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Dedicated to Prof. Lawrence Somer on his 70th birthday





CONTENTS

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Preface

Whoever claims to understand cosmology

only proves he has not understood anything at all.

Antońın Vrba

(Paraphrased quotation of Richard Feynman)

According to the standard cosmological model, our Universe needs a significant
amount of dark matter, about six times more than that of the usual baryonic matter,
besides an even larger amount of dark energy. But to date, both dark matter and
dark energy have remained conceptually elusive, without concrete evidence based
on direct physical measurements. Yet another subtle issue is that the Friedmann
equation – the cornerstone of modern cosmology – was derived from the system of ten
Einstein’s equations applied to a perfectly symmetric universe, which is homogeneous
and isotropic for every fixed time instant. So, the question is whether one can perform
such excessive extrapolations and, in particular, at which scale the effect of Hubble
expansion is manifested.

Therefore, it is timely to gather specialists from different disciplines – ranging
from galaxy evolution to planetology and from empirical statistics to quantum field
theory – to discuss the problem of existence and observable manifestations of dark
matter and dark energy at various scales (particularly, in our local cosmic neighbor-
hood), both from the theoretical and observational points of view. To bring more
light into these topics, we decided to organize the International Conference Cosmol-

ogy on Small Scales 2018: Dark Matter Problem and Selected Controversies in Cos-

mology. It was held at the Institute of Mathematics of the Czech Academy of Sciences
in Žitná 25, Prague 1, from 26 to 29 September 2018 (see css2018.math.cas.cz).
This was a continuation of our previous conference Cosmology on Small Scales 2016:

Local Hubble Expansion and Selected Controversies in Cosmology, which took place
two years ago (see css2016.math.cas.cz).

The main topics of the new conference “Cosmology on Small Scales 2018” were:
mathematical aspects of cosmological phenomena at various scales; arguments for
and against dark matter, and revisiting the foundations of physics; alternative mod-
els for dark matter and dark energy; a systematic discord in the value of the Hub-
ble constant at various scales; complementary redshifts of non-cosmological nature;
quantum effects on the early universe and their observational imprints nowadays. In
particular, in these Proceedings we present several papers showing that the claimed
amount of dark matter can be a result of vast overestimation and does not conform
to reality.

In fact, only a fraction of the presented reports is included into these Proceedings;
another part has been already published elsewhere, and their authors preferred to
avoid duplicate publication. At the end of the Proceedings, there are several papers
on “alternative cosmological theories”. Although they may be questionable and
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the Scientific Committee is not responsible for their content, we believe that it is
reasonable to present them to the wide audience.

The Scientific Committee consisted of

Dr. Yurii Dumin (Moscow State University & Russian Academy of Sciences, Russia)
Prof. Itzhak Goldman (Afeka College, Israel)
Prof. Igor Karachentsev (Special Astrophysical Observatory of RAS, Russia)
Prof. Jaroslav Klokočńık (Astronomical Institute of CAS, Czech Republic)
Prof. Sergei Kopeikin (University of Missouri, USA)
Prof. Pavel Kroupa (University of Bonn, Germany)
Prof. André Maeder (Geneva Observatory, Switzerland)
Assoc. Prof. Attila Mészáros (Charles University, Czech Republic)
Prof. Marek Nowakowski (Universidad de los Andes, Colombia)
Prof. Jan Palouš (Astronomical Institute of CAS, Czech Republic)
Prof. Alessandro Spallicci (University of Orleans, CNRS, France)

Local Organizing Committee consisted of

Prof. Michal Kř́ıžek — Chair (Czech Academy of Sciences, Czech Republic)
Dr. Yurii Dumin — Vice-Chair (Moscow State University & Russian Academy of
Sciences, Russia)
Assoc. Prof. Tomáš Vejchodský (Czech Academy of Sciences, Czech Republic)
Hana B́ılková (Institute of Computer Science of CAS, Czech Republic)

The Local Organizing Committee is deeply grateful to all authors for their con-
tributions and the support of RVO 67985840 (Institute of Mathematics of the Czech
Academy of Sciences). Out sincere thanks go also to all active members of the Cos-
mological Section of the Czech Astronomical Society for their continual help. Finally,
we are indebted to Hana B́ılková for technical assistance in the final typesetting and
Tomáš Vejchodský for his helpful cooperation.

These Proceedings can be downloaded from the website:

http://users.math.cas.cz/∼krizek/list.html

Michal Kř́ı̌zek and Yurii V. Dumin
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Conference Cosmology on Small Scales 2018
Michal Kř́ıžek and Yurii Dumin (Eds.)
Institute of Mathematics CAS, Prague

SEVEN DECADES OF PROFESSOR LAWRENCE SOMER

Michal Kř́ıžek

Institute of Mathematics, Czech Academy of Sciences, Žitná 25,

CZ-115 67 Prague 1, Czech Republic, krizek@math.cas.cz

We do not count a man’s years, until he has nothing else to count.

Ralph Waldo Emerson, 1803–1882

Days, hours, minutes, seconds, . . . how many of them are there? A man full of
scientific idealism arose from a boy. He established his direction of research and
set off on a journey to find the unknown. He lived, worked, and published. His
knowledge and experience reached a very high level. He has a large range of vision,
bird’s-eye view, and clearly sees all circumstances. He knows how and where to tackle
the problem. He feels the enthusiasm of his colleagues and includes his own, spiced
by knowledge and practice. He stands at the birth of new theories, he is young,
really young . . . This is Professor Lawrence Somer, Larry, as his friends call him.
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The first time I met Larry was in 1999 at the Institute of Mathematics of the
Czech Academy of Sciences. We immediately found that our interests have many
intersections. From that time we wrote over 30 scientific papers on number theory,
and also astronomy and cosmology, see e.g. [8]–[20], six monographs [2]–[7], and
over 20 papers popularizing exact sciences. The monograph [2] appeared in the
prestigious publishing house Springer-Verlag in New York in 2001. Its second edition
was published in 2011. Our second monograph [3] even got a third edition. It contains
many applications of number theory to solve real-life technical problems. Recently
we have published also two monographs [4] and [6] on cosmology.

Professor Lawrence Somer, PhD., was born on October 10, 1948, in New York
City. He has been fascinated by astronomy since his youth. He considers astronomy
to be like a secular religion, since astronomical events take place on an almost in-
conceivably vast scale. He has read popular journals on astronomy such as Scientific
American and Astronomy Magazine since his teenage years. In 1966–1970 he studied
mathematics at Cornell University in Ithaca in New York State and got a B.A. de-
gree cum laude in mathematics. In 1972 he received his M.A. in mathematics from
the University of Illinois. During the period 1970–1975 Larry worked as Graduate
Teaching Assistant in Mathematics at the University of Illinois, Champaign-Urbana.
Then he was a mathematical statistician in the U.S. Department of Agriculture in
Washington, D.C. In 1985 he received his PhD. degree from the University of Illinois.
The title of his doctoral dissertation is: The divisibility and modular properties of kth-
order linear recurrences over the ring of integers of an algebraic number field with re-
spect to prime ideals. His supervisor was Professor Ernest Tilder Parker. During the
period 1984–1986 Lawrence Somer was visiting Assistant Professor of Mathematics
at George Washington University in Washington, D.C. From 1986 to 2009 he taught
mathematics at the Catholic University of America, Washington, D. C., and became
full Professor in 1995. At present, he is Professor Emeritus of Mathematics there.

Our long-term collaboration started on problems in number theory. Some of our
main results are surveyed in [1]. Then we concentrated on the mathematical model of
the astronomical clock in Prague in connection with its 600 year anniversary, see [12].
In [8] we introduced the term Šindel sequence named after Jan Šindel who invented
the mathematical model of the Prague horologe around 1410. Now this term appears
also in the On-line Encyclopedia of Integer Sequences (A028355, A028356). We also
derived a necessary and sufficient condition for a periodic sequence to be a Šindel
sequence.

In Washington, D.C., Larry Somer visited an astrophysical seminar for 10 years.
This enabled him to employ mathematical methods in astronomy and cosmology.
This seminar was also visited by Vera Rubin whose revolutionary ideas essentially
changed the theory of flat rotational curves of spiral galaxies. Later we wrote the
paper [17] on this topic. We calculated the gravitational potential of a flat disk
with symmetric distribution of mass density. Then we showed that the observed
flat rotational curves of spiral galaxies can also be explained without hypothetical
nonbaryonic dark matter.
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Ten years ago, I showed Larry how to derive the Friedmann equation from Ein-
stein’s equations. Then I introduced to him the cosmological parameters ΩM and ΩΛ

that represent the density of dark matter and dark energy. These parameters are
obtained from the Friedmann equation. He looked at me and said:

Oh I see, dark matter and dark energy exist by definition.

I think he is right. Larry as a mathematician is able to disregard inessential
things. His clear thinking allows to penetrate into the heart of the matter. From
that time we seek for various controversies of the standard cosmological model.

Professor Somer is a member of the Editorial Board of the journal The Fibonacci
Quarterly. The Somer pseudoprimes and Somer–Lucas pseudoprimes are called af-
ter him (see e.g. Wikipedia, Wolfram Mathworld, or the famous 1996 Ribenboim
monograph, or CRC Concise Encyclopedia of Mathematics, 2003, p. 2756). Lawrence
Somer wrote over 100 scientific papers (88 of them are recorded in the database of
Mathematical Reviews). His Erdős number is 2 (he wrote a paper with the out-
standing Polish mathematician Professor Andrzej Schinzel who is a coauthor of Paul
Erdős). Lawrence has also a paper with Peter Hilton who collaborated with Alan
Turing and several papers with Florian Luca who has over 600 records in Mathemat-
ical Reviews.

In January 2018, Prof. L. Somer was elected a foreign member of the Cosmolog-
ical Section of the Czech Astronomical Society (see users.math.cas.cz/∼krizek/

cosmol/seznam.html). He has been a member of the American Mathematical Soci-
ety, the Mathematical Association of America, and the Union of Czech Mathemati-
cians and Physicists. He has also been a member of Phi Kappa Phi National Honor
Society, Treasurer of the Catholic University of America Chapter of Sigma Xi Scien-
tific Research Society, the Chair of Undergraduate Committee of the Mathematics
Department at the Catholic University of America, and the Chair of Senate Faculty
and Economic Welfare Committee of the Catholic University of America. In 2009 he
was awarded the Josef Hlávka Literary Prize for the best scientific book published
in the Czech Republic in the category of the science of inanimate nature for the
monograph [3].

Felicitations: It is my privilege and honor to congratulate Professor Lawrence
Somer sincerely on his 70th birthday. I wish him good health and happiness for
many years to come. Meeting him was my great life luck.

Acknowledgement. The author is indebted to Jan Brandts and Jana Žd’́arská
for careful reading and valuable suggestions. The paper was supported by RVO
67985840 of the Czech Republic.
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Institute of Mathematics CAS, Prague

PROBLEMS WITH THE DARK MATTER AND DARK ENERGY

HYPOTHESES, AND ALTERNATIVE IDEAS

Mart́ın López-Corredoira1,2

1 Instituto de Astrof́ısica de Canarias
C/.Vı́a Láctea, s/n, E-38205 La Laguna, Tenerife, Spain

martinlc@iac.es
2 Department of Astrophysics, University of La Laguna

E-38206 La Laguna, Tenerife, Spain

Abstract: Two exotic elements have been introduced into the standard cos-
mological model: non-baryonic dark matter and dark energy. The success in
converting a hypothesis into a solid theory depends strongly on whether we are
able to solve the problems in explaining observations with these dark elements
and whether the solutions of these problems are unique within the standard
paradigm without recourse to alternative scenarios. We have not achieved that
success yet because of numerous inconsistencies, mainly on galactic scales, the
non-detection so far of candidate particles for dark matter, and the existence
of many alternative hypotheses that might substitute the standard picture to
explain the cosmological observations. A review of some ideas and facts is
given here.

Keywords: dark matter, dark energy

PACS: 95.35.+d, 95.36.+x

1. History of the idea of dark matter

The existence of dark or invisible matter detectable through its gravitational
influence has been known by astronomers for a long time now [14]. Bessel [15] in 1844
argued that the observed proper motions of the stars Sirius and Procyon could be
explained only in terms of the presence of faint companion stars. In 1846, Le Verrier
and Adams independently predicted the existence of Neptune based on calculations
of the anomalous motions of Uranus. Le Verrier later proposed the existence of the
planet Vulcan to explain anomalies in the orbit of Mercury, but he failed this time
because the solution was not invisible matter but a change of gravitational laws, as
was solved years later by Einstein with General Relativity. The dynamical analysis
of dark matter in form of faint stars in the Milky Way using the motion of stars was
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carried out by Lord Kelvin in 1904, Poincaré in 1906, Öpik in 1915, Kapteyn in 1922,
Jeans in 1922, Lindblad in 1926, and Oort in 1932 with different results [14].

With regard to extragalactic astronomy, Zwicky’s [100] 1933 paper on dark matter
in rich clusters applied the virial theorem to these data and found a mass-to-light
ratio of ∼60 in solar units (rescaled to the present-day value of the Hubble constant).
In 1959 Kahn & Woltjer [39] determined the mass of the Local Group and obtained
a mass-to-light ratio of 43 in solar units. In the 1950s, Page [71], [72] also found
that pairs of elliptical galaxies had a mass-to-light ratio of 66 in solar units. This
showed that such binaries must have massive envelopes or be embedded in a massive
common envelope. Similar results were obtained in the 1950s from 26 binary galaxies
by Holmberg [36]. In 1939 Babcock [5] first showed the need for dark matter for an
individual galaxy by measuring the rotation curve of the outer regions of M31 out
to 100 arcminutes (≈ 20 kpc) from its center. However, the majority of astronomers
did not become convinced of the need for dark matter halos in galaxies until the
publication of theoretical papers in the 1970s, such as the one on the stability of
galactic disks by Ostriker & Peebles [69]. Later, rotation curves in the radio by Albert
Bosma [18] and in the visible by Vera Rubin, Kent Ford, and Nortbert Thonnard [79]
easily convinced the community. This shows the typical mentality of astrophysicists:
accepting facts only when there is a theory to support them with an explanation,
a not-so-empirical approach that dominates the development of cosmology.

Cosmology has indeed played a very important role in the idea of dark matter on
galactic scales. The first predictions based on Cosmic Microwave Background Radi-
ation (CMBR) anisotropies were wrong. It was predicted in the 1960s that ∆T/T
should be one part in a hundred or a thousand [80]; however, fluctuations with this
amplitude could not be found from observations in the 1970s. In order to solve this
problem, non-baryonic dark matter was introduced ad hoc and was thought to be
composed of certain mysterious particles different from known matter. In a short
time, the connection between particle physics and the missing mass problem in galax-
ies arose. Many astrophysicists considered dark matter halos surrounding galaxies
and galaxy clusters possibly to consist of a gas of non-baryonic particles rather than
faint stars or other astrophysical objects. This was a happy idea without any proof;
there is no proof that directly connects the problem of the amplitude of CMBR
anisotropies with the rotation curves of galaxies or the missing mass in clusters, but
the idea was pushed by leading cosmologists, who made the idea fashionable among
the rest of the astrophysical community.

Part of the success of these non-baryonic dark matter scenarios in the halos of the
galaxies was due to the good agreement of simulations of large scale structure with
the observed distributions of galaxies. At first, in the 1980s, with the attempt to fit
the data using hot dark matter composed of neutrinos, the simulations showed that
very large structures should be formed first and only later go on to form galaxy-sized
halos through fragmentation, which did not match the observations [99], whereas cold
dark matter (CDM) models were more successful, at least on large scales (> 1Mpc).

This tendency towards selling a prediction of failure as a success for a model
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via the ad hoc introduction of some convenient form of unknown dark matter still
prevails. An instance of this predilection is the introduction in 2018 of some peculiar
form of dark matter [8] in order to cool the gas at z ≈ 18 and solving the dis-
crepancies in the measurements of 21 cm line amplitude with respect to the a priori

predictions [19].

2. Dark matter and inconsistencies of the theory at galactic scales

That there is some dark matter, either baryonic or non-baryonic, is clear, but
how much, and what is its nature? The success of the standard model in converting
a hypothesis into a solid theory depends strongly on the answer to these open ques-
tions. Stellar and cold gas in galaxies sum to baryonic matter content that is 8+4

−5%
of the total amount of the predicted Big Bang baryonic matter [10]. Where is the
rest of the baryonic material? What is the nature of the putative non-baryonic dark
matter required to achieve the current value of Ωm ≈ 0.3?

Current CDM models predict the existence of dark matter haloes for each galaxy
whose density profile falls approximately as r−2, although the original idea [98] con-
cerning hierarchical structures with CDM, which gave birth to the present models,
was that the dark matter was distributed without internal substructure, more like
a halo with galaxies than galaxies with a halo [9], something similar to the scenario
in References [51], [52].

Some authors have been led to question the very existence of this dark matter on
galactic scales since its evidence is weak [9], [59], [29], [90] and the predictions do not
fit the observations: CDM has a “small scale crisis” since there are some features of
the galaxies that are very different from the predictions of the cosmological model.
Nonetheless, many researchers are eagerly trying to find solutions that make data
and model compatible, assuming a priori that the model “must be” correct. Some
of the problems are the following.

There is a problem with an observed lower density of the halo in the inner galaxy
than predicted. ΛCDM (CDM including a Λ term for the cosmological constant;
see §5) predicts halo mass profiles with cuspy cores and low outer density, while
lensing and dynamical observations indicate a central core of constant density and
a flattish high dark mass density outer profile [74]. The possible solutions of core-
cusp problem without abandoning the standard model are: bar-halo friction, which
reduces the density of the halo in the inner galaxy [85]; haloes around galaxies may
have undergone a compression by the stellar disc [33] or/and suffered from the effects
of baryonic physics [23].

Another problem is that the predicted angular momentum is much less than the
observed one. Binney et al. [16] claim that the problem of an excess of predicted
dark matter within the optical bodies and the fact that the observed discs are much
larger than expected can be solved if a considerable mass of low angular momentum
baryons is ejected (massive galactic outflows) and the discs are formed later from the
high angular momentum baryons which fell in the galaxy. The conspiracy problem
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is also solved if the ejection begins only once Mbaryons(r) ∼ Mdark matter(r). Another
solution within the standard cosmological model for the angular momentum problem
is the tidal interaction of objects populating the primordial voids together with the
Coriolis force due to void rotation [21].

Another fact that could cast doubt upon the existence of very massive halos of
dark matter is that strong bars rotating in dense halos should generally slow down
as they lose angular momentum to the halo through dynamical friction [22], whereas
the observed pattern speed of galactic bars indicates that almost all of them rotate
quite fast [1]. There should be a net transference of angular momentum from bars
to halos, although friction can be avoided under some special conditions [86].

The enclosed dynamical mass-to-light ratio increases with decreasing galaxy lu-
minosity and surface brightness, which is not predicted by dark matter scenarios [60].

Galaxies dominate the halo with little substructure whereas the model predicts
that galaxies should be scaled versions of galaxy clusters with abundant substruc-
ture [25], [43]. Moreover, ΛCDM simulations predict that the majority of the most
massive subhalos of the Milky Way are too dense to host any of its bright satellites
(LV > 105 L⊙) [20]. Also, the distribution of satellites is in a plane, incompatible
with ΛCDM [43], [42], [73]. Kroupa [44] says that these are arguments against the
standard model in which one cannot make the typical rebuff of incompleteness of
knowledge of baryonic physics. Furthermore, there is a correlation between bulge
mass and the number of luminous satellites in tidal streams [43], [55] that is not
predicted by the standard model, and it is predicted by models of modified gravity
without dark matter. The disc of satellites and bulge-satellite correlation suggest
that dissipational events forming bulges are related to the processes forming phase-
space correlated satellite populations. These events are well known to occur, since in
galaxy encounters energy and angular momentum are expelled in the form of tidal
tails, which can fragment to form populations of tidal-dwarf galaxies and associated
star clusters. If Local Group satellite galaxies are to be interpreted as Tidal Dwarf
galaxies then the substructure predictions of the standard cosmological model are
internally in conflict [43].

Perhaps, that most severe caveat to retain the hypothesis of dark matter is that,
after a long time looking for it, it has not yet been found, although non-discovery
does not mean that it does not exist. Microlensing surveys [45], [92] constrain the
mass of the halo in our Galaxy in the form of dim stars and brown dwarfs to be much
less than that necessary for dark matter halos. In any case, as already mentioned, the
primordial nucleosynthesis model constrains baryonic matter to be around 10% of
the total mass [10], so these objects could not be compatible with the preferred
cosmological model. Some observations are inconsistent with the dominant dark
matter component being dissipationless [67]. Neither massive black hole halos [66]
nor intermediate-mass primordial black holes [61] provide a consistent scenario. The
nature of dark matter has been investigated and there are no suitable candidates
among astrophysical objects.
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3. Dark matter particles

The other possibility is that dark matter is not concentrated in any kind of astro-
physical object but in a gas of exotic non-baryonic particles. There are three possible
types of candidates [14]: 1) particles predicted by the supersymmetry hypothesis,
which are electrically neutral and not strongly interacting, including superpartners of
neutrinos, photons, Z bosons, Higgs bosons, gravitons, and others (neutralinos have
been the most recently studied candidates in the last decades); 2) axions, typically
with masses between 10−6 and 10−4 eV, predicted to resolve certain problems in
quantum chromodynamics; and 3) Weakly Interacting Massive Particles (WIMPs),
which are those particles that interact through the weak force.

The latest attempts to search for exotic particles have also finished without suc-
cess. Technologies used to directly detect a dark matter particle have failed to obtain
any positive result [57], [49]. Attempts have also been made to detect neutralinos
with the MAGIC and HESS Cerenkov telescope systems for very high energy gamma
rays through their Cherenkov radiation, but so far without success and only emission
associated with the Galaxy has been found [3].Dwarf galaxies are expected to have
high ratios of dark matter and low gamma ray emission due to other astrophysical
processes so the search is focussed on these galaxies, but without positive results.
As usual, the scientists involved in these projects attribute their failure of detection
to the inability of the detectors to reach the necessary lower cross section of the in-
teraction, or to tbe possibility that they may be 3–4 orders of magnitude below the
possible flux of gamma rays emitted by dark matter [83], and ask for more funding
to continue to feed their illusions: a never-ending story. As pointed out by David
Merritt [63], this will never constitute a falsification of the CDM model because al-
though success of detection will confirm the standard paradigm, non-detection is not
used to discard it.

4. Scenarios without non-baryonic cold dark matter

Note also that some other dynamical problems in which dark matter has been
claimed as necessary can indeed be solved without dark matter: galactic stability [93]
or warp creation [52], for instance. Rotation curves in spiral galaxies can be explained
without non-baryonic dark matter with magnetic fields [9], or modified gravity [81],
or baryonic dark matter in the outer disc [31] or non-circular orbits in the outer
disc [13]. Velocities in galaxy pairs and satellites might also measure the mass of the
intergalactic medium filling the space between the members of the pairs [51], [52]
rather than the mass of dark haloes associated with the galaxies.

The most popular alternative to dark matter is the modification of gravity laws
proposed in MOND (Modified Newtonian Dynamics; [82]), which modifies the New-
tonian law for accelerations lower than 1× 10−10 m/s2. This was in principle a phe-
nomenological approach. It was attempted to incorporate elements that make it
compatible with more general gravitation theories. The AQUAdratic Lagrangian
theory (AUQAL) [11] expanded MOND to preserve the conservation of momen-
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tum, angular momentum, and energy, and follow the weak equivalence principle.
Later, a relativistic gravitation theory of MOND would be developed under the
name Tensor-Vector-Scalar (TeVeS) [12], which also tried to provide consistency with
certain cosmological observations, including gravitational lensing. However, the suc-
cesses of MOND and its relativistic version are mostly limited to galactic scales and
cannot compete with ΛCDM to explain the large-scale structure and other cosmolog-
ical predictions. Moreover, a search was made for evidence of the MOND statement
in a terrestrial laboratory: a sensitive torsion balance was employed to measure small
accelerations due to gravity, and no deviations from the predictions of Newton’s law
were found down to 1 × 10−12 m/s2 [48]. Therefore, unless these experiments are
wrong, or we interpret the transition regime acceleration of 1×10−10 m/s2 in terms of
total absolute acceleration (including the acceleration of the Earth, Sun, etc.) rather
than the relative one, MOND/TeVes is falsified by this experiment.

There are also proposals that the dark matter necessary to solve many prob-
lems may be baryonic: positively charged, baryonic (protons and helium nuclei)
particles [26], which are massive and weakly interacting, but only when moving at
relativistic velocities; simple composite systems that include nucleons but are still
bound together by comparable electric and magnetic forces [58], making up a three-
body system “tresinos” or four -body system “quatrinos”; antiparticles which have
negative gravitational charge [35], etc.

In my opinion, the problem of ‘dark matter’ is not only one problem but many
different problems within astrophysics that might have different solutions. The idea
that the same non-baryonic dark matter necessary to explain the low anisotropies in
the CMBR is going to solve the large-scale structure distribution, the lack of visible
matter in clusters, the dispersion of velocities of their galaxies, the measurements
of gravitational lensing, the rotation curves, etc., is a happy fantasy that has domi-
nated astrophysics for the last 40 years. It would be wonderful if we also get a happy
ending with the discovery of the particles of dark matter that constitute the dark
halos of galaxies, but, in absence of that outcome, maybe it would be prudent to bet
on a combination of different elements to explain the entire set of unexplained phe-
nomena: possibly some baryonic dark matter in some cases, possibly a modification
of gravity is part of the explanation for a wide set of events, and maybe cold dark
matter dominates some phenomena and hot dark matter other phenomena. Cer-
tainly, a unified picture of a unique non-baryonic type of cold dark matter to explain
everything would be a simpler and more elegant hypothesis; the question, however,
is not one of simplicity but one of ascertaining how reality is, whether simple or
complex.

5. Dark energy and the cosmological constant or quintessence

The question of the cosmological constant to maintain a static universe [70] was
considered Einstein’s biggest blunder, and it was introduced by Lemâıtre [46] in
his equations for the evolution of the expanding universe. Indeed, it is equivalent to
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positing an attractive gravitational acceleration a(r) = −
GM
r2

+Br, already proposed
by Newton for B < 0, but with B > 0 instead [41]. It is not usual physics but
an exotic suggestion, since the usual thermodynamics for fluids with positive heat
capacity and positive compressibility is not appliable to dark energy with negative
pressure [7].

Twenty-five years ago, most cosmologists did not favour the scenarios domi-
nated by the cosmological constant [32]. In the eighties, the cosmological constant
was many times disregarded as an unnecessary encumbrance, or its value was set
at zero [50], and all the observations gave a null or almost null value. However,
since other problems in cosmology have risen, many cosmologists at the beginning
of the ’90s realized that an ΩΛ ranging from 0.70 to 0.80 could solve many problems
in CDM cosmology [28]. Years later, evidence for such a value of the cosmological
constant began to arrive. A brilliant prediction or a prejudice which conditions the
actual measurements?

All present claims about the existence of dark energy have measured ΩΛ through
its dependence on the luminosity distance vs. redshift dependence [27]. In the
mid-1990s the position of the first peak in the power spectrum of the CMBR was
determined to be at ℓ ≈ 200. White et al. in 1996 [97] realized that the preferred
standard model at that time (an open universe with Ω = Ωm ≈ 0.2 and without dark
energy) did not fit the observations, so that they needed a larger Ω. Between 1997
and 2000 a change of mentality in standard cosmology occurred. This was one of
the elements, together with Type Ia Supernovae (SN Ia) observations and the age
problem of the universe, that would encourage cosmologists to include a new ad hoc
element: dark energy.

One measurement of the cosmological constant comes nowadays from supernovae,
whose fainter-than-expected luminosity in distant galaxies can be explained with the
introduction of the cosmological constant. It was criticized as being due possibly to
intergalactic dust [2], [34], [64]. The presence of grey dust isnot necessarily incon-
sistent with the measure of a supernova at z = 1.7 (SN 1997ff) [34]. Dimming by
dust along the line of sight, predominantly in the host galaxy of the SN explosion, is
one of the main sources of systematic uncertainties [40]. Also, there was an under-
estimate of the effects of host galaxy extinction: a factor which may contribute to
apparent faintness of high-z supernovae is the evolution of the host galaxy extinction
with z [78]; therefore, with a consistent treatment of host galaxy extinction and the
elimination of supernovae not observed before maximum, the evidence for a posi-
tive Λ is not very significant. Fitting the corrected luminosity distances (corrected
for internal extinctions) with cosmological models Balazs et al. [6] concluded that
the SNIa data alone did not exclude the possibility of the Λ = 0 solution.

SNe Ia also possibly have a metallicity dependence and this would imply that
the evidence for a non-zero cosmological constant from the SNIa Hubble Diagram
may be subject to corrections for metallicity that are as big as the effects of cosmol-
ogy [87]. The old supernovae might be intrinsically fainter than the local ones, and
the cosmological constant would not be needed [24]. As a matter of fact, some cases,
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such as SNLS-03D3bb, have an exceptionally high luminosity [37]. Claims have been
made about the possible existence of two classes of Normal-Bright SNe Ia [76]. If
there is a systematic evolution in the metallicity of SN Ia progenitors, this could
affect the determination of cosmological parameters. This metallicity effect could
be substantially larger than has been estimated previously and could quantitatively
evaluate the importance of metallicity evolution for determining cosmological pa-
rameters [75]. In principle, a moderate and plausible amount of metallicity evolution
could mimic a Λ-dominated, a flat universe in an open, Λ-free universe. However, the
effect of metallicity evolution appears not to be large enough to explain the high-z
SNIa data in a flat universe, for which there is strong independent evidence, without
a cosmological constant.

Furthermore, our limited knowledge of the SN properties in the U-band has been
identified as another main source of uncertainty in the determination of cosmological
parameters [40]. And the standard technique with SNe Ia consists in using spectro-
scopic templates, built by averaging spectra of well observed (mostly nearby) SNe Ia.
Thus, the uncertainty in K-corrections depends primarily on the spectroscopic di-
versity of SNe Ia.

Even if we accept the present-day SN Ia analyses as correct and without any bias
or selection effect, other cosmologies may explain the apparent cosmic acceleration
of SNe Ia without introducing a cosmological constant into the standard Einstein
field equation, thus negating the necessity for the existence of dark energy [88].
There are four distinguishing features of these models: 1) the speed of light and the
gravitational “constant” are not constant, but vary with the evolution of the uni-
verse, 2) time has no beginning and no end, 3) the spatial section of the universe is
a 3-sphere, and 4) the universe experiences phases of both acceleration and decelera-
tion. An inhomogeneous isotropic universe described by a Lemâıtre–Tolman–Bondi
solution of Einstein’s fields equations can also provide a positive acceleration of the
expansion without dark energy [77]. Quasi-Steady-State theory predicts a deceler-
ating universe at the present era, it explains successfully the recent SNe Ia observa-
tions [95]. Carmeli’s cosmology fits data for an accelerating and decelerating universe
without dark matter or dark energy [68]. Thompson [91] used available measurement
for the constrainst on the variation the proton to mass electron with redshift, and
with ∆α/α = 7× 10−6 he finds that almost all of the dark energy models using the
commonly expected values or parameters are excluded. A static universe can also fit
the supernovae data without dark energy [89], [47], [54], [30], [56].

There are other sources of ΩΛ measurement such as the anisotropies of the CMBR,
but they are not free of inaccuracies owing to contamination and anomalies found
in it [53], [84]. In the last two decades, many proofs have been presented to the
community to convince us that the definitive cosmology has ΩΛ ≈ 0.7, which is
surprising taking into account that in the rest of the history of the observational
cosmology proofs have been presented for ΩΛ ≈ 0. Furthermore, recent tests indicate
that other values are available in the literature. For instance, from the test angular
size vs. redshift for ultracompact radio sources, it is obtained that Λ is negative [38].
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Using the brightest galaxies in clusters, the fit in the Hubble diagram is compatible
with a non-accelerated universe instead of ΩΛ = 0.7 [94], [4]. Concordance models
produce far more high redshift massive clusters than observed in all existing X-ray
surveys [17].

The actual values of ΩΛ have some consistency problem in the standard scenario
of the inflationary Big Bang. The cosmological constant predicted by quantum field
theory has a value much larger than those derived from observational cosmology.
This is because the vacuum energy in quantum field theory takes the form of the
cosmological constant in Einstein’s equations. If inflation took place at the Grand
Unified Theory epoch, the present value would be too low by a factor ∼ 10−108, and
if the inflation took place at the quantum gravity epoch, the above factor would be
lower still at ∼10−120 [96]. The intrinsic absence of pressure in the “Big Bang Model”
also rules out the concept of “Dark Energy”, according to some opinions [65].

Furthermore, the standard model has some surprising coincidences. There is
the coincidence that now the deceleration of the Hubble flow is compensated by
the acceleration of the dark energy; the average acceleration throughout the history
of the universe is almost null [62]. Again, everything is far from being properly
understood.
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Abstract: According to the standard model of cosmology, the visible bary-
onic matter of galaxies is embedded in dark matter haloes, thus extending the
mass and the size of galaxies by one to two orders of magnitude. Taking into
account dynamical friction between the dark matter haloes, the nearby located
M81 group of galaxies as well as the Hickson compact groups of galaxies are
here investigated with regard to their dynamical behaviour. The results of
the employment of the Markov Chain Monte Carlo method and the genetic
algorithm show statistically substantial merger rates between galaxies, and
long living constelllations without merging galaxies comprise — apart from
very few instances — initially unbound systems only. This result is derived
based on three- and four-body calculations for a model of rigid Navarro–Frenk–
White profiles for the dark matter haloes, but verified by the comparison to
randomly choosen individual solutions for the M81 galaxy group with high-
resolution simulations of live self-consistent systems (N -body calculations). In
consequence, the observed compact configurations of major galaxies are a very
unlikely occurence if dark matter haloes exist.
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1. Introduction

Radioastronomical observations (see [9], [10], [22], [1], [23], [24]) established the
fact that the M81 companions M82 and NGC 3077 are connected with the cen-
tral galaxy M81 by intergalactic clouds of HI emitting gas, namely the north and
the south tidal bridge. Attempting to reproduce those morphological structures by
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numerical simulations, based on the dark matter hypothesis underlying the cosmo-
logical model, Yun [25] couldn’t find solutions for the dynamic development of the
inner M81 group of galaxies without the occurence of merging galaxies due to dy-
namical dissipation. Employing full N -body calculations, Thomson et al. [21] did
not find appropriate solutions without a merger either. Although more recent obser-
vational work exists, the dynamical evolution of the inner M81 group has not been
investigated theoretically since then, until Oehm et al. [18] investigated the inner
M81 group regarding their dynamical behaviour including the effects of dynamical
friction between the dark matter haloes from a statistical point of view. The results
obtained there disfavour the existence of dark matter haloes according to the model,
and are summarized in Chapter 3.

Currently we transfer the methodology applied to the M81 Group to the Hickson
compact groups of galaxies (see [11], [12], [13], [14]), based on investigations recently
published by Sohn et al. [20]. Comparably to the M81 group, the preliminary results
obtained for a subset of 100 compact groups also disfavour the existence of dark
matter haloes because of significant merger probabilities. The approach and the
preliminary results are presented in Chapter 4.

At first, the underlying physical model for the statistical evaluations is explained
in Chapter 2.

2. The model

The DM halo of either galaxy is treated as a rigid halo with a density profile
according to Navarro, Frenk and White [17] (NFW-profile), truncated at the ra-
dius R200:

ρ(r) =
ρ0

r/Rs (1 + r/Rs)
2 , (1)

with Rs = R200/c, R200 denoting the radius yielding an average density of the halo
of 200 times the cosmological critical density

ρcrit =
3H2

8πG
, (2)

and the concentration parameter c

log10 c = 1.02− 0.109

(

log10
Mvir

1012M⊙

)

, (3)

see [16].
The DM halo masses are derived from the luminosities of the galaxies available

at the NASA/IPAC Extragalactic Database for the M81 group (query submitted
on 2014 February 8), and in [20] for the Hickson compact groups. In a first step
the stellar masses are determined by means of Eq. 6 of [3], and based on the stellar
masses the DM halo masses are extracted from Fig. 7 of [2] thereafter.
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Exploring the dynamics of bodies travelling along paths in the interior of DM
haloes implies that the effects of dynamical friction have to be taken into account in
an appropriate manner [5]. For isotropic distribution functions the decelaration of
an intruding point mass due to dynamical friction is described by Chandrasekhar’s
formula [6], which reads for a Maxwellian velocity distribution with dispersion σ (for
details see [4], Chap. 8.1):

d~vM

dt
= −

4πG2Mρ

vM 3
lnΛ

[

erf(X)−
2X
√

π
e−X2

]

~vM , (4)

with X = vM/(
√

2σ). The intruder of massM and relative velocity ~vM is decelareted
by d~vM/dt in the background density ρ of the DM halo.

Simulating galaxy-galaxy encounters Petsch and Theis [19] showed that a modi-
fied model for the Coulomb logarithm lnΛ, originally proposed by Jiang et al. [15],
describes the effects of dynamical friction in a realistic manner. This mass- and
distance-dependent model reads:

lnΛ = ln

[

1 +
Mhalo(r)

M

]

, (5)

where Mhalo(r) is the mass of the host dark matter halo within the radial distance r
of the intruding point mass.

So far Eq. 4 describes the dynamical friction of a point mass in halo i with
a Maxwellian velocity distribution. The approach how to calculate the dynamical
friction between two overlapping haloes i and j using NFW-profiles is described in
detail in Appendix C of [18].

Chandrasekhar’s formula only gives an estimate at hand. However, for the sake
of establishing statistical statements about merger rates between galaxies, high-
resolution simulations of live self-consistent systems presented in [18] (especially refer
to Figures 13 and 14) confirm our approach of employing this semi-analytical formula
in our three- and four-body calculations.

The equations of motion and the numerical approach of their integration are
presented in Appendix C of [18].

3. M81 review

We briefly present the methodology and the results obtained for the galaxy
group M81 (see [18]).

The fact that the three core members, M81, M82, and NGC 3077, are enshrouded
by intergalactic clouds of HI emitting gas (north and south tidal bridge) implies that
either companion M82 and NGC 3077 must have encountered the central galaxy M81
closely within the recent cosmological past (for a review see [25]).

