the turbulent diffusion

coefficient D, such that ((x —7)?) = ((y —¥)?) = o%(t) = 2Dt. In the present
model, the whole effect of the turbulent processes over different scales is assumed to
be parametrised by the turbulent diffusion coefficient only.

The phenomenon of fire spotting is included according to the discussion provided
in References [16] and [5]. In Reference [16] it is shown that the firebrand distribution
followes a bimodal distribution but only the contribution of the firebrands with short
landing distance is significant because the ones with long-distance landing reach
the ground in charred oxidation state. According to this, the distribution of the
firebrands follows a log-normal distribution [16]

1 (Inf — p(t))’
ms@)z“p{_ 252(t) }
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where, p(t) = (Inf) and s(t) = ((Inf — u(t))?) are the mean and the standard
deviation of In ¢ respectively. They are stated to be [15]

p= 132130 —0.02 (16)
s =4.95I 00U —3.48 (17)

where U is the magnitude of the mean wind and Iy = I + I, represents fire intensity /
enriched by the tree torching intensity I;. The turbulent diffusion coefficient D and
ignition delay 7 are also assumed to be constant throughout the simulations. The
value of D is assumed to be 0.15m?s~! and the ignition delay for hot air and firebrand
is fixed at 600s and 60s respectively. The initial fire intensity is assumed to be
10000 kWm~! and the tree torching intensity is fixed at 0.015kWm™!.

A series of idealised simulation tests are made to investigate the behaviour of
the two models with identical initial conditions. Different simulations are performed
both in the presence and the absence of wind by neglecting and considering the
random processes. The first case evaluates an isotropic growth of the fireline for zero
wind in both the models by neglecting all the random processes. In the second test,
the spread of fireline for different ROS in different directions is studied. The third
test discusses the propagation of the fireline with wind when the ROS is defined
according to the 3% formula (12) and to formula (13). The random processes are
neglected for the first three test cases. The fourth test presents the evolution of
fireline when turbulent processes are included both in the presence and absence of
wind. The last test evaluates the performance when fire spotting also included along
with turbulence. Firebreak lines are also introduced in the last two tests to highlight
the propagation of the fireline while encountering areas of null fuel. It should be
noted that for brevity fire spotting is assumed to be an independent downwind
phenomenon. Hence, the effect of fire spotting is accounted for only the leeward part
of the fireline. Also, to simplify the simulation, the region across and behind the
centre of the initial fireline is demarcated as the leeward side and the windward side
respectively.

5. Discussion

Figure 1 presents the evolution of the fireline for a circular initial condition of
radius 300 m for both LSM based model and DEVS based model. In the absence
of the wind, the initial circular fireline is transported into a isotropic growth, and
the circular contours correspond to 40 min isochronous fronts. It can very well ap-
preciated that with the same value of ROS and initial conditions, the two different
tracking schemes provide an identical evolution of the fireline. Modelling real sit-
uations of fire involves presence of zones without fuel, where the ROS is zero. In
case of firebreak zones, pure LSM and DEVS are inherently unable to simulate the
realistic situations of fire overcoming a fire break. Figure 2 shows that the fireline
fails to propagate across the firebreak when no random processes are included. The
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Figure 1: Evolution in time of the fireline contour without random processes and
zero wind for a) LSM and b) ForeFire. The initial fireline is a circle of radius 300 m.
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Figure 2: Same as Figure 1, but in the presence of a firebreak zone (60 m wide).
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Figure 3: Same as Figure 1, but with a non-homogeneous ROS. The ROS is 0.3 ms™*
0.2ms™ %, 0.1ms™! in upper-left, upper right and bottom quadrants respectively.

I

evolution is shown only upto 140 min, but an extended run upto 250 min indicates
the limitation of the models to simulate the fire jump across the break zone.

Figure 3 presents the growth of an initial spot fire but with a non-homogenous
ROS in absence of any wind. The different values of the ROS can be attributed to
different fuel types. The fireline propagates with different speed in the three direc-
tions. In the absence of wind, the two tracking methods show an identical behaviour
in simulating situations with constant ROS. This paves way for a comparison of
situations with higher variability and complexity.
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Figure 4: Same as Figure 1, but when the mean wind velocity is 3ms™" in the positive

z-direction.
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Figure 5: Same as Figure 4, but when the initial profile is square with side 600 m.

Figure 4 shows the evolution of the firefront with a circular initial profile (with
radius 300 m) in case of a light wind of 3ms™! directed in the positive x direction.
The isochronous fronts are plotted at every 20 min and follow an oval shape for both
the models. The fire contours in DEVS based model diverge slightly from the mean
wind field and an increasing flanking fire develops over time. This divergence in the
evolution of firefront occurs due to differences in the computation of the normal for
both the models. The computation of normal for an active fire point in DEVS model
is approximated as the measure of the bisector of the angle between the point and
its left and right neighbours. This fact can be very well appreciated when an initial
square profile is considered.