The plane-of-sky coordinates, the line-of-sight velocities, and the DM-halo masses
are at our disposal. However, the plane-of-sky velocities are unknown, and the radial
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(line-of-sight) distances are only roughly established. Therefore, within the reference
frame of the central galaxy M81, we are confronted with six open parameters: The ra-
dial distances and the plane-of-sky velocities of the companions M82 and NGC 3077.

The possible values of those open parameters were investigated from a statistical
point of view:

At first, calculating three-body orbits backwards up to −7 Gyr, statistical popu-
lations for the open parameters were generated by means of the Markov Chain Monte
Carlo method (MCMC) and the genetic algorithm (GA). Following the results of [25]
we added, additionally to the known initial conditions at present, the rather general
condition that

both companions M82 and NGC 3077 encountered M81

within the recent 500 Myr at a pericentre distance below 30 kpc.

Each three-body orbit of those statistical populations is fully determined by all the
known and the open parameters provided by either MCMC or GA. Starting at time
−7 Gyr and calculating the corresponding three-body orbits forward in time up to
+7 Gyr, the behaviour of the inner group has been investigated with respect to the
question of possibly ocurring mergers in the future.

The details of applying the Metropolis-Hastings algorithm based on a method-
ology proposed by Goodman and Weare ([8]) for MCMC are presented in Section 4
and Appendix D of [18], and, based on the proposal by Charbonneau [7] for GA in
Section 5 of [18]. Basically both methods deliver comparable results. However, as
discussed in Section 6 of [18], due to the structure of the likelyhood function applied
for MCMC in our case, the genetic algorithm has been proved to deliver more stable
results.

In Table 1 (which is Table 4 in [18]) we present the basic results of our statistical
evaluations which can be summarized as follows:

• Long living solutions without mergers comprise constellations only where the
three galaxies are unbound and — arriving from a far distance — happen to
simultaneously encounter each other within the previous 500 Myr.

• Cases where all three galaxies are bound at −7 Gyr represent only 7% of
either statistical population of the MCMC and GA solutions, respectively. And
those originally bound systems would be merging within the near cosmological
future.

4. The Hickson compact groups

Upon having established our methods for the galaxy group M81, we transferred
this methodology to the Hickson compact groups with three and four members based
on the observational data summarized by Sohn et al. [20]. The aim is to achieve
statistical results for the merger rates for a subset of 188 compact groups extracted
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MCMC GA
solutions not merging within next 7 Gyr 118 278
solutions not merging within next 7 Gyr and:
neither M82 nor N3077 bound to M81 7 Gyr ago 117 276
solutions not merging within next 7 Gyr and:
one companion bound to M81 7 Gyr ago 1 2
solutions for:
M82 and N3077 bound to M81 7 Gyr ago 66 70
longest lifetime from today for:
M82 and N3077 bound to M81 7 Gyr ago 2.7 Gyr 2.8 Gyr
average lifetime from today for:
M82 and N3077 bound to M81 7 Gyr ago 1.7 Gyr 1.3 Gyr

Table 1: Galaxy group M81: Key numbers for both statistical methods MCMC
and GA, based on populations of 1000 solutions in either case. Actually, the three
solutions not merging within the next 7 Gyr, where one companion is bound to M81
(third position) merge after 7.3 Gyr (MCMC), and 7.8 and 8.2 Gyr (GA).

from the list of originally 332 compact groups presented in [20]. The reasons for the
non-consideration of 144 groups are:

• There are groups where the true membership of at least one galaxy is not
clarified (52 cases).

• We do not consider groups consisting of more than four true members (28 cases).

• Some groups are omitted due to only inaccurately known line-of-sight velocities
(spread of redshifts, ∆z = 0.001 being too large) (9 cases).

• Groups consisting of galaxies with a DM-halo mass exceeding 1015M⊙ are not
taken into account, because the determination of the DM-halo masses based
on the stellar masses according to Behroozi et al. [2] is confined to the interval
[1010M⊙, 10

15M⊙] for the DM-halo masses (94 cases).

Of course two ore more criteria can simultaneously apply to one compact group,
therefore ending up with 188 groups to be considered, which is 57% of the original
set. However, as the investigations were still in process when creating this article, the
preliminary results presented here are based on a subset of the nearest 100 compact
goups (see Appendix A) from this set of 188 objects. The range of distances for our
preliminary set of 100 groups is [65 Mpc, 308 Mpc].

The average plane-of-sky distance between two galaxies for our final set of 188 com-
pact groups is 92.7 kpc. The assumption of isotropy yields an average spatial distance
between two galaxies of 113 kpc. Physical intuition already implies that dynamical
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friction between DM-haloes with radii of hundreds of kpc plays an important role
regarding the dynamical behaviour of the groups.

Following our methodology established for the M81 group, we specify the general
condition for the compact groups that

the minimal value for the hyper radius does not exceed a certain ceiling value

within the recent Gyr, i.e. [−1 Gyr, today].

To be precise, the hyper radius ρ defined by

ρ2 =
n
∑

i<j

r2ij , (6)

for the n members of each group shall fullfil the following condition for the minimal
value ρmin

ρ2min < ρ20 =
n(n− 1)

2
r20 within [−1 Gyr, today] (7)

with ceiling value ρ0. Concerning r0, we consider three different values:

r0 =











75 kpc (model A),
100 kpc (model B),
113 kpc (model C),

(8)

the models A and B being motivated by the statement that the compact groups
have recently gone through a configuration where the average distance between the
individual members does not exceed two to three times the value of the visible,
baryonic diameter of the galaxies. Model C refers to the above mentioned observed
average spatial distance between two galaxies within a group.

Employing the genetic algorithm we confine, within the reference frame of the
most massive galaxy of each group, for the remaining members the hardly known
line-of-sight distances to [−1 Mpc,+1 Mpc], and the unknown plane-of-sky Cartesian
velocity components to realistic values of [−500 pc/Myr,+500 pc/Myr]. The range
for the line-of-sight distances is obviously justified by the average spatial distance
of 113 kpc between galaxies, and the constraints for the velocity components are
actually in agreement with the results obtained by Sohn et al. (see [20], Figures 5
and 6).

As a matter of fact, according to Hickson [14] and Sohn et al. this choice of
ranges for the unknown entities could be confined even more drastically. However,
in order not to influence the statistics by “whishful” a priori constraints, we take our
decision for this choice of ranges.

The fitness function — which corresponds to the likelyhood function of MCMC
— is defined by referring to the ceiling values ρ0 from Eq. 7 for the various models
of Eq. 8:

f(ρmin) =











1 ρmin ≤ ρ0,

exp

(

−

(ρmin − ρ0)
2

2 · (25 kpc)2

)

ρmin > ρ0.
(9)
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Model 0-1 Gyr 0-2 Gyr 0-3 Gyr 0-4 Gyr 0-5 Gyr 0-6 Gyr 0-7 Gyr
A 38% 68% 79% 83% 86% 87% 88%
B 31% 63% 76% 81% 84% 85% 86%
C 28% 61% 74% 79% 82% 84% 85%

C − 3 23% 53% 66% 73% 76% 78% 80%
C − 4 36% 72% 84% 88% 90% 91% 92%

Table 2: Compact groups: Percentages of mergers for selected periods of time from
the present until maximally 7 Gyr, cumulated over our preliminary set of 100 selected
groups. The numbers refer to the first occurence of a merging pair of galaxies for
each group and are based on populations of 100 solutions per group, yielding in
total a set of 10 000 solutions. The first three rows show the total percentages for
the three models of the fitness function, while the fourth and the fifth row refer to
56 three-galaxy groups and 44 four-galaxy groups, respectively, for model C.

Model 0-1 Gyr 0-2 Gyr 0-3 Gyr 0-4 Gyr 0-5 Gyr 0-6 Gyr 0-7 Gyr
A 4% 24% 37% 45% 51% 55% 58%
B 3% 21% 33% 41% 46% 50% 54%
C 2% 19% 31% 39% 44% 49% 53%

C − 3 3% 23% 34% 41% 46% 50% 53%
C − 4 1% 14% 26% 36% 42% 48% 52%

Table 3: Compact groups: Same as for Table 2, but the numbers refer to complete
mergers (all individual galaxies of a group will have merged to one object).

The results obtained are presented in Tables 2 and 3 as well as in Figures 1 and 2.

• Although the models A, B, and C cover a substantial variation of r0, the long
term merger percentages show absolutely comparable numbers (see Tables 2
and 3). Each model delivers the result that more than half of the considered
preliminary set of compact groups will totally be merged to one galaxy within
the next 7 Gyr (Table 3), as well as that for about 2/3 of the groups at least
one pair of galaxies will be merging within the next 2 Gyr (Table 2). The major
difference between the models is just a slight delay for merging galaxies caused
by a higher value of r0, thus above all affecting the percentages for 0-1 Gyr.

• Apart from very few exceptions, the hyper radii at −7Gyr shown in Fig. 1
clearly indicate that non-merging long living solutions comprise unbound sys-
tems only. Actually, instances with hyper radii less than 1Mpc for the three-
galaxy groups concern only three out of 56 compact groups, namely SDSS-
CGA00488, 01220, and 01446. For the four-galaxy groups only two out of
44 compact groups comprise solutions with hyper radii less than 2Mpc, namely
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Figure 1: Compact groups: Hyper radii at −7Gyr for the three-galaxy groups (top
panel) and the four-galaxy groups (bottom panel). The left panel shows the number
of ocurrences for intervals of 10 kpc for solutions, where at least one pair of galaxies
will be merging within the next 7 Gyr, while the right panel refers to solutions
without a merger within the next 7 Gyr. The data are extracted from the results for
Model C.

SDSSCGA00425 and 00800. Emphasizing our statement, Fig. 2 shows that the
non-merging solutions almost completely comprise instances where the individ-
ual galaxies are, at -7 Gyr, moving towards the centre of mass of their group
with linearly increasing radial velocities in dependence of the centre of mass
distance.

5. Conclusions

We apprehend the statistically elaborated merger percentages for the M81 group
and the Hickson compact groups of galaxies as a merger probability per time unit

for those systems. The solutions of the configuration of these groups 7 Gyr ago
obtained under the condition that the groups have not merged by the present time
comprise virtually only cases, where the galaxies making-up the present-day groups
are moving towards each other from large distances (> 1 Mpc). It appears unlikely
for this correlated motion to be realistic.
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Figure 2: Compact groups: The centre of mass radial velocities of the galaxies in
dependence of the centre of mass distances at −7Gyr for the three-galaxy groups
(top panel) and the four-galaxy groups (bottom panel). Similar to Fig. 1, the left
panel refers to solutions where at least one pair of galaxies will be merging within
the next 7 Gyr, while the right panel refers to solutions without a merger within the
next 7 Gyr. The data are extracted from the results for Model C.

Appendix

The 100 compact groups from the SDSS catalogue considered in this publication
are (56 groups with three and 44 with four members):

SDSSCGA00027, 00029, 00037, 00110, 00113, 00131, 00132, 00177, 00240, 00275,
00309, 00345, 00355, 00375, 00397, 00407, 00418, 00425, 00435, 00483, 00488, 00510,
00539, 00621, 00630, 00673, 00676, 00711, 00728, 00735, 00736, 00752, 00755, 00798,
00800, 00811, 00820, 00895, 00902, 00912, 00916, 00933, 00934, 00954, 00960, 01012,
01020, 01036, 01056, 01059, 01065, 01076, 01136, 01139, 01184, 01220, 01244, 01251,
01264, 01265, 01277, 01300, 01303, 01327, 01344, 01372, 01383, 01391, 01428, 01434,
01446, 01458, 01485, 01503, 01512, 01528, 01557, 01563, 01568, 01605, 01616, 01667,
01713, 01724, 01784, 01841, 01874, 01932, 02022, 02037, 02056, 02188, 02191, 02192,
02206, 02237, 02257, 02270, 02273, 02277.
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Abstract: One of hot topics in the last years is a systematic discrepancy
in the determination of Hubble parameter by various methods. Namely, the
values derived “directly” from the distance scale based on Cepheids and su-
pernovae — and referring to the relatively “local” part of the Universe — are
about 10% greater than the ones following from the analysis of the cosmic
microwave background (CMB) radiation, which refers to the “global” scales.
The most popular interpretation of this discord, widely discussed nowadays,
is variation of the dark-energy equation-of-state parameter w. However, there
might be a much simpler explanation, following from the recent observations
of the rotation curves in the high-redshift galaxies. Namely, it was found that
they have much smaller dark-matter halos than galaxies in the vicinity of us [5].
Since both the dark and luminous matter possess the same dust-like equation
of state and, therefore, their average cosmological densities evolve by the same
way, our local neighborhood is not quite typical but rather overfilled with the
dark matter. Then, the local value of the Hubble constant should be greater
than the global one. Roughly speaking, a twofold excess of the dark matter
in our local Universe would give just the above-mentioned 10% increase in the
value of Hubble parameter.

Keywords: Hubble constant, dark matter, high-redshift galaxies
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Determination of the Hubble parameter H0 is a long-standing problem in cos-
mology, lasting for almost a century; and the corresponding values varied in this
period by an order of magnitude, 50 to 500 km s−1 Mpc−1 (see, for example, [4], [13]
and references therein). Despite of considerable improvements, some discrepancies
persist till now. The most notable of them is that the value of H0 derived from
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the distance scale based on Cepheids and supernovae is 73.24±1.74 km s−1 Mpc−1

and, for some calibration, can even be as large as 76.18±2.37 km s−1 Mpc−1 [12]. On
the other hand, the analysis based on measurements of the cosmic microwave back-
ground (CMB) by Planck satellite under assumption of the ΛCDM cosmological
model leads to the values H0 = 66.88±0.91 to 67.31±0.96 km s−1 Mpc−1, depending
on the method of data processing [1]. So, these numbers are about 10% less than in
the first case.

The above-mentioned discrepancy between the “local” (by Cepheids) and “global”
(by CMB) measurements of H0 was clearly recognized in the recent years, and it is
commonly attributed now either to the systematic errors (such as degeneracy be-
tween different quantities in the analysis of CMB) or to the uncertainty in the fitting
parameters (e.g., the number and masses of neutrinos, etc.) [2], [15]. Yet another
popular explanation is a modification of the dark-energy equation-of-state parame-
ter w (where p = wρ) [3], [6], [9], [16]; though the resulting values w < −1 look quite
suspicious from the viewpoint of general physical principles.1

However, from our point of view, the spread in values ofH0 can have a much more
straightforward explanation, following from the recent observations of the rotation
curves in distant galaxies [5], [14]: it was found that the amount of dark matter is
considerably less in the vicinity of galaxies located at large redshifts, z = 0.6−2.6.
Next, it should be kept in mind that due to the same dust-like equation of state
(w ≈ 0) both for the luminous and dark matter, the ratio of their densities does
not change with cosmological time. So, we have to conclude that this ratio should
be substantially variable in space and, thereby, the Hubble parameter should be
scale-dependent.

Really, according to the standard Friedmann equation [11]:

H0 =

[

8πG

3

]1/2
[

ρde + 〈ρdm〉+ 〈ρlm〉
]1/2

, (1)

where ρde is density of the dark energy, which is assumed to be perfectly uniform
in space (i.e., described by the Λ-term), ρdm and ρlm are densities of the dark and
luminous (baryonic) matter, and the angular brackets denote averaging over the
given spatial scale. Then, ratio of the Hubble parameters at the local and global
scales should be:2

H
(loc)
0

H
(glob)
0

=

[

Ωde + 〈Ωdm〉
(loc) + 〈Ωlm〉

Ωde + 〈Ωdm〉
(glob) + 〈Ωlm〉

]1/2

, (2)

where Ωi = ρi/ρc are the corresponding densities normalized to the critical density at

1For example, the values of w somewhat greater than −1 (i.e., |w| < 1) could be easily attributed
to the small-scale irregularities of the scalar field representing the “dynamic” dark energy [8], but
such an effect cannot result in w < −1.

2For simplicity, we ignore here the curvature term that might appear at the local scales due to
the non-uniform dark matter distribution.
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Figure 1: Ratio of the Hubble parameters at the local and global scales H
(loc)
0 /H

(glob)
0

as function of the local dark-matter density normalized to the global critical density
〈Ωdm〉

(loc) (diagonal black curve). Horizontal red and vertical blue strips show the
range of observable values. Horizontal and vertical green lines correspond to the
trivial case when 〈Ωdm〉

(loc) = 〈Ωdm〉
(glob).

the global scale; and we assume that the luminous matter distribution is sufficiently
uniform.

This ratio of the Hubble parameters is plotted in Fig. 1 as function of the
local dark-matter density at the standard cosmological parameters: Ωde = 0.69,
〈Ωdm〉

(glob) = 0.26, and 〈Ωlm〉 = 0.05. The range of observed values of H
(loc)
0 /H

(glob)
0

is shown by the horizontal red strip. Then, the corresponding normalized densities
of the dark matter in our local cosmological neighborhood should be in the range
〈Ωdm〉

(loc) = 0.44− 0.56 (vertical blue strip), i.e. about two times greater than glob-
ally.

In fact, Genzel, et al. [5] already emphasized that at the global scales the dark
matter should play a smaller part than in the local Universe. So, from our point
of view, the systematic discrepancy between the “local” and “global” values of the
Hubble parameter is just a direct consequence of the above-mentioned fact.

Finally, let us mention that a number of papers published in the recent years made
just the opposite statement as compared to [5]: namely, that there is a considerable
deficit of luminous and dark matter in our local cosmological neighborhood. For
example, Makarov & Karachentsev [10] and Karachentsev [7] found Ωdm+ Ωlm =
0.08±0.02 in the sphere of radius z ∼ 0.01 around us, which is over three times
smaller than the standard value in the ΛCDM model. Unfortunately, their analysis
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involved a lot of model assumptions. On the other hand, the work by Genzel, et
al. [5], which is based solely on the galaxy rotation curves, seems to be much less
model-dependent; and the corresponding results on the deficit of dark matter in the
high-redshift (rather than local) galaxies look more reliable.
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Abstract: We calculate the mean density profiles for luminous and dark
matter on distance scales D ∼ (1 − 100) Mpc around us using recent all-sky
catalogs of galaxy groups. Within the Local Volume (D < 11 Mpc) we derived
the mean stellar density Ω∗ = 0.44 % in the critical density units and the
mean total matter density Ωm = 0.17. In the sphere with a radius of 40 Mpc
these quantities drop to Ω∗ = 0.24–0.32 % and Ωm = 0.09–0.14. In a larger
volume within D ∼ 135 Mpc the discussed densities become more uncertain:
Ω∗ = 0.20–0.24 % and Ωm = 0.05–0.16. We summarize that the major part
of the cosmic dark matter locates outside the virial and collapsing zones of
groups and clusters.

Keywords: cosmology, dark matter, galaxy formation
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1. Introduction

Observational data on the structure and kinematics of the Local Universe is the
widely used base for checking cosmological models. On a number of occasions this
fact was pointed by Peebles [29], [30]. The paucity information on galaxy distances
was a serious hindrance for the observational cosmology of the Local Universe for
a long time. The situation has changed dramatically with the Hubble Space Tele-
scope (HTS) commissioning. The unique abilities of the HST let astronomers sepa-
rate the individual stars in the nearby galaxies and estimate the galaxy distances by
the tip of the red giant branch (TRGB) method with ∼ (5–10) % accuracy. In the fast
observational regime (one galaxy per unit orbit) it is available to measure distances
for galaxies within 11 Mpc. At the present time the total number of galaxies with
measured TRGB-distances in the Local Volume (D < 11 Mpc) is about 400. These
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measurements are involved in the Updated Nearby Galaxy Catalog (UNGC) [19] and
the Extragalactic Distance Database (EDD) [45].

Outside the Local Volume the galaxy distances were estimated by Cepheid vari-
ables, type Ia supernovae and surface brightness fluctuations with (5–10)% accu-
racy (see EDD and references therein). Distances for about 5 000 gas-rich galaxies
were determined by Tully & Fisher relation [44] between galaxy’s luminosity and
21-cm emission line width with ∼ (20–25) % accuracy. Half of them locates within
a distance of ∼ 70 Mpc.

Courtois et al. [6] created maps of the large-scale distribution of galaxies in the
Local Universe. These maps demonstrate the complicate density pattern produced
by galaxy groups, clusters and empty areas. However, it is not easy to conclude
from distribution of the attractors and voids surrounding the Milky Way whether
our Galaxy is: in underdensity or overdensity region.

As far as we know, the first reconstruction of the mean density profile versus
distance from the Milky Way was done by Makarov & Karachentsev [24]. The authors
calculated the stellar and total (virial) mass density up to D ' 45 Mpc using a
sample comprising 11 000 galaxies with Galactic latitudes |b| > 15◦. On these scales
the estimated mean stellar density is greater than its global value. Nevertheless,
the mean total density Ωm in the critical density units is systematically lower than
the cosmological value Ωm = 0.24 from WMAP [37] or Ωm = 0.315 from Planck
Collaboration [31].

The fact that the virial masses of nearby groups and clusters cannot provide
the cosmological value of the matter density in the ΛCDM model has been already
known. According to independent estimates by Vennik [46] and Tully [40], the mean
virial mass density inside the Local Supercluster is Ωm ' 0.08, which 3–4 times less
than its global value. Potential causes of this discrepancy were discussed in detail by
Karachentsev [16]. Note that recent papers [41], [42], [23], [36] make an important
contribution to “the missing dark matter” problem.

In the next sections we present estimations of the mean luminous and total (dark)
matter density on different scales from nearby widely investigated volume to farther
poorly known regions in the Local Universe.

2. Mean density profile in the Local Volume

The Updated Nearby Galaxy Catalog involves 869 galaxies with radial velocities
VLG < 600 km s−1 or distances D < 11 Mpc. Regularly updated online version of this
database1 contains 1029 galaxies at the beginning of 2018 year [15].

Stellar masses in the UNGC were inferred from K-band luminosity of the galaxies
as M∗ ≈ (M�/L�)LK , see [2]. Majority of K-band magnitudes were measured in
2MASS Redshift Survey [12]. It is common knowledge that 2MASS misses low surface
brightness galaxies, especially with predominantly blue stellar population because of

1http://www.sao.ru/lv/lvgdb
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Figure 1: Mean density of stellar matter within a distance D in the Local Volume.
Empty diamonds show the stellar density of all galaxies in the UNGC, filled diamonds
correspond to the stellar density produced by 21 Main Disturbers seen in Table 1.
Dash-dotted horizontal line shows the global cosmic stellar density from [9].

shot exposure time. For missing galaxies K-band magnitudes in UNGC were derived
from B-magnitudes with respect to morphological types T as [13]

K =


B − 4.10 for T < 3,

B − 4.60 + 0.25T for 3 ≤ T ≤ 8,

B − 2.35 for T > 8.

(1)

Two dozens high luminosity galaxies such as our Milky Way locate in the Local
Volume. With respect to random orientation of the satellites’ orbits and their mean
eccentricity 〈e2〉 = 1/2, the total mass of the parent galaxy halo can be defined
as [17]

Mtot = (16/π)G−1〈∆V 2 Rp〉, (2)

where Rp is the projected separation between the dominated galaxy and its compan-
ion, ∆V is their radial velocity difference and G is the gravitational constant. The
sample of the luminous galaxies (Main Disturbers) with Galactic latitudes |b| > 15◦

in the Local Volume is seen in Table 1. Its columns contain: (1) galaxy name, (2) dis-
tance in Mpc, (3) radial velocity in the Local Group frame in km s−1, (4) logarithm
of stellar mass in the solar mass units, (5) logarithm of halo mass, inferred from
projected separation and radial velocity difference of the companions. Almost half
of the galaxy population in the Local Volume belong to satellites of these luminous
galaxies.
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Galaxy D VLG logM∗ logMtot

Mpc km s−1 M� M�
Milky Way 0.01 −65 10.70 12.07
M31 0.77 −29 10.79 12.23
NGC5128 3.68 310 10.89 12.89
M81 3.70 104 10.95 12.69
NGC253 3.70 276 10.98 12.18
NGC4826 4.41 365 10.49 10.78
NGC4736 4.41 352 10.56 12.43
NGC5236 4.90 307 10.86 12.02
M101 6.95 378 10.79 12.17
NGC4258 7.66 506 10.92 12.50
NGC3627 8.32 579 10.82 12.16
M51 8.40 538 10.97 11.78
NGC2903 8.87 443 10.82 11.68
NGC5055 9.04 562 11.00 12.49
NGC4594 9.55 894 11.30 13.45
NGC6744 9.51 706 10.91 11.72
NGC3115 9.68 439 10.95 12.54
NGC2683 9.82 334 10.81 12.13
NGC891 9.95 736 10.98 11.90
NGC628 10.2 827 10.60 11.66
NGC3379 11.0 774 10.92 13.23

Table 1: Luminous galaxies at |b| > 15◦ in the Local Volume.

Figure 1 shows the mean stellar density in the Local Volume as a function of
distance from the Milky Way. The global value of stellar density Ω∗c = 0.0027 ±
0.0005 (see [9]) in the critical density units in Figure 1 is in a good agreement with
the mean K-luminosity density jK = (4.3± 0.2)× 108 L� Mpc−3 from [14], [8]. The
critical density can be expressed via the Hubble parameter H0 as

ρC =
3H2

0

8πG
, (3)

consequently ρC = 10−26 kg m−3 or 1.46×1011 M� Mpc−3 for H0 = 73 km s−1 Mpc−1.
Here and in the sections below we use a prefactor (1−sin 15◦)−1 ' 1.35 to compensate
missed galaxies at |b| < 15◦. The total stellar mass of the 21 high luminosity galaxies
is 1.6×1012 M� or 59% from the total stellar mass of the whole Local Volume sample.
Notice that stellar density on all the scales D < 11 Mpc is greater than its global
cosmic value.

Figure 2 shows the mean dark matter density in the Local Volume within a dis-
tanceD from the Milky Way. In the current cosmological scenarios the star formation
process is the most efficient for stellar masses M∗ ' 109−10 M� [39]. This feature is
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Figure 2: Mean density of dark matter within a distance D in the Local Volume.
Crosses shows the dark matter density from 21 Main Disturbers. Filled and empty
diamonds show the dark matter density with account of all galaxies in the UNGC.
Here, the total masses of field galaxies were estimated under the assumption that
Mtot/M∗ ' 32 (see [17]) or using equation (4) (see [42], [23]) and shown as filled and
empty diamonds, respectively.

accompanied with increase of the mass-to-light ratio, Mtot/M∗, towards luminous as
well as faint galaxies. Kourkchi & Tully provided an analytical approximation for
mass-to-light ratio with such two branches [23]:

log(Mtot/M∗) =

{
log(32)− 0.50 log(M∗/1010) for logM∗ < 8.97,

log(32) + 0.15 log(M∗/1010) for logM∗ > 10.65.
(4)

The estimate of the dark matter density based on eq. (4) has a bit greater value than
that based on Mtot/M∗ ' 32 relation following from Table 1 data. The total mass
of the Local Volume turns out to be 1014M� with the respective mean dark matter
density Ωm = 0.17.

It can be seen from Figures 1 and 2 that the profile of Ωm(D) is similar to Ω∗(D).
Naturally, this result is expected because of the basic contribution of the 21 luminous
galaxies to Ω∗ and Ωm.

3. Mean density profile in the Local Supercluster, z < 0.01

For 11 000 galaxies with radial velocities VLG < 3 500 km s−1 at |b| > 15◦ Makarov
& Karachentsev applied a new group-finding algorithm. In contrast to “Friends of
Friends” percolation algorithm [10], the authors took into account a vast luminosity
difference existing among galaxies [24]. They assumed that virtual galaxy pair has
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Figure 3: Mean density of the stellar matter (upper panel) and dark matter (lower
panel) within a distance D up to 40 Mpc. Diamonds and stars show the mean density
by UNGC (Local Volume) and MK11 data, respectively. Dash-dotted horizontal line
in the upper panel shows the global cosmic stellar density.

negative total energy and pair’s members have a crossing time less than the age of
the Universe. The varying parameter of the clusterization was calibrated by nearby
galaxy groups. Using this procedure the authors created catalogs of 509 galaxy
pairs [18], 168 triplets [25] and 395 galaxy groups with more then 3 members [24].
As a result, the catalogs contain 54% of the initial galaxy sample or 82% of its total
K-band luminosity.

Figure 3 shows profiles of the mean density of stellar matter (upper panel) and
dark matter (lower panel) within different distances up to D = 40 Mpc calculated in
the Local Volume (Figure 1 and 2) and by Makarov & Karachentsev [24] (hereinafter
referred to as MK11). All density profiles in this paper are calibrated with the Hubble
parameter H0 = 73 km s−1 Mpc−1. The mean stellar density on the distance scales
D < 40 Mpc is systematically greater than that of global cosmic value. Estimated
total stellar mass and mean stellar density within this volume are 9.2× 1013M� and
0.32 % in the critical density units, respectively. Taking into account that the galaxy
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distances in MK11 were estimated simply by their radial velocities, we conclude
a good agreement between these two independent Ω∗ sequences within the Local Vol-
ume. In contrast to Ω∗, the mean density of the virial mass on the scales D > 6 Mpc
is lower than its cosmological value. Within a sphere of radius D = 40 Mpc, the total
virial mass is 2.7×1015M�. The mean density on this scales decreases to Ωm = 0.09.
The second peak in the both panels is the result of the Virgo cluster contribution
with its virial mass of 6.3× 1014M�, see [36].

Kourkchi & Tully (hereafter KT17) recently published a new catalog of galaxy
groups with the same limits for radial velocity VLG < 3 500 km s−1 and Galactic
latitude |b| > 15◦ as in MK11 [23]. For clusterization algorithm KT17 used some
empirical relations between the virial radius, velocity dispersion and the total mass
of groups. The authors provided two types of estimations of the total group mass.
Dynamic masses were inferred from radial velocity dispersion σ2

p and the mean har-
monic radius of the group Rg:

Mdyn = (απ/2G)σ2
pRg, (5)

where parameter α = 2.5 is written to account for projection effects. Paucity of
knowledge about the kinematics of distant galaxies implies significant uncertainties
of Mdyn. That is why KT17 applied also another mass estimate. To determine the
halo mass from a galaxy stellar mass (or LK-luminosity) they used equation (4). All
scaling relations were calibrated with 8 nearby galaxy groups. In the clusterization
criterion authors took into account the significant difference of galaxies’ luminosities.
As a result, KT17 applied their algorithm to 15 004 galaxies and created the catalog
of 1 536 galaxy groups which is presented in EDD2. About 49% of the total sample
still remained as isolated galaxies. We used this catalog to investigate the stellar
and virial mass distribution on the distance scales D < 40 Mpc. For unification we
restate data from KT17 for the same Hubble parameter H0 = 73 km s−1 Mpc−1.

Figure 4 presents the mean stellar density profile up to D = 40 Mpc based on
KT17 catalog. As seen, the difference between the mean density within Northern
and Southern Galactic hemispheres varies from factor 5 at the Virgo cluster distance
to factor 2 at the edge of considered volume. In this figure we also added the MK11
results. In almost all the bins Ω∗ from KT17 catalog is slightly lower than the mean
density in MK11. The ratio ΩKT17

∗ /ΩMK11
∗ is near 0.77 both at the edge of the Local

Volume and at D = 40 Mpc. We suppose that the MK11 catalog infers the total flux
from bluish diffuse galaxies, missed in 2MASS survy, more accurately.

The behavior of the dark matter’s mean density within a sphere of radius D is
shown in the Figure 5. Its upper and lower panels present the virial masses esti-
mated by equation (4), MLum, and by galaxy group’s kinematic properties, Mdyn,
respectively. Note a significant difference between the Ωm for Northern and Southern
Galactic hemispheres at all distances D < 40 Mpc. For mass inferred from galaxy

2http://edd.ifa.hawaii.edu
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Figure 4: Stellar density within a sphere of radius D. Different symbols show the
mean density based on KT17 catalog (circles for all sky, triangles for Northern and
Southern hemispheres) and results by MK11 (stars). Dash-dotted horizontal line
shows the global stellar density.

group’s luminosity this difference is less distinct than for dynamic mass. We con-
clude that the Local Universe within ∼ 40 Mpc does not fit still the size of cosmic
homogeneity cell.

In Figure 6 we summarize three independent estimations of the virial mass’ mean
density within 40 Mpc. In MK11 catalog authors take into account also masses of
triple, binary and isolated galaxies. At the D < 20 Mpc scales these estimations
of Ωm differ from each other significantly, but at the edge of considered volume
the mean densities lie in the narrow range Ωm = 0.09–0.14, showing a tendency
to further decreasing. The total mass within a sphere of radius D = 40 Mpc is
(2.7–4.0)×1015M� with the Virgo cluster contribution as (16–23) %.

4. Ω∗ and Ωm within 10000 km s−1

Based on the 2MASS Redshift Survey [11] containing objects with magnitudes
up to Ks = 11.75m, Tully (hereafter T15b) created a catalog of galaxy groups with
VLG = 3 000–10 000 km s−1, see [42]. The clusterization algorithm of galaxies was
the same as in the closer volume [42]. About 58 % of the total sample accounting
24 044 galaxies were clusteried into 3461 groups with two or more members.

It is obvious that on long distances 2MASS Redshift Survey misses a significant
number of galaxies because of the bright observational limit Ks = 11.75m. Tak-
ing this fact into account, Tully calculated a correction factor (CF) for the total
luminosity of a group. To estimate the CF, Tully assumed that galaxy luminosity
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Figure 5: Mean density of the total mass, calculated by luminosity (upper panel)
and by dynamic mass (lower panel) from KT17. Different symbols show the mean
density for the whole sky (circles) and for Northern/Southern hemisphere (triangles).

function is well described by Schechter function [33] with parameters αK = −1.0
and M∗

K = −24.23 at H0 = 73 km s−1 Mpc−1. The resulted CF-factor is negligible at
VLG < 1300 km s−1, but increases to 2.3 at VLG = 10000.

Figure 7 shows the mean stellar density profile calculated on the distance scales
D < 135 Mpc. To fill the nearby volume (D < 40 Mpc) we used KT17 catalog. For
longer distances we used T15b catalog with the correction factor CF. Notice that
values of Ω∗ for Northern and Southern Galactic hemispheres are approximately
equal each other, since D > 70 Mpc. At the volume edge (D = 135 Mpc) Ω∗ is
(0.22 ± 0.02) % of the critical density, being slightly lower than its global value
(0.27± 0.05) % by [9]. The difference between these quantities looks quite expected
because 2MASS Survey misses about 20–25 % of the total K-band luminosity.

Distribution of the Ωm(D) based on KT17 and T15b catalogs is shown in Fig-
ure 8. Its upper and lower panels show the mean density of the total mass estimated
by equation (4) with accounting the correction factor CF and by kinematic charac-
teristics of the galaxy groups, respectively.
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Figure 6: Mean density of the total mass inferred from luminosity of the galaxy
groups (filled circles) and from dynamic masses (open circles). Data from MK11
catalog is shown by stars.

Figure 7: Mean stellar density calculated using KT17 catalog at D < 40 Mpc and
T15b catalog at D = 40–135 Mpc. Middle curve corresponds to the stellar density for
the whole sky, upper and lower curves match Northern and Southern hemispheres,
respectively. The global stellar density is shown by dash-dotted horizontal line.

55



Figure 8: Mean density of the viral mass inferred from group’s luminosity (upper
panel) and from the dynamic mass (lower panel). Used catalogs are: KT17 at
D < 40 Mpc and T15b at D = 40–135 Mpc. Middle curves correspond to the mean
density for the whole sky, upper and lower curves match Northern and Southern
hemispheres.

From the Figure 8 one can draw the following conclusions:

a. Difference between Ωm for Northern and Southern Galactic hemispheres de-
creases with increasing D and at D > 70 Mpc it becomes within (10–15) % of
the mean value.

b. Difference between mean densities of the total mass calculated by empirical
relation (4) and by kinematic of galaxy groups increases with D and reaches
a factor 2–3 at D > 70 Mpc.

c. Within a sphere of 135 Mpc radius, the mean density of matter amounts to
Ωm = 0.05± 0.002 via Mdyn and Ωm = 0.16± 0.01 via MLum. The latter value
is in a good agreement with the quantity Ωcollapsed = 0.16 ± 0.02 published
by T15b.
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5. Discussion and conclusions

For reliable measurements of the mean density of matter within a nearby Universe
we need deep photometric and spectroscopic surveys covering a major part of the
sky. Moreover, in the Local Volume (∼ 10 Mpc) we need also individual estimates of
galaxy distances, because their radial velocities are often distorted by a large peculiar
component. Recent progress in the galaxy surveys like the Sloan Digital Sky Sur-
vey [1] and Pan-STARRS [5] gives astronomers hope to improve these measurements.
According to observational data from HST, the mean stellar density within the Local
Volume is 1.5–1.8 times greater than the global cosmic value. Consequently, we live
inside the positive baryonic matter fluctuation. Alongside this, in the same volume
the mean density of dark matter is Ωm = 0.17–0.18, i.e. less than its global value.

Within the volume of D < 40 Mpc including the Local Supercluster and neigh-
boring clusters, the mean stellar density is approximately equal to the global stellar
density. Wherein, three independent estimates of the virial masses give Ωm = 0.09–
0.14, the value which is 2–3 times lower than Ωm in the standard ΛCDM model.

Outside a sphere of radius ∼ 50 Mpc, 2MASS photometric survey and 2MASS
Redshift Survey miss a significant part of the galaxies. This fact makes the estimates
of Ω∗ and Ωm less certain. Using the T15b catalog with the correction factor CF
for missed galaxies leads to the mean stellar density within D = 135 Mpc nearly
the same, 0.8 ± 0.2, as the mean global density. However, our calculations of the
mean density of dark matter via dynamic masses of the groups or via the empirical
halo-mass-to-luminosity relation yield the Ωm value in the range from 0.05 to 0.16.
Note that the latter value, 0.16, which is calculated from luminous mass, is more
trustworthy than the first one.

Using 264 objects from Cosmicflows-3 [43] with accurately measured distances
and radial velocities, Shaya et al. [36] applied Numerical Action Method to calculate
3D-trajectories for galaxies, groups and clusters within a distance of 40 Mpc. The
authors conclude that their model with parameters Ωm = 0.244 (WMAP) and H0 =
75 km s−1 Mpc−1 is in a good agreement with the existing observational data if they
add into their model a dispersed (orphan) dark matter component with Ωorphan =
0.077± 0.019, distributed outside the virial zones of groups and clusters.

Nuza et al. presented distribution of matter in the Local Universe based on
N-body simulations accounting for ΛCDM model with Ωm = 0.27, see [28]. They
estimated a cosmic variance on the scale of 80 Mpc to be ∼ 3 %. Such a level corre-
sponds to the concept of homogeneous cosmic cell, but on the other hand, conflicts
with the existence of huge structures like Shapley Supercluster [27]. Nuza et al. con-
clude that the predominant part of the cosmic matter is associated with filaments
(34 % of the total mass), while knots (clusters) and walls and voids account for 22 %
of the total mass each. Finally, the authors estimate the fraction of dark matter
concentrated within the virial zones of groups and clusters in the Local Universe
(D < 40 Mpc). Their value, Ωm = 0.08, is consistent with observational data by
Karachentsev [16].
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There are at least three ideas, which may explain the difference between the local
density Ωm ' 0.08 and the global quantity Ωm = 0.24–0.31:

a. In recent years, we have been able to measure the total mass of nearby groups
and clusters not only by internal (virial) galaxy motions, but also by motions
of surrounding galaxies, which are retarding by overdensity. In this case the
estimate of the total mass correspond to the zero-velocity radius R0, which
exceeds 3–4 times the virial radius Rvir. Analysis of the Hubble flow around
the Virgo cluster shows that the total mass of the cluster inside R0 is almost
the same as its virial mass [20], [21]. Just similar result has been obtained by
Kashibadze & Karachentsev [21] for the Local Group and other nearby groups
from analysis of their Hubble flows. Consequently, the assumption about the
existence of dark massive halos around local groups and clusters extending to
∼ (3–4)Rvir is not confirmed by observations.

b. Another idea is an assumption that we live inside the giant void [34], [32]. Some
recent observations favour the existence of such extended zone (∼ 200 Mpc)
with the mean stellar density about 15–40 % less than that of the global
value [22], [47], [4]. However, another observations in the K-band not proved
a significant local underdensity [7], [3], [38]. Anyway, one needs the presence of
a deep large void of ∼ 200 Mpc diameter to explain the observed threefold dif-
ference between the global and local Ωm quantities. But the existence of such
an extended structure disagrees with the common concept of the large-scale
homogeneity of the Universe.

c. At present, the most promising explanation of the Ωm-paradox is the assump-
tion that the considerable fraction (∼ 2/3) of the dark matter is dispersed
outside the virial and collapsing zones of galaxy groups and clusters. Diffuse
non-virialized structures, like cosmic filaments and walls, can manifest them-
selves via effects of weak gravitational lensing. Methodology of searching for
dark massive attractors by the weak gravitational lensing effects has been ap-
plied so far only to rich galaxy clusters [35], [26]. Apparently, the most easily
observable can be the dark filaments oriented along the line-of-sight. Such kind
of observational program needs wide-sky surveys with large telescopes having
a high sub-arcsecond seeing.

Finally, one can presume the existence of two different components of the dark
matter. The second component (of unknown nature) would be a medium uniformly
filling the intergalactic space. However, this idea is not compatible with the estab-
lished cosmological paradigm and hence will be rejected by “Occam’s razor”.
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Abstract: The Local Volume of galaxies can be regarded as a unique lab-
oratory to study the formation and evolution of dwarf galaxies in order to
shed light on the unsolved questions of modern cosmological ΛCDM theory.
The problem of ‘lost satellites’ is one of them. There are a number of ap-
proaches that could bring some success on the way of the solution of this
problem in observational astrophysics. One of them is a search for new (miss-
ing) satellites in the nearby galaxy groups. It is including also discoveries of
’satellites of satellites’. A faint dwarf irregular galaxy has been discovered in
the HST/ACS field of LVJ1157+5638. The galaxy is resolved into individual
stars, including the brightest magnitude of the red giant branch. The dwarf
is very likely a physical satellite of LVJ1157+5638. The distance modulus of
LVJ1157+5638 using the tip of the red giant branch (TRGB) distance indica-
tor is 29.82±0.09 mag (D = 9.22±0.38Mpc). The TRGB distance modulus of
LVJ1157+5638 sat is 29.76 ± 0.11 mag (D = 8.95 ± 0.42Mpc). The distances
to the two galaxies are consistent within the uncertainties. The projected
separation between them is only 3.9 kpc. LVJ1157+5638 has a total abso-
lute V-magnitude of −13.26± 0.10 and linear Holmberg diameter of 1.36 kpc,
whereas its faint satellite LVJ1157+5638 sat has MV = −9.38± 0.13 mag and
Holmberg diameter of 0.37 kpc. Such a faint dwarf was discovered for the first
time beyond the nearest 4Mpc from us. The presence of main sequence stars
in both galaxies unambiguously indicates the classification of the objects as
dwarf irregulars (dIrrs) with recent or ongoing star formation events in both
galaxies.

Keywords: galaxies dwarf, galaxies distances and redshifts, galaxies stellar
content, galaxies individual LVJ1157+5638
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1. Introduction

Dwarfs are usually considered to be galaxies with a stellar mass of less than
108–109M⊙ and absolute stellar magnitude fainter than MV = −17. Dwarf galaxies
are the most convenient objects for galaxy evolution study: they are most numerous
galaxies in the Universe, and their structure is relatively simple. Nearest galaxies
are resolving into individual stars, which can be studied photometrically and by
spectroscopy. Thus, the Local Volume of galaxies can be regarded as a unique
laboratory to study the formation and evolution of dwarf galaxies in order to shed
light on the unsolved questions of modern cosmological ΛCDM theory. The problem
of ‘lost satellites’ is one of them. The luminosity function of the galaxies in the Local
Volume contains about an order of magnitude fewer dwarfs than predicted by the
ΛCDM theory [13], [14]. There are a number of approaches that could bring some
success on the way of the solution of this problem in observational astrophysics.
One of them is a search for new (missing) satellites in the nearby galaxy groups.
It is including also discoveries of ’satellites of satellites’ (see below). And the other
assumption is that a number of dwarf galaxies could form due to complex merging
events, or suffer from tidal disruption events within the galaxy groups [20], [31].

1.1. The nearest galaxy groups as systems of dwarf satellites

There are several well-known large groups of galaxies in the Local Universe
(named after their central galaxy): Milky Way, Andromeda, M81, CentaurusA, M83.
Each of these groups is a system of a giant galaxy and a family of satellites. It is
interesting, that all of the groups (with the exception of Centaurus A) have a giant
siral as a central body. Milky Way and Andromeda (due to their proximity) forms
the Local Group of galaxies, and Centaurus A and M 83 groups are also often consid-
ering as one galaxy complex. A kind of exception is Canes Venatici Cloud I, which
is a large scattered cloud of mostly dwarf irregular galaxies.

1.2. New satellites in the Local Universe

Particularly rich families of faint satellites were discovered around Andromeda
and the Milky Way [1], [9], [15], [16].

For more distant galaxy groups we naturally lose more faint satellites. Never-
theless, recent observations on ground-based telescopes, and follow-up observations
with the Hubble Space Telescope, substantially reduce these gaps. Such a survey
was performed for the M81 group [4], where 12 new dwarf galaxies were found. Re-
cently, searches for faint galaxies in the CentaurusA group were successfully carried
out [6], [24], and these surveys led to the discovery of more than 60 new dwarf galaxy
candidates. Even in more distant groups like, for example, the M101 group at the
distance of 7.2Mpc [17], observational surveys bring the discovery of new dwarf satel-
lites [7], [10], [25]. Park et al. [26] also recently reported the discovery of 22 dwarf
members of the group around NGC 2784 (at the distance about 9.8Mpc).
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1.3. ’Satellites of satellites’

However, not only groups around giant galaxies should be taken into account.
Karachentsev and Makarov [12] in the framework of a binary galaxy study in the
Local Supercluster drew attention to the existence of a large number of systems con-
sisting exclusively of dwarf galaxies. A similar claim was made by Tully et al. [32].
Dwarf galaxy groups account for about 5% of all groups in the Local Superclus-
ter [21]. Taking into account the selection effects, the total number of multiple dwarf
systems should be at least 5-6 times greater. The authors show that groups of dwarf
galaxies are located in low density regions and evolve without the influence of massive
neighbours.

Despite difficulties in finding of faint satellites of dwarf galaxies, a number of
discoveries have recently been made [2], [3], [5], [30]. Although targeted hunts give
us a substantial increase in the number of dwarf galaxies of the Local Volume, new
objects can also be found in the analysis of serendipitously observed areas of sky.
Here we present our work [22], where we report the discovery of an extremely small
galaxy located near the LVJ1157+5638 dwarf galaxy.

2. Observations and data reduction

LVJ1157+5638 was observed on October 18, 2013 with HST/ACS in the course
of the SNAP project 13442 (PI: R.B.Tully). Dithered images were obtained in the
F606W and F814W filters with the exposures summing to 1100 s in each band. The
F606W image of the LVJ1157+5638 field is shown in Fig. 1. This compact galaxy
is very well resolved into individual stars. It is easily distinguished in the upper
part of the ACS image. This region can be seen in detail on the enlarged image
at the upper right panel. The off-centre knot of blue brighter stars is well resolved
into individual stars, indicating ongoing star formation in LVJ1157+5638. A newly
discovered galaxy is situated about 1.5 arcmin to the south of LVJ1157+5638 in the
lower right corner of the image. It is shown at the lower right panel, and also visibly
resolved into individual stars.

We use the ACS module of the DOLPHOT software package1 by A. Dolphin
for photometry of resolved stars. The resulting colour-magnitude diagrams (CMD)
of the LVJ1157+5638 and its satellite are presented in Fig. 2. We call this satellite
LVJ1157+5638 sat in this paper.

3. The colour-magnitude diagrams

Two colour-magnitude diagrams are presented in the Fig. 2. In the left panel
we show stellar populations measured at the ACS/WFC field within the body of
LVJ1157+5638, and at the right panel are the stars within the tiny satellite
LVJ1157+5638 sat. Even the CMD of the ‘main’ dwarf looks sparsely populated.
We can see upper main sequence at (F606W − F814W ) ≤ 0.4, red supergiant plus

1http://americano.dolphinsim.com/dolphot/
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Figure 1: HST/ACS combined distortion-corrected mosaic image of the
LVJ1157+5638 field in the F606W filter (left panel). The image size is 1.2 × 1.8
arcmin. Enlarged combined F606W + F814W images of LVJ1157+5638 and the
new dwarf satellite are shown at the right panel.

upper AGB (asymptotic giant branch) stars at F814W ≤ 25.7 mag, and the rest
are more abundant RGB (red giant branch). Only about 80 stars were resolved in
the tiny satellite LVJ1157+5638 sat. Nevertheless, clear signs of the upper main se-
quence at (F606W −F814W ) ≤ 0.4 are presented, and the RGB is well represented.
Among brighter stars (F814W ≤ 25 mag) we can distinguish a few red supergiants,
but the main sequence only rises to roughly match the level of the TRGB at F814W .
The presence of main sequence stars in both galaxies unambiguously indicate, that
we can classify the objects as dwarf irregulars (dIrrs). Therefore, we can expect
recent or ongoing star formation events in the galaxies. According to the GALEX
and Hα data (see Table 1, where the general parameters and results are indicated),
LVJ1157+5638 has sufficient ongoing star formation, whereas its satellite is too faint
to evince ongoing star formation activity with the data available.
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Figure 2: LVJ1157+5638 and LVJ1157+5638 sat colour-magnitude diagrams. Pho-
tometric errors are indicated by the bars at the right in the CMD. Padova theoretical
stellar isochrones [23] of the different ages and metallicities are overplotted. The
metallicity of the shown isochrones are: left panel, black Z=0001 ([Fe/H] = −2.36);
left panel, red Z=0.0004 ([Fe/H] = −1.74); right panel Z=0.0002 ([Fe/H] = −2.05).

4. Distance measurement and star formation

We have determined a photometric TRGB distance of both LVJ1157+5638 dwarf
galaxy and its expected satellite with our trgbtool program which uses a maximum-
likelihood algorithm to obtain the magnitude of TRGB from the stellar luminosity
function [18]. The measured TRGB magnitude of LVJ1157+5638 is F814WTRGB =
25.74 ± 0.07 mag in the ACS instrumental system. Using the calibration for the
TRGB distance indicator by Rizzi et al. [27] and the Galactic extinction
E(B − V ) = 0.017 from Schlafly and Finkbeiner [28], we derived the true distance
modulus for LVJ1157+5638: 29.82± 0.09 mag (D = 9.22± 0.38Mpc). The CMD of
the LVJ1157+5638 sat is poorly populated, and the galaxy is distant which makes
uncertainties of the distance estimation large. Nevertheless, the trgbtool pro-
gram is working quite well even in this case. The measured TRGB magnitude of
LVJ1157+5638 sat is F814WTRGB = 25.68 ± 0.09 mag. We obtained the distance
modulus for this dwarf 29.76 ± 0.11 mag (D = 8.95 ± 0.42Mpc). The distances to
the both galaxies are consistent within the uncertainties. Therefore, we can claim,
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that the considered dwarfs are very likely a physical pair with the projected separa-
tion 3.9 kpc between them.

The isochrones of these metallicities were superimposed on the CMDs of the
studied dwarfs (see Fig. 2), so that we can approximately estimate the age of the
resolved stars. In the LVJ1157+5638 galaxy, we can assume the presence of a small
number of stars ∼10 Myr old, which indicates an evident ongoing star formation, as
can be seen also from Hα data (see section 3). At the same time, the upper main
sequence of the dwarf is not densely populated, so we cannot expect a recent intense
burst of star formation. Relatively young stars of the age of 50–100 Myr are also
present in the galaxy. In addition, we can assume from the theoretical isochrones,
that the age of the resolved red giants can be from 1 to 10–13 Gyr, i.e. the galaxy
most likely includes the oldest RGB stars. As can be seen from the figure, we can not
exclude somewhat higher metallicity of the RGB stars, [Fe/H] = −1.74. However,
photometric errors play a significant role in this part of the CMD, that it is difficult
to make certain conclusions.

Apparently, there are no stars younger than 100 Myr in the tiny satellite (see the
right panel of Fig. 2). This agrees with the Hα and GALEX data, and indicates the
absence of ongoing star formation. The isochrones of the metallicity estimated from
the RGB colour well fit the CMD as a whole. LVJ1157+5638 sat also most likely
includes the oldest RGB stars up to about 13 Gyr old.

5. Discussion and concluding remarks

We discover a new faint dwarf irregular galaxy, detected in the HST/ACS images.
The galaxy is resolved into individual stars, including the RGB, which allowed us to
measure the TRGB distance to this galaxy. This dwarf is very likely a physical com-
panion of LVJ1157+5638. Thus, we were able to detect a satellite of a dwarf galaxy.
The structure of the neighbourhood of our objects is demonstrated in the Fig. 3.
It is obvious, that LVJ1157+5638 is situated far away from any giant galaxies and
their satellite families. The closest neighbour – dwarf irregular galaxy KKH 73 – is
situated at the projected distance of 83 arcmin (220 kpc) from LVJ1157+5638. The
second nearest galaxy – dwarf irregular KDG 78 – is located at the projected dis-
tance of 352 arcmin (940 kpc) from LVJ1157+5638 (see Fig. 3). Unfortunately, both
neighbours, KKH 73 and KDG 78, do not have photometric distance estimations.
Their heliocentric radial velocities Vh(KKH73) = 596±6 km s−1 and Vh(KDG78) =
574.8± 1.7 km s−1, from the LV database (http://www.sao.ru/lv/lvgdb) exceed the
radial velocity of Vh(LVJ1157+5638) = 416.3 ± 1.4 over 150 km s−1. It is highly
unlikely that they form a physically bounded system.

According to Klypin et al. [13], the LV galaxy sample is complete up toMB ∼ −14
mag. We can estimate the total number of fainter galaxies using the Schechter lu-
minosity function approximation with the parameters φ∗ = 1.25 × 10−2h3Mpc3,
α = −1.3 and M∗ = −20.0+5 ∗ log(h) in B filter, taking into account that h = 0.73.
The absolute magnitude of LVJ1157+5638 sat is approximately MB = −8.9, assum-
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Figure 3: A panorama of the LVJ1157+5638 neighbourhood in the supergalactic
coordinates. The figure shows the projection of galaxies in a cube of ±2.5Mpc
size. The left panel is a projection on the supergalactic plane XY, while the right
panel is the ZY view of the distribution of galaxies. The colour of a dot represents
the morphology of the galaxy according to the colour bar. The size of a galaxy
corresponds to its luminosity as shown in the legend panel.

ing the average colour of the LV dIrrs to be 〈B−V 〉 = 0.48± 0.2 [29]. The resulting
expected number of galaxies in the Local Volume (D < 10Mpc) with luminosities
from MB = −8 to MB = −14 is 1830. Assuming a random distribution of these
galaxies, we can estimate the probability of random projection of one of these galax-
ies into a circle with a radius of 1.5 arcmin, which is approximately 0.017 per cent.
Similarly, a random location of this galaxy inside a sphere with a radius of 0.3Mpc
is 4.9 per cent. Thus, there is a very small probability of accidental detection of two
dwarf galaxies in such a small spatial area, i.e. the two studied dwarfs are very likely
to be physically connected.

General parameters of the galaxies under study are presented in Table 1. Judging
by the total and surface photometry data in the table, LVJ1157+5638 sat is similar
to extreme Local Group dwarfs. At the same time LVJ1157+5638 sat looks quite
faint and rather compact and could be similar to d1005+68, the satellite of a dwarf
galaxy in the M81 group discovered by Smercina et al. [30].

Fig. 4 represent total absolute V-magnitudes of the Local Volume dwarf galax-
ies versus their linear distances. The data were extracted from the HyperLeda
database [19]. Here black dots are measurements from original works, and grey dots
are the magnitudes originally measured in B and translated to the V-magnitudes ac-
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LVJ1157+5638 LVJ1157+5638sat

Position (J2000)a 11h57m53.9s +56◦38′17′′ 11h57m53.0s +56◦36′49′′

E(B − V )b, mag 0.017 0.017
VT , mag c 16.61± 0.04 20.43± 0.06
IT , mag 16.05± 0.04 19.75± 0.06
MV , mag −13.26± 0.10 −9.38± 0.13
MI , mag −13.80± 0.10 −10.04± 0.13
Central surface brightness
in V , mag arcsec−2 21.15± 0.04 23.16± 0.06
Central surface brightness
in I, mag arcsec−2 21.02± 0.02 22.71± 0.06
Exponential scale length
in V , arcsec 3.23± 0.02 1.39± 0.03
Exponential scale length
in I, arcsec 3.96± 0.02 1.45± 0.04
Holmberg diameter
in V , a26.5, arcsec / kpc 30.0 / 1.36 8.4 / 0.37
Holmberg diameter
in I, a26.5, arcsec / kpc 39.8 / 1.79 10.2 / 0.44
Heliocentric radial velocityd, km s−1 416.3± 1.4 –
Radial velocity relative
to the Local Groupe, km s−1 514 –
Distance modulus, mag 29.82± 0.09 29.76± 0.11
Distance, Mpc 9.22± 0.38 8.95± 0.42
Mean metallicity of RGB, [Fe/H], dex f

−2.30± 0.07 −2.08± 0.10
F(Hα), erg/cm2 sec g 9.33× 10−14 < 0.4× 10−14

log(SFR)(Hα), M⊙/yr −2.10 < −3.50
m(FUV), magh 18.49 22.71
log(SFR)(FUV), M⊙/yr −2.63 −4.35
aThe measurements were made from the HST/ACS images.
bFrom [28]
cThe total magnitudes and central surface brightness are not corrected for Galactic extinction,
whereas absolute magnitudes are corrected for the Galactic extinction.
dfrom SDSS DR12
efrom the Catalog & Atlas of the LV galaxies database: http://www.sao.ru/lv/lvgdb/
fThe small [Fe/H] uncertainties are mostly reflect the formal errors of the estimate defined by
expression given in the Section 4.
g Using data from [11] and our distances
hThese GALEX magnitudes were obtained from the Mikulski Archive for Space Telescopes (MAST)
(GALEX Public Release GR6/GR7). We estimate the respective SFR with the recipe given in the
LV galaxies database for the similar data.

Table 1: General parameters of LVJ1157+5638 and LVJ1157+5638 sat

cording to the mean colours of the LV dwarf galaxies of different types from the work
of Sharina et al. [29]. LVJ1157+5638 is shown with red circle and LVJ1157+5638 sat
with red star. It is interesting to note, that the Local Group dwarf galaxy family
is relatively well studied, a lot of really faint objects are discovered. A number of
known faint dwarf galaxies is rapidly decreases with increasing distance. It is obvi-
ous, that LVJ1157+5638 sat is extremely faint for its distance. It is highly possible,
that most of faint satellites are still unknown at the distance of 5–10Mpc.

70



0 2 4 6 8 10 12

Distance, Mpc

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

M
V

, 
m

ag

Figure 4: A relation between linear distance and total absolute V-magnitude for the
Local Volume galaxies. The data are taken from the HyperLeda database. Black
dots are represent original measurements, and grey dots are the magnitudes orig-
inally measured in B and translated to the V-magnitudes according to the mean
colours from Sharina et al. [29]. LVJ1157+5638 is shown with red circle and
LVJ1157+5638 sat with red star.

According to Makarov and Uklein [21], their groups of dwarf galaxies form a con-
tinuous sequence in the distribution of luminosities and masses with associations of
dwarfs discovered by Tully et al. [32] in an analysis of the three-dimensional distribu-
tion of nearby galaxies. The dwarf companion LVJ1157+5638 sat discovered by us,
together with its ‘main’ irregular dwarf probably represents an example of a dwarf
group of extremely low luminosity. This extends the sequence of dwarf galaxy groups
to the faint and ultra-faint luminosities.

Wheeler et al. [33] carried out hydrodynamic zoom-in simulations of isolated
dark matter halos. The authors demonstrate, that every halo is filled with subhalos,
many of which form stars. The simulated dwarf galaxies with M∗ ≃ 106M⊙ host
1–2 satellites with M∗ = 2−200 × 103M⊙. There is the implication that dwarf
galaxies throughout the universe should host tiny satellite galaxies of their own.
Dooley et al. [8] also predict 1–6 (2–12) satellites with M∗ > 105M⊙(M∗ > 104M⊙)
within the virial volume of LMC-sized galaxies, using Caterpillar simulations. The
authors emphasize an importance of finding and observing of the faint satellites of
dwarf galaxies for the determination of the galaxy mass function and an importance
of searches for faint dwarf groups, which could test ΛCDM theory.
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Abstract: We analyzed the influence of additional parameters on the Tully-
Fisher (TF) relation, using a sample of edge-on galaxies from the Revised Flat
Galaxy Catalog with precise Hi data and photometry. Only the optical colors
and Hi-to-optical luminosity ratio are statistically significant in the multipara-
metric TF relation. It means that only terms directly related to the baryonic
matter, the stellar populations and the gas fraction in galaxies, play signifi-
cant role in the TF relation. The standard deviation of our multiparametric
TF relation is 0.32 mag, which makes a sample of flat galaxies a good tool for
studies of the bulk motion of galaxies in the Universe.

Keywords: flat galaxies, multiparametric Tully-Fisher relation

PACS: 98.52.Nr, 98.62.Py, 98.80.Es

1. Introduction

Modern surveys provide us with a huge set of high precision information about
galaxies across the sky, such as photometry in different bandpasses, Hi-flux, redshift
and internal kinematics. The Tully-Fisher (TF) and the Baryonic Tully-Fisher (BTF)
relations play a very important role in the study of the distribution and motion of
matter in the Universe up to several hundreds Mpc, as well as in the understanding
of formation and evolution of galaxies. In this study we concentrate on thin disk
galaxies highly inclined, ∼ 90◦, to the line of sight. Usually, such “edge-on” galaxies
are excluded from consideration to avoid the problems with inner extinction due to
presence of a dust lane. However, “edge-on” galaxies have a number of observational
advantages for the study of bulk motions in the Universe.

Karachentsev (13) proposed a very simple criterion on the axes ratio, a/b ≥ 7, for
the selection of flattest and most inclined galaxies. In Fig. 1 we show an example of
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Figure 1: An example of very thin edge-on galaxy RFGC 2295. The left panel shows
color SDSS image of the galaxy. The top right panel contains the Hi-spectrum of
the galaxy obtained in the ALFALFA survey (11). The bottom right panel shows
the reduction of the spectrum in EDD Hi catalog (7).

the flat and highly inclined galaxy RFGC 2295. This criterion excludes all early type
galaxies as well as most of dwarf and irregular systems. The very first works (13), (14)
show that the scatter of TF relation does not increase for edge-on galaxies and that
the flat galaxies can be a good tool to study a large scale motion of galaxies up
to 200Mpc. Most the flat galaxies belong to the late morphological types Sc–Sd.
Such galaxies show more uniform spatial distribution in the Universe comparable
to early type objects. Since the flat galaxies are observed almost edge-on, they
have a high surface brightness, making it easier to detect and classify even at large
distances. What is really important, the edge-on galaxies do not require correction
of their kinematics for the inclination. This correction is one of the main sources of
uncertainties in the TF relation.

Only edge-on galaxies give us the opportunity for a direct study of the vertical
distribution of luminous matter in the galactic disk. This can be important for the
TF relation. Zasov et al. (49) show that the relative thickness of a gravitationally
stable galactic disk depends on relative mass of a spherical component. The existence
of superthin galaxies with a/b ≥ 10 is possible only in the presence of massive dark
halos around galaxies. N-body simulations (49), (42), (26) confirm that the lower
limit of the dark halo mass can be estimated from the theoretical relationship between
the disk thickness and the halo mass. This fact encourages us to consider an influence
of the relative thickness of a galactic disk on the TF relation.
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The revised version (RFGC) (18) of the Flat Galaxies Catalog (FGC) (19) covers
whole the sky and contains 4236 galaxies with blue axes ratio a/b ≥ 7 and maximal
diameter a ≥ 0.6′. These catalogs have been used to study the peculiar motions
of galaxies in the Universe (17), (16), (15), (34), (28), (36), (25), (35) using dif-
ferent multiparametric modifications of the TF relation. The typical scatter of the
TF relation for RFGC galaxies is about 0.6–0.7mag (27), (20), (25).

In the last decade, new high-quality observational data on the photometry and
kinematics of galaxies appeared. We supplemented the RFGC galaxies with homo-
geneous set of Hi-linewidth measurements from the ‘Cosmic Flows’ project (8), and
with structural parameters from the catalog of edge-on disk galaxies (EGIS) (2).
The bottom right panel demonstrates the result of the reduction of Hi spectrum of
the flat edge-on galaxy RFGC 2295.

The goal of the Cosmic Flows project is to reconstruct the large scale motion of
the matter in the Universe using the redshift independent distance measurements.
The TF relation is one of the most convenient methods for distance determination
to spiral galaxies over a large volume. In framework of the project a large sample
of galaxies was observed with 100-meter Green Bank Telescope (GBT) at the Na-
tional Radio Astronomy Observatory in north hemisphere and with the 64-m Parkes
telescope in Australia for southern objects (8). The observations were performed
for five subsamples of galaxies: the V3K sample provides a high-density mapping
of the Universe within 3000 km s−1; the PSCz sample extends the volume up to
6000 km s−1 and gives a good coverage at low Galactic latitudes; the RFGC galaxies
provides a sparse coverage over a large volume outside of clusters; the calibrator’s
sample allows authors to precise the TF relation; the SN Ia host galaxy sample is
very important for absolute calibration of extragalactic ladder on large scales. These
observations combined with archival radio data from Arecibo, Nançay, GBT, Parkes,
the old NRAO 300 and the 140, and Effelsberg telescopes were processed in a uni-
form manner in order to obtain a homogeneous set of Hi-linewidth with precision
better than 20 km s−1 (7). The rotational velocity of galaxies is based on Wm50

measurements of the width of an Hi profile using new robust method developed in
framework of the ‘Cosmic Flows’ project (7).

The EGIS catalog (2) based on the Sloan Digital Sky Survey images (1) provides
us with aperture photometry and structural parameters for 5747 genuine edge-on
galaxies in the optical g, r and i bands. The galaxies were selected based on the
axial ratio, angular diameter, magnitude and color limits. After automatic selection
all candidates underwent a visual inspection. Only galaxies with clearly seen dust
layers or without signs of non-edge-on spiral arms were classified as true edge-on. The
combination of high precision radio and optical data gives us opportunity to improve
the TF relation for edge-on galaxies and minimize the scatter using additional terms.
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Figure 2: Distribution of RFGC galaxies with reliable photometry from the EGIS
catalog and Hi-data from EDD. The vertical dashed line indicates the effective depth
of the sample.

2. The sample of flat galaxies

We selected 397 edge-on galaxies from the RFGC catalog (18) with precision of
a linewidth measurement better than 20 km s−1 from the All Digital Hi Profile Cat-
alog (7) of the Extragalactic Distance Database (EDD) (47) and having photometry
in the EGIS catalog (2). Fig. 2 shows the distribution of the selected galaxies in the
cosmic microwave background (CMB) reference frame. The sample has en effective
depth of 5458.5 km s−1.

We excluded from the consideration 14 galaxies with small radial velocities,
VLG ≤ 1000 km s−1, to avoid problems with distance estimation from the simple Hub-
ble law. Also, we eliminated 15 objects within the ‘zero-velocity surface’ of the Virgo
cluster, R0 = 7.2Mpc (23), and having radial velocity respect to the Local Group
from −321 to 2679 km s−1. This region is characterized by high peculiar and random
motions of galaxies. Moreover, 12 galaxies were rejected because of high Galactic
extinction, AB ≥ 0.6. Finally, we carried out visual inspection of all galaxies in the
sample and excluded 14 galaxies with suspected photometry, sign of interaction and
with neighbors which may contaminate the radio measurements. As a result, our list
of good RFGC-galaxies consists of 331 objects.

We used the data from EDD Hi catalog for analysis. The line width at the
50% of the mean flux level, W c

m50, is corrected for a relativistic broadening and for
finite spectral resolution as it is described by Courtois and Tully (6). We do not
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apply a correction for the inclination because of all flat galaxies have i > 86◦ (2) and
such correction is negligible.

The aperture photometry and structural parameters of the galaxies, the radial
and vertical scales, central surface brightness and bulge-to-disk ratio, were deter-
mined by EGIS catalog (2). The data are available in three SDSS passbands: g, r
and i. All magnitudes are corrected for Galactic foreground extinction using maps by
Schlegel et al. (39) as described by Bizyaev et al. (2). Also we apply the K-correction
according to the methodology1 (4), (5). For comparison with literature data, we use
the transformation from the SDSS-magnitudes to the Johnson-Cousins system by
Lupton (2015) 2.

We did not apply any correction for internal extinction. Because we consider
galaxies seen nearly edge-on, the effects of high and irregular absorption in the disk
along a line of sight can be very complicated and difficult to account. It is far beyond
the scope of the study. However, there are reasons to circumvent this difficulty.
Typically, the dust is concentrated in a narrow layer in the plane of the galactic
disk. Hence, in the edge-on galaxies significant part of light is not affected by dust.
Moreover, RFGC-galaxies form very homogeneous sample by morphology, mostly
of the late types, Sc–Sd (24). We can expect that the internal extinction varies
smoothly with the galaxy properties such as total mass, stellar populations, relative
thickness of the disk and so on. Thus, we expect that the effects of the internal
extinction will be partially taken into account with usage of additional parameters
in multiparametric TF relation, such as color, relative mass of hydrogen, relative
thickness, and amplitude of rotation.

The distances are estimated from the radial velocities in the CMB reference frame
using the linear Hubble law. Throughout this paper we use cosmology parameters
ΩΛ = 0.7, Ωm = 0.3 and H0 = 73 kms−1.

3. The Tully-Fisher relation

The TF relations in g, i and r bands are shown in three panels of the Fig. 3.
The behavior is similar in all filters. The dwarf galaxies with rotation velocity Vrot .

91 km s−1 show a different slope respect to the giant ones. The galaxies with slow
rotation lie systematically below the relation extrapolated from the fast rotators. We
fit the data with a broken line:

M =







a+ b log Vrot if Vrot > Vbp

â+ c log Vrot if Vrot ≤ Vbp

â = a+ (b− c) log Vbp,
(1)

where a and b are the intercept and slope terms for the giant galaxies; Vbp is the
break point of the relation; c is the slope term for the dwarf galaxies; and σs represent
the scatter for the giant and whole-sample relation, respectively. The results are
summarized in Table 1.

1http://kcor.sai.msu.ru/
2http://www.sdss.org/dr12/algorithms/sdssubvritransform/
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Figure 3: The TF relations for the selected RFGC-galaxies in the g, r and i bands.
Trends look similar for all mentioned bands.

g r i
a −6.18 ± 0.10 −5.07 ± 0.07 −4.18 ± 0.04
b −5.85 ± 0.10 −6.63 ± 0.10 −7.19 ± 0.06
Vbp 91.0 ± 1.5 91.0 ± 1.3 91.0 ± 0.8
c −9.57 ± 0.25 −10.09 ± 0.21 −10.58 ± 0.19

σ (giants) 0.40 0.35 0.34
σ (total) 0.44 0.41 0.40

Table 1: The Broken Line fitting coefficients of the TF relation

There are several reasons to explain such behavior of slow rotators on TF diagram.
The sample of slow rotators Vrot < 91 km s−1 is quite small (55 of 331). We can not
exclude the influence of selection biases. The disks of dwarf galaxies are thicker in the
comparison to regular spiral galaxies. Sánchez-Janssen et al. (38) found that below
M

∗
≈ 2 × 109 M⊙ low-mass galaxies become systematically thicker. It corresponds

to absolute magnitude Mi ∼ −18 mag, which coincides with the break in our sample
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(see Fig. 3). The strict cut of the axes ratio of a/b ≥ 7 in RFGC catalog (18) selects
the mostly thin, low surface brightness galaxies in our sample. These galaxies have
lower luminosity comparable to the whole sample of dwarf galaxies.

However, the similar break in TF relation was found by McGaugh et al. (31) in
a sample of galaxies with circular velocities ranging between 30 . Vc . 300 km s−1.
The dwarfs galaxies with Vc . 90 km s−1 in a field are systematically less luminous
with respect to the expectation from the faster spinning galaxies. McGaugh et
al. (31) noted that these faint galaxies are very gas rich and the bulk of their baryonic
material is still not converted into stars. This is the reason why the slowly rotating
galaxies are underluminous with respect to the bright galaxies. Usage of the sum of
the stellar and gas masses restores the linear relation over the entire observed range.
McGaugh et al. (31) argue that the traditional TF relation is a particular case of
more fundamental Baryonic Tully-Fisher (BTF) relation between the total mass of
baryons and rotational velocity.

This explanation is also suitable in our case of thin and slowly rotating, gas-
rich galaxies. As it is shown in section 4, the multiparametric TF relation restores
a linear behavior when the Hi mass and colors of stellar populations are taken into
the analysis.

A simulations also show similar break in the TF relation. Guo et al. (10) ap-
plied a semi-analytic model of the galaxy formation to the Millennium (43) and
Millennium-II simulations (3). Their predicted RF relation shows the break in the
linear relation near log Vmax ≃ 2.0 (see Fig. 13 from (10)). This value corresponds
to Mr − 5 log(h) ≃ −18, which is in good agreement with our TF relation for the
edge-on galaxies.

4. Multiparametric TF relation

Our goal is to improve the classical TF relation by including various distance
independent terms in the regression. For the analysis we collected structural pa-
rameters from the EGIS photometry (2), the All Digital Hi Profile Catalog (7) and
the HyperLEDA database (29). The list of tested parameters includes the minor-to-
major axes ratio, log( b

a
)o,e in the blue and red POSS-I bands; the vertical-to-radial

scale ratio log( z
h
)g,r,i, in the g, r and i bands; the Hi color index, m21 − {g, r, i},

which corresponds to the Hi-mass-to-light ratio, where {g, r, i} is one of the galaxy
visible magnitude in g, r, and i bands from EGIS, and m21 is the 21-cm line flux
expressed in magnitude according to m21 = −2.5 logF + 17.40 (9); galactic colors
in different bands using aperture photometry of SDSS images. Also we checked if
the multiparametric TF relation depends on the Galactic extinction in B-band. In
addition, we test if the ratios log Vrot log(

b
a
)o,e and log Vrot log(

z
h
)g,r,i are connected

with the internal extinction in our edge-on galaxies.

The stepwise regression was used for selection of the significant parameters of
the multiparametric TF relation. This iterative procedure adds and removes terms
from multilinear model based on their statistical significance in a regression. At
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Figure 4: Multiparametric TF relation for RFGC-galaxies in the r-band. The rela-
tions in the g and i bands look similar. The regression is obtained for massive galaxies
(filled circles) with log Vrot > 1.96. The open circles show the extrapolation to the
slow rotating galaxies. The objects with known TRGB-distances are designated by
filled hexagons.

each step, the p-value of the F-statistics is computed to test the models with and
without a potential term. The term is added to corresponding model if there is an
evidence that the term coefficient would significantly differ from zero. Conversely,
the term is removed from the model if there is insufficient evidence that the coefficient
differs from a zero. The iterations over the coefficients terminate when the coefficient
additions do not improve the F-statistics anymore. We use MATLAB’s realization
of this algorithm with p-value of 0.001 as threshold for the including/excluding the
parameters.

The regression coefficients for the sample of 276 massive, fast rotating galaxies
with log Vrot > 1.96 are presented in Table 4. The last line shows the resulting scat-
ter of the relation. The zero-point was calibrated through the galaxies with known,
redshift-independent distances based on the tip of the red giant branch (TRGB; see
Sect. 5). In addition to the rotation velocity, the most significant parameters are
the optical and Hi color indexes. It reflects the fact that only terms directly con-
nected with baryonic matter, the stellar population and the fraction of the gas, play
the most important role in the TF relation. These parameters have high confidence
level with p-value less than 10−8. No more considered parameters were included in
the final relation because their p-value is greater than 0.04. Surprisingly, the multi-
parametric relation for giants improves the behavior of the whole sample including
55 slow rotators with log Vrot < 1.96. Thereby, taking into account the optical and
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Mg Mr Mi

log Vrot −8.60± 0.32 −8.22± 0.28 −8.48± 0.30
(m21 − {g, r, i}) −0.23± 0.04 −0.23± 0.04 −0.22± 0.04

(g − i) 2.00± 0.19 1.19± 0.20
(g − r) 2.21± 0.28

zero-point −2.09± 0.10 −2.80± 0.09 −2.28± 0.10
σ 0.34 0.32 0.32

Table 2: Regression coefficients for multiparametric TF relation in different SDSS
bands. Subsample of the massive galaxies contains those with log Vrot > 1.96.
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Figure 5: Multiparametric TF relation for the whole sample of 331 flat galaxies in
the r-band. The hexagons shows the galaxies with known, TRGB-distances.