Figure 5 shows the evolution of the fire spread with square initial profile of
side 600 m. Under the effect of the constant zonal wind, the evolution in LSM
strictly follows the initial square shape, while in ForeFire the initial angular points
are transported to provide a flanking spread. The 3% ROS does not model the
rear and back fire but DEVS generates spurious flanking fire that gives a realistic
behaviour to the fire spread even if due to the approximate construction of the
front normal. The differences in the evolution of flank fireline are also studied by
introducing different ROS for the head, flank and rear directions according to (13).
Here 60 is defined as the angle between the normal to the front and the mean wind
direction. Since the normal computation in DEVS approach is approximate, two
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Figure 6: Evolution in time of the fireline contour without random processes with
ROS given by formula (13) where 6 is the angle between the outward normal in
a contour point and the mean wind direction for a) LSM and b) ForeFire. The mean
wind velocity is 3ms~! in the positive a-direction.
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Figure 7: Same as Figure 6, but where @ is the angle between the line joining a contour
point and the centre of the initial burned area.

separate tests are performed to evaluate effect of the normal on the spread: firstly
when 6 is computed according to the definition, and secondly, to ensure identical
angle for both methods, when 6 is assumed to be the angle between the line joining
a contour point and the centre of the initial burned area. Figure 6 shows that when
0 is computed in accordance to the definition, the simulations for head and rear
fires are identical, but spurious flanks are observed for DEVS based model. On the
other hand, it is evident from Figure 7 that identical values of 6 shows an identical
propagation of the fireline in all directions.

As shown above, in case of firebreak zones pure LSM and ForeFire are inherently
unable to simulate the realistic situations of fire overcoming a fire break. But Figure 8
shows that with the introduction of turbulence the models can simulate the effect
of hot air to overcome firebreak zone. The value of turbulent diffusion coefficient is
assumed to be 0.15m?s~!. The evolution of the fireline is almost similar for both the
models, though a slight underestimation is visible in ForeFire with respect to the LSM
based model. Stronger turbulence causes a more rapid propagation of the fireline
and an earlier ignition across the firebreak zone. A detailed analysis of the effect of
varying turbulence over long-term propagation with the LSM can be found in [13, 14].
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Figure 8: Evolution in time of the fireline contour with turbulence in zero wind for
a) LSM and b) ForeFire. The initial fireline is a circle of radius 300 m. The turbulent
diffusion coefficient is 0.15m?s~ .
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Figure 9: Same as Figure 8, but when the mean wind velocity is 3ms™! in positive
y-direction.

Figure 9 presents the effect of inclusion of turbulence with a non-zero wind profile
and 3%-wind ROS. The effect of turbulence is most pronounced in the direction of
the mean wind and it clearly shows that randomisation of the fireline permits the
fire to overcome the obstacle without fuel along with an increased growth in the
flank-fire, back fire and head fire. Both models show almost similar characteristics
in modelling the spread of fire, though the flank fire has a slightly larger spread in
ForeFire. This is due to the fact the particle transportation in the direction of the
front normal is computed with an approximated method.

Another aspect contributing towards the increase in the fire spread and allowing
new fire ignitions across obstacles due to fire spotting is presented in Figure 10.
With inclusion of fire spotting along with turbulence, the evolution of the fire front
is faster in comparison to the effect of turbulence alone as seen in Figure 9. The
region across the fire break has a quick ignition pertaining to the embers flowing
and landing with the effect of wind. It should be noted that within the considered
parametrisation (15) the phenomenon of fire spotting can only be observed in the
presence of the wind. The flank fire and the head fire are also well simulated in both
the models, and again a larger spread out the flanking fires is observed for DEVS.
Fire spotting along with turbulence has a remarkable effect on enhancing the fireline
and igniting secondary fires across the fire break zones.
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Figure 10: Same as Figure 9, but when phenomenon of fire-spotting is also included.

6. Conclusions

This paper describes an approach to model the effects of the random processes
in the propagation of the wildland fires. The propagation of the fire can be split into
a drifting part and a fluctuating part. The fluctuating part is generated by a com-
prehensive statistical description of the system and includes the effects of random
processes in agreement with the physical properties of the system.

The drifting part is modelled in terms of a deterministic position determined by
Eulerian LSM or Lagrangian DEVS with a certain ROS, and the fluctuating part
according to the PDF of the random displacement of points marked as active burn-
ing points. Numerical simulations show that this formulation emerges to be suitable
for both LSM and DEVS based models to manage the real world situations related
to random character of fire e.g., increase in ROS due to pre-heating of the fuel by
hot air and vertical lofting and transporting of firebrands and fire overcoming no
fuel zones. DEVS computes an approximated outward normal of the fire perimeter
that generates differences with the LSM. Such differences result in spurious flanking
fires, which however provide a more realistic fire contour. The two models perform
in agreement with each other and can be complementary to each other for simple
situations, but for increasing complexity the introduction of random processes am-
plifies differences between DEVS and LSM which are mainly due to the approximate
computation of normal.
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1. Introduction

Performing a linear transformation y = Az with an n x n matrix A requires n?
operations. We talk about a fast implementation of such a transformation if we can
lower the number of operations, such as by using the Fast Fourier Transform (FFT) [3],
which caused a revolution in signal processing by bringing the cost down to nlogn.

Hand-in-hand with the operation cost go memory requirements. In a straightfor-
ward implementation we need additional n memory locations. It may be desirable to
perform the transformation in place, that is, the output y is stored directly into the
locations occupied by the input x, requiring possibly some small number, indepen-
dent of n, of memory locations. Fast implementations usually allow such memory
savings.

Not long after the FFT technique for reducing the cost similar results appeared
for Walsh-Hadamard transforms [5, 12]; this development has continued to the
present [13] and now includes Hadamard transforms other than those based on Walsh
matrices [1]. Surprisingly, all of these results appear to be based on considerations
following those in the development of the FFT.
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In this paper we offer a different way to derive fast and in-place algorithms,
not only for Hadamard matrices but also for their generalization, Hadamard matriz
polynomials introduced in Section 3. Our approach is based on the factorization of
invertible matrix polynomials discussed in Section 2 and allows not only the deriva-
tion of the