Hi color indexes for giant galaxies removes the break and suppresses the dispersion
for the dwarfs also. The comparison between the predicted and observed absolute
r-magnitudes of galaxies is shown in Fig. 4.

Fig. 4 suggests that a simple, linear multiparametric regression can be constructed
for the whole sample of 331 edge-on galaxies. The resulting relation is shown in Fig. 5
and the corresponding coefficients are reported in Table 3. Similar to the sample of
giants-only, the most significant terms are the optical and Hi color indexes, which
show the the p-value less than 10−6. As can be seen from the Table 3, a subsample
of massive galaxies has the same scatter as in cases, when we analyzed only giant
galaxies. Comparison of the standard deviations in Tables 1 and 3 shows that the
multiparametric linear regression improves the TF relation by 10% with respect to
the broken line approximation.
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Mg Mr Mi

log Vrot −8.50± 0.26 −8.48± 0.25 −8.57± 0.28
(m21 − {g, r, i}) −0.30± 0.04 −0.30± 0.04 −0.29± 0.04

(g − i) 1.12± 0.21
(g − r) 2.88± 0.29 2.24± 0.30

zero-point −2.21± 0.09 −2.29± 0.09 −2.05± 0.11
σ (giants) 0.34 0.32 0.32

σ 0.40 0.38 0.39

Table 3: Regression coefficients for multiparametric TF relation in different SDSS
bands.

5. Zero-point calibration

Our sample contains just few galaxies with precise distance estimates. There are
no distance measurements from Cepheids for any FGC-galaxy. Only five of eleven
RFGC-galaxies with precise TRGB-distances are included in our sample. Most of
them have distance less than 10Mpc. Distance of these galaxies are gathered in
the Table 4, which lists the TRGB distance moduli from the literature. Note that
these distances were estimated using different techniques and calibrations. EDD (12)
provides the most homogeneous and precise set of data. Most important is that these
measurements are available for all five galaxies of our sample. Thus, we decide to
use EDD distances for the zero-point calibration. These five galaxies with TRGB
distance measurements were not included in our sample for the regression analysis,
as they have too small distances, but we use them for zero-point calibration of the
final multiparametric TF relation. The best agreement between our multiparametric
TF relation and nearby galaxies with known distances is reached when the Hubble
constant is qual 73.9 ± 0.6 km s−1 Mpc−1. The zero-point for this case is shown in
corresponding line of the Tables 4 and 3.

6. Discussion

Our multiparametric TF relation has typical standard deviation of 0.32 mag for
giant galaxies. It is significantly less than in previous works on TF relations for
flat galaxies. Kudrya et al. (27) estimated the standard deviation σ = 0.58 mag for
BT–W50 relation for FGC-galaxies. They used indirect estimates of the total B-band
magnitude from the other parameters of flat galaxies in the FGC catalog, such as
angular diameter, surface brightness index and so on. Karachentsev et al. (20) con-
sider statistical properties of the TF relations for flat edge-on galaxies in the B,
I, J , H and Ks bands. The near-IR photometry was taken from the Two Micron
All Sky Survey (2MASS; 41). They found the RMS scatter of 0.48 mag in deep
I-photometry and 0.61–0.63 mag in near IR for a sample of 436 RFGC galaxies. In
framework of study of large scale motions in the local Universe, Kudrya et al. (28)
and Kashibadze (25) constructed multiparametric TF relations using 2MASS pho-
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PGC RFGC EGIS (m−M)0
6699 384 EON 027.382 +32.589 28.61± 0.01 ∗

28.53 (45)
28.55± 0.03 (46)

24930 EON 133.173 +33.421 29.96± 0.38 ∗

29.86± 0.06 (22)

39422 2245 EON 184.374 +37.807 28.17± 0.07 ∗

28.21± 0.11 (37)
28.19± 0.12 (30)
28.20± 0.03 (40)
28.26± 0.24 (21)
27.88± 0.17 (33)
28.16± 0.08 (44)

41618 2315 EON 188.190 +00.115 29.61± 0.12 ∗

29.61± 0.21 (23)

54470 2946 EON 228.973 +56.329 31.19± 0.05 ∗

31.13± 0.10 (37)
∗ EDD CMD/TRGB 2016/04/27 (12)

Table 4: List of the TRGB distance measurements.

tometry. Kudrya et al. (28) find the dispersion σTF = 0.42 mag for a sample of 971
RFGC galaxies with V3K < 18000 km s−1, while Kashibadze (25) obtaines the scatter
of 0.52 mag for a sample of 410 nearby edge-on galaxies (Vh ≤ 3000 km s−1) from the
2MASS-selected Flat Galaxy Catalog (2MFGC; 32). The quality of these near-IR
TF relations is obviously limited by short exposures of 2MASS survey, which can lead
to an underestimation of the galactic disk luminosity. Obviously, that we achieved
such an improvement over predecessors due to the use of high-precision photometry
and new Hi data.

As can be seen from the tables 4 and 3, the final regression expands the standard
TF relation by including only the Hi colour index and the colour of galaxies. Both
indices are associated with the presence and evolution of baryonic matter in galaxies.
The Hi colour index, (m21 − {g, r, i}), reflects the ratio of hidrogen to the total
luminosity of a galaxy, while the total colour, (g − r) or (g − i), depends on stellar
populations of a galaxy. In fact, we got the baryonic TF relation, without imposing
any restrictions on the type of considered parameters.

Another surprise was the lack of the relative thickness of a galactic disk in the
final regression. It is known that the presence of a spheroidal component stabilizes
a galactic disk. Therefore, a disk submerged in a halo may have lower values of the
vertical velocity dispersion. Zasov et al. (49) show that the minimal relative thickness
of a collisionless disk decreases with its relative mass, z/h ∼ Mdisk/Mtotal (48), where
Mdisk and Mtotal are masses of the disk component and total mass, respectively. One
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can expect that this connection has to be reflected by the TF relation. However, the
relative thickness is statistically insignificant in our multiparametric TF relation.

We see several possible explanations. The disk orientation of our galaxies is close
to 90 degrees, but not exactly. Even small deviations from the edge-on view affect
estimation of the observable vertical scale length of a galaxy. Without visible dust
line, it seems impossible to separate the contribution of the radial light distribution
into the measured vertical profile in galaxies oriented not exactly edge-on. Variation
in orientation of galaxies smears the relation and makes less significant the influence
of the relative thickness on the multiparametric TF relation.

The stellar parameters determined for optical SDSS images are affected by dust,
especially for objects with small angular sizes (2). Using near-infrared images instead
of the optical ones would help mitigate the effects of the dust extinction.

One more factor that may play its role is that our sample consists of only thin
(a/b > 7) and bulgeless (Sc–Sd) galaxies by design. The sample with a/b ranging
from 7 to 12 does not represent all edge-on galaxies with arbitrary disk thickness.
The effective dynamic range of the disk thicknesses may be not enough to feel the
influence of it on the TF relation.

Note that the relationship between the disk thickness and the spherical-to-disk
component mass ratio sets only the lower limit on the spherical halo mass (42).
In reality many evolutionary factors, such as minor interactions or sources of the
internal dynamical heating, deteriorate the relationship. Thus, low effect of the disk
thickness on the TF relation may also reflect small-scale dynamical factors during
galactic evolution.

7. Conclusions

1. We constructed a multiparametric TF relation for a sample of 331 edge-
on RFGC galaxies. These objects have precise Hi linewidth measurements with
uncertainty better than 20 km s−1 from the All Digital Hi Profile Catalog (7) of
the EDD database (47). The optical photometry and structural parameters of the
galaxies were taken from the SDSS-based EGIS catalog (2).

2. A classical relation between an absolute magnitude and a Hi linewidth reveals
different trends for the giant and dwarf galaxies. The slow rotating Vrot < 91 km s−1

dwarfs are underluminous with respect to the extrapolation from the fast rotating
galaxies. This fact can be well explained in the framework of baryonic TF paradigm.
Dwarf galaxies hold sufficient fraction of baryonic matter in their gas still not con-
verted into stars. Thus, their optical luminosity is lower than expected for the giant
galaxies with high star formation efficiency. Using the total mass of baryons instead
of the stellar luminosity takes this effect into account and puts the giant and dwarf
galaxies on the same relation (31). We show that both slowly and highly rotating
galaxies obey the same relation on our multiparametric TF relation made for edge-on
galaxies.
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3. Our multiparametric relation expands the classical TF law with two terms: the
Hi color index and optical colors of the galaxies. The Hi color index m21 − {g, r, i}
reflects the fraction of Hi mass with respect to the optical luminosity. The (g − i)
or (g − r) colors reflects properties of stellar populations, such as mean age and
metallicity. Any other structural parameters or their combinations have statistically
negligible effect for the TF relation. We note that only parameters directly related
to the baryonic matter, stellar population and fraction of gas, play significant role
in the TF relation.

4. The coefficients of the multiparametric TF relation are almost independent of
passbands. This differs from the simple Hi-linewidth–absolute magnitude relation
where the slope significantly changes with the passband used, what can be seen from
Table 1. Thus, taking into account the optical and Hi color indexes helps us find
a universal relation.

5. The standard deviation of the multiparametric TF relation is 0.32 mag in
the r and i bands for the galaxies with Vmax ≥ 91 km s−1. Usage of Hi and optical
color indexes improves the TF relation for edge-on galaxies by about 10% for giant
galaxies.

6. We calibrate zero-point of our multiparametric TF relation using five edge-on
galaxies with precise TRGB-distance measurements. It allows us to estimate the
Hubble constant of 73.9 ± 0.6 km s−1 Mpc−1 for our sample of flat galaxies with
effective depth of 75Mpc.

7. The scatter of our TF relation for flat galaxies is comparable with the best
modern estimations of the TF relation, where highly inclined galaxies were not used.
We find that the flat edge-on galaxies with extended set of available parameters make
good tool to study bulk motions of galaxies in the nearby Universe.
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1. The ambiguity of the notion universe

The aim of this overview paper is to present various distances used in cos-
mology. We will focus on their mutual relations and geometrical interpretations.
We will mostly follow the notation from the well-known Weinberg’s book [42] (see
also [6], [17], [30]).

Cosmological distances in the remote universe obviously cannot be measured di-
rectly due to large scales in space, time, and a relatively small speed of electromag-
netic interaction. Therefore, this problem is usually transformed to measurements
of angles, luminosities, redshifts, etc.

The term “universe” is used in cosmology with various meanings: true spacetime,
true space (i.e. spacetime for a fixed time), and the observable universe, which is
seen as a projection on the celestial sphere. These are three different entities. Their
mathematical models are also three completely different manifolds (see Fig. 1). Thus
altogether we have 6 = 3+3 meanings of the problematic notion “universe” for which
the terminology is not fixed yet. The first three contain real matter, whereas the
other three are abstract mathematical idealizations of reality.
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Figure 1: Three different manifolds corresponding to the curvature index k = 1
(cf. (3)). For simplicity, the hypersphere S

3
a(t) defined in (4) is reduced to its great

blue circle S
1
a(t) for z = w = 0 and for a fixed time instant t. This is the model of

space (the universe). The model of spacetime can be obtained by rotation of the
red graph of the expansion function a = a(t) about the time axis t. The observable
universe is marked by the yellow light cone. The space dimensions are reduced by
two.

According to the Einstein cosmological principle our “universe” is homogeneous
and isotropic for large spatial scales and fixed time. The homogeneity is expressed by
a translational symmetry (i.e., space has at any point the same mass density, temper-
ature, pressure, etc.), while isotropy is expressed by rotational symmetry (i.e., there
are no preferred directions at any point and an observer is not able to distinguish
a given direction from another direction by means of local physical measurements).

2. Maximally symmetric three-dimensional manifolds

In accordance with the cosmological principle, we shall understand by the uni-

verse a cross-section of spacetime for a fixed time instant t, i.e., the universe will
be an isochrone in spacetime for constant t. Sometimes it is called the space. It is
represented by one of the three maximally symmetric manifolds: the hypersphere

S
3 = {(x, y, z, w) ∈ E

4
| x2 + y2 + z2 + w2 = 1}, (1)

the Euclidean space E3, or the hyperbolic pseudosphere H3, i.e., those manifolds that
have the maximum number of symmetries. According to [42, Chapt. 13], there are
no other maximally symmetric manifolds up to scaling. The curvature index k of the
manifolds S3, E3, and H

3 attains the values k ∈ {1, 0,−1}, respectively. Sometimes
the index k is also called the normalized curvature. In [21] we present five different
ways to imagine the hypersphere S3. Its equator w = 0 is a two-dimensional sphere S2

(see Fig. 2).
We are in the center of the observable universe, and the center of the space S

3

lies at the origin (0, 0, 0, 0). Similarly each circle has its center even though it does
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not belong to it. Thus, the frequently repeated statement that the universe has no
center is false if k = 1.

Also the often used expression H
3 = {(x, y, z, w) ∈ E

4
| x2 + y2 + z2 − w2 = −1}

with the Minkowski metric is confusing, since w is not equivalent with the other three
variables x, y, z. Moreover, the corresponding Minkowski distance does not satisfy
the triangle inequality, which is a fundamental property of any metric space for a fixed
time. Therefore, the Minkowski metric is often called the Minkowski pseudometric.
Let us emphasize that w is a space coordinate and not time (cf. [40, p. 95]). The
manifold H

3 cannot be isometrically imbedded to E
4 like S

3, see [20, p. 279] for
details. Concerning the hyperbolic plane H

2, let us point out that no arbitrarily
small open neighborhood of a given point of H2 can be isometrically imbedded in E

3.
However, it can be isometrically imbedded in E

6, see [1] and [2]. The discovery and
development of non-Euclidean geometries are discussed in the survey paper [4].

Note that the unit hypersphere S3 can be described by the following hyperspherical
coordinates

x = sinχ sin θ cosφ,

y = sinχ sin θ sinφ,

z = sinχ cos θ,

w = cosχ,

where χ, θ ∈ [0, π] and φ ∈ [0, 2π) are called the comoving coordinates. We observe
that these coordinates are a natural generalization of the standard spherical coordi-
nates for the unit sphere S

2 and χ = π
2
. In the Appendix we show how to derive the

metric (2) corresponding to S
3.

Let us emphasize that a given metric need not define the corresponding manifold
uniquely. For instance the manifolds E3 and E

2
× S

1 can be both equipped with the
Euclidean metric, but their topology is different.

Let us present an important argument that favors S3 as a model of our universe
for a fixed time. The manifolds E3 and H

3 have infinite volume. However, the actual
space could not first be finite (i.e. bounded) after its origin and then change to infinite
(unbounded). Moreover, one can hardly imagine that the infinite universe would
have everywhere on large scales the same mass density, temperature, pressure1, and
so on, at a given time instant t > 0 after the Big Bang as required by the Einstein
cosmological principle. In this case, information would have to be transmitted at
infinite speed. The popular theory of inflation [16] cannot explain such a homogeneity
and isotropy of an infinite universe.

If gravity propagates at the speed of light, our further development is influenced
by the distribution of the mass in the yellow conical manifold of Fig. 1. On the other
hand, for an infinite speed of gravity (assumed by Newton’s theory) we would be
influenced by the larger blue manifold of Fig. 1. This contradicts to causality.

1Furthermore, these quantities should attain arbitrarily large values at all points of the infinite
universe just after the Big Bang.
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Albert Einstein derived that the gravitational interaction causes a positive curva-
ture inside mass bodies and that the universe can be modeled by a three-dimensional
hypersphere S

3 with unchanging radius, see [10, p. 152]. In [19], it is also shown why
the uniform distribution of matter yields a positive curvature. Namely, the interior
Schwarzschild metric is the same as the metric of S3 (see Appendix) up to a fixed
positive constant.

Figure 2: The unit circle on the left is the sphere S
1 = {(x, y) ∈ E

2
| x2 + y2 = 1}.

The surface of the unit ball is the sphere S
2 = {(x, y, z) ∈ E

3
| x2 + y2 + z2 = 1}.

3. Spacetime metric

In cosmology, the (pseudo)metric of the expanding homogeneous and isotropic
universe is written by means of infinitesimally small quantities as follows (see e.g. [24],
[30], [37], [42])

ds2 = c2dt2 − a(t)2
(

dχ2 + f 2(χ)(dθ2 + sin2 θ dφ2)
)

, (2)

where θ ∈ [0, π], φ ∈ [0, 2π), χ ∈ [0, π] for k = 1 and χ ∈ [0,∞) otherwise, χ is
a dimensionless comoving distance2, a = a(t) is a positive time variable function
which is called the expansion function (sometimes it is called the scaling parameter),
and f depends on the curvature index k as follows

f(χ) =







sinχ if k = 1,
χ if k = 0,
sinhχ if k = −1.

(3)

This metric is called the Robertson–Walker metric. It was first introduced in pa-
pers [37] and [41]. Sometimes it is also called the Friedmann–Lemâıtre–Robertson–

Walker metric or just shortly the FLRW-metric. Note that Willem de Sitter [8]
already in 1917 (see also [9]) introduced a metric which is very similar to (2).

The case k = 1 corresponds to the expanding three-dimensional hypersphere
given by

S
3
a(t) = {(x, y, z, w) ∈ E

4
| x2 + y2 + z2 + w2 = a2(t)}, (4)

2When k = 1 then the comoving distance χ plays the same role as the angle θ in Fig. 6.
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where the function a = a(t) stands for the variable radius. The hypersphere (4) for
a fixed time t has at any point and any direction the same curvature 1/a(t), i.e.,
the inverse of the radius of the osculation circle. Similarly E

3 has at any point and
any direction zero curvature. This enables us to model the universe as having a high
homogeneity and isotropy on large scales. In fact, the cosmological principle is the
assumption that the spacetime manifold of the universe is described by metric (2),
where f(χ) satisfies one of the three possibilities given in (3), see [42, Chapt. 14.2].

Recall that the expansion function a(t) ≡ const. in the Einstein static model [10].
In 1917, Willem de Sitter found a very special solution to Einstein’s equations [7],
which describes an isotropic expansion of the universe with zero mass density and
positive cosmological constant. In the de Sitter model, the expansion function takes
the form a(t) = α cosh(ct/α) for a suitable constant α > 0. In the Einstein–de Sitter
parabolic model, the expansion function is defined by a(t) = βt2/3, where β > 0
is a constant (see Fig. 3). There are many other models with different expansion
functions, e.g., the anti-de Sitter model with a negative cosmological constant, the
Friedmann model (cf. (7) and [12]), the Minkowski model [30], the Tolman model of
an oscillating universe when time has no beginning and no end [39].

Remark 1. The comoving distance is independent of time and sometimes
(see e.g. [32]) it is also defined as

dC = a(t0)χ,

where t0 is the age of the universe (the subscript 0 will correspond to the present
time). This is the distance between an object and the observer which sits at the
origin of the considered coordinate system, e.g., at the North Pole in the case k = 1.
Moreover, we note that for k = 0 the above variable dC is the usual Euclidean
distance. Only in this case the space manifold for a fixed time is not curved.

Remark 2. Kurt Gödel in [14] worked on a theory of a rotating universe S
3.

For any odd dimension n = 1, 3, 5, . . . the sphere S
n may rotate around its center

such that all points have the same speed |v|, where | · | stands for the Euclidean
norm in E

4. The reason is that Sn “with hairs can be combed” if n is odd. It is not
a rotation around an axis as e.g. for n = 2. For n = 3 the corresponding centrifugal
force could then contribute to the expansion of the universe (as in case of a rotating
circle for n = 1). Gödel also investigated a homogeneous anisotropic universe which
everywhere looks like an anisotropic crystal lattice, where atoms are replaced by
galaxies.

4. Expansion function versus redshift

The redshift z of an object resulting from its radial motions is defined by3

z :=
λ1

λ0
− 1 =

ν0
ν1

− 1,

3The coordinate z in (4) has a different meaning. However, no ambiguity can arise.
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where λ1 and ν1 are the observed wavelength and frequency, λ0 and ν0 are the
emitted, and λiνi = c for i = 0, 1. If z ≫ 0 then z is referred as the redshift

distance. Due to local movements in a neighborhood of our Galaxy it may happen
that z ∈ (−1, 0) when an object is approaching to us. In this case z is called the
blueshift. However, for distant objects we always have z > 0, since the universe is
expanding. The redshift of Earth’s observer is z = 0. Hence, altogether we find that

z ∈ (−1,∞).

According to the Einstein cosmological principle from Section 1, our universe
is homogeneous and isotropic on large scales. However, let us emphasize that the
observable universe is supposed to be homogeneous only for z =const., since it
has different densities for different z. The corresponding light cone (see Fig. 1) is
nonlinearly deformed for z → ∞.

Consider the light cone from Fig. 1. The observer sits at its vertex. The events
inside this cone are called time-like, while those outside are called space-like. The
“distance” between two consecutive events on the light cone is characterized by the
relation (2) for ds = 0. Such events are called light-like and the connecting geodesic
line is said to be the world-line. Since φ and θ are fixed, we have dφ = 0 and dθ = 0,
and thus the relation (2) reduces to the form

ds2 = 0 = c2dt2 − a(t)2dχ2

for any curvature index k ∈ {−1, 0, 1}. Therefore,

c dt = ±a(t) dχ

which implies that for the dimensionless conformal time η we have

dη :=
c dt

a(t)
= −dχ,

since the dimensionless comoving distance χ decreases while the time t increases.
Denote by t1 (or η1) the time instant when a photon (signal) was emitted from
χ = χ1 and t0 (or η0) when it was received at χ0 = 0, i.e. 0 < t1 < t0. For the
corresponding values of the conformal time we have 0 < η1 < η0. Then by integrating
the above relation, we find that

η0 − η1 =

∫ η0

η1

dη =

∫ t0

t1

c dt

a(t)
= −[χ]χ0

χ1
= χ1, (5)

since the χ0 coordinate of the observer was taken without loss of generality to be
zero. The comoving distance χ1 is thus equal to the difference η0 − η1 of conformal
times. The maximum possible value of the χ coordinate is thus equal to η0 which is
a finite number. On the other hand, the corresponding redshift tends to infinity.
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If another signal was sent from χ = χ1 at the conformal time η1 + δη1 for suffi-
ciently small δη1 > 0 and received in χ = χ0 = 0 at η0 + δη0, then similarly to (5)
we obtain4

(η0 + δη0)− (η1 + δη1) =

∫ η0+δη0

η1+δη1

dη = χ1.

Hence, for the physical time we get

δη1 =
cδt1
a(t1)

=
cδt0
a(t0)

= δη0,

where δti = δηia(ti)/c for i = 0, 1, and thus (cf. (11))

a(t1)

a(t0)
=

δt1
δt0

.

In particular, for a periodic process, where λ1 = cδt1 and λ0 = cδt0 are the corre-
sponding wave lengths, we have

a(t0)

a(t1)
=

λ0

λ1
= z + 1.

A special case of formula (5), when a = a(t) satisfies the Friedmann equation, will
be given in (28) below.

5. Hubble parameter and the Friedmann equation

For a given smooth positive expansion function a = a(t) define the Hubble pa-

rameter by

H(t) =
ȧ(t)

a(t)
, (6)

where t > 0 is time and the dot denotes the time derivative. The Hubble parameter
can be thus expressed as the time derivative of the natural logarithm in the following
way

H(t) =
d
(

lna(t)
a0

)

dt
,

where a0 > 0 is an arbitrary length constant and thus the argument a(t)
a0

is dimen-
sionless.

From now on we shall mainly suppose that a = a(t) satisfies the Friedmann

ordinary differential equation of the first order (see [12], [13], [42])

ȧ2 =
8πGρa2

3
+

Λc2a2

3
− kc2 (7)

4We should write more precisely ∼= instead of the last equality.
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for t>τ , where G = 6.674·10−11m3kg−1s−2 is the gravitational constant, ρ=ρ(t) > 0
is the mean mass density, Λ ≈ 10−52 m−2 is the cosmological constant, c =
299 792 458m/s is the speed of light in vacuum, and the time

τ ≈ 380 000 yr (8)

corresponds to the decoupling of the cosmic microwave background (CMB), see [11].
The associated space behaves as an opaque plasmatic wall.5 We cannot look deeper
in time using electomagnetic waves.

By (7) Alexander Friedmann described the dynamical behavior of the universe
as an alternative to Einstein’s static universe6 [10]. In 1924, he published another
paper [13], where the negative curvature index k = −1 is considered. However,
equation (7) was derived only for a negative density of mass (see [13, p. 2006]) and it
is not clear how to satisfy such a paradoxical assumption. Note that the case k = 0
was not considered by Friedmann. From now on, we shall assume that the expansion
function a = a(t) satisfying (7) for t > τ fairly well approximates the expansion of
the whole universe (for drawbacks of this questionable assumption see [18], [22], [23]).

Now assume that ȧ 6= 0 and divide equation (7) by ȧ2. Then we get

ΩM(t) + ΩΛ(t) + Ωk(t) = 1 for all t > τ, (9)

where

ΩM(t) =
8πGρ(t)

3H2(t)
> 0, ΩΛ(t) =

Λc2

3H2(t)
, and Ωk(t) = −

kc2

a2(t)H2(t)
, (10)

are cosmological parameters called the density of dark and baryonic matter, den-

sity of dark energy, and the curvature parameter, respectively. In the literature on
cosmology, the division of (7) by the square ȧ2 ≥ 0 is usually done without any
preliminary warning that we may possibly divide by zero which may lead to various
paradoxes. For instance, we see that ΩM(t) → ∞ and ΩΛ(t) → ∞ when ȧ(t) → 0
(see Section 8).

6. Distances in time

In this section, we derive a relation between the redshift z and the so-called look-
back time (see (19) below), i.e., how much time has passed before the photons from
the observed object arrived at us. We shall follow the idea of Carroll et al. [3] in
more detail.

5For instance, if k = 1 then the plasmatic wall is described by the manifold S
3

a(τ)
. From the Earth

we observe only its two-dimensional cross section. Astrophysical aspects of this phenomenon are
beyond this article. We only note that John N. Mather and George F. Smooth have been awarded
by the Nobel Prize in Physics 2006 for their discovery of the black-body form and anisotropy of the
CMB.

6Einstein did not ask the question whether stars could shine infinitely long time. The constant
solution of Einstein’s equations (cf. (39)) is thus unphysical.
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For z ≥ 0 we introduce an auxiliary function

X(t) :=
a(t)

a(t0)
=

1

z + 1
, (11)

where t0 is the age of the universe. By the law of conservation of mass we find for
zero pressure that

ρ(t)a3(t) = ρ(t0)a
3(t0) (12)

is a time independent constant for nonrelativistic matter7 in matter dominated uni-
verse with z . 1000. Thus we have

ρ(t)a2(t)

a2(t0)
=

ρ(t)a3(t)

a2(t0)a(t)
=

ρ(t0)a
3(t0)

a2(t0)a(t)
=

ρ(t0)a(t0)

a(t)
=

ρ(t0)

X(t)
.

From this and the Friedmann equation (7) divided by a2(t0), we get

Ẋ2(t) =
8πGρa2

3a2(t0)
+

Λc2X2(t)

3
−

kc2

a2(t0)
=

8πGρ(t0)

3X(t)
+

Λc2X2(t)

3
−

kc2

a2(t0)
.

Dividing this equation by the Hubble constant

H0 = H(t0) =
ȧ(t)

a(t)

∣

∣

∣

t=t0

> 0,

we obtain
1

H2
0

Ẋ2(t) =
ΩM

X(t)
+ ΩΛX

2(t) + Ωk, (13)

where for brevity

ΩM = ΩM(t0), ΩΛ = ΩΛ(t0), and Ωk = Ωk(t0) (14)

denote the present values of the cosmological parameters (10). The left-hand side
of (13) is nonnegative and thus

1

H0
Ẋ(t) = ±

√

ΩM

X(t)
+ ΩΛX2(t) + Ωk. (15)

Since by (11)

Ẋ(t) =
d

dt

( 1

z + 1

)

= −

1

(z + 1)2
dz

dt

7According to [43, Chapt. 2], for ultrarelativistic matter we have ρ(t)a4(t) ≡ const. for t ∈ (0, τ)
which corresponds to z&1000 in radiation dominated universe. The use of (7) for this case has to
be done with a special care.
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and since the derivative dz/dt is negative, we find from (15) that

1

H0
Ẋ(t) = −

1

H0(z + 1)2
dz

dt
=

√

ΩM(z + 1) +
ΩΛ

(z + 1)2
+ Ωk (16)

and thus,
dz

H0(z + 1)
√

ΩM(z + 1)3 + Ωk(z + 1)2 + ΩΛ

= −dt. (17)

By (9) we can exclude Ωk from the denominator using the identity

ΩM(z + 1)3 + (1−ΩM − ΩΛ)(z + 1)2 +ΩΛ = (ΩMz + 1)(z + 1)2 − ΩΛz(z + 2). (18)

Now by integration of (17) we get the relation between the redshift z and the look-

back time t,

t0 − t =
1

H0

∫ z

0

dz

(z + 1)
√

(ΩMz + 1)(z + 1)2 − ΩΛz(z + 2)
. (19)

Numerical relations between the redshift and the corresponding look-back time
are given in [32] for k = 0.

Remark 3. If
ΩM ≥ 0 and ΩΛ ≤ 1, (20)

then the integral in (19) exists and is finite. These additional conditions are essential,
because the expression under the square root in (19)

(ΩMz + 1)(z + 1)2 − ΩΛz(z + 2) ≥ (z + 1)2 − z(z + 2) = 1

is positive (cf. Remark 15).

Remark 4. According to [3, p. 509] and also [35, Sect. 4.3], the formula (19)
for z → ∞ gives the age of the universe only by means of the present values of the
cosmological parameters ΩM, ΩΛ, and H0. However, this need not be true, since (19)
was derived under the assumption (12) which is not valid for very large z (see the
footnote 7).

Remark 5. The measured value of the Hubble constant is

H0 ≈ 70 km s−1Mpc−1
≈ 2.27 · 10−18 s−1,

where 1 pc = 3.086 · 1016 m, ΩM ≈ 0.3 and ΩΛ ≈ 0.7. According to [33],

t0 = 13.82 Gyr,

i.e., the age of the universe was derived up to four significant digits by formula (19).
Nevertheless, from such a simple calculation we should not make any categorical
conclusions about the real age of the universe as it is often done. The Friedmann
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Figure 3: If the expansion function a = a(t) were to be concave, then its graph would
be below the tangent line through the point (t0, a(t0)). Thus for ȧ(t0) > 0 by (22)
the age of the universe t0 would not exceed the Hubble age T0 = 13.97 billion years.

equation was derived from Einstein’s equations by excessive extrapolations to cos-
mological scales. Moreover, the present state of our universe depends on its history,
whereas the Friedmann equation (7) is reversible, i.e., its solution for t > t0 depends
only on the value of the expansion function at the present time t0 and not on the
history. Other models that are not based on the Friedmann equation may yield
a different age of our universe, e.g. an infinite age for a(t) = C1 + C2e

C3t and some
constants Ci, see [20, p. 305].

Remark 6. The Hubble time, sometimes called the Hubble age (see Fig. 3), is
defined by the relation

T0 :=
1

H0
≈ 13.97 Gyr ≈ 4.41 · 1017 s,

where 1 yr = 31 558 149.54 s and the measured value of H0 is stated in Remark 5.
The Hubble distance is then given by

dH := cT0 = 1.32 · 1026 m. (21)

If the expansion function a = a(t) in its definition domain were to be concave
everywhere (which probably does not correspond to reality) and ȧ(t0) > 0, then
by (6) the following would hold for the truth age t0 of the universe (see Fig. 3):

t0 ≤ T0 =
a(t0)

ȧ(t0)
=

1

H(t0)
≈ 13.97 Gyr. (22)

Remark 7. If 0 ≤ z ≪ 1 then by (19)

z =

∫ z

0

dz = H0(t0 − t),

i.e., for a small z the look-back time t is independent of ΩM and ΩΛ. Multiplying
this equation by c and using the well-known Hubble law

v = H0d,
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where v the recession speed of galaxies at distance d, we get

v = cz

and thus the distance can be calculated from the measured redshift z ≪ 1 as follows
(cf. [36])

d =
cz

H0

.

This relation is a very good approximation for z . 0.1, i.e., for distances not greater
than 400 Mpc.

Remark 8. If Ωk = ΩΛ = 0 then by (9) and (19)
∫ z

0

dz

(z + 1)5/2
=

[

−2

3(z + 1)3/2

]z

0
=

2

3

(

1−
1

(z + 1)3/2

)

= H0(t0 − t).

From this and z → ∞ we get H0 = 2/(3t0), i.e.,

H0(t0 − t) =
2

3
−

2t

3t0
.

For instance, if z = 8 then (z+1)3/2 = 27 and the corresponding age of the universe
was t = 1

27
t0. In fact, this represents an upper estimate of the age t for nonzero

cosmological parameters Ωk and ΩΛ. To see this, assume that (20) is valid. Then

(ΩMz + 1)(z + 1)2 − ΩΛz(z + 2) ≤ (z + 1)3,

and thus by (19)

t0−t :=
1

H0

∫ z

0

dz

(z + 1)
√

(ΩMz + 1)(z + 1)2 − ΩΛz(z + 2)
≥

1

H0

∫ z

0

dz

(z + 1)5/2
= t0−t,

that is t ≤ t = 1
27
t0.

Remark 9. If Ωk = 0 then the integral appearing in (19) can be calculated
analytically (see [26]) by means or elliptic integrals (cf. also [15]). However, testing
whether ΩM + ΩΛ is exactly equal to 1 might be a very difficult task. The main
reason is that an arbitrarily small neighborhood of 1 contains infinitely many real
numbers. For instance, if the sum were to be

ΩM(t0) + ΩΛ(t0) = 1.000000000000000001,

we would still have a bounded universe that can be described by the hypersphere (4)
with an incredibly large radius. Such a space is locally almost Euclidean, but
bounded. There is, of course, a very big difference between a bounded and un-
bounded space. Moreover, the hypersphere S

3
a has entirely different topology than

the flat space E
3 which is promulgated by cosmologists at present. The integral

appearing in (19) for Ωk 6= 0 is calculated in [27].
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Remark 10. Using (6) and (11), we get

H(t) =
a(t0)

a(t)
·

ȧ(t)

a(t0)
= (z + 1)Ẋ(t).

From this, (16), and (18) we can express the behavior of the Hubble parameter under
the assumption (20) by means of the redshift z as follows

H(z) = (z+1)H0

√

ΩM(z + 1) +
ΩΛ

(z + 1)2
+ Ωk = H0

√

(ΩMz + 1)(z + 1)2 − ΩΛz(z + 2),

where H(z) = H(t) and z = a(t0)/a(t) − 1 by (11). The inverse relation between z
and t can be derived from (19).

Remark 11. Consider the linear equation of the second order

ä = −

4πG

3

(

ρ+
3p

c2

)

a+
Λc2

3
a (23)

which is a direct consequence of the Einstein equations (see [21, p. 170]). For ȧ 6= 0
define the dimensionless deceleration parameter by

q = q(t) := −

äa

(ȧ)2
.

In particular, if the pressure p ≡ 0, then q can be expressed by means of the cosmo-
logical parameters (10) as follows

q(t) =
4πGρ

3H2
−

Λc2

3H2
=

1

2
ΩM(t)− ΩΛ(t)

due to (23). For ΩM ≈ 0.3 and ΩΛ ≈ 0.7 the present value of the deceleration
parameter q(t0) ≈ −0.55 is negative, and thus the expansion of the universe is
accelerating.

Remark 12. The standard cosmological model assumes that the time flows
completely uniformly from the Big Bang on (see Fig. 1). Therefore, we often hear
the question: What was before the Big Bang?

However, it is important to realize that in the observable universe we actually look
in any direction into the vast spacetime singularity. The more distant the objects
that are observed, the more it seems to us that time passes more slowly. If there
were a huge clock placed at z = 1 from the Earth, then we would see that it goes
twice as slow. The largest currently observed distance corresponds to the CMB with
redshift z = 1089 which appeared 380 000 years after8 the Big Bang. In this case,

8At that time the universe was 1090 times smaller and the radius of the corresponding CMB
sphere was about 1024 m. The most typical diameter of fluctuations in the CMB is about one
angular degree which is about 1021 m in diameter, i.e. greater than our Galaxy. Note that this is
too large an object for the well-known method of baryonic acoustic oscillations, cf. [11].
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EarthrSun δ

Figure 4: If D is the diameter of the Sun, then its angular distance observed from
the Earth is equal to dA = D/δ = r, where D = 2r sin(δ/2) ≈ rδ.

during one earthly hour we would observe that the CMB clock had moved only about
3.3 = 3600

1090
seconds. If we would ever see objects more distant than z = 1089 (using

e.g. detectors of relic neutrinos), we would find that time there passes even more
slowly, and so on.9 Thus the Big Bang singularity deforms not only space but also
time. This is a similar phenomenon like time dilatation in a gravitational potential
hole, since photons reduce their frequency.

Remark 13. In applying the standard cosmological model various “delicate”
limits are performed: a → 0, a → ∞, t → 0, t → ∞, z → ∞, . . . (see, for instance,
Remark 4 and [30], [42]). At present it is believed that a(t) → ∞ for t → ∞. By (9)
and (10) for k ≤ 0 it follows that 1 > ΩΛ(t), and thus 1

3
Λc2 < H2(t) for arbitrary

time. From this and (6) we observe that also the time derivative of the expansion
function grows beyond all bounds if Λ is a positive constant. Hence, the derivative
ȧ(t) → ∞ for t → ∞ in an infinite universe (Euclidean or hyperbolic).

7. Distances in space

By [42] the angular distance (sometimes called the angular-size distance) is in the
Euclidean space defined by the relation

dA =
D

δ
, (24)

where D is a known (or assumed) proper size of an object and δ ∈ (0, 2π) is its
apparent angular size (see e.g. Fig. 4). Since δ is usually very small, we have
tan δ ≈ sin δ ≈ δ in radians.

Remark 14. Let an observer be located at the North Pole of the sphere S
2

in Fig. 2. The arcs of the parallel ±60◦ between the meridians 0◦ and 30◦ are
obviously viewed under the same angle. A similar nonuniqueness may cause some
troubles when using the angular distance (24) in S

3. On the other hand, a very long
and distant segment in H

3 can be viewed under a very small angle. Since the real
curvature index k is not known up to now, one has to be careful when using the
angular distance in cosmology for large z.

9To avoid this drawback, a conformal time is usually applied (see (27) below).
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The proper motion distance (sometimes called only the proper distance or the
comoving transverse distance) is defined by the relation (cf. Remark 1)

dM = a(t0)f(χ), (25)

where f is defined by (3). Hence, dM is always bounded for z → ∞, since the maxi-
mum possible coordinate χ is bounded (see Section 4). When k = 1 the formula (25)
should be used by Remark 14 only for χ ≤ π/2. For π/2 ≤ χ ≤ π and k = 1
the proper motion distance dM is maximal for χ = π/2 and dM = 0 for χ = π, i.e.,
the proper motion distance does not satisfy the standard mathematical requirements
attributed to the distance, see [43].

Let L be the bolometric luminosity (i.e. total — integrated over all frequencies)
of an object. It is measured in Watts. Then the luminosity distance dL is related
with the flux ℓ measured in W/m2 by

ℓ =
L

4πd2L
, i.e. dL =

√

L

4πℓ
.

The luminosity distance in Mpc can be established from the observed apparent mag-
nitude µ and the absolute magnitude µabs of an object by the formula

µ− µabs = 25 + 5 log10 dL.

This is a key formula in cosmology [3], since one can use the observed flux to es-
tablish dL. The main idea is based on the known density of light flux, the distance
and flux of some reference galaxy, and Pogson’s equation (for details see [20, p. 110]
and [42]).

According to [29, Eq. (6)] and [28, Eqs. (1)–(3)] the luminosity distance is given
by formula

dL = a(t0)f(χ)(1 + z).

Hence, the formula for the flux ℓ has to be modified as follows (see [42]):

ℓ =
L

4πa2(t0)f 2(χ)(z + 1)2
.

Since photons loose their energy during the expansion of the universe, the factor
(z + 1) appears in the denominator. Another factor (z + 1) is due to the fact
that 1 second lasted longer when a photon was emitted than when it was received.
According to [42, p. 485],

dL(z) = (z + 1)dM. (26)

Now we will derive the dependence of the proper motion and luminosity distances,
respectively, on the redshift z. To this end, we will again consider the conformal
time η given by10

dη =
c dt

a(t)
(27)

10For a(t) ≡ const. we see that η is linearly proportional to t.
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instead of the usual time t. Then from (17) and (11) we find that

dz

a(t0)H0(z + 1)
√

ΩM(z + 1)3 + Ωk(z + 1)2 + ΩΛ

= −

a(t)dη

c a(t0)
= −

dη

c(z + 1)
.

Multiplying the both sides by z + 1, we get by (18) and integration as in (19) that

χ = η0 − η =
c

a(t0)H0

∫ z

0

dz
√

(ΩMz + 1)(z + 1)2 − ΩΛz(z + 2)
. (28)

This a dimensionless number that represents the distance in the comoving coor-
dinates (cf. (5) for a general case). The largest possible distance in χ is thus
χhorizon = η0 (see Section 4). Therefore, the observable universe is bounded.

Remark 15. If z = 3, ΩM = 0.01, and ΩΛ = 1.1, then in (28) we would have to
take the square root of a negative number, since

(ΩMz + 1)(z + 1)2 − ΩΛz(z + 2) = 1.03 · 42 − 1.1 · 3 · 5 = −0.02,

which would yield complex values (see also [21, p. 172]). In spite of that the
standard Ned Wright’s Calculator (see http://www.astro.ucla.edu/∼wright/

CosmoCalc.html) gives a quite acceptable value dL = 164.1 Gly (which is sometimes
also called the light-year distance).

From now on we shall assume that conditions (20) hold. These conditions are
only sufficient (not necessary) for the existence of the integral in (28).

Remark 16. Let k = 0. Then by (3), (25), (26), and (28) we get

dL(z) = (z + 1)a(t0)χ =
(z + 1)c

H0

∫ z

0

dz
√

(ΩMz + 1)(z + 1)2 − ΩΛz(z + 2)
.

Remark 17. By (14) and (10) we see that

Ωk = −

kc2

H2
0a

2(t0)
.

Hence, by (3), (25), (26), and (28) we get for k = 1 that

dM(z) = a(t0) sinχ =
c

H0

√

|Ωk|

sin

(

√

|Ωk|

∫ z

0

dz
√

(ΩMz + 1)(z + 1)2 − ΩΛz(z + 2)

)

.

Similarly for k = −1 we find that

dM(z) = a(t0) sinhχ =
c

H0

√

Ωk

sinh

(

√

Ωk

∫ z

0

dz
√

(ΩMz + 1)(z + 1)2 − ΩΛz(z + 2)

)

.

These formulae derived in [3] were also used by the Nobel Prize Winner S. Perlmutter
et al. in [31, p. 566]. Note that the observed flux essentially depends on the used
measuring instruments.
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Remark 18. By [42, p. 485] the angular distance for any k ∈ {−1, 0, 1} is defined
as follows (for k = 0 it coincides11 with (24))

dA(z) =
dM(z)

z + 1
,

where the proper motion distance dM is given by (25). Hence, by (26),

1

z + 1
dL(z) = dM(z) = (z + 1)dA(z). (29)

From (25) we see that dL(z) is unbounded for z → ∞, dM(z) remains bounded for
z → ∞, and dA(z) converges to zero for z → ∞. Here one has to realize that the
light of distant objects with redshift z > 0 propagates into a larger volume than if
the universe were not to expand. This gives the factor (z + 1)−1 on the left-hand
side of (29).

Moreover, we must consistently distinguish between “at that time” and “actual
dimensions”, i.e. the size of the universe when observed photons left a distant ob-
ject and the universe was much smaller, and “today’s” dimensions when “ancient”
photons arrived at our ground-based telescopes. Roughly speaking, the younger the
objects which are observed, the larger the magnification appears. Therefore, by an-
gular measurements we paradoxically see a very distant object as being larger. We
call this phenomenon the time lens. The magnification is given by the factor

(z + 1),

which appears on the right-hand side of (29). In [20, p. 314], the functioning of the
time lens is illustrated by three real-world examples.

From (29) and Remark 7 we also see that

dL(z) ≈ dM(z) ≈ dA(z) ≈
cz

H0
≈ c(t0 − t)

when z is small, i.e. 0 ≤ z ≪ 1. The error is only a few percent for z . 0.1.

Remark 19. By (10) and (6) we see that

Ωk(t) = −

kc2

a2(t)H2(t)
= −

kc2

(ȧ(t))2
.

Hence, if ȧ is decreasing with time, then |Ωk(t)| is increasing. This shows that the
name curvature parameter for Ωk(t) was not appropriately chosen (see [33]).

11For k = 0 and very short distances one may also define the standard parallax distance by means
of a parallactic angle (see e.g. [42, pp. 420, 485]).
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8. Solution of the Friedmann equation

Throughout this section we shall suppose that12

Λ > 0.

The time instant τ will again correspond to the decoupling of the cosmic microwave
background (8). Then the expansion fuction a = a(t) satisfies the following condition

ȧ(τ) > 0, (30)

since the universe was expanding.
Setting

A =
Λc2

3
and B = −kc2,

the Friedmann equation (7) can be written as the following simple autonomous or-
dinary differential equation with constant coefficients

ȧ2 = Aa2 +B +
C

a
for t ≥ τ, (31)

where

C =
8πGρa3

3
> 0 (32)

is a constant due to (12). The required zero pressure fits to astronomical observa-
tions for t ≥ τ . For the existence and uniqueness of the solution of (31) we refer
to [5, Chapt. 1] and [34, vol. II].

We can easily find that the physical dimensions of A, B, and C are s−2, m2s−2,
and m3s−2, respectively. Since the expansion function a = a(t) > 0 is continuous, its
time derivative ȧ = ȧ(t) is by (31) also a continuous function.

If a > 0 is sufficiently small, then C/a is much larger than the terms Aa2 and B
on the right-hand side of (31). Hence, ȧ2a ≈ C and the corresponding density
parameter ΩM ≃ 1 also dominates the other parameters from (10). In this case the
expansion function behavies as t2/3 up to some multiplicative positive constant (like
in the Einstein–de Sitter parabolic model).

The right-hand side of (31)

F (a) = Aa2 +B +
C

a
, a ∈ (0,∞), (33)

is a strictly convex function, since its second derivative F ′′(a) = 2A + 2C/a3 is
positive for a > 0. From the equation

F ′(a) = 2Aa−
C

a2
= 0 (34)

12The case Λ ≤ 0 can be investigated similarly, see e.g. [39]. The inequality Λ < 0 leads to an
oscillating universe, while for Λ = 0 the behavior of the expansion function depends on the so-called
critical density [20, p. 285].
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we find that F attains its unique minimum at the point

amin =
3

√

C

2A
=

3

√

3C

2Λc2
> 0. (35)

First assume that the curvature index k ≤ 0. Then we see that the right-hand
side of (31) is positive, and therefore ȧ does not change its sign and by (30) the
expansion function a = a(t) is increasing on [τ,∞). The global solution exists due
to the following linear upper bound of

ȧ =
√

Aa2 +B + C/a ≤ 2
√

Aa

for sufficiently large a. Note that the upper bound function b(t) = exp(2
√

At) for
a = a(t) is the solution of the equation ḃ = 2

√

Ab.
The solutions a = a(t) for various initial conditions a(τ) > 0 do not intersect and

they also do not bifurcate13, since the right-hand side of the equation ȧ =
√

F (a) is
a Lipschitz continuous14 function over the interval [a(τ),∞). This guaratees that the
solution a = a(t) exists and is unique over the whole interval [τ,∞), see [5, Chapt. 1]
and [34, vol. II].

Second assume that k = 1 and consider the following three cases:

1. Let F (amin) > 0. Then by (30) and (31) we have ȧ(t) ≥
√

F (amin) > 0 for all
t ≥ τ , where τ is given by (8). Therefore, the expansion function is again increasing
over the whole interval [τ,∞) due to the following linear upper bound ȧ ≤ 2

√

Aa for
sufficiently large a.

2. Let F (amin) = 0. Then F (a) > 0 for all a 6= amin and by (31) the second
derivative is15

ä = ±

2Aa− C
a2

2
√

Aa2 +B + C
a

ȧ = ±

(

Aa−
C

2a2

)

. (36)

We see that its value for a = amin is

Aamin −
C

2a2min

= 2−1/3A2/3C1/3
− 2−1/3A2/3C1/3 = 0. (37)

If a(τ) > amin then

ä(t) > Aamin −
C

2a2min

= 0

13The equation ȧ =
√

a with the initial condition a(0) = 0 has two solutions a(t) = 1

4
t2 and

a ≡ 0, since the right-hand side
√

a is not Lipschitz continuous. The fact that ȧ has a different
physical dimension than

√

a can be easily avoided by a suitable constant.
14The function b(t) = tan t for t ∈ [0, π/2) solves the Riccati equation ḃ = b2+1, whose right-hand

side is not Lipschitz continuous. This expample shows that the existence of the global solution over
[0,∞) need not be guaranteed for right-hand sides that are not Lipschitz continuous.

15Comparing this equation with (23), we observe that the sign + should only be considered.
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Figure 5: Solutions a = a(t) of the Friedmann equation (31) for the case F (amin) = 0.
If (30) holds, then all solutions are increasing. For 0 < a(τ) < amin the corresponding
solution is strictly concave and for a(τ) > amin it is strictly convex. The asymptotic
function a(t) ≡ amin does not satisfy (30).

and a = a(t) is strictly convex and increasing over the interval [τ,∞) due to (31),
see Fig. 5.

If a(τ) = amin then a = a(t) is a constant function everywhere due to (31), (36),
and (37) which contradicts (30). Hence, this case cannot happen. It corresponds to
the Einstein static universe, which will be treated more detailly in Theorem 1.

If the initial condition satisfies the inequalities 0 < a(τ) < amin, then

ä(t) = Aa(t)−
C

2a2(t)
< Aamin −

C

2a2min

= 0

and a = a(t) is strictly concave and increasing for all t ∈ [τ,∞). The sharp inequality
in the above relation follows from the uniqueness, since no solution can cross the line
a(t) ≡ amin.

3. Finally, let F (amin) < 0. Then there exist two roots a1 < a2 such that
F (a1) = F (a2) = 0 and F is negative on the interval (a1, a2). However, the left-hand
side of (31) is nonnegative everywhere. Hence, the case a1 < a(t) < a2 for t ≥ τ
cannot happen.

If a(τ) = a1 or a(τ) = a2, then by (31) we have ȧ(τ) = 0 which contradicts (30),
i.e., these cases can be excluded, too.

If the initial condition satisfies a(τ) > a2, then F (a) > 0 for all a > a2 and
by (30) the expansion function is again increasing.

We will not investigate the case a1 ≤ 0, since the radius of S3
a is positive. So let

the initial condition a(τ) satisfy the inequalities 0 < a(τ) < a1. Then F is positive
on the interval (0, a1). Set

K := Aa1 −
C

2a21
.

Since 0 < a1 < amin, we obtain by (36) and (37) that

ä(t) = Aa(t)−
C

2a2(t)
≤ K < Aamin −

C

2a2min

= 0
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for all t > τ such that a(t) > 0, i.e.

ä(t) ≤ K < 0

which means that a = a(t) is strictly concave. By integration we find that

ȧ(t)− ȧ(τ) =

∫ t

τ

ä(σ) dσ ≤ K(t− τ) < 0.

Consequently, Kt → −∞ as t → ∞ and since ȧ(τ) and Kτ are fixed numbers, there
exists exactly one time instant t2 > τ such that

ȧ(t2) = 0 = F (a1).

Then the cosmological density parameters are not well defined due to the division
by zero in (10). This case corresponds to universe of finite duration. The unique
solution of (31) is given by the equation ȧ =

√

F (a) on the interval [τ, t2] and by the

equation ȧ = −

√

F (a) after the point t2 until a = a(t) reaches the zero value.

• • •

Instead of (30) we shall now assume that ȧ ≡ 0 and moreover, let k = 1. This
special case corresponds to the Einstein static universe. By (33) and (35) we have

0 = F (amin) = Aa2min−c2+
C

amin

= A
3

√

C2

4A2
−c2+C

3

√

2A

C
=

3

√

AC2

4
−c2+2

3

√

AC2

4
.

Hence,

C = c3
√

4

27A
=

2c2

3
√

Λ
. (38)

Substituting (38) into (35), we get the formula for the radius of the Einstein static
universe, namely

a =
1

√

Λ
. (39)

Theorem 1. The total mass of the Einstein static universe M and its mean

density ρ can be expressed by the following fundamental constants π, c, G, and Λ,

M =
πc2

2G
√

Λ
, ρ =

Λc2

4πG
.

P r o o f. Applying the hyperspherical coordinates (see Section 2), the unit
hypersphere S

3 can be divided into elementary spherical shells with areas 4π sin2 χ
and thickness dχ. For its volume we thus get

Vol(S3) = 4π

∫ π

0

sin2 χ dχ = 2π[χ−
1
2
sin(2χ)]π0 = 2π2.
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Hence, the volume of the hypersphere S
3
a with radius a is (see [10, p. 152])

V = 2π2a3.

From this, (38), and (32) we obtain

2c2
√

Λ
= 3C = 8πGρa3 =

4GρV

π
=

4GM

π
,

which yields the proposed relation for M . From this and (39) we get the formula for
the density ρ. (This formula can also be obtained from (23) for ä ≡ 0 and p ≡ 0.)

�

Remark 20. The mass of our Galaxy is about 1042 kg. For comparison let us
evaluate the mass of the Einstein static universe by Theorem 1 for Λ ≈ 10−52m−2,

M =
πc2

2G
√

Λ
≈ 2.12 · 1053 kg. (40)

Hence, the Einstein static universe is tuned very finely. However, the resulting sta-
tionary solution a = Λ−1/2

≈ 1026m of equation (7) is not stable, i.e., any small
deviation from the constant a = a(t) = Λ−1/2 will cause either a gravitational col-
lapse, or expansion (see [30, p. 746] or [39, p. 405]). We also see that the constant C
in (38) is independent of the total mass of the universe, while in the general case
treated in (32) the constant C depends on the total mass. Furthermore, we observe
that the density parameter ΩM(t) defined in (10) is infinity even though nothing
dramatic happens. The mean density of baryonic matter is of course finite, namely

ρ =
M

V
=

Λc2

4πG
≈ 10−26 kg/m3. (41)

Interestingly, this density and the mass given in (40) are quite realistic numbers.

Remark 21. The numbers appearing in the Friedmann equation (7) are very
different in size in the SI units, e.g., Λ ≈ 10−52 m−2, ρ(t0) ≈ 10−27 kg/m3, G =
6.674 · 10−11 m3kg−1s−2, c = 3 · 108 m/s, and a(t0) ≈ 1026 m. This, of course,
produces various numerical troubles in finite arithmetic precision. Therefore, for
clarity, it is convenient to introduce a new cosmological length unit

1 j = 1026 m.

Then a(t0) ≈ 1 j and Λ ≈ 1 j−2. Setting c = 1, the time unit can be identified with
the length unit 1 j. In this case the Hubble distance is (see (21) and Fig. 3)

dH = cT0 = 1.32 j.
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Remark 22. Now let us calculate the inflection point of the expansion function
a = a(t), i.e., when the strictly concave expansion function (see e.g. Fig. 3) changes
into the strictly convex function. From (31) we find that

ä =
2Aa− C

a2

2
√

Aa2 +B + C
a

= 0.

Hence, 2
3
Λc2a3 = 2Aa3 = C and thus for the inflection point we obtain16 surprisingly

the same relation as (35), i.e. the radius of the Einstein static universe (see (38)
and (39)), namely

a =
3

√

3C

2Λc2

which is independent of the curvature index k. From this and (32) we get 2Λc2 =
8πGρ which for Λ ≈ 10−52m−2 yields the corresponding density.

ρ =
Λc2

4πG
≈ 10−26 kg/m3.

Interestingly, its value is again the same as that in (41). Since the measured mean
density in our neighborhood is smaller, the expansion function seems to already
be strictly convex at present. This fact was predicted already in 1931 by Georges
Lemâıtre [25, p. 422] (see also [30, Box 27.5], [38], [39, p. 411]).

Remark 23. If Λ = 0 and k = 1, then from (31) we get ȧ2a2 = c2(αa − a2),
where α = C/c2 is a positive constant. Using the conformal time η defined by (27),
we find that ȧ = c

a
a′, where a′ =da/dη. Therefore, (a′)2 = αa− a2. Employing the

substitution x = 2a
α
− 1, we obtain

∫

da
√

αa− a2
=

∫

2

α

da
√

1−
(

2a
α
− 1

)2
=

∫

dx
√

1− x2
= arcsin

(2a

α
− 1

)

.

Hence, η−η0 = arcsin
(

2a
α
−1

)

and sin(η−η0) =
2a
α
−1, which implies that − sin η0 =

−1 and η0 = π/2. Thus, a(η) = α
2
(1 − cos η) for η ∈ [0, 2π] which leads to an

oscillating universe, see also [39, p. 412].

9. Appendix

Here we briefly describe how to calculate the metric of the unit hypersphere S
3

defined by (1). This is a three-dimensional hypersurface in the four-dimensional
Euclidean space E

4. It can be described by hyperspherical coordinates χ, θ ∈ [0, π]

16Note that from (23) one can derive the same formula if and only if the pressure p = 0.
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and φ ∈ [0, 2π), see Section 2. Hence, [34, p. 253, vol. I], the components of local
coordinate vectors are

p1 =
∂

∂χ
p(χ, θ, φ) = (cosχ sin θ cosφ, cosχ sin θ sin φ, cosχ cos θ,− sinχ),

p2 =
∂

∂φ
p(χ, θ, φ) = (sinχ cos θ cosφ, sinχ cos θ sin φ,− sinχ sin θ, 0), (42)

p3 =
∂

∂φ
p(χ, θ, φ) = (− sinχ sin θ sinφ, sinχ sin θ cosφ, 0, 0),

where the vector ~p with components p1, p2, p3 (cf. Fig. 6) lies in the hyperplane
tangent at the point (x, y, z, w) ∈ S

3.

Figure 6: The point (x, y, z) in the standard spherical coordinates (r, ϕ, θ)

The covariant coordinates of the symmetric metric tensor corresponding to the
unit hypersphere S

3 are given by relations

g̃ij = pi · pj for i, j = 1, 2, 3,

where · denotes the scalar product. Hence from (42), it follows that

g̃11 = cos2 χ sin2 θ cos2 φ+ cos2 χ sin2 θ sin2 φ+ cos2 χ cos2 θ + sin2 χ = 1,

g̃22 = sin2 χ cos2 θ cos2 φ+ sin2 χ cos2 θ sin2 φ+ sin2 χ sin2 θ = sin2 χ,

g̃33 = sin2 χ sin2 θ sin2 φ+ sin2 χ sin2 θ cos2 φ = sin2 χ sin2 θ,

and the other entries vanish, because by inspection we can derive that

p1 · p2 = p1 · p3 = p2 · p3 = 0.

The metric tensor corresponding to the unit hypersphere S3 is therefore given by the
diagonal matrix

g̃ij =





1 0 0
0 sin2 χ 0
0 0 sin2 χ sin2 θ



 , i, j = 1, 2, 3.
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The length element of S3 is thus given by (cf. (2))

dℓ2 = dχ2 + (dθ2 + sin2 θ dφ2) sin2 χ.

For k = 0 and k = −1 the function sin2 χ has to be replaced by χ2 and sinh2χ,
respectively (see (3) and [42, Chapt. 13]).
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The following interview has been translated into the Czech language and extended
in the reference [2].

Jana Žd’́arská: You deal with many scientific questions, for example, dynamical prop-

erties of stellar systems (IMF, multiplicity), evolution of young multiple stellar sys-

tems in birth aggregates, star formation, dynamical evolution of open and globular

clusters, spatial and kinematical distribution of stars, origin of field stars, structure

and mass of the Galaxy, galactic dynamics, formation and evolution of dwarf satel-

lite galaxies, dark matter content of galaxies. Could you kindly tell us which of these

scientific topics is the most interesting for you?

Pavel Kroupa: The greatest question I am perhaps mostly interested in now is to
understand how galaxies evolve. Given al the observations and calculations per-
formed to date, dark matter does not exist. This can be written with the greatest
of certainty. The vast number of galaxies are, like our Milky Way, star-forming disk
galaxies. These need to constantly be supplied by gas, as otherwise they would stop
forming stars. Where does this gas come from? And, why are all galaxies of a similar
mass so incredibly similar to each other? These questions are touching on our deep-
est level of understanding of space-time-matter physics, and I have been developing
some rather exciting ideas on how to possibly advance our understanding.

J.Ž.: Two years ago you participated at the conference Cosmology on Small

Scales 2016: Local Hubble Expansion and Selected Controversies in Cosmology held

in Prague. What is your opinion on this issue?

P.K.: I do not have an opinion concerning any of the questions, but the observational
data show that there is something very wrong in our current understanding. The
counts of galaxies with distance tell us that we are situated in a huge under density
which has a radius of about 1 200 million light years. This is completely in contra-
diction with any cosmological model, and is also largely ignored by the community.
But such a huge under density must have a big effect on local expansion and also
implies that our understanding of cosmology is currently not correct.
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J.Ž: There exist about 150 globular clusters in the Milky Way. They are very old

systems and contain hundreds of thousands or up to millions of stars. Do you know

how globular clusters looked like ten billion years ago?

P.K.: Most of the globular clusters would have been already about 2 billion years old.
They would have been 10 to 100 times brighter than today, because they would have
contained many more stars, and they would have been bluer, because the stars would
have been about 10 Gyr younger than in today’s globular clusters. Also, they would
have had similar extensions as today. There would have also been many more such
clusters. They may have been more distant, because as our Galaxy became more
massive over time, it pulled in its globular clusters. In my research group we are
calculating how such clusters evolve, and Dr. Long Wang from China for example,
has just joined us as a new Alexander von Humboldt Fellow. He performed the first
ever physically fully realistic calculation of a globular cluster with a million stars
over a full Hubble time using supercomputers.

Globular cluster M13 in the constellation Hercules

J.Ž.: What is the main reason of their long-term stability?

P.K.: They are stable over many billions of years, because they were born with
more than a million stars and the gravitational pull from all the stars on each other
is strong. As the clusters age, they loose their stars, one by one, and so the globular
clusters we see today must have been born a few to maybe 10 to 100 times more
massive than their present day masses.
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J.Ž.: How are the stars moving inside the globular cluster and what is the distri-

bution of their velocities?

P.K.: Stars move on smooth but chaotic orbits within the globular clusters.
A typical star spends most of its time in the outer regions of the cluster, perhaps
10 light years away from the centre. It then falls though the cluster racing quite
rapidly though its inner region to move out again. A typical star moves with about
10 km/s, and the velocity may vary from a few times this amount to nearly zero km/s.
At any time, taking all the stars together, the velocities range from near zero to about
a few times 10 km/s. About 10 billion years ago all velocity would have been a few
times larger, because the clusters were more massive then.

J.Ž.: Do you believe that there are medium-sized black holes inside globular clus-

ters?

P.K.: A scientist should only work with hypotheses rather than have beliefs. So
the hypothesis that many globular clusters have massive black holes in them has
not been disproven conclusively, and some massive globular clusters could have, near
their centres, black holes as massive as a hundred thousand Suns. But there is no
theory available today which clearly predicts such black holes to be there. In my
research group we are working on this problem, which is directly related to how
super-massive black holes form in the centres of galaxies.

J.Ž.: Why do some spiral galaxies have such a perfectly symmetric shape? What

is the main reason of this phenomenon?

P.K.: Spiral galaxies, when they are not disturbed, are nearly perfectly round
disks. They are, basically, huge accretion disks with radii of up to about 100 thousand
light years. Gas falls onto the galaxies at a well defined rate all the time (we neither
yet know where this gas comes from nor do we understand why the infall is so well
regulated) and, because gas is dissipative, it settles into a rotating disk. In the disk
the gas density is higher, and in some places, where it is very high but still much
lower than the best vacuum on Earth, the gas clouds fall together because of their
self-gravity and stars form. Thus the galaxy evolves by having an increasing number
of stars in it, and because it is rotating, it appears round when viewed from the top
or bottom, while it is a thin disk when viewed from the side. Such a galaxy remains
quite smooth with a huge stellar and gas disk. When it is slightly perturbed, for
example, when another galaxy flies past it, even at a large distance, the gravitational
pull of the other galaxy changes the forces within the galaxy, and this develops
symmetrical spiral patterns. The galaxy reacts to this by becoming a spiral galaxy.
This is similar to the Moon tides on the Earth which are also on both sides of the
Earth. The spiral pattern in a galaxy is long-lived on human standards. It lasts
maybe ten rotation periods, that is, maybe a billion years or more, because once
the spiral pattern is there, it might be able to keep itself going through resonances.
Additional instabilities may develop. For example, the inner region can form a bar
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Some spiral galaxies show a perfectly point-symmetric shape.

in which stars and gas move on more radial orbits. But because disk galaxies are
rotating and self-gravitating, they are generally (when not perturbed) symmetrical
about their centre.

J.Ž.: What, in your opinion, is the composition of the halo of the Milky Way?

P.K.: The halo of the Milky Way is made up of ancient stars. These stars are
as old as the globular clusters, and probably come from them, because the globular
clusters loose their stars over time. Many of the halo stars were also formed in much
less massive clusters at the same time as the massive present-day globular clusters,
which have already lost all their stars long ago. The halo of our Galaxy is the oldest
structure. It formed before the Galaxy existed as a spiral galaxy. At that time this
birth of our porto-galaxy was extremely violent, with incredibly massive gas clouds
falling together into the proto-galaxy and vigorously forming stars in huge star bursts
which later became our globular clusters. The gas has today gone a long time ago,
probably used up in making the halo stars and the globular clusters, possibly also
being driven out of the young Galaxy or fallen into it to make the spiral Galaxy.
The halo of the Galaxy is thus mostly without gas. The gas present in it comes from
the stellar winds and by falling onto the Galaxy from the outside. That gas is falling
onto the Galaxy and this sustains its on-going star formation. If no new gas were
falling onto the Galaxy, then it would have consumed its gas many billions of years
ago.
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J.Ž.: Can you please explain us the notion of gravothermal catastrophe?

P.K.: The gravothermal catastrophe or instability is an interesting phenomenon
in self-gravitating stellar-dynamical systems. In a star cluster with sufficiently many
stars to live for a sufficiently long time, the following happens: the stars constantly
meet each other and pull at each other gravitationally. Even though these pulls are
very weak, they cause the stars to slightly change their orbits in the cluster. A star
which, for example, is on a circular orbit, will with time change its velocity and
begin to move on an eccentric non-circular orbit. As it then falls towards the inner
region of the cluster, it becomes faster, passing more stars in a shorter time, and
thus allowing it to change the speeds of the other stars. Over time this develops
such that some stars end up falling towards the inner most regions, while other stars
move out into the outer regions. This is a consequence of energy conservation. The
stars falling towards the inner region have the smallest amount of energy, and the
stars moving outwards compensate by having the largest energies. The stars form a
thermodynamic system in which the fastest stars (the ones in the inner regions) shed
some of their energy to the other, slower stars, which absorb this energy and move out
of the inner regions. Since a star gets faster the deeper it falls into a gravitational
potential, this process has no end. A group of stars can keep on falling inwards,
generating ever more negative (binding) energy and a very dense central region in
the cluster, while the rest of the cluster expands. This is called the gravothermal
instability. It comes about because a self-gravitating system of stars has a negative
heat capacity, that is, taking energy out of it makes it hotter. This can be visualized
by looking at a satellite of the Earth. If we slow down the satellite, the satellite falls
towards the Earth, becoming faster. The more we slow it down, the faster it falls.
The same process happens in a cluster of stars. A star, which is slowed down by
a gravitational encounter with another star, speeds up as it falls towards the cluster
centre. By the principle of energy equipartition, this sped-up star can again share its
kinetic energy with other stars, thus becoming even slower, and therefore, speeding
up again as it falls towards the centre.

J.Ž.: You are dealing mainly with Newton’s theory. Do you think that this theory

of gravity sufficiently accurately describes the behavior of spherical clusters and that

there is no need to assume the hypothetical nonbaryonic dark matter?

P.K.: When addressing this particular question one needs to understand that
Newton derived his universal law of gravitation using data limited to the physical
parameters of the Solar System, out to Uranus only. This was published around 1686
while Neptune was discovered about 100 years later. Einstein used this same law
as a necessary and required classical limit of his re-interpretation of gravitation
in 1916 as a geometrical space-time distortion, because observational data which
constrain the law of gravitation were still limited to the Solar System. Galaxies,
let alone the dynamics of the Universe, had not been understood in the days of
Einstein. Astronomers and physicists extrapolate the empirical laws of gravitation
by many orders of magnitude to the scales of star clusters and galaxies. Every
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school child knows that such extrapolations almost certainly never work. But, on
the scales of the normal globular star-clusters, which corresponds to an extrapolation
by more than 4 orders of magnitude in spatial scale, the universal law of gravitation
as derived by Newton and Einstein largely holds well. That is, the stars are moving,
statistically, within the clusters, as is expected that they should be moving. There
is no evidence for major departures. Very large departures are seen on the scales of
galaxies, which constitute an extrapolation in spatial scale by roughly eight orders
of magnitude. Here the observed speeds of stars are too fast, that is, the observed
normal matter in stars and gas cannot provide enough gravitational pull (according
to the huge extrapolation of Einstein’s or Newton’s theories) to hold onto the stars.
The average physicist and astronomer interprets this to be due to unseen mass, the
“dark matter”, which provides extra gravitational pull so that the stars and gas
move faster (see [1]). A big problem with this explanation is that this additional
“dark” matter is not part of the standard model of particle physics. One needs to
speculate that the dark matter is made up of particles which are very exotic and
do not interact electromagnetically at all so that they remain entirely invisible. But
another, and physically more convincing explanation, is that the “universal law of
gravitation” as formulated by Newton and reformulated later by Einstein cannot be
extrapolated to this extend.

J.Ž.: Einstein’s theory of general relativity is examined on relatively small scales.

Do you think it is applicable to galactic scales, or to the whole universe?

P.K.: The theory of General Relativity has been found to be in excellent agree-
ment with all available observational data on small scales (i.e. Solar System and
smaller) and in gravitational potentials which are deeper than that of the Solar Sys-
tem, that is in space-the curvatures which are larger than found in the Solar System.

J.Ž.: In 2011, the Nobel Prize for Physics was awarded for the discovery of an

accelerated expansion of the universe. Did this discovery surprise you?

P.K.: I am in general against the existence of such prizes in the pure sciences,
because they corrupt progress. What I mean here is that many institutions are
eager to have staff which obtained such and other prizes, and scientists who obtain
such prizes have a special status in these institutions and in society. It would be
better if scientists achieve recognition, not through prizes, but by naming of some
effect after them (e.g. Einstein’s theory of general relativity, or Newton’s theory of
gravitation). My feeling is that too many scientists therefore try to do scientific work
which enhances the chances of getting some major prize. But the true aim of a pure
scientist should be only and only to try to understand how nature works, irrespective
of achieving prizes. Thus, for example, the reason why the scientific community has
gone essentially insane on dark matter and dark energy is probably due to this issue,
namely that by working well within some conceived main stream which emerged over
time, one may enhance ones own chances of getting rewarded. So one can observe
how certain young researchers make steep careers by working closely within the main
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stream ideas and harshly rejecting critical work. This is an in general interesting
problem for philosophers to study — how did modern science fail in this way — but
concerning the question at hand, the reward of the Nobel Prize in 2011 to Perlmutter,
Schmidt and Riess for discovering the accelerated expansion of the Universe, I can
state that this discovery is important. Why? Well, the main stream interprets the
observations to mean that the Universe is expanding faster than thought, based
on the above mentioned extrapolation by a huge order of magnitudes. The main
stream scientist had become so overwhelmingly convinced that the extrapolation
is correct and the only proper way of doing research, that it came as a surprise
that the observations showed a failure of the theory. This failure can be fixed by
inventing “dark energy”. So the average main stream researcher was convinced
that Pearlmutter, Schmidt and Riess made a major discovery of new physics (called
dark energy). But this may be an entirely wrong physical explanation, because the
extrapolation of physical laws, which were constrained only within the Solar System,
as described above, is almost certainly wrong. In truth, it is more likely that the
observations organized by Perlmutter, Schmidt and Riess are indicating that the
extrapolation is wrong, and that the dynamics of the Universe cannot be described
by the Einsteinian/Newtonian formulation as is used by the main stream scientist
today. In my research group we are following this path of investigation, that is, we
want to learn what these type of observations, as well as many other data, are telling
us about the physical theory which governs the gravitational dynamic of galaxies and
the Universe. We are explicitly following ideas on gravitation and dynamics which
go beyond Newton and Einstein.

J.Ž.: Last year the Nobel Prize for Physics was awarded for the detection of

gravitational waves. They were generated by two merging black holes of about thirty

Sun’s masses. Is the origin of such a system realistic at all?

P.K.: The formation of a binary system composed of two black holes with masses
near 30M⊙ is reasonably well understood today. In my research group, Dr. Sambaran
Banerjee, a brilliant researcher from India, is one of the world-wide leaders on this
problem. He is calculating how globular star clusters, the stars within which have
low-metallicities, evolve over many billions of years. Early-on and within the first 50
million years, the many massive stars die, many leaving black holes. These sink to
the centre of the cluster through the above described process of energy equipartition
which leads to the gravothermal instability. In the core of the globular cluster,
the black holes form binary systems. These binary systems loose energy (thereby
becoming more bound) by ejecting stars and other black holes out of the cluster and
they can become very compact. Typically, they too are expelled from the cluster
after some time, leaving a very tight black hole binary system. Such systems radiate
gravitational waves until they merge. They merge in their cluster, or they may
merge far away from it. Dr. Banerjee has made many calculations which show that
what has been observed is very natural and quite common. In fact, in 2010 we were
one of the first to make proper predictions for the type of gravitational events now
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observed. It may also be possible to make such a binary black hole system only from
two massive stars which were born in a binary system. The stars need to be very
massive, maybe 100 times as massive as the Sun, and the evolution of this stellar
binary needs to be extremely fine-tuned in order for the final black hole binary to
survive the huge mass loss from the binary system as the two massive stars evolve
and to in the end be so tight as to emit gravitational waves for it to merge to make
observed signal. Both lines of research, via the dynamics in star clusters and via
stellar evolution, are important and very interesting current hot research topics.
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1. Introduction

Cosmic turbulence has been suggested some 70 years ago as a mechanism to gen-
erate the large scale structure [1], [2]. Many papers [3]–[15] followed various aspects
in the coming decades. The idea was that turbulence generated prior to recombina-
tion would become supersonic past recombination, and the following shocks will be
the seeds of structure formation.

The origin of the turbulence was not specified and usually was assumed to be
part of the cosmological initial conditions. This was a main difficulty for the above
approach. Another serious problem was that it predicted too much structure on the
largest scales, comparable to the Horizon size.

Inflation (see review by [16]) suggested a solution for the first problem since the
phase transition causing inflation would on one had produce the observable density
fluctuations and on the other hand turbulence. However, inflation will erase any
turbulence that was created, see e.g. [17].
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In addition, the authors of [17] demonstrated that the density fluctuations that
were created by the inflation, can generate longitudinal turbulence in the radiation
dominated era. Recently [18], suggested that a QCD phase transition in the early
radiation dominated era could induce a Kelvin Helmholtz instability (KHI) that will
generate turbulence. These authors also noted that such turbulence will significantly
contribute to the cosmological background of gravitational waves. It will also lead
to amplification of cosmic seed magnetic fields.

In the present work we critically follow the mechanism suggested by [17]. The
present day cosmological parameters are implemented, and the question of the tur-
bulence decay prior to decoupling is quantitatively examined.

2. Coupled velocity and density fluctuations

We use the FRW cosmological metric with a flat spatial part, in accordance with
the latest cosmological parameters that indicate Ω = 1,

ds2 = c2dt2 − a2(t)
(
(dx1)2 + (dx2)2 + (dx3)2

)
. (1)

We consider the coupled equations describing density and velocity fluctuations.
Given the small value of the density fluctuations they are treated in the linear ap-
proximation. As for the velocity fluctuations, we include the nonlinear velocity inter-
action terms, thus allowing for turbulence. These terms are important, regardless of
the amplitude of the velocity fluctuations, as long as the eddy interaction timescale
is shorter than the timescales of viscous dissipation and of cosmic expansion. Qual-
itatively, density fluctuations can generate longitudinal velocity fluctuations which
in turn, through the nonlinear terms, can generate longitudinal turbulence.

Following Weinberg [22], we consider small perturbations in the metric, the energy
density, the pressure, and the four-velocity. The dissipative terms proportional to
the heat conduction and to bulk viscosity are neglected and only terms proportional
to the shear viscosity are retained. The unperturbed energy density and pressure are
denoted by ρ and p, respectively. The corresponding perturbations are ρ1 and p1,
respectively. The metric is given as

gµν = g0
µν + hµν , (2)

where g0
µν is the unperturbed metric of equation (1) and hµν is the metric pertur-

bation. The perturbation in the velocity is denoted by ui. It can be shown [21]
that it is possible to apply coordinate transformations that do not change the un-
perturbed quantities but yield h0α = 0. In the perturbation equations we retain only
linear terms except for the velocity equation in which we retain, as explained above,
the nonlinear term in the velocities that can give rise to turbulence. The resulting
equations are

∂ρ1

∂t
+ 3

ȧ

a
(ρ1 + p1) = −(ρ+ p)

(
∂

∂t

(
h∗

2a2

)
∂uj

∂xj

)
, (3)
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∂2h∗

∂t2
− 2

ȧ

a

∂h∗

∂t
+ 2

((
ȧ

a

)2

− ä

a

)
h∗ = −8π

G

c2
(ρ1 + 3p1)a2, (4)

∂ui

∂t
+ uj

∂ui

∂xj
=− c2a−2(ρ+ p)−1∂p1

∂xi
− ∂ ln[(ρ+ p)a5]

∂t
ui (5)

− 16π
G

c4
ν(ρ+ p)ui + νa−2

[
∂2ui

∂xj∂xj
+

1

3

∂2uj

∂xi∂xj
+

4

3

∂2

∂t∂xi

(
h∗

2a2

)]
,

where h∗ = a2hkk and ν is the microscopic kinematic viscosity, which is due to Thom-
son scattering of photons on electrons.

The two last terms multiplying the viscosity in equation (5), can be shown to
be of order (l/lH)2 compared to the first viscosity term. As will be shown in the
following the above factor is much smaller than 1.

For adiabatic perturbations we have

p1 =
(vs
c

)2

ρ1 (6)

with the sound velocity vs given by

v2
s =

c2

3

ργ
ργ + 3

4
ρb
. (7)

Applying the conservation equation for the unperturbed energy-momentum tensor,
it is possible to eliminate h∗ from the above equations leading to

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=4π

G

c2
(ρ+ p)

(
1 + 3

v2
s

c2

)
δ −

(
∂

∂t
+ 2

ȧ

a

)
∂uj

∂xj
, (8)

∂ui

∂t
+ uj

∂ui

∂xj
=− a−2v2

s

∂δ

∂xi
− ∂ ln[(ρ+ p)a5]

∂t
ui (9)

− 16π
G

c4
ν(ρ+ p)ui + νa−2

[
∂2ui

∂xj∂xj
− ∂2uj

∂xi∂xj
− 4

3

∂2δ

∂t∂xi

]
.

where
δ =

ρ1

ρ+ p
.

In terms of the physical velocity vi = a(t)ui the equations are

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=4π

G

c2
(ρ+ p)

(
1 + 3

v2
s

c2

)
δ − a−1

(
∂

∂t
+
ȧ

a

)
∂vj

∂xj
, (10)

∂vi

∂t
+ a−1vj

∂vi

∂xj
=− a−1v2

s

∂δ

∂xi
− ∂ ln[(ρ+ p)a4]

∂t
vi (11)

− 16π
G

c4
ν(ρ+ p)vi + νa−2

[
∂2vi

∂xj∂xj
− ∂2vj

∂xi∂xj
− 4

3
a(t)

∂2δ

∂t∂xi

]
.
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In the general case, the nonlinear term in the velocities couples and mixes longi-
tudinal and vortical velocities. However, in the present case, the density fluctuations
excite purely longitudinal velocity fluctuations. For longitudinal velocity fluctua-
tions, the nonlinear term in equation (11) that generates the turbulence can be shown
to have a zero curl. Thus, also the generated turbulence will be purely longitudinal.
Only if some seed of vortical velocity fluctuations is present, could it be amplified
by the nonlinear interactions with the longitudinal turbulence, so that a component
of vortical turbulence could be generated also. In what follows, the term turbulence
will be meant to denote the above longitudinal turbulence.

3. Turbulence in the radiation dominated era

Our plan is to use the equations in the previous section to answer the following
questions:

• Is there an epoch which allows the buildup of velocity turbulence from the
density fluctuations?

• What are the scale and rms value of the turbulent velocity?

• Would the turbulence survive past recombination?

• What are the scale and value of the turbulent magnetic field generated by the
velocity turbulence?

In order to obtain a detailed and quantitative answer, the equations should be
solved numerically. However, one can gain quite a considerable insight from an
analytic study based on the timescales of the competing physical processes.

The cosmic fluid considered for the turbulence consists of all particles that are
coupled and in thermal equilibrium. The uncoupled components obey separate con-
servation equations, and although decoupled, their energy density contributes to the
cosmological expansion. For redshifts 1010 ≥ z ≥ zd, the fluid consists of photons
and baryonic matter while for z < zd, it consists of baryonic matter only. Neutrinos
that were part of the coupled fluid in the early universe, decoupled at z ≤ 1010.

We employ the 2018 Planck Collaboration cosmological parameters [19]:

Ω = 1, Ωm = 0.316, Ωb = 0.049, Ωr = 9.3× 10−5, Ωγ = 5.44× 10−5, (12)

Nν = 3, zd = 1090, zeq = 3411, H0 = 67.4 km s−1Mpc−1.

The timescale of the cosmological expansion is H−1(z), with H(z) the Hubble
parameter at redshift z.

H(z) = H0

(
Ωm(1 + z)3 + Ωr(1 + z)4

)1/2
. (13)

From equation (11) it follows that the timescale for buildup of the turbulence on
scale l , τb us given by

τ−1
b =

1

v

∂v

∂t
∼ v2

sδ

lv(l)
, (14)
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where l is the physical size of the scale generated and v(l) is the amplitude of the
generated velocity; both values are considered at the time of generation correspond-
ing to the redshift z. The dimensionless density perturbation is also the value on the
scale l.

Requiring that τ−1
b > H yields

v(l) < v2
sδH

−1. (15)

The timescale characterizing the non-linear eddy interaction scale l is τeddy = l
v
,

where here too v = v(l) the turbulent velocity on scale l. It is required that this
timescale too is shorter than the Hubble time

v

l
> H. (16)

The relevant scales must be smaller than the horizon

l < lH = cH−1(z). (17)

Assuming that the turbulence reached a quasi- steady state implies that the
buildup and the eddy interaction timescales are comparable. This is to be expected,
since the largest scales generated at a given time do not receive energy cascaded from
even larger scales. As the buildup of the velocity continues, τb increases while the
eddy timescale decreases. The buildup saturates when the two timescales become
equal.

Therefore, one gets
v ∼ vsδ

1/2. (18)

Note that the kinetic energy density associated with the turbulence is roughly in
equipartition with the thermal energy density associated with the density perturba-
tions.

From equations (16) and (18)

l

lH
= α

vs
c
δ1/2, 0 < α < 1. (19)

The sound velocity for 1010 ≥ z ≥ zd is

vs = c

√
1

3

ργ
ργ + ρb

=
c√
3

(
1 + 1.68

ρb
ρr

)−1/2

=
c√
3

(
1 +

885

1 + z

)−1/2

. (20)

The dominant viscosity for z > zd, is the radiative viscosity resulting from scat-
tering of photons by electrons, given by [21], [22]

ν =
4

15
l0c

ργ
ρb + 4

3
ργ
, (21)

131



where l0 is the effective Thomson mean free path. It equals lT (1 − (1 + l/lT )e−l/lT

where lT is the mean free path for very large values of l. In the limit of very small
l/lT , the effective mean free path is reduced by a factor of (l/lT )2. This reflects the
reduction of the probability for scattering when the size is smaller than the lT ,

lT = (σTne)
−1 (22)

and σT = 6.65 × 10−25 cm2 is the Thomson electron scattering crossection. The
electron number density ne is taken to be

ne =
ρb
mp

(X + 0.5Y ) ∼ 0.88
ρb
mp

,

where X and Y denote the cosmological abundances of hydrogen and helium, respec-
tively, mp is the mass of the proton, and ρb is the density of baryonic matter. It is
assumed that matter is fully ionized which is valid for cosmic times earlier than the
decoupling time td. From the above equations and using the cosmological parameters
of equation (12), the Thomson length relative to the horizon scale can be written as

lT
lH

= 502.3(1 + z)−3
√

0.316(1 + z)3 + 0.0000926(1 + z)4. (23)

In Figure 1 are shown lT/lH and l/lH for α = 0.01, as functions of the redshift z.
In Figure 2 are shown the dimensionless radiative viscosity ν

lhc
and the dimensionless

turbulent viscosity lv/lhc as functions of the redshift. For zd < z < 6500 the turbulent
viscosity becomes larger than the radiative viscosity. When the redshift is close to zd
it is larger by a factor of ∼ 15.

For smaller scales (smaller eddies) the factor will increase as ∝ l−2/3 for a Kol-
mogorov turbulent power spectrum. Therefore we conclude that the largest turbulent
scale is created just before recombination. Smaller scales can be created at larger
redshifts. The turbulence largest scale is ∼ 3× 10−5lH at decoupling. Translated to
present day scale it corresponds to ∼ 250 kpc, and to a baryon mass of ∼ 7×108M�.
The turbulent velocity is ∼ 400 km s−1.

4. Discussion

We performed an analysis on the feasibility of primordial turbulence generation in
the predecoupling era and of its survival past decoupling. We obtained that density
fluctuation can generate turbulence. The (present epoch) scale of the turbulence is
∼ 250 kpc corresponding to a baryonic mass ∼ 7 × 108M�. The turbulent velocity
is ∼ 400 km s−1. The turbulence scale is ∼ 3 × 10−5 the horizon size, two orders
of magnitude smaller than the BAO scale. On this scale the Thomson scattering
viscosity is well bellow the turbulent viscosity so the turbulence could survive past
recombination.

When this occurs, the turbulent velocity turns supersonic — generating shocks
that enhance the density fluctuations on these scales and could serve as very early
seeds for structure formation.
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The source for the turbulence is non-solenoidal and therefore it appears that
the generated turbulence will not include any vorticity. However, in a numerical
simulation [20], the authors did obtain a turbulent vorticity even tough the source
of the turbulence was not solenoidal. It should be also noted that any small vor-
ticity present, will be amplified by the non-linear eddy interactions and will reach
equilibrium with the non-vortical component.

The turbulence will amplify any seed magnetic field to equilibrium levels of
∼ 5 mG. This magnetic field would be further amplified past recombination. The
turbulence would also contribute to the gravitational waves cosmic background.

The present study was based on study of timescales and thus is largely qualitative,
presenting orders of magnitude estimates. We intend to continue this research by
constructing a semi-analytic model for turbulence that will allow to obtain a detailed
power spectrum of the turbulence.

Acknowledgements

This work has been supported by the Afeka College Research Fund.

References
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Abstract: The inflationary paradigm is commonly accepted now for the
description of the early Universe. However, the most of the corresponding
models are derived from the Lagrangians of the scalar fields (inflatons) or
the high-order-curvature corrections to the gravitational Lagrangian that are
taken quite arbitrarily; so that only the final results are confronted with obser-
vations. In contract to this approach, we try to develop a less-model-dependent
inflationary scenario, which is based on the quantum-mechanical uncertainty
relation in the Mandelstam–Tamm form. As a result, we find that the law of
expansion of the Universe should be “quasi-exponential” (proportional to the
exponent of the square root of time). Moreover, it can be formally extended
up to the present time, thereby giving a universal explanation of the “dark en-
ergy” (effective Lambda-term) throughout the entire cosmological evolution.
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1. Introduction

The inflationary models, assuming a very sharp (typically, exponential) increase
of the scale factor of the Universe R(t), are widely used now to describe evolution
of the early Universe (e.g., recent review [1]). Such sharp expansion is commonly
assumed to be caused by the “vacuum-like” equation of state of the matter, p = −ρ
dominating at that time (which is formally equivalent to the Λ-term in Einstein
equations). The main advantage of such scenarios is their ability to resolve the
problem of homogeneity of the early Universe, the absence of singularity, etc.

In the very first models, suggested in the early 1980’s, emergence of the effective
Λ-term was attributed to the potential energy of a scalar field (such as a Higgs field
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in the electroweak theory of elementary particles) in the overcooled metastabe state
formed after its symmetry-breaking phase transition (e.g., review [2]). Unfortunately,
these first models—which were closely related to the well-established elementary-
particle physics—did not get support from a more careful analysis. As a result,
a subsequent development of the inflationary theory, up to the present time, was
based on the empirical inflaton potentials, which are postulated quite arbitrarily; so
that only the final predictions are confronted with observations.

Yet another approach to the construction of inflationary models, which also
started in the early 1980’s [3], was based on taking into account the higher-order
terms of curvature in the Lagrangian of gravitational field. Such higher-order terms
naturally appeared as quantum corrections to the expectation values of energy–
momentum tensor 〈Tµν〉 of matter fields in a curved space–time. However, the ex-
act numerical coefficients remain unknown, because we do not have the definitive
elementary-particle theory. In the recent time, the corresponding high-order contri-
butions are usually parameterized by the empirical f(R) function, which is estimated
a posteriori , by confronting the theoretical predictions with observations.

A natural question arises: Is it possible to formulate the inflationary model from
a more general point of view, irrelevant to the particular kind of the underlying field
theory, which still remains unknown to us, or any a priori assumptions about the
function f(R)?

From our point of view, a reasonable starting point to do so can be the quantum-
mechanical uncertainty relation between the time and energy. As is known, the
inequality

∆E∆t ≥
1

2
h̄ , (1)

was proposed in the late 1920’s in the context of quantum measurements. However,
as was shown later by Mandelstam and Tamm [4], Eq. (1) can be treated also in
a much wider context: namely, it gives an estimate of the variation of energy of
the quantum system in the course of its long-term evolution. So, such inequalities
are widely used now in the problems of quantum information processing, quantum
communication, etc. [5]1. Regarding the astrophysics, an important recent result
is the employment of Mandelstam–Tamm relation to the description of neutrino
oscillations [6]. The aim of our subsequent consideration will be to show that the
same idea can be useful also in studying the cosmological evolution.

2. Theoretical model

To describe a space–time geometry, we shall use the standard Robertson–Walker
metric:

ds2 = c2dt2 −R2(t)
[

dr2

1− kr2
+ r2(dθ2 + sin2θ dϕ2)

]

, (2)

1Let us mention that the numerical coefficient in the right-hand side of Eq. (1) may be somewhat
different depending on the particular context (for example, π/2 instead of 1/2). So, the subsequent
formulas will be valid up to numerical factors on the order of unity.
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where c is the speed of light, R is the scale factor of the Universe; r, θ, and ϕ are
the dimensionless coordinates; k = 1, 0, and –1 for the closed, flat, and open three-
dimensional space.

Then, the General Relativity equations are reduced to the Friedmann equation [7]:

H2
≡

(

Ṙ

R

)2

=
8πG

3c2
ρ − kc2

1

R 2 +
c2

3
Λ , (3)

where H is the Hubble parameter, G is the gravitational constant, ρ is the energy
density of ordinary (luminous and dark) matter, and dot denotes differentiation with
respect to time.

Since Λ-term is associated with the vacuum energy density ρv as

Λ =
8πGρv
c4

, (4)

it is reasonable to consider the vacuum energy in the Planck volume2

∆E = ρvl
3
P (5)

(where lP =
√

Gh̄/c3 is the Planck length) and then to estimate the relevant energy

density ρv from the Mandelstam–Tamm relation (1) with the equality sign, assuming
that ∆t ≡ t is the total period of the cosmological evolution (i.e., the age of the
Universe by the corresponding instant of time). Consequently, we get the effective
Λ-term, varying with time:

Λ(t) =
4π

c lP

1

t
. (6)

At last, substitution of this expression into Eq. (3) results in the basic equation
of our cosmological model:

H2
≡

(

Ṙ

R

)2

=
8πG

3c2
ρ − kc2

1

R 2 +
4π

3τ

1

t
, (7)

where τ = lP/c =
√

Gh̄/c5 is the Planck time.
To study the main properties of this equation, let us consider the case when the

Universe is spatially flat (k = 0), and the energy density of matter can be ignored
(ρ ≈ 0). Then, formula (7) is reduced to

H2
≡

(

Ṙ

R

)2

=
4π

3τ

1

t
. (8)

This can be trivially integrated and gives

R̃(t) = R̃∗ exp

[

√

16π

3

√

t

τ

]

, (9)

2It is a quite subtle point why we estimate ∆E just in the Planck volume. This issue will be
discussed in more detail in the very end of the paper.
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where the integration constant was defined as R̃∗ = R̃(0), and we consider only
the solution increasing with time. (The tilde is used here to identify the simplest
approximation.)

By using the perturbation theory, it is not difficult to get a refined solution of
Eq. (7), when small contribution from the ordinary matter is taken into account. In
such a case, we need to employ the additional equation for temporal evolution of the
energy density:

ρ̇ = −3
Ṙ

R
(ρ+ p) . (10)

Taking the equation of state of the matter in the usual form, p = wρ (where w = 0 for
dust and 1/3 for radiation), and assuming that there is only one matter component,
Eq. (10) can be easily integrated:

ρ = ρ0

(

R

R0

)−3(1+w)

. (11)

Next, we can seek a refined solution in the form

R(t) = R̃(t) [1 + α(t)] , (12)

assuming that |α(t)| ≪ 1 and ρ/ρv ≪ 1. Substituting formulas (11) and (12) into
the basic equation (7) and collecting the lowest-order terms of the small quantities,
we get a differential equation for α(t), whose solution results in

α(ξ) = −

Gρ0 τ
2

144 π (1 + w)3 c2

(

R0

R∗

)3(1+w)

(ξ2+ 2ξ+2) e−ξ , (13)

where

ξ = 4
√

3π (1 + w)
√

t/τ . (14)

However, as evidently seen from the above formulas, this first-order correction is
noticeable only at the Planckian scales. So, the simplest solution (9) is a very good
approximation for the most part of the cosmological evolution.

3. Discussion and conclusions

(a) The main advantage of the proposed model is that it provides a unified
explanation for the existence of the effective Λ-term (or the so-called “dark energy”)
throughout the entire evolution of the Universe. Really, according to the modern
paradigm, the Λ-term is of crucial importance both in the very early Universe and
nowadays [8]. However, its magnitudes in these periods are absolutely different. So,
it is unclear if this is the same entity or just an accidental coincidence of two different
physical phenomena? The proposed cosmological model, where the effective Λ-term
decays inversely proportional to time (see Eq. (6)) naturally resolves this puzzle. The
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Figure 1: Temporal variation of the scale factor R(t) in the “standard” cosmology
(dashed blue curve) and in the proposed model, based on the quantum-mechanical
uncertainty relation (solid red curve).

corresponding temporal evolution of the scale factor is given by the universal “quasi-
exponential” law (9) instead of being composed of a few very different (exponential
and power-like) dependencies in the standard cosmological model; see Fig. 1.

(b) Yet another cosmological puzzle, revealed in the last years, is a systematic
discrepancy between the values of Hubble parameter at the present time H0 derived
by different methods [9], [10]: the values obtained from the “standard candles” in the
local Universe (≈ 73 km s−1 Mpc−1) turn out to be appreciably greater than the ones
derived from the global-scale analysis of the cosmic microwave background spectrum
(≈ 67 km s−1 Mpc−1). The most popular way to remove this tension is to correct the
expansion history of the Universe, which has been done in the recent works by the
empirical modifications of the equation of state of the dark energy [11], [12], [13], [14].
From this point of view, the substantially modified law of cosmological expansion
in our model (9) offers an additional opportunity to do so. Of course, a detailed
quantitative analysis is still to be done to check this hypothesis.

(c) The most drastic deviation of our model from the predictions of “standard”
cosmology is the age of the Universe. Really, according to Eq. (8),

T =
4π

3

1

τH0

1

H0
, (15)

where T is the age of the Universe, and H0 is the modern value of the Hubble
parameter. Since in the standard cosmological model (whose values will be marked by
asterisks) T ∗

≈ 1/H0, the above relation predicts that T ≈ (T ∗/τ) T ∗. Substituting
T ∗

≈ 4·1017 s and τ = 5·10−44 s, we see that this age increases by a huge quantity
(T ∗/τ) ≈ 1061. In a sense, the Universe becomes “quasi-perpetual”. However, such
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anomalous lifetime should not be a fatal failure of the model: for example, the most
of problematic issues in the large-structure formation are caused by the insufficient
rather than excessive lifetimes. Of course, a lot of calculations should be performed to
check carefully if the processes of nucleosynthesis, cosmological structure formation,
etc. can reasonably proceed in the case of expansion by law (9).

(d) From the purely theoretical point of view, a crucial issue is why we took
just the Planck volume to estimate ∆E in formula (5)? A more traditional way
would be to calculate the fluctuation of energy within the volume of cosmological
horizon, ≈(ct)3. Then, the quantum uncertainty relation will lead to ρv ∼ h̄/(c3t4)
and, according to Eq. (4), Λ ∼ Gh̄/(c7t4) = l2P/(ct)

4. This is evidently much less
than our previous expression (6) and does not result in any inflation at all. However,
taking the cosmological horizon to estimate the characteristic volume—although in-
tuitively appealing—looks hardly compatible with a self-consistent treatment of the
Mandelstam–Tamm relation (1): Really, the cosmological horizon expands with time
and covers a continuously increasing amount of matter, while the uncertainty relation
should be applied to a fixed quantum system. So, our choice of the Planck volume
as the decisive parameter looks more reasonable.

In summary, let us emphasize that we do not have now a rigorous mathemat-
ical prescription how to apply the Mandelstam–Tamm uncertainty relation in the
quantum field theory. However, the above analysis, based on the Planck volume as
the fundamental parameter, seems to be quite self-consistent and, from our point of
view, deserves a further investigation of the corresponding observable consequences.
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Abstract: The creation of universes in entangled pairs with opposite values
of the momenta conjugated to the configuration variables of the minisuper-
space would be favoured in quantum cosmology by the conservation of the to-
tal momentum, in a parallel way as particles are created in pairs with opposite
momenta in a quantum field theory. Then, the matter fields that propagate
in the two universes may become entangled too, the result of which is the
appearance of a quasi thermal state that would produce a specific and distin-
guishable pattern in the spectrum of fluctuations of the matter fields in the
early universe.

Keywords: multiverse, entanglement, early universe
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1. Introduction

The non local effect of quantum entanglement is probably the distinguishing
feature of quantum mechanics [20] and certainly the one that most departures from
the intuition of classical mechanics. In classical mechanics the closer the systems are
the stronger are the effects of any interaction between them. This is not necessarily
the case in quantum mechanics. Quantum correlations may have a direct effect in
the quantum state of one of the interacting systems irrespective of the distance it is
separated from the other.

For instance, let us consider the typical example of quantum entanglement con-
sisted in the generation of particles with spin 1

2
. Let |+〉 and |−〉 be the corre-

sponding quantum states of the positive and negative spin, respectively, along the
z axis. Because the conservation of the spin the particles must be created in pairs
in a composite entangled state given by

|ψ〉 =
1√
2

(|+〉1|−〉2 ± |−〉1|+〉2) . (1)
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Figure 1: Parametric amplifier

If we perform a measurement over one of the particles in the {|+〉, |−〉} basis, what-
ever is the result that we obtain, we know at the same time the state of the other
particle, regardless of the distance between them. This is essentially the non-local
effect of the quantum entanglement.

Another example of quantum entanglement, probably less known but more inter-
esting for the kind of things we are dealing with in this presentation, is the parametric
amplifier of quantum optics (see, for instance, Refs. [21], [24]). The parametric am-
plifier is a non-linear device that splits a photon of frequency 2ω supplied by a pump
into two photons each with frequency ω (see, Fig. 1). The Hamiltonian of interaction
between the classical pump and the two modes â1, â†1 and â2, â†2 is [24]

HI = ih̄χ
(
â†1â

†
2e
−2iωt − â1â2e

2iωt
)
, (2)

where χ is a constant related to the properties of the non-linear optical medium.
The solutions to the Heisenberg equations in the interaction picture are

â1(t) = â1 coshχt+ â†2 sinhχt (3)

â2(t) = â2 coshχt+ â†1 sinhχt, (4)

and the initial two mode vacuum state of the field evolves into a linear combination
of perfectly correlated number states [24]

|Ψ(t)〉 = eχt(â
†
1â

†
2−â1â2)|01〉|02〉 =

1

coshχt

∑
n

(tanhχt)n |n1〉|n2〉. (5)

Now, the state of the mode 1(2) is given by the reduced density matrix ρ1(2) that is
obtained by tracing out from the composite state (5) the degrees of freedom of the
partner mode 2(1). It turns out to be [24]

ρ1(2) = Tr2(1){|Ψ(t)〉〈Ψ(t)|} =
1

Z

∑
n

e−
1
T

(n+ 1
2

)|n1(2)〉〈n1(2)|, (6)

where, Z = 1
2

sinh 2χt, and T−1(t) = ln tanh−2 χt. The state (6) is a quasi thermal
state with a very specific pattern of its thermodynamical properties. If no entangle-
ment were present the modes would remain in their vacuum states and the observers
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in the boxes (see, Fig. 1) would measure no particle at all in their photo-counters.
The interesting thing is then that even if the observers are isolated from each other,
if they recognise the pattern (6) in the state of their corresponding modes they can
infer with high probability of success the existence of the partner modes and the
entanglement between them.

The example of the parametric amplifier is specially interesting in the case of
cosmology because an expanding spacetime may act as a classical pump for the
modes of the matter fields that propagate along distant regions of the spacetime.
Then, analogously to the case of the parametric amplifier, the state of the field
in two classically disconnected regions may become represented by a quasi thermal
state with a specific pattern of the thermodynamical properties that would depend
on the rate of entanglement between the modes of the field in the two regions. The
remarkable thing is then that even if the observer may have no direct access to a very
distant region of the spacetime, if he or she finds the field in a quasi thermal state
with a pattern that follows that of the entangled case, then, he/she can infer the
existence of the distant region and the entanglement of the corresponding modes just
from the state of the field in the own region!

This is then directly applicable to the case of a multiverse, where by the multiverse
one can generally understand the consideration of many different copies of a single
piece of the spacetime, each one with their own properties. In principle, all the
copies except the one in which we live should be disregarded as being physically
inaccessible, and thus, redundant or irrelevant. The most one could do is to take
statistical measures of all the universes of the multiverse and formulate statistical
predictions. This is what we can call the statistical paradigm of the multiverse (see,
for instance, Refs. [3], [4], [23]) and it was the only paradigm of the multiverse taken
into account until recent years. However, the power of predictability of the statistical
paradigm of the multiverse is quite reduced because in order to make predictions one
must assume a principle of mediocrity [23], i.e. one has to assume that our universe
is one of the most probable universes of the multiverse. Making some sense because
it generalises the Copernican principle, the assumption of the mediocrity principle is
controversial because we could well be a very strange phenomena of nature violating
no physical law. Furthermore, because the statistical paradigm of the multiverse
predicts everything within it, then, no concrete prediction can be done actually for
a single universe (i.e. everything is possible in the multiverse).

A different paradigm of the multiverse has been developed in the last decade. It
can be called the interacting multiverse [1], [7], [8], [18], [19], where entanglement and
other non local interactions can be present between the states of the corresponding
spacetimes and the fields of the classically disconnected regions. The universes still
conserve their classical meaning because they are isolated from a classical point of
view, i.e. light signals cannot joint events of two different universes and therefore
no causal relation may exist between their events, at least in the classical (local)
sense. Even though, quantum correlations and other non local interactions may still
be present, which would be ultimately rooted in the choice of boundary conditions at
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the origin of the universe or in a residual effect from the underlying theory, whether
this can be one of the string theories or the quantum theory of gravity. These
non local effects are expected to be large in the earliest stage of the universe and
they could propagate and imprint some effect in the observable properties of a large
universe like ours. In that case, the multiverse, and the underlying theories, would
become a testable proposal as any other theory in cosmology.

2. Quantum cosmology and the state of the early universe

Quantum cosmology is the application of the quantum theory to the universe
as a whole, i.e. to the spacetime and the matter fields that propagate therein, all
together. In the canonical picture the state of the universe is given by a wave function
that depends on all the degrees of freedom of the spacetime and the matter fields,
and it is the solution of the quantum version of the Hamiltonian constraint,

ĤΨ = 0, (7)

where Ĥ is the operator form of the Hamiltonian that corresponds to the Einstein-
Hilbert action of the spacetime plus the action of the matter fields. However, for most
of the evolution of the universe this can be described by a slow changing background
spacetime and small energy fields propagating therein. In that case, the Hamiltonian
constraint (7) can be re-written as(

Ĥbg + Ĥm

)
Ψ = 0, (8)

where Ĥbg is the Hamiltonian of the background spacetime and Ĥm is the Hamilto-
nian of the rapid varying fields. The wave function Ψ(qbg, qm) depends then on the
degrees of freedom of the background spacetime, qbg, and on the matter degrees of
freedom, qm. In the semiclassical regime, it can be written as a WKB solution of the
form [6]

Ψ = C(qbg)e
±i/h̄S0(qbg)χ(qbg, qm), (9)

where C(qbg) is a slow varying function of the background variables, S0(qbg) is the
action of the background spacetime, and χ(qbg, qm) is the wave function of the fields
that propagate in the background spacetime. Inserting the semiclassical wave func-
tion (9) into the Hamiltonian constraint (8) and solving it order by order in h̄, one
obtains: at zero order in h̄, the classical equations of the background spacetime; and
at first order in h̄, the quantum equations of the fields that propagate therein. Thus,
the wave function Ψ and the Hamiltonian constraint (8) contain all the physical
information about the classical spacetime and the quantum matter fields. In that
sense, the wave function Ψ represents the state of the whole universe.

For the shake of concreteness, let us consider a homogeneous and isotropic space-
time with a scalar field ϕ propagating therein. Then, the wave function Ψ can be
written as the product of two wave functions [9], [16]

Ψ(a, ϕ0;xn) = Ψ0(a, ϕ0)χ(a, ϕ0;xn). (10)
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The wave function Ψ0 represents the state of the homogeneous and isotropic back-
ground, which is entirely described by the dynamics of the scale factor a and the
homogeneous mode of the scalar field ϕ0. It is the solution of the Wheeler-DeWitt
equation [6], [9]

ĤbgΨ0 =
1

2a

(
h̄2 ∂

2

∂a2
+
h̄2

a

∂

∂a
− h̄2

a2

∂2

∂ϕ2
0

+ 2a4V (ϕ0)− a2

)
Ψ0 = 0, (11)

where V (ϕ0) is the potential of the scalar field. All the information about the inhomo-
geneous modes of the scalar field, xn, which are here treated as small perturbations,
is encoded in the wave function χ(a, ϕ0;xn) in (10). It is now easy to show that
the wave function Ψ contains: at zero order in h̄, the dynamical information of the
classical background spacetime and, at first order in h̄, the quantum information of
the inhomogeneous modes xn that propagate along the background spacetime. Let
us first notice that in the semiclassical regime Ψ0 can be written as

Ψ0(a, ϕ0) = C(a, ϕ0)e−
i
h̄
S(a,ϕ0). (12)

In that case, the Wheeler-DeWitt equation (11) is satisfied at zero order in h̄ if
S(a, ϕ0) is a function that satisfies the Hamilton-Jacobi equation [9]

−
(
∂S

∂a

)2

+
1

a2

(
∂S

∂ϕ0

)2

+ 2a4V (ϕ0)− a2 = 0. (13)

Now, choosing as the time variable the WKB parameter t defined by [9]

∂

∂t
≡ 1

a

∂S

∂a

∂

∂a
− 1

a3

∂S

∂ϕ0

∂

∂ϕ0

, (14)

the equation (13) transforms into

ȧ2 + 1− a2
(
ϕ̇2

0 + 2V (ϕ0)
)

= 0, (15)

which is the Friedmann equation of the background spacetime. The dynamical equa-
tions of a(t) and ϕ0(t), given by

ȧ =
1

a

(
∂S

∂a

)
, ϕ̇0 = − 1

a3

(
∂S

∂ϕ0

)
, (16)

can be directly obtained from (14). Thus, the classical equations of the background
spacetime are obtained from the h̄0 order of the Wheeler-DeWitt equation. On
the other hand, inserting the wave function (10) into the total Hamiltonian, H =
Hbg + Hm, where Hm is the Hamiltonian of the perturbation modes, it is obtained
at first order in h̄ of Hbg,

ih̄

(
1

a

∂S

∂a

∂

∂a
− 1

a3

∂S

∂ϕ0

∂

∂ϕ0

)
χ = Hmχ, (17)
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which is exactly the Schrödinger equation for the inhomogeneous modes of the scalar
field if one considers the time variable defined in (14) for the background spacetime.
Therefore, the wave function Ψ in (10) and the Hamiltonian constraint (8) contain all
the physical information of a single universe. They contain the classical information
of the background spacetime and the quantum information of the matter fields that
propagate therein.

3. Creation of universes in entangled pairs

The symmetries of the Friedmann equation with respect to a time reversal change,
t → −t, in the definition of the time variable (14), and the associated symmetry in
the Wheeler-DeWitt equation (11) with respect to a change in the sign of the function
S(a, ϕ0), makes that the general solution of the Wheeler-DeWitt equation should be
written as

Ψ =
∑

Ψ− + Ψ+ =
∑

C−e
− i

h̄
S0χ− + C+e

i
h̄
S0χ+, (18)

where, C∗+ = C− and χ∗+ = χ−, and the sum extends to all the possible configura-
tions for the semiclassical regime of the spacetime and the matter fields. In (18),
Ψ− and Ψ+ are customary referred as the expanding and the contracting branches of
the universe, respectively, because in terms of the time parameter t defined in (14)
and taking into account the correspondence principle between the classical momen-
tum pca and the quantum momentum, p̂a = −ih̄∂a, in the classical limit (h̄→ 0),

−aȧ ≡ pca ∼ 〈Ψ±|p̂a|Ψ±〉 = ±∂S
∂a
, (19)

one obtains

ȧ = ∓1

a

∂S

∂a
, (20)

where the − sign corresponds to Ψ+ and the + sign to Ψ−. Then, one should assume
that Ψ+ represents a contracting universe and Ψ− an expanding one. However, the
problem with that interpretation is that the time variable t defined in (14) cannot
be the physical time in the two branches if for the physical time we mean the time
variable measured by a real clock, which is eventually made of matter. The real time
is that given in the Schrödinger equation, which is the one that ultimately drives the
behaviour of matter. If one follows the development of the preceding section with
the time defined in (14) for the wave functions Ψ+ and Ψ− one obtains

∓ih̄
(

1

a

∂S

∂a

∂

∂a
− 1

a3

∂S

∂ϕ0

∂

∂ϕ0

)
χ± = Hmχ±, (21)

where the − sign corresponds again to Ψ+ and the + sign to Ψ−. Equation (21)
is the Schrödinger equation for the fields χ+ and χ− only if one assumes that the
physical time variables in each branch, t+ and t−, respectively, are defined as

t− = t = −t+. (22)
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In that case, each addend in (18) corresponds, in terms of their physical time vari-
ables, to a pair of both expanding universes that however carry associated opposite
values of their momenta conjugated to the configuration variables a and ϕ0. Then,
the creation of universes in pairs, as represented in (18), entails the conservation of
the total momentum conjugated to the configuration variables. Let us notice that
the conservation of the energy is guaranteed even in the case of the creation of a sin-
gle universe because the gravitational energy is negative and equals the energy of the
scalar field. However, the conservation of the generalised momentum ~p = (pa, pϕ0)
is only preserved by the creation of universes in pairs with opposite values of their
momenta, as it happens in the creation of particles in a quantum field theory.

In fact, the resemblance between the expansion (18) and the one made in a quan-
tum field theory is not a coincidence [18], [22]. The configuration space {a, ϕ0}, called
the minisuperspace in quantum cosmology [6], can be formally taken as a spacetime
with a given geometry and metric element given by [16], [18]

dσ2 = −ada2 + a3dϕ2
0. (23)

From (23) one can see that the scale factor formally plays the role of the time
like variable of the minisuperspace and the matter field(s) the role of the space
like variable(s). The wave function Ψ(a, ϕ0) can then be seen as a scalar field that
propagates in the minisuperspace spanned by the variables {a, ϕ0}, and thus, a formal
parallelism can also be taken between the creation of universes in the minisuperspace
and the creation of particles in a curved spacetime. The expansion (18) can be
generalised to

Ψ(a, ϕ0) =
∫
dµ
(
Ψ+
µχ

+
µ bµ + Ψ−µχ

−
µ b
∗
µ

)
, (24)

where µ is the set of parameters that determine the transformation (24), dµ is the
corresponding measure, and bµ and b∗µ are two constants that can be promoted to
the creation and the annihilation operators of universes [16], [14]. The universes
must then be created in pairs with opposite values of their momenta to satisfy the
conservation of the total momentum in the minisuperspace, as particles are created
in pairs with opposite values of their momenta in a quantum field theory.

For instance, let us consider the inflationary stage of the universe, where the
potential of the scalar field can be considered approximately constant, H2

0 = 2V (ϕ0),
with V (ϕ0) evaluated at some initial value ϕ0(t0). Then, the wave function Ψ(a, ϕ0)
can be expanded in Fourier modes as

Ψ(a, ϕ0) =
∫ dK√

2π

(
e(i/h̄)Kϕ0 Ψ+

K χ
+
K b̂K + e−(i/h̄)Kϕ0 Ψ−K χ

−
K b̂
†
K

)
, (25)

where the amplitudes Ψ±K(a) satisfy

h̄2∂
2Ψ±K
∂a2

+
h̄2

a

∂Ψ±K
∂a

+ Ω2
K(a)Ψ±K(a) = 0, (26)
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Figure 2: Left: there is a Euclidean region between two Lorentzian regions, where
classical solutions of the Friedmann equation can be given. Right: a double Euclidean
instanton can be formed by matching two single Euclidean instantons, the analytic
continuation of which gives rise to two expanding universes.

with,

ΩK =

√
H2a4 − a2 +

K2

a2
=
H0

a

√
(a2 − a2

+)(a2 − a2
−)(a2 + a2

0), (27)

being a+ and a− the zeros of the function ΩK , with a+ > a− (see, Refs. [2], [19], for
the details). The WKB solutions of (26) are given by

Ψ±K ∝
1√

aΩK(a)
e±

i
h̄

∫
ΩK(a)da, (28)

and the Friedmann equation of each single universes in terms of their physical times
reads [see (20) with (22)]

∂a

∂t±
=

1

a
ΩK =

H0

a2

√
(a2 − a2

+)(a2 − a2
−)(a2 + a2

0). (29)

There are two Lorentzian regions for which real solutions of the Friedmann equa-
tion (29) can be obtained, located at a < a− and at a > a+, respectively. In between
there is a Euclidean region that acts as a quantum barrier, where the Euclidean solu-
tions of the Wick rotated version of (29) are called instantons (see Fig. 2, left). Now,
a double Euclidean instanton can be formed by glueing two single instantons at the
contact hypersurface a−, whose analytic continuation gives rise to a pair of universes
in the Lorentzian region with opposite values of their momentum (see, Fig. 2, right).

Quantum gravitational corrections should be taken into account as well and they
might slightly modify the picture. However, for the case for which the glueing hy-
persurface a− is larger enough than the Planck length, the quantum gravitational
corrections would be subdominant and the global picture presented here should not
be significantly modified.
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As explained in Sec. II, the wave functions χ+
K and χ−K would follow the Schrödinger

equation (21) with the time variables t+ and t− of their respective spacetime back-
grounds, i.e.

ih̄
∂χ±
∂t±

= Hmχ±. (30)

If we restrict to small linear perturbations the inhomogeneous modes behave like
small harmonic oscillators [5], [9]. The quantisation of the modes follows as usual,
by expanding them in terms of the solutions of the harmonic oscillator and promoting
the constants of the expansion into quantum operators,

x̂n(t) = v∗n(t) ân + vn(t) b̂†−n, (31)

where vn(t) and v∗n(t) are two independent solutions of the wave equation

ẍn +
3ȧ

a
ẋn + ω2

nxn = 0, (32)

with a time dependent frequency given by [9], [16]

ω2
n(t) =

n2 − 1

a2(t)
−m2, (33)

where m is the mass of the scalar field.

In the case that the matter content of the entangled universes is represented by
a complex scalar field, then, because χ∗± = χ∓, one would expect that the matter is
created in the observer’s universes and the antimatter in the partner universe [15],
being both separated by the Euclidean barrier of the double instanton. In that case,
â†n and ân in (31) would be the creation and annihilation operators of matter in one
of the universes and, b̂†n and b̂n, the creation and annihilation operators of matter in
the other one1. In the case of a real field the particles are their own antiparticles and
thus, ân = b̂n, with [ân, b̂

†
n] = 1. However, we here retain the different names ân and

b̂n because in the case of the entangled universes they are still commuting operators
as they act on the modes of the field in each single universe of the entangled pair.

We need to impose now the boundary conditions that fix the state of the field. For
this, we impose that the perturbation modes are in the composite vacuum state of the
invariant representation of the harmonic oscillator (32). The invariant representation
has the great advantage that once the field is in a number state of the invariant
representation it remains in the same state along the entire evolution of the field [13].
In particular, once the field is in the vacuum sate of the invariant representation it
remains in the same vacuum state along the entire evolution of the field. It is
therefore a stable representation of the vacuum state along the entire evolution of

1Antimatter from the point of view of an observer in the former universe.
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the universes. For the modes ân and b̂−n, the invariant representation can be written
as [10], [18]

ân =

√
1

2

(
1

σ
xn + i(σpxn −Mσ̇xn)

)
, (34)

b̂†−n =

√
1

2

(
1

σ
xn − i(σpxn −Mσ̇xn)

)
, (35)

where σ = σ(t) is an auxiliary function that satisfies a non-linear equation (see,
Ref. [13] and references therein for the details). In that case, the perturbation modes
stay in the vacuum state of the invariant representation

|0〉 = |0a0b〉 = |0a〉I |0b〉II , (36)

along the entire evolution of the universes. However, an internal observer would
measure the particles of the scalar field in the instantaneous diagonal representation
of the harmonic oscillator (32), which is the representation that defines the instan-
taneous vacuum state at the moment of the observation. Then, if ĉn, ĉ†n and d̂n, d̂†n
are the diagonal representations for the universes I and II, respectively, they are
related to the invariant representation by the Bogolyubov transformation [16]

an = µ(t) cn − ν∗(t) d†−n, (37)

b−n = µ(t) d−n − ν∗(t) c†n, (38)

where, µ ≡ µn and ν ≡ νn, are given by [16]

µ(t) =
1

2

σ√a3ωn +
1

σ
√
a3ωn

− iσ̇
√
a3

ωn

 , (39)

ν(t) =
1

2

σ√a3ωn −
1

σ
√
a3ωn

− iσ̇
√
a3

ωn

 , (40)

with, |µ|2 − |ν|2 = 1 for all time.
The state of the perturbation modes in one single universe of the entangled pair

would then be given by the state that is obtained by tracing out from the composite
state

ρ = |0a0b〉〈0a0b|, (41)

the degrees of freedom of the partner universe. Analogously to the example of the
parametric amplifier presented in Sec. I, one can show [16] that the state of the field
in each single universe of the entangled pair is

ρc = Trdρ =
∏
n

1

Zn

∑
N

e−1/Tn(N+1/2)|Nc,n〉〈Nc,n|, (42)
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where, Z−1
n = 2 sinh 1/2Tn, and, T−1

n (t) = ln (1 + |νn(t)|−2) . The inhomogeneous
modes of the scalar field in each single universe of the entangled pair turn out to be
in a quasi-thermal state whose thermal properties depend on the rate of entanglement
between the universes. The consideration of the state (42) as the initial state of the
perturbation modes in the computation of the power spectrum of the CMB would
imply a different and possibly distinguishable pattern for the final outcome, so it can
provide us with a way of testing definitely the proposal of the creation of universes
in entangled pairs.

4. Observable effects of entangled fields in the early universe

The observable consequences of the creation of universes in pairs and the subse-
quent entanglement of the modes of the scalar field that propagate in their space-
times can be split in two main effects. The first one is the effective modification
of the Friedmann equation and, thus, the modification of the evolution of the uni-
verses that departures from the inflationary expansion in the very early stage. This
pre-inflationary phase of the universe would have observable effects in the power
spectrum of the CMB. In particular, it would produce a suppression of the power
spectrum of the lowest modes which is currently under investigation [12], [16]. The
other effect is the distribution of the modes of the matter field in a quasi thermal
state that should produce specific and distinguishable features in the astronomical
data.

In general, quantum corrections and other non local interactions [1], [17] are ex-
pected to be present in the early stage of the universe and they may induce some
observable effect in the properties of a universe like ours. A first attempt has been
made in Ref. [12], where it is obtained a suppression of the power spectrum for
the lowest modes that could be compatible with the observed data. However, the
appearance of an extra peak in that region of the power spectrum invalidates the
simplifications made in the model considered there. However, the importance of
Ref. [12] is that it establishes the possibility of observing the effects of quantum cos-
mology, including those derived from the entanglement between newborn universes,
in the properties of the CMB.

Another phenomena that would produce a modification of the Friedmann equa-
tion is the backreaction of the matter fields. In our case, the backreaction of the
entangled fields is given by the energy of the modes [16]

ε =
H4

0

8

{
1− m2

H2
0

log
b2

H2
0

+

(
1 +

m2

H2

)(
1− b2

H2
0

)}
, (43)

where b is the SUSY breaking scale of the subjacent landscape [7], [8], and it is
expected to produce the same observable imprints to those found in Refs. [7], [8], [11].
In that case, it would also produce a suppression of the lowest modes of the CMB.
However, a suppression of the lowest modes of the CMB can be produced by many
different effects and, furthermore, the dispersion of the observational data in that
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region of the spectrum is so high that it is not very useful to discriminate between
different models. We need therefore a more specific effect to test the creation of the
universes in entangled pairs.

The distinguishing feature of our model is that it predicts that the initial state
of the field is in the quasi thermal state (42) that is derived from the entanglement
with the modes of a partner universe. It produces a pattern for the spectrum of
fluctuations, given in terms of the spectrum of fluctuations of the invariant vacuum
(disentangled state) by [16]

δφthn
δφIn

=

√√√√1

2

(
1 +

x2

(1 + x2)(1 +m2/(H2x2))

)
, (44)

that cannot be reproduced by any other known effect, mainly because: i) it is not
derived from a vacuum state, and ii) it is not either derived from an exact thermal
state because the modes are not thermalised yet in (42), i.e. the temperature Tn is
not the same for all modes. In fact, one can see that the large modes (x� 1) are not
affected by the entanglement between the universes. However, the departure from
the vacuum state is significant for the horizon modes, x ∼ 1. That should produce
distinguishable effects in the properties of the CMB and, thus, it might help us to
discriminate if our universe was created as a twin universe in an entangled pair.

5. Conclusions

There is a formal parallelism between the quantum description of the wave func-
tion that represents homogeneous and isotropic universes in quantum cosmology and
the quantum description of a scalar field that propagates in a curved spacetime. It
allows us to consider the creation of the universes in entangled pairs as the most
favoured way in which the universes can be created because, only in that case, the
total momentum associated to the configuration variables of the minisuperspace is
conserved. The two created universes are usually referred as the expanding branch
and the contracting branch. However, they are both expanding universes in terms of
the time variable that appears in the Schrödinger equation of each single universe,
which is eventually the physical time variable given by actual clocks.

The matter fields that propagate in the pair of newborn universes become entan-
gled too, an entanglement that is decreasing along the evolution of the universes but
can still be enough to modify the state of the field in the early universe. In particular,
the matter field of each single universe becomes represented by a quasi thermal state
that would induce a specific and distinguishable pattern in the observable properties
of an evolved universe like ours. That makes the interacting multiverse be a testable
proposal as any other in cosmology.
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[14] S. Robles-Pérez. Quantum cosmology of a conformal multiverse. Phys. Rev. D,
96:063511, 2017.
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1. Introduction

It is believed that there are supermassive black holes at the centers of most
galaxies. According to theory, an observer should see such a black hole (BH) as
a dark spot, known as the ’shadow’ of the BH, in the sky against a backdrop of
light sources. Investigations of the shadow are now becoming very popular due
to the appearance of projects to observe the shadow of a supermassive BH in the
center of our Galaxy and at the center of M87. These projects, which are going
to use (sub)millimeter VLBI observations with radio telescopes distributed over the
Earth, are called as the Event Horizon Telescope (http://eventhorizontelescope.org)
and the BlackHoleCam (http://blackholecam.org). Observing the shadow of BH is
both very challenging and very difficult task due to many effects involved. Note, for
example, that the angular size of the shadow is very small: for the BH at the center
of our Galaxy, it is about 53µas. Numerous analytical investigations and numerical
simulations of the shadow are presented in literature, see selected classical works and
interesting recent papers in [1], [3], [10], [11], [12], [13], [14], [15], [18], [19], [20], [21],
[25], [26], [29], [32], [33], [34], [38], [39], [41], [44], [46], [49], see also references below.

In this work we present and discuss selected recent results of analytical investiga-
tions of BH shadow, see [7], [32], [33], [34], [46], [47] for more details. We begin by dis-
cussing the definition of the concept of the BH shadow and its connection with critical
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values of the photon impact parameter. Then we describe recently developed fully
analytical approach for extraction of spin of BH from the deformation of its shadow.
Finally, we present analytical investigation of plasma influence on the shadow size. In
particular, we discuss the influence of plasma on the Schwarzschild black hole shadow.

2. Definition of black hole shadow and its relation with critical photon

impact parameter

The shadow is defined as the region of the observer’s sky that is left dark if
there are light sources distributed everywhere but not between the observer and the
BH (see, for example, [20] and [32]). For constructing the shadow we have to con-
sider all past-oriented light rays that issue from a chosen observer position. Each of
these light rays corresponds to a point on the observer’s sky. We assign darkness to
a point if the corresponding light ray goes to the horizon of the BH, and brightness
otherwise. Observer will see a dark spot (which we call as shadow) in the angular
direction where the BH is located. The boundary of the shadow is determined by
the initial directions of light rays that asymptotically spiral towards the unstable
circular orbit at outermost photon sphere (for spherically symmetric BH), see Fig. 1
for more details. In case of Kerr BH the formation of shadow is more complicated
(we have the photon region filled by spherical orbits instead of the photon sphere)
but is based on the same ideas, see papers [7], [20], [21], [33].

There is nothing surprising in that we expect to see a dark spot in the sky, where
we suggest a BH is situated. The important thing is that due to very strong bending
of light rays coming to us, we see something very different from ’real view’ of the BH.
In case of spherically symmetric BH the difference is only in angular size (see Fig. 2),
but in Kerr metric (which is axially symmetric) picture becomes non-symmetrical:
shadow of Kerr BH is oblate and deformed.

In the case of the Schwarzschild metric, the angular radius of the shadow is

sin2 αsh =
27m2

(

1− 2m
rO

)

r2O
, (1)

where rO is radial coordinate of observer. This formula was derived by Synge [41].
(Synge calculated what he called the ’escape cone’ of light which is just the comple-
ment in the sky of what we now call the shadow.)

Formula (1) can be written as

sin2 αsh =

(

1− 2m
rO

)

b2cr

r2O
, (2)

where bcr is the critical value of the impact parameter corresponding to photons on
unstable circular orbits filling the photon sphere. In the Schwarzschild metric the
radius of the photon sphere equals 3m and

bcr = 3
√

3m. (3)
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Figure 1: Formation of the BH shadow. The shadow is the black disk an observer sees
in the sky if a BH is viewed against a backdrop of light sources that are distributed
around the BH but not between the observer and the BH. a) Let us consider light
rays sent from an observer with chosen position into the past. These light rays can be
divided into two classes: Light rays of the first class go to infinity after being deflected
by the BH. Light rays of the second class go towards the horizon of the BH. The
boundary between these two classes is determined by the rays that asymptotically
spiral towards the outermost photon sphere. b) Now let us consider that there are
many light sources distributed everywhere around the BH. We assume that there are
no light sources between the observer and the BH (speaking more strictly, there are
no light sources in the region filled by the above mentioned light rays of the second
class). Initial directions of rays of the second class correspond to darkness on the
observers sky. Therefore, the cone which was fulfilled by the rays of the second class
will be dark for the observer. c) The observer will see the dark disc in the sky against
the backdrop of light sources. Note that the picture is schematic and is drawn as
if the stars represent a continuous distribution of light, therefore stars positions are
not affected by lensing on this picture.

For large distances the angular size is simplified to

sin2 αsh ≈

b2cr
r2O

, rO ≫ m. (4)

This approach reduces the determination of the angular size of the shadow at large
distances to the calculation of the critical value of the impact parameter: knowing the
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Figure 2: Comparison of shadow size for distant observer with Euclidian sizes of the
event horizon and the photon sphere (for Schwarzschild BH).

critical impact parameter, one gets an approximate value for αsh after dividing by rO.
Bardeen [3] has used this approach for the more general case of the Kerr metric. In
this case the shadow is not circular; its shape for distant observers is determined
by two impact parameters. Accordingly, the angular radii of the shadow can be
approximately found by dividing these impact parameters by the (Boyer-Lindquist)
radius coordinate rO of the observer.

Described relation between angular size of the shadow and critical impact param-
eter works only for metrics that are asymptotically flat at infinity. Angular size of
the shadow cannot be presented in such way, for example, in the Kottler spacetime
which is not asymptotically flat.

Size and shape of the shadow are determined by parameters of the BH and the
observer position. By measuring the parameters of the shadow, we can get informa-
tion about both the BH and its environment through which the light propagates. In
next sections, we will describe the analytical ways to do this.
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3. Analytical extraction of black hole spin from deformation of black hole

shadow

For a non-rotating BH, the shadow is a circular disk at the sky. For the Schwarzs-
child BH the angular diameter of the shadow was calculated in paper of Synge [41],
as a function of the mass of the BH, and of the coordinate distance from the BH.
The shape of the shadow of a Kerr BH, for an observer far from BH, was calculated
by Bardeen [3]. In the papers of Grenzebach, Perlick and Lämmerzahl [20], [21], the
size and the shape of the shadow were calculated for the whole class of Plebański-
Demiański spacetimes (which includes the Kerr BH as a special case). Calculations
are performed for the observer at an arbitrary position outside of the horizon of
the BH.

Deformation of the shadow of Kerr BH depends on BH spin and viewing angle
of the observer. The more the spin of the BH, the stronger the deformation of its
shadow: for given viewing angle, the deformation will be strongest for extreme Kerr
BH. For given spin, the deformation will be strongest for the equatorial observer
among all possible angles of view, while for the polar observer the deformation is
absent and shadow is circular.

Usually it is supposed that for extraction of spin we need to construct or model
the entire curve of the shadow. Extraction of the spin from the shadow deformation
was discussed in number of papers [2], [23], [28], [42], [43], [48]. These works imply
the use of numerical calculations at some stage, and to the best of our knowledge,
there was no fully analytical treatment of the problem. Here we present results of
our analytical investigations on the basis of paper [46]. We believe that an explicit
analytical dependence of the spin on some parameter characterizing the shadow
non-sphericity and observer viewing angle would be very useful as a first step in the
development of more complex models. We restrict ourselves to the consideration of
distant observer.

To characterize the deformation of the shadow we use oblateness, the ratio of
horizontal (∆x) and vertical (∆y) angular diameters of the shadow which are sup-
posed to be measured by an observer (∆x ≤ ∆y), see Fig. 3a. The oblateness
k = ∆x/∆y takes values in the range

√

3/2 ≤ k ≤ 1. Value 1 corresponds to the
Schwarzschild BH (circular shape, no deformation), value

√

3/2 takes place for ex-
treme Kerr BH and the equatorial observer (strongest deformation). For analytical
calculation of diameters, we need to know the left and the right horizontal borders
of the shadow, xL and xR, and the vertical border, ym. Location of BH and observer
is shown in Fig. 3b.

Shape of shadow curve for distant observer is well known from Bardeen’s work [3].
Moreover, results of Grenzebach, Perlick and Lämmerzahl [20] allow anyone to calcu-
late the shadow of Kerr BH for any position of the observer, which means arbitrary
radial distance from BH and arbitrary inclination of observer. Nevertheless, fully an-
alytical calculation of the horizontal and vertical angular diameters in general case is
complicated. Analytical calculation of the shadow means the following: every point
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Figure 3: a) Horizontal and vertical angular diameters of the shadow. b) Position
of the observer and the BH. We assume that rO ≫ m. Angle ϑO is the inclination
angle of observer, and i is the viewing angle. Main results are obtained for the nearly
equatorial observer, which means that i ≪ 1.

of the curve is evaluated as an analytical function of a special parameter, see details
in paper [46]. This parameter is changed in some range, and boundaries of this range
are also subject of evaluation. Namely, we need to find zeros of a high-order poly-
nomials. Therefore, in the general case results for diameters cannot be presented in
closed analytical form (as explicit functions of spin and inclination). Calculation of
the horizontal and vertical angular diameters is addressed in the subsequent paper
of Grenzebach, Perlick and Lämmerzahl [21]. The authors consider the equatorial
plane of the Kerr BH and explain how to calculate the horizontal and vertical angular
diameters of the shadow as a function of the BH mass, spin, and the radial coordi-
nate of the observer. As an example of the situation when results can be written
explicitly, the authors have calculated the horizontal and vertical angular diameters
of the shadow for extreme Kerr BH.

Let us consider the distant equatorial observer (see Fig. 4). For the Schwarzschild
case, the shadow is circular. With increasing of BH spin a, the shadow is shifted
to the right. At small a, the left and right borders are shifted almost equally, and
the horizontal diameter is not changing. For a = 0.6m the shadow still looks almost
circular. Noticeable difference between the shape of the shadow and the circular
shape appears only for a BH with spin close to the extreme, see Fig. 4. On basis of
these numerical calculations we can formulate the following idea: if you can clearly
notice the non-sphericity at the picture of the shadow, this means that you are
looking at the shadow of nearly extreme BH and observer is not very far from the
equatorial plane. We have used this approximation, and it allowed us to obtain
compact formulas which is easy to use.

Let us now consider the nearly extreme Kerr BH a = (1− δ)m with δ ≪ 1. The
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Figure 4: Left: The shadow curves for the distant equatorial observer for (from
the leftmost to the rightmost) a = 0, 0.1m, 0.6m, 0.9999m, m is the BH mass,
G = c = 1. Right: The shadow curves for a = 0.97m, 0.99m, 0.9999m. There
is a notable difference in location of left borders, whereas the right borders are
approximately at the same place, see (5) and (6).

remarkable thing we have revealed from plotting the shadow for distant equatorial
observer is that the displacement of the left border in comparison with the extreme
Kerr case is proportional to

√

δ:

xL|a=(1−δ)m − xL|a=m ∝

√

δ , (5)

whereas the right border is shifting proportionally to δ:

xR|a=(1−δ)m − xR|a=m ∝ δ . (6)

This behaviour is clearly visible in the Fig. 4. This property helps us to find explicit
dependence of spin on oblateness and viewing angle. To obtain compact formulas,
we consider the case of nearly equatorial observer, viewing angle is small: i ≪ 1.

We have found the following expression of the spin via oblateness and the viewing
angle:

a = (1− δ)m, δ = 18

(

k −

√

3

2

)2

− 2k

(

k −

√

3

2

)

i2 . (7)

For observer in the equatorial plane (ϑO = π/2, i = 0), the BH spin is calculated as

a = (1− δ)m, δ = 18

(

k −

√

3

2

)2

, k =
∆x

∆y
. (8)

Value of a calculated for the equatorial plane is the lower limit of the spin of the BH
at a given oblateness k: if the observer is not located in the equatorial plane, the
larger value of the spin is required to obtain the same deformation.
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4. Plasma influence on the shadow of spherically symmetric black hole

Influence of a matter on the shadow is usually investigated by numerical calcula-
tion, for example, see [17] and [24]. The first attempt of analytical investigation of
plasma influence on the shadow size, in the frame of geometrical optics, taking into
account effects of general relativity and plasma presence, was performed the paper of
Perlick, Tsupko and Bisnovatyi-Kogan [32], see also discussion in [7]. The Synge’s for-
mula [41] was generalized to the case of a spherically symmetric and static plasma dis-
tribution on a spherically symmetric and static spacetime. Subsequently, the shadow
of a Kerr BH under the influence of a plasma have been investigated analytically by
Perlick and Tsupko [33]. For discussion other effects of plasma in gravitational lens-
ing see papers [4], [5], [6], [8], [9], [16], [22], [27], [30], [31], [35], [36], [37], [40], [45].

In paper [32], we have considered the simplest non-trivial case: the influence of
a non-magnetized pressureless plasma on the size of the shadow of a non-rotating BH
was analytically calculated.

Let us consider a spherically symmetric and static metric

ds2 = gikdx
idxk = −A(r)dt2 +B(r)dr2 +D(r)(dϑ2 + sin2ϑ dϕ2) , (9)

where metric coefficients A(r), B(r) and D(r) are positive, G = c = 1. We assume
that the spacetime is filled with a static non-magnetized cold inhomogeneous plasma
whose electron plasma frequency ωe is a function of the radius coordinate only,

ω2
e =

4πe2

me

N(r) . (10)

Here ωe is the electron plasma frequency, N(r) is the electron concentration in
plasma, e is the charge of the electron, me is the electron mass. The refraction
index n of this plasma is

n2 = 1−
ω2
e

[ω(r)]2
. (11)

The photon frequency measured by a static observer is a function of r, according to
the gravitational redshift formula,

ω(r) =
ω0

√

A(r)
. (12)

Here ω0 is the photon frequency at infinity.
Let us define for convenience a function h(r) which contains all information about

spacetime and plasma and is given by

h2(r) =
D(r)

A(r)

(

1− A(r)
ωe(r)

2

ω2
0

)

. (13)

We have obtained that the angular radius αsh of the shadow is determined by
compact formula [32]:

sin2 αsh =
h2(rph)

h2(rO)
. (14)
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Here rO is the observer position, and rph is the radius of photon sphere (for given
space-time and plasma distribution) and can be found from equation

0 =
d

dr
h2(r) . (15)

Using formula (14), it is possible to calculate analytically the angular radius of
the BH shadow:

• for any spherically symmetric metric, for example Schwarzschild BH, without
approximation of weak field,

• for any position of observer, in particular very close to BH and very far from
BH,

• for any spherically symmetric distribution of plasma,

• for any photon frequency.

5. Plasma influence on the shadow of Schwarzschild black hole

For the Schwarzschild spacetime, the angular radius of the shadow (14) specifies
to (m is the BH mass)

sin2 αsh =
r2ph

(

rph
rph−2m

−

ω2
e(rph)

ω2
0

)

r2O
(

rO
rO−2m

−

ω2
e(rO)
ω2
0

) , (16)

where rph has to be determined from (15) which is simplified to

0 =
r (r − 3m)

(r − 2m)2
−

ω2
e(r)

ω2
0

− r
ωe(r)ω

′

e(r)

ω2
0

. (17)

If the plasma frequency is much smaller than the photon frequency, the equations
for the photon sphere and for the radius of the shadow can be linearized around the
corresponding values for vacuum light rays. As an example, we have considered the
Schwarzschild spacetime for the case that the plasma electron density is given by
a power law,

ωe(r)
2

ω2
0

= β0
mk

rk
, (18)

where β0 > 0 and k ≥ 0 are dimensionless constants. The first-order equation for
the radius of the shadow yields [32]

sin2 αsh =
27m2

r2O

(

1−
2m

rO

)

(

1−
β0

3k+1
+
(

1−
2m

rO

)

β0m
k

rkO

)

. (19)

Presence of homogeneous plasma (k = 0) makes the shadow bigger in comparison
with vacuum case for any observer in the domain 3m < rO < ∞. This occurs due to
increase of gravitational bending in presence of homogeneous plasma [4], [5], [7].
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In case of non-homogeneous plasma with given density distribution both increas-
ing and decreasing effects are possible, depending on the position of the observer.
Near the BH, relativistic effects predominate. Gravitational deflection becomes larger
in presence of (homogeneous or non-homogeneous) plasma [4], [5], [7], therefore the
shadow becomes larger for the observer who is close to the BH. Far from the BH,
refraction effects predominate. Refraction on the declining density profile reduces
the total deflection angle. Hence, in non-homogeneous case, the shadow becomes
smaller if the observer is far enough from the BH. For details see Refs. [7] and [33].

If the observer is far from the BH, rO ≫ m, formula (19) can be simplified to [7]

homogeneous plasma, k = 0 : sin2αsh =
27m2

r2O

(

1 +
2β0

3

)

, (20)

non-homogeneous plasma, k > 0 : sin2αsh =
27m2

r2O

(

1−
β0

3k+1

)

. (21)

In presence of plasma around of BH the light deflection becomes chromatic [4],
[5], [6], [7]. Therefore in the presence of a plasma the size of the shadow depends
on the wavelength at which the observation is made, in contrast to the vacuum case
where it is the same for all wavelengths. Very high photon frequencies corresponds
to vacuum case. The difference from the vacuum size of the shadow becomes bigger
with decrease of the photon frequency ω0. Dependence of the shadow size on the
photon frequency in a homogeneous plasma goes as

if ω
(1)
0 < ω

(2)
0 < ω

(3)
0 , then αsh(ω

(1)
0 ) > αsh(ω

(2)
0 ) > αsh(ω

(3)
0 ) > αvacuum

sh ; (22)

and in a non-homogeneous plasma for a distant observer we have (for case when the
density decreases with increasing radial coordinate)

if ω
(1)
0 < ω

(2)
0 < ω

(3)
0 , then αsh(ω

(1)
0 ) < αsh(ω

(2)
0 ) < αsh(ω

(3)
0 ) < αvacuum

sh . (23)

For estimation of the effect, the case of a spherically symmetric accretion of
plasma onto the Schwarzschild BH was considered in detail [32]. We have found that
for an observer far away from the Schwarzschild BH the plasma makes the shadow
smaller. As examples, we have considered Sgr A* and M87. Using this specific
accretion model and observed luminosities in these systems, we have estimated the
plasma density, and found that the effect of the presence of a plasma on the size of the
shadow can be significant only for wavelengths of at least a few centimeters. At such
wavelengths the observation of the shadow is made difficult because of scattering.
For further details see [32].

6. Conclusions

Our main conclusions are:

(i) angular size of the shadow gives us the information about the BH mass;
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(ii) oblateness of the shadow (the ratio of the horizontal and vertical angular di-
ameters) allows us to estimate the BH spin:

(a) knowing the oblateness by measuring the horizontal and vertical diameters
of the shadow, one can easily obtain the lower limit on the BH spin by
the formula (8), without need to construct or model the entire curve of
the shadow;

(b) if the viewing angle is known from other observations, one can directly
calculate the spin using (7);

(c) in all situations when the shadow curve is noticeably different from the
circular shape, our approximate formulas provide a high accuracy of cal-
culation;

(iii) angular size in different wavelengths can give us the information about plasma
environment of BH:

(a) in the presence of a plasma the size of the shadow depends on the wave-
length at which the observation is made, in contrast to the vacuum case
where it is the same for all wavelengths;

(b) the effect of the plasma is significant only in the radio regime;

(c) for an observer far away from the Schwarzschild BH the non-homogeneous
plasma has a decreasing effect on the size of the shadow.
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Abstract: In 2016, the letter [1] about the first detection of gravitational
waves was published. They were generated by two merging black holes that
had approximately 36 and 29 Sun’s masses. However, the authors have not
taken into account a large gravitational redshift of this binary system, which is
a direct consequence of time dilation in a strong gravitational field. Thus the
proposed masses are overestimated. In our paper we also give other arguments
for this statement.

Keywords: gravitational redshift, time dilatation, black holes, wavelets

PACS: 4.20-q, 95.30.Sf

1. Introduction

A century ago Albert Einstein [13], [14] predicted the existence of gravitational
waves. He assumed only very weak gravitational fields which enabled him to linearize
his field equations of general relativity. He considered only small perturbations of
Minkowski spacetime and after some further simplifications he got a nonhomogeneous
partial differential equation with the d’Alembert operator for plane gravitational
waves (see e.g. [6, p. 24]).

Gravitational waves were first detected on September 14, 2015. According to [1],
two black holes with masses

m1 = 36+5
−4M⊙ and m2 = 29+4

−4M⊙, (1)

merged and the generated gravitational waves GW150914 were independently inter-
cepted by two LIGO detectors. We show that these masses are not too trustworthy.
First of all, we would like to emphasize that our criticism does not concern the
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LIGO detectors themselves, which are highly sophisticated and remarkable instru-
ments. It concerns the methodology that was used to process and then interpret the
measured data. The used post-Newtonian model, which neglects the infinite gravi-
tational redshift of each single black hole, can only very roughly approximate reality.
Therefore, from this heuristic model we cannot make any definite conclusion about
the real masses of the considered binary black hole system and derive any reliable
error estimates. In our opinion, the post-Newtonian model is not applicable in this
case.

In Section 2, we introduce several drawbacks of the used formula for the so-called
chirp mass. In Section 3, we show that the masses (1) including also the associated
error bars need not correspond to reality, because the gravitational redshift was
neglected. Section 4 contains further arguments supporting our hypothesis that the
masses (1) are overestimated. We also present some conclusions in Section 5.

2. Emitted versus detected frequencies

The only relation which is given on a single line in [1] reads:

M =
(m1m2)

3/5

(m1 +m2)1/5
=

c3

G

[ 5

96
π−8/3f−11/3ḟ

]3/5

, (2)

where f = f(t) and ḟ = ḟ(t) are the frequency of gravitational waves in time t
and its time derivative, m1 and m2 are the masses of the components of the binary
system for low frequencies, M is the chirp mass in the detector frame, G = 6.674 ·
10−11m3kg−1s−2 is the gravitational constant, and c = 299 792 458 m/s is the speed
of light in vacuum.

According to [1, p. 3], f is the detected frequency. However, then the formula (2)
cannot be true, in general, since f on its right-hand side essentially depends on the
total redshift z, whereas the left-hand side of (2) is independent of z. The masses m1

and m2 cannot depend on z. Therefore, (2) can be valid only for z = 0. Let us
emphasize that formula (2) was taken from reference [5]. However, in [5, p. 3516]
and [12, p. 2663], the authors rightly consider the emitted frequency fem (or the
orbital frequency πfem) in the source frame and not the detected frequency f as in [1].
Therefore, the detected frequency f should be replaced by the emitted frequency

fem = (z + 1)f, (3)

where z is the total redshift of gravitational waves.
The masses m1 and m2 were estimated by a series of numerical simulations [17]

with various input values m1 and m2. The numerical methods employed in con-
structing the templates for the merging black holes can also be found in [9] and [19].
However, no gravitational redshift is mentioned in these references.

Let us look at the equality (2) in more detail. This equality was derived from the
relation (3) of the 1995 paper [5] in a manner such that many higher order terms
were neglected. In spite of that, the authors of [1] kept the equality sign in (2).
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Furthermore, notice that the left-hand side of quality (2) does not depend on
time t, while the right-hand side is time dependent. Thus the equality (2) is satisfied if
and only if the product f−11/3ḟ is a suitable constant C (e.g. C = 0.00015142 . . . s5/3

for (1)). This leads to the solution of an ordinary differential equation of the first
order

ḟ = Cf 11/3 (4)

whose general solution is

f(t) =
(3

8

)3/8 1

(K − Ct)3/8
, (5)

where K ∈ (−∞,∞) is an arbitrary integration constant, see also [12, p. 2663].
By [20, p. 14] the function (5) is the only solution of the differential equation (4) for
t < K/C. Since this equation is autonomous, we may choose K = 0. The relation
(5) thus determines how the frequency increases with time.

The authors of [1] had only approximate values of the detected frequency f
from the interval 35–250 Hz for approximately 8 orbital periods. Finally note that
a numerical computation of the derivatives from smoothed data is an ill-conditioned
problem.

3. Neglected gravitational redshift

Unfortunately, in [1] (also in [2], [3], [4], [5], [16]) there is no mention about
gravitational redshift of gravitational waves. Let us recall that redshift (or blueshift)
of frequency of waves coming to us from the universe has three basic components:

1) a Doppler component caused by the movement of the source or the observer
with respect to its neighborhood,

2) a cosmological component caused by the expansion of the universe,

3) a gravitational component caused by the change of frequency of waves in a grav-
itational field.

According to [1, p. 7], the luminosity distance of the considered binary sys-
tem is 410+160

−180Mpc which is in perfect agreement with the cosmological redshift
(see e.g. [21])

z = 0.09+0.03
−0.04, (6)

that is stated by the authors. Thus for the two remaining components of the redshift
it remains

z ≈ 0. (7)

Let us note that the gravitational redshift for the surface of a neutron star is
z ≈ 0.3 which is greater than (6), which can be derived from (10) below. For the
horizon of a single black hole with mass m with Schwarzschild radius

r =
2Gm

c2
(8)
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we even have
z = ∞. (9)

From this and the relation (7) it follows that the authors of [1] did not consider
a large gravitational redshift caused by the binary black hole system.

The gravitational redshift is a direct consequence of Einstein’s time dilatation.
Time in a gravitational potential hole flows more slowly than outside. A photon has
to spend some energy to leave a gravitational field of a mass object. Its frequency is
indirectly proportional to the speed of flowing of time. Therefore, the frequency of
electromagnetic waves decreases when leaving a large gravitational potential hole of
the binary system. A similar phenomenon holds for gravitational waves that carry
away energy and thus their frequency will decrease as well.

So let us recall the well-known formula that can be derived from the Schwarzschild
solution of Einstein’s equations. It expresses the change of frequency of a photon
leaving the gravitational field of a single black hole at the distance R > r from its
center

f = fem

√

1−
r

R
, (10)

where r is given by (8), fem is the emitted frequency of a photon and f is the detected
frequency by a distant observer. From this and (3) we obtain the limiting relation (9)
for R → r.

Setting for instance R = 2r in (10) (cf. [1, p. 3]), we find that f = 2−1/2fem.
By (3) the corresponding gravitational redshift is

z =
√

2− 1 = 0.414 (11)

which is much larger than the value in (6). Similarly, for R = 3r, 4r, and 5r, we get
z = 0.225, 0.155, and 0.118, respectively, which are also larger than (6).

Just before the collision of the two black holes, the spacetime between them
exhibited the largest deformations. By the measured data of LIGO detectors it pro-
duced gravitational waves with an increasing recorded frequency 35–250 Hz. The
distance between both the black holes was only a few Schwarzschild radii [1, p. 3].
From (8)–(11) we may deduce that the gravitational redshift of the emitted gravita-
tional waves will be quite essential and probably larger than that in (6). Unfortu-
nately, the true analytical solution of Einstein’s equations for two orbiting bodies is
not known. However, a common gravitational potential hole of the two black holes
is deeper than that of each of its components (see Fig. 1).

From equality (2) it is obvious that the sought masses of the black holes and also
the constant C of (4) depend on the emitted frequency fem = (z+1)f . Consequently,
a proper determination of the total redshift z is essential. By relation (3) we obtain
ḟem = (z+1)2ḟ , where the additional factor (z+1) is due to Einstein’s time dilatation.
Substituting this and (3) into (2), we get the missing factor

(z + 1), (12)
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Figure 1: Schematic illustration of the gravitational potential of a binary back hole
system. The largest deformation of the spacetime arises close to the central saddle
point. According to [1, p. 3] the highest amplitude of the detected signal was reached
for the separation R = 3

2
r.

because
(

f−11/3ḟ
)3/5

= (z + 1)
(

f−11/3
em ḟem

)3/5

(13)

and because the remaining factors in (2) are constants. In [1] only the cosmological
redshift (6) was considered, but the total redshift is larger (cf. e.g. (11)).

Finally, let us note that the Doppler shift may also not be negligible. Unfortu-
nately, we do not know the orientation of the orbital plane of the black holes and its
local movement. Therefore, we cannot reliably establish the corresponding Doppler
redshift.

4. Other arguments

The mechanism of the origin of the binary black hole system (1) is not known.
According to the recent survey paper [11, Fig. 8], all the 17 known X-ray binaries
detected in our Galaxy have components with masses less than 10M⊙. Masses of all
known single stellar mass black holes are in the interval 5M⊙ – 20M⊙ (cf. e.g. [7],
[8], [18]). Hence, from a statistical point of view a system of two much larger black
holes such as (1) seems to be quite exceptional, even though some selection effects
may be present, since larger masses imply stronger signals. Moreover, its evolution
path is unknown. All its parameters should be tuned very finely.

Chen et al. in [10] have also found that the important gravitational redshift of
GW150914 was not accounted for. They assume that the black hole binary system
was located in close vicinity of a supermassive black hole possessing a large gravita-
tional redshift. Their results indicate that the mass of each component of such a pair
of black holes is not greater than 10M⊙.
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The wavelength λ = c/f corresponding to the highest detected frequency
f = 250Hz is equal to λ = 1200 km. This is a much larger value than the diameter
of the wave zone given by the associated Schwarzschild radii of the black holes.
Nevertheless, we observe that the emitted frequency fem > f would yield a much
more reliable size of the wave zone. This also shows that the gravitational redshift
was missing.

5. Conclusions

The paper [1] presents an important analysis of signals from LIGO detectors.
However, due to the lack of details on the mathematical tools used in this analysis,
it can hardly be reproduced. The statement that two black holes with masses (1)
have merged seems to be somewhat too strong. The main reason is that the detected
frequency f in (2) should be replaced by the emitted frequency fem, i.e., the chirp
mass (2) should be divided by the missing factor (z+1) given in (12). From Section 3
we may deduce that the total redshift z could be larger than 1

2
, see (6) and (11).

Hence, the masses (1) were overestimated. To see this, suppose for simplicity that
m1 = m2. Then from (2) we observe that the corresponding chirp mass M =

m
6/5
1 /(m1 + m1)

1/5 = 2−1/5m1 linearly depends on m1. Hence, the masses mi are
affected by the same redshift correspondingly. In this special case for z + 1 ≥

3
2
the

masses mi could be at least 33% smaller.
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nomena of the dark energy and dark matter, which is lying outside the General
relativity theory, yet still compatible or, perhaps, even complementary to it.
We discuss the principal results of the method of the Causal dynamical tri-
angulations, when applied under the assumption of topology S3 of our world,
i.e., assuming the closedness of the Universe. Then it can be concluded that
the resulting space-dimensionality three, being equal to what we consider to
be the naturally optimal dimensionality of the real space, implies the exis-
tence of a certain deviation from this optimal value on the cosmological scale-
level (i.e. a deviation from the space-‘Euclidicity’ there), since a fourth space-
dimension is explicitly or implicitly necessary (depending only on what form
of the spacetime-metric one has used) in order to allow the Universe to be
closed. As a consequence, the bent space (considered to be the component of
the curved spacetime), together with the real cosmic stratum there, struggles
to arrive to the state with the optimal dimensionality, i.e., it struggles to ex-
pand, while the ‘pseudo-pressure’ is the carrier of the ‘dimensionally-elastic’
energy, which appears as the dark energy (on the global cosmological scale)
and the dark matter (on the scale-level of cosmic inhomogeneities). The basic
rules for their appearance are presented, as well as the pertaining questions
are discussed: the feedback of the proposed mechanism, the problem of the
entropy and self-organization of the cosmic stratum, and the evolution of the
phenomenon.
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1. Introduction

A plethora of more or less speculative solutions to the problems of the dark energy
and dark matter in the Universe were published during recent years. The authors
of the proposed solutions, however, do not take into consideration the fact that the
expansion of the Universe has a very specific character. It is not generally regarded
that the expansion is not a classical physical motion and it has not the conventional
dynamics. For the expansion, together with its apparent acceleration ascertained by
means of observations of the distant supernovae of type Ia, see [24] and [21], only the
common dynamical interpretation is presumed. Yet, other options for explanation
of the acceleration exist, which will be presented in a subsequent section.

We start from the assumptions (motivated in [35]) that:

(i) The Universe is more or less marginally closed and Machian, with the trivial
topology and the metric of the 3-sphere:

ds2 = −dτ 2 + r2(τ) [ dψ2 + sin2 ψ ( dθ2 + sin2 θ dφ2 ) ]. (1)

Here τ is the cosmic time of the fundamental cosmological observer (observing –
by definition – the cosmic background radiation being isotropic) and ψ, θ, and φ
are the angular coordinates on the 3-sphere1. Further,

dτ =
r(τ)

r(τ0)
dτ0 , (2)

where r is the radius of the Universe, τ is a cosmic epoch in general, and τ0 is
the actual cosmic epoch. (Then, dτ0 is an element of the York time.)

(ii) For the Universe, the Law of mass-energy conservation is valid, while its global
(i.e., absolutely total) energy is equal to zero [35].

(iii) The Universe either arose in the world-start (big bang) from nothing or it is cyclic
(i.e., the world-end (big crunch) of the actual cycle becomes the world-start of
the subsequent cycle).

(iv) There exists only one form of the Friedmann equation (FE), valid both for the
radiation-dominated and mass-dominated Universe:(

dr

dτ

)2

− Rr0

r2
= −1 (3)

where R and r0 is the radius of the Universe at its maximal expansion and at
the actual epoch, respectively. Except for situations where the derivative of

1We avoid the notion ‘co-moving coordinates’, since – as already mentioned – the expansion of
the Universe is not a classical physical motion.
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equation (3) is taken (when the model parameters, but no observational para-
meters, are considered), it is possible to put r0 = r; then the equation, according
to the currently established opinion considered to be the FE valid only for the
matter-dominated (closed) Universe, is obtained:(

dr

dτ

)2

− R

r
= −1. (4)

(v) Under conditions quoted above and – namely – when the FE is fulfilled, an
equilibrium exists between (the negative) cosmological space tension Σ and (the
positive) cosmological pseudo-pressure P , with a, for the time being, unknown
origin and character, so that the total cosmological space stress is equal to zero,

P + Σ = 0 , (5)

with possible exception for relatively small deviating oscillations [31, p. 339].

2. Spacetime curvature and space-bending in the demonstration diagrams

It is necessary and important to realize the principal difference between the space-
time curvature in the vicinity of a source of the local static gravitational field (we
consider – for the sake of simplicity – the Schwarzschild field) and the curvature of
the spacetime in the expanding/compressing2 closed Universe:

(a) In the local static field the space-derivatives of the metric coefficients are non-
zero, while their time-derivatives equal to zero.

(b) In the cosmic gravitational field the situation is the opposite: At a given cos-
mological epoch the space-derivatives of metric coefficients are equal to zero,
while the same coefficients are changing with the cosmic time in the expand-
ing/compressing Universe.

As we have serious objections against the relevance of the embedding diagrams
frequently used in the GRT for the local gravitational fields (introduced by Mis-
ner [19, pp. 613–615]), we prefer to use so called demonstration diagrams, where the
space-component of a null-geodesic is presented depending on how it appears for
the distant (coordinate) observer; the relevant influence of the time metric coeffi-
cient (gtt) is thus regarded implicitly3. In such a way, e.g., the photon horizon is

2We avoid here the notion contraction in order to respect the necessity to differentiate between
the complex character of the phenomenon of compressing Universe and the usual relativistic con-
traction. Further, we differentiate between the notions relaxation/constriction of the space in the
Universe and the expansion/compression of the Universe, but the difference will not be applied
here.

3A perfect demonstration diagram, where the influence of metric coefficient gtt would be taken
into consideration, would necessarily have to be kinematic.
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represented by a 2-sphere with its incident radius and the center at the origin of the
Schwarzschild coordinate system.

For the demonstration diagram of the Universe we use the 4-dimensional Eu-
clidean space, which, however, necessarily it must be dimensionally restricted for
the practical use. Usually, the 2-sphere in the 3-dimensional Euclidean space is ap-
plied for such a purpose. There, for a given cosmological epoch, the bending of the
cosmic space, being qualitatively different from the curvature of the spacetime in
the local gravitational field, is sufficient; it is because in the local field the non-zero
derivatives ∂gtt/∂r and ∂grr/∂r

4 evidently are also deciding the shape of the for-
mations in the demonstration diagrams, while the same derivatives are zero for the
Universe at a given cosmological epoch τ . It is why we introduce the notion bending
of the cosmic space, being relevant on the cosmological scale; in the dimensionally
restricted demonstration diagram the bending of the space is easily and didactically
represented by the simple classical bending of the respective 2-sphere. In Figure 1,
a section through such a 2-sphere by the plane passing through its center and the
place of the fundamental cosmological observer is shown.

Since our Universe is – as assumed – closed with trivial topology (i.e., it is an
expanding 3-sphere), its bending is intrinsic. It should be emphasized that the dimen-
sional analogy we use is exactly relevant to the real cosmological situation only for
a universe with the trivial topology being closed (alternatively open and Euclidean),
but not for open non-Euclidean models or for models with non-trivial topologies.
The radius of the Universe (the quantity denoted r in the FE) is thus equivalent
to the notion of the radius of the 2-sphere in the demonstration diagram. Most
frequently, a form of the Friedmann-Robertson-Walker (FRW) metric of spacetime
with three non-Euclidean space-coordinates is used for the Universe [18, Sections 60
and 61], but such a metric is equivalent to the one we use here (1).

In the FRW-metric, the curvature radius is considered to be just a parameter,
not a vector, which is a logically necessary consequence in the (3+1)-dimensional
curved spacetime where a fourth space dimension, relevant to the curvature radius,
is a purely mathematical abstraction, while – in the Euclidean 4-space of the demon-
stration diagram – the radius-vectors of the Universe is orthogonal everywhere to
its space, which is bent in the fourth dimension (i.e., the radius-vector is not ‘inside
our Universe’). The hypersphere radius presented above and curvature radius used
in the concept avoiding the Euclidean 4-space are identical.

3. Character of the cosmological space tension

Cosmological space tension Σ has a very good analogy in the surface tension
on the soap bubble. Except for the number of dimensions, the principal difference
consists in the fact that the mediating interaction in the Universe is the gravitation,
while, on the soap bubble the surface tension is caused by the intermolecular forces.

4. . . for the anisotropic Schwarzschild metric; for an isotropized metric: “. . . non-zero derivatives
∂gij/∂r, where i = j, . . . ”
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Figure 1: (a) The section through the restricted demonstration diagram of the
Universe at a given epoch τ by a plane through its center C and fundamental cosmo-
logical observer F . The center is beside the space of the universe, both in the diagram
and in our real closed Universe. For observer F , the closest local part of the circle,
being the space component of a null-geodesic with tangent og, is coinciding with the
Euclidean tangential straight line stg; for c = 1, dr/dτ = tanα. (A planar section
through the center of our real Universe would be identical to the one presented here,
despite the different number of dimensions!) In an analogous 3-D demonstration
diagram it would be possible to draw the planar pencil of the tangential straight
lines forming the Euclidean tangential plane, touching the pencil of great circles in
point F , i.e., touching the 2-sphere of the diagram. In the real space of the Universe,
the spatial pencil (bundle) of the tangential straight lines can be drawn through the
place of the fundamental observer, creating in such a way the Euclidean tangential
space, touching in the point F the spatial pencil (bundle) of great circles in the bent
space, i.e., touching the 3-sphere of the Universe with a common central point beside
it. The section shown in the diagram is usually called the world-map of the Universe.
Then, even though it is just a section through the 3-D demonstration diagram, it is
– consistently seen – the very world-map of the real Universe as well.
(b) The 2-D set of all world-maps at different epochs we then call the world-scheme
of the Universe. There, the straight radial line f is the world-line of fundamental ob-
server F , while og1 and og2 are tangents to the null-geodesics of the photons passing
in his vicinity at epochs τ1 and τ2, respectively. (Another – more didactic – manner
would be to design the world-scheme in 3-D, with the single world-maps (planar
sections) for different cosmic epochs being circles at planes parallel with the plane of
projection (here, the paper), having their centers on the straight line of coordinate τ
(i.e., on the τ -axis) passing through point C and being orthogonal to the plane of
projection. Lines og, og1 and og2 in diagrams (a) and (b) are – more correctly – the
time-parametrized orthogonal projections of the tangents to the null-geodesics from
such a 3-D world-scheme onto the plane of the diagrams.)
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Both for the soap bubble and the Universe, the rule holds that the smaller the radius
of the bending, the stronger the ‘(self-)compressing tendency’ of the formation [31].

In the opposite situation, the analogy of the necessary bending is very illustrative
and adequate: An infinitely extended soap membrane cannot shrink, and – in an
infinitely extended Euclidean (i.e. marginally open) universe – the gravitation cannot
act dynamically on a cosmological scale. It is possible to show that the Euclidean
universe, with a positive value of the critical mass-density, has zero global mass-
energy density entering the field-equation; such a universe is then formally (i.e.,
in terms of mathematics) empty and thus the original static solution of Einstein
(actually considered to be erroneous) can be taken as a relevant model [35].

4. Character of the cosmological pseudo-pressure

In the epoch of the Universe dominated by the matter a cosmologically significant
classical pressure does not exist in the cosmic stratum.

In the currently accepted standard description of the closed FRW-model universe,
one more or less tacitly presumes that the gravitational tension classically dynami-
cally decelerates its expansion, i.e., that in such a process the adjacent gravitational
force is in equilibrium with a cosmological inertia force originating in the matter
of the cosmic stratum thanks to the deceleration. It is, however, a quite irrelevant
description of the situation since:

(i) The expansion of the Universe is not a classical physical motion; it has the
direction orthogonal to the physical cosmic space and actually still its rate
dr/dτ > 1 (= c).

(ii) The concept of a cosmological inertia force related to the deceleration rate d2r/dτ 2

of the cosmic expansion does not exist. The cosmic matter determining the ori-
gination of the inertia force in the sense of the Mach principle5, see [29] and [30],
is relativistically at rest relative to each of its own elements in the expanding
cosmic stratum, since the matter itself participates in the expansion of the Uni-
verse. (Here it should be emphasized that the matter on the ‘opposite side of
the bubble’ is influencing a given mass-particle gravitationally only along its hy-
persurface – not ‘directly through the space of the bubble’, which, in cosmology,
means not directly through the Euclidean 4-dimensional hyperspace ‘inside’ the
Universe being limited by its 3-sphere; the 4-dimensional interior does not belong
physically to the Universe.)

The relevant description of the dynamics of the cosmic expansion is – in our
opinion – that the gravitational space tension is in equilibrium with a cosmologically
effective pressure P . Referring to the law of mass-energy conservation we can perform
the following deduction:

5The Mach principle is not incompatible with the role of the Higgs boson.
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For the mass-energy m(τ) of the cosmic stratum at epoch τ , defined as

m(τ) = ρ(τ)V (τ), (6)

where V (τ) is the volume of the 3-sphere of the closed Universe

V (τ) = 2π2r3(τ) (7)

and ρ(τ) is the average density of the matter and energy in the Universe at the same
epoch, holds that

− dm = PdV (8)

which is the Law of mass-energy conservation in a closed system (for c = 1) as
used in thermodynamics [19, pp. 726–730]. The energy necessary for the expansion
equals the decrement of the total mass-energy of the cosmic stratum. In the Law,
the pressure has still the classical character and a performed physical work is usually
presented as the work made by means of a force of pressure pushing on the surface
of a piston. In the cosmology, the physical character of pressure P is not known
a priori, but if it were unveiled that it is formally (i.e. mathematically) identical
with the classical pressure, the respective mass-decrement dm necessarily remains to
be determined in a quite unconventional way. Since ‘no cosmic piston is pumping
up’ the Universe, the decrement of the bending of the space is offered as a hint when
looking for something that fulfills its analogous function.

If the matter-energy of the cosmic stratum behaves in a Machian way (as pre-
sumed), i.e., as the energy of the ideal photon gas, then – recalling equation (7) –
the numerical density of the photons

ρn(τ) ∝ V −1(τ) ∝ r−3(τ), (9)

while the representative frequency ν of a photon in the gas – and naturally its
respective average energy as well – depends on r(τ) as

ν(τ) ∝ r−1(τ), (10)

being a consequence of relation (2). Further, evidently,

ρ(τ) ∝ ρn(τ)ν(τ). (11)

From the last three formulae it follows that

ρ(τ) ∝ r−4(τ) ∝ V −4/3(τ). (12)

Our aim is now to find the value of w in the Equation of state

P = wρ. (13)
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From relations (6), (8), and (13) now follows that

ρ(τ) ∝ V −(w+1)(τ), (14)

which, compared with relation (12), results in the conclusion that w = 1/3 or:

PV 4/3 = const. (15)

It means that the cosmic stratum apparently behaves as an ideal adiabatic gas
with κ = 4/3 despite the very physical character of effective pressure P obviously
cannot be considered as conventional, and it is why we call such a quantity (cosmo-
logical) pseudo-pressure. The FE as it is presented by means of relation (4) is then
an energy-equation (compatible with relation (10)) valid for the whole evolution-
history of the Universe, in spite of the currently generally accepted opinion is, that
such a form of FE is not valid for the radiation-dominated phase of the Universe.
Nevertheless, in the era of dominating radiation, a physically significant part of
pressure P can be identified as a conventional pressure P0 in the cosmic stratum
(measurable as the pressure on the wall of a theoretically absolutely cold vacuum
cell, considered that effects of the zero-point radiation can be neglected). It means
that, in the early Universe, the conventional component P0 of total pressure P plays
a synergic role in the expansion, acting directly dynamically within its bent space
filled with cosmic stratum. (In the soap-bubble analogy, pseudo-pressure P could
be represented by a fictive ‘surface pressure’ determined by the horizontal elasticity
of the bubble membrane, where the pressure is working against the surface tension,
still under the condition that the bubble membrane is bent; horizontal here means:
. . . being in every point of the bubble orthogonal to its radius.)

Anyway, the cosmological pseudo-pressure – in its prevalent part (P−P0) – seems
to have an unknown abstract physical character.

On this place it would be emphasized that not even the conventional pressure-
component P0 can act dynamically on the expansion of the Universe if its infinitely
extended space were not bent; such a situation would be identical to the situation
with cosmological space tension in a Euclidean universe, as mentioned in Section 3.
The conventional pressure-component P0 can perform cosmological physical work
only in the bent space, which is why it is possible to include it – by definition – into
the notion of cosmological pseudo-pressure, in spite of its concrete physical character.

5. Alternative explanations of the apparent acceleration of the cosmic
expansion

First option explaining in an unconventional way the apparent acceleration of
the expansion of the Universe, as ascertained from the observations of the distant
supernovae of type Ia, is the possibility that it is a manifestation of the cosmic
expansion combined with relatively small oscillations. (The idea of the Universe
with oscillating expansion rate appeared already long ago [20].)
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The expansion is modulated by the oscillations going on within the whole volume
of the 3-sphere simultaneously (i.e., being the oscillations with modulus l = 0). We
use the notion ‘simultaneously’ in place of the expression ‘on the hypersurface of the
homogeneity’, considering that the expansion of the Universe is not a physical motion
in the sense of the SRT: The recession is not any cause of the SRT-time dilation
because the recession rate is not a conventional physical velocity; two cosmologically
distant fundamental observers can – in principle – simply introduce a common cosmic
time (τ) and establish their cosmologically synchronous cosmic clocks (although it is
possible to make of them a common time standard only after a mutual contact has
been established and rather complicated connection arrangements have been made).6

These conclusions are just implications of Weyl’s postulate [17, p. 241]. The quasi-
contemporaneity of the above mentioned oscillations on the globally cosmological
scale is determined by the common initial conditions in the process of the world-
start, while the problem of the causal horizon is possible to overcome rather by
means of the existence of the EPR-phenomenon already performed in laboratories
than by the speculative mechanism of cosmic inflation. It is not excluded that higher
modulating harmonics related to the considered oscillations exist [15].

One might object that a ‘Universe with oscillations’ is not described by the FE
and thus the idea is only an unjustified speculation, but the similar problem arises
considering that the Universe is not ideally homogeneous while the FE is commonly
applied. It is quite possible that both aspects – the oscillations and the deviation
from the ideal homogeneity – are mutually determined.

The second option is similar to the possible explanation published by Ellis [8].

Our modification of the mechanism presented there is founded on the Horák gra-
vitational law in fluids [14]. The law is logically explaining the mechanism behind
the formation of the ‘honeycomb-structure’ of the cosmic matter with agglomerations
forming isles in the centra of the cells. In addition to this explanation, according
to the same law, the test particle (a galaxy) inside a spherical void, not having the
central position there, must be expelled radially with an acceleration increasing with
the distance from the center of the void; for more details, see the subsequent text. If
our peculiar velocity (relative to a momentary co-local fundamental observer) were
interpreted as a statistical fluctuation, and/or as a consequence of our only slightly
non-central position in the void, then there would not be a conflict with the Cos-
mological principle7 [4, pp. 628–631]. The problem is, however, the absence of more
observationally founded indications. Anyway, we would prefer such an explanation

6The SRT-Lorentz transformation can be easily modified in such a way that it becomes relevant
for the cosmology in the expanding Universe (Voráček, in preparation).

7The recently published Letter [26] about the Laniakea supercluster of galaxies yields a new view
on our cosmological position. The impression is that we are situated roughly centrally in a local
dense conglomeration with a diameter of about 160 Mpc (= 520 × 106 light years) in a huge void.
Any conflict with the Cosmological principle need not exist, since the highest probability for us as
observers is to be situated in the central agglomeration or – rather less probably – within the wall
of a cell in the honeycomb-structure of the cosmic matter.
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before the option explaining the acceleration of the cosmic expansion by means of
oscillations, presented above.

Here it is important to mention that the article published by [6] is consistent with
the possibility of the existence of a cosmic void with a (roughly) central agglomeration
of matter, in combination with our recently ascertained position in the Laniakea
supercluster. The authors claim that they have found “evidence for a low-redshift
transition of the deceleration parameter indicating that the acceleration has passed
a maximum around z ≈ 0.2 and now evolves towards a deceleration phase in the
near future.”

The presented results are qualitatively compatible with the mentioned Horák
gravitational law in fluids, since:

(i) The central region of the cosmic honeycomb cell with the agglomeration of matter
is characterized by infall accelerations/velocities being opposite to the cosmic
expansion. (The dispersion owing to peculiar velocities is high.)

(ii) Farther out, when the average density of the matter and energy becomes lower
than the average density of the cosmic stratum, the gravitational attraction is
changing to the effective radial repellence increasing with the radial distance
from the center of the cell, thus apparently contributing to the cosmic expansion
with the resulting phenomenon of its acceleration.

(iii) Approaching the cell wall, the dynamic influence of neighboring cells causes the
successive weakening of the repellence.

(iv) At the cell-wall the galaxies from a neighboring cell are penetrating into our
cell and then oscillate relative to the wall. The oscillations are strongly damped
thanks to high viscosity of the matter in the wall. A weak, still significant,
deceleration with the top at z ≈ 0.6 to 0.7 is apparent. Clearly, such a damped
oscillative movement in the direction towards us can be the cause.

We realize, however, that the qualitative concordance does not mean that the
theoretical explanatory model is a guarantee for a quantitative match with reality as
well: With the z ≈ 0.7 for the cell wall, it means that its proper distance from us is
10.7× 109 l.y. (= 3.3 Gpc). Is a void with such a huge radius possible? Nevertheless,
with the actual radius of the Universe r0 greater than 340×109 l.y. (i.e. with Ωcrit. <
Ωtot < 1.0046 Ωcrit., or dr/dτ > 14.8 c) such ‘megavoids’ would still present less
than one percent of the circumference of the Universe, and then the criterion of its
cosmological homogeneity could still be fulfilled.

Nonetheless, even if the question of the acceleration of the cosmic expansion were
eliminated, the problem of the dark energy and the dark matter in the Universe still
persists.
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6. Cosmological pseudo-pressure as a manifestation of the existence of the
dimensionally-elastic energy of the bent cosmic space, filled with the
homogeneous matter and energy of the cosmic stratum, appearing as
the dark energy

In 2004 Ambjørn, Jurkiewicz, and Loll published an essay [1], where under as-
sumption of the existence of the (3+1)-spacetime in the local Lorentz frame of
reference and of the validity of the Causality principle (including the absolute –
i.e. light – velocity) on the Planck-scale, together with the chosen topology of
a three-sphere (S3), a model of the macroscopic world is deduced with the use
of the Causal dynamical triangulations (CDT). The resulting dimensionality of its
spacetime is then (3+1), which is not a self-evident consequence of the assumed
(3+1)-dimensionality on the Planck-level; anyway, it is equal to that one of the
real spacetime of our Universe. We consider that it is reasonable to assume that
the space-dimensionality on the medium-macroscopic scale-level in the Universe is
an optimal natural solution/choice under the really existing conditions. The result
of the above quoted essay is thus putting the dimensionality choice, made on the
Planck-scale-level, into the context with the physical reality characterized by the
naturally optimal dimensionality of our world on the medium-macroscopic scale-
level. As the chosen topology (S3) is the same both for the quantum and macro
worlds (inclusive the cosmological scale), the conclusion can be made that the used
CDT-method is at least self-consistent. The assumption of the S3-topology can
however be legitimized as well, and thus, the status of the CDT can change from
self-consistency to compatibility with reality. The justification of the assumption is
based on theoretical deduction, which has been made by [12], [13] and successively
developed and modified by us [30], [35]8, together with the result of the measurements
of the Planck space telescope, revealing that no evidence for a multiply-connected
topology has been found [23]. Moreover, as the authors of the essay mention, the
Euclidean dynamical triangulations always gave results inconsistent with reality. It
is important that the CDT-deduction also yields two other results: The first of them
means that the pertinent model universe must be expanding, which is in accordance
with the GRT (giving the Friedmann equation, which describes the expansion of the
Universe), as well as with the observed reality. The second result has a quite new
impact. It states that there exists the positive cosmological ‘constant’ of matter-
energy quality, being ‘consumed’ in the process of the expansion. Such a conclusion
is permitted by the GRT, yet it is not obligatory there, while the CDT makes it
necessary.

We developed the explanatory model for the dark energy and the dark matter

8The closedness of the Universe can also easily be logically deduced from the quantum concept
of the photon, which, however, is not generally sustained: A photon cannot be emitted if its future
reception is not guaranteed (by entanglement?). Then, if our Universe were open, the engineers
at any municipal street illumination central would take notice of that the electricity consumption
is significantly lower at the nights with a clear sky than during nights when the sky is covered by
clouds.
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that uses the quoted results, namely the possible relation between the closedness of
the Universe and the positive cosmological ‘constant’.

On the medium-macroscopic scale-level, the (3+1)-spacetime of our Universe is
practically flat; of course, only if the local gravitational fields are not considered.
The S3-topology has no measurable impact on the space geometry; the space on that
level is thus practically perfectly Euclidean. On the cosmological level, however, as
previously pointed out, in the closed Universe with the trivial topology, the necessity
of the existence of the fourth spatial dimension for its adequate description appears
explicitly (as the radius of the Universe) or implicitly (as the curvature radius of
its space). Consequently, it means that the bending of the cosmic space into the
fourth space-dimension is a deviation from the optimal number of space dimensions,
which is three. (In other words, it is a deviation from the space-‘Euclidicity’.) If
the space of the Universe is filled with the matter and energy of the cosmic stratum,
the situation necessarily leads to the origin of an elastic energy (the cosmological
‘constant’ of the CDT) and to a tendency to ‘rectify’ such a space in order to make
it 3-dimensional and Euclidean. Such a tendency thus apparently has a character
of cosmological pseudo-pressure P considered above. The positive dimensionally-
elastic energy of the bent cosmic space filled by the matter and energy of the cosmic
stratum, related to the pseudo-pressure is – as a consequence – the source of the
gravitational field. On the scale-level of the homogeneity of the cosmic stratum it is
possible to identify this energy as the enigmatic dark energy in the Universe.

In the 3-D demonstration diagram this energy would be represented as an energy
of deformation of a matter-rich plane into the spherical shell. Such a practically
technically hardly performable deformation is much more easily possible to represent
by a slice being closely similar to its section by the plane (Fig. 1a), i.e. by an elastic
blade closed into a circle (similar to a clock spring, but only with one winding – not
a spiral), which struggles to rectify itself.

The situation in the smooth elastic bent blade, corresponding to the state in
the phase of the early (radiation-dominated) Universe being highly homogeneous, is
possible to demonstrate in such a manner that a certain part of the energy of the
deformed spring is determined by a conventional pressure (caused, e.g., by its high
temperature) that is isotropic in the horizontal plane of the blade. (Recall the fictive
‘surface pressure’ in the bubble model.) The adjacent pressure-energy in its hot
material is analogously relevant to P0, while its part relevant to pressure-component
(P − P0) is caused by the very deformation, i.e. the bending of the blade into the
circle in the cold state.

7. Appearance of the dimensionally-elastic energy as the dark matter in
the Universe having a hierarchic structure

In the era of the matter-dominated Universe, characterized by the hierarchic
heterogeneity, the omnipresent bending of the cosmic space is interacting with the
hierarchic deviations of the local density of the matter from the average density of the
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Universe, i.e. with deviations from its ideal homogeneity. The adjacent hierarchic
dimensionally-elastic energy is then identifiable as the dark matter.9 The mechanism
of its behavior is not determined just by the magnitude of the deviation of the local
matter and energy density from the average density of the Universe; it is much more
complex, since the only possible link can be the local gravitational potential energy of
the hierarchic deviation, which is determined by four – hitherto more or less unknown
– rules:

(i) The gravitational potential energy is related to that locality in the gravitational
field, which is logically physically relevant to a given situation [28].

The conclusion follows from the theory of GR-Hamiltonian (i.e. the total energy)
of a test particle applied for mechanics of the free particle in a local gravitational
field, where the potential energy would be related to the locality of a standard
observer. In the case of a hierarchic matter-formation, being the deviation from
the ideal homogeneity of the cosmological stratum, the potential gravitational
energy of the matter in such a formation, with a density deviating from the
cosmic average value, would be related to its center of gravity10; consequently,
it is positive, with a value of zero in its center.

(ii) The potential energy of a test particle in a gravitational field is localized in the
particle [7, p. 86, Section 6.4] – as a conjecture, or Voráček – as a hitherto
unpublished proof).11

(iii) (a) The hierarchic dimensionally-elastic energy – i.e., the dark matter – mani-
fests first on such a distance-scale from the center of gravity of a hierarchic
formation, which is significant in the context with the scale of effectivity of
the determining bending of the cosmic space.

(b) On the other side, for the identical reason, the same energy manifests sig-
nificantly locally in a sub-region of the hierarchic formation only if the sub-
region has a sufficiently large space-extension.

Sub-rule (a) is explaining why the dark matter manifests only outside the central
regions of galaxies, while sub-rule (b) excludes the possibility that single stars,
solar systems, or small star-groups could be connected with the dark matter in
spite of their high baryon-density. Thus, both sub-rules together can answer the

9The idea that the phenomena of dark energy and dark matter have one common explanation
appears also in the essay of [5]. In consistence with our solution presented here, Capozziello proposes
the opinion that the cause need not be conventional energy and matter having the form of some
“exotic ingredients”, but that both are the curvature effects, and that the solution to the problem
(being presented as well in the mentioned article) does not pertain into the frame of the actually
presented form of the General relativity theory. In the rest of the essay, however, the key ideas of
our solutions of the enigma are mutually quite different.

10We consider such an application of the rule above being a logically well-motivated conjecture.
11The rules (i) and (ii) together give a simple logical solution to the ‘arch-problem’ of localization

of gravitational energy in the GRT.
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question why the lumps of baryonic matter forming the relatively small galactic
satellites and more external parts of spiral arms, both being more distant from
the center of gravity of a galaxy, yet having enough significant space-extension,
usually are rich in dark matter. The rules can also explain – quite logically – why
the great sub-galactic agglomerations of apparently thin baryonic gas at great
distances from the mother-galaxy become the dark matter-abundant formations.
On the contrary, sub-rule (a) is explaining why the dark matter is not appearing
gravitationally in the central regions of galaxies, despite the matter density being
highest right there (Fig. 5) 12. The query why the clusters of galaxies are – on
average – evenly penetrated by the dark matter can be answered in such a way
that it is generated by galaxies mutually gravitationally interacting on the huge
distance-scale, while the intergalactic space in the cluster is practically baryonic
matter-empty (picture reference 1: El Gordo). The gravitational potential in
the group of galaxies has a high absolute value (when compared to the average
cosmic value), but its space-gradient is low, namely in the central part of the
group [25]. The single galaxies in the galaxy-clusters evidently have a much
higher dark-matter density than the clusters on average; the cause is the value
of underlying baryon-density and their sufficient space-extension.

(iv) The basic explanation of the phenomenon of dark matter indicates that the mech-
anism of its origin is working in a convergent feedback.

Such a feedback is local, which means it seemingly increases the local baryon-
density at its locality, while the cosmological bending of space is not influenced
on the local scale-level. (The feedback-influence on the bending of the space on
the cosmological scale-level will be considered in the subsequent text.) At this
place, the enigma of the Bullet Cluster [11], (picture reference 2: Bullet Cluster)
and of the Musket Ball Cluster (picture reference 3: Musket Ball Cluster) is
easily solvable: During the penetrative meeting of two groups of galaxies, the
thin intergalactic gas in the groups collided, while their ‘dark matter’, together
with the galaxies generating the same ‘dark matter’ passed without collisions.
According to our view of the substance of the ‘dark matter’ in the galactic
clusters, presented above, the absence of its interaction is quite logical.

It is possible to demonstrate the function of some of the rules above in a simple
didactic manner using again the blade of the steel spring, where the thickness of
its material represents the hierarchic density variations of the baryonic matter and
energy in the cosmic stratum (Fig. 2, 3, 4, and 5).

In the qualitatively rough approach, it is possible to state that the apparent
distribution of dark matter in the centrally spherical galactic cloud is compatible
with the current knowledge of the galactic dynamics, if an axially symmetric ring of

12The apparent absence of dark matter in the galactic region of the Sun [2] might be explained
by rules (a) and (b) together, considering that the distance from the center of the Galaxy is not
too great and that the considered regions are not too large.
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Figure 2: In situation (a) a much higher elastic energy is present on the length-
scale L in the region with high local density of matter, determined by the hierarchic
structure of cosmic stratum, than is the case on the same scale in situation (b) in
the region with the homogeneous stratum having an average cosmological density.
In both situations, the degree of the cosmological bending of the cosmic space is the
same. (Yet, it must be pointed out that we realize that we are borrowing here the
spatial hyperdimension in the demonstration diagram for an explanation of the role
of the thickness of the steel blade.)

Figure 3: (a) The region of the sharply increased (needle-shaped) thickness of the
spring blade contains less elastic energy than (b) the wide region with moderately
increased thickness.

gravitationally effective dark matter is extending in the galactic plane from a certain
radial distance outwards [3, Section 3.3].

The presented explanation of the phenomenon of dark matter is also consistent
with the existence of extremely diffuse galaxies [27].

During the early epochs with a small radius of the Universe, i.e., with the higher
degree of the bending of its space, the dark matter – quite logically – was bound
much more ‘eagerly’ to the localities with relatively less outstanding positive density
deviations (from the average value) in the baryonic matter. It means that then it
is possible to explain why the conglomerates of the dark matter observed at great
distances are smaller and more rich in details than those relatively close to us. It also
explains the possible mechanism of the transfer of the energy of pseudo-pressure P
into the dark matter and the rate of such a process: The small hierarchic inho-
mogeneities had a great qualitatively effective capacity to appear as holders of the
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Figure 4: The galactic satellite with the hierarchic gravitational binding to a mas-
sive galaxy at great distance D from center of gravity C of the galactic system is
demonstrated by a small, but still significant, increment of the thickness of the blade.
The density of the baryonic matter in the galactic satellite is sometimes observed to
be very low, while the dark matter-density is gravitationally significant [9]. Here it
is also possible to explain (zoomed at right) why the stars in the galactic satellites
(and – as a matter of fact – even the stars in galaxies) have not their adjacent dark
matter components of their masses localized ‘sharply’ at their places: Consistently
following such a (false) idea, it would be necessary to consider them as very long and
thin needle-shaped isolated sources of gravitation as presented in Figure 3a; then,
the single stars cannot cause a ‘sharp’ appearance of a significant quantity of dark
matter, and this is why they play a relevant role solely in great quantities and then
merely as extended diffuse objects.

dark matter already at the first stages of the matter-dominated era with a small
radius of the Universe. Later, the bending of the space was diminishing owing to the
expansion of the Universe, but the hierarchic inhomogeneities were increasing with
time, as well as the contrasts of their baryonic matter-density. The actually observed
picture of the early development thus appears as rather complex in order to be inter-
preted simply in an adequate manner; yet it is possible that the morphology of great
hierarchic formations at huge distances is observed to be rather fuzzy and – as a con-
sequence – the sub-groups of small distant hierarchic inhomogeneities with relatively
low contrast, appear as coalesced into the huge ‘monolithic’ mega-formations. An-
other option is, that the ascertainment of huge monolithic conglomerations of dark
matter at great distances is not charged by an observational fuzziness, but that it has
a real ground in (i) their enormous space-extension and (ii) the high degree of the
cosmic space-bending, while (iii) the deviation of their baryon-density from the ave-
rage cosmological value were still very low (picture reference 4: Three-Dimensional
Distribution of Dark Matter in the Universe).

8. The cosmological feedback

The dark matter and dark energy are the strong sources of the gravitational field
of the Universe, i.e., they are strongly contributing to the effective average density of
the cosmic stratum, and thus, they also globally determine the bending of the space
in the Universe. As a consequence, in such a mechanism, they become the sources of
the gravitational cosmic field in the feedback. Then, being both determined by the
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Figure 5: A qualitative diagram explaining the ascertained typical distribution of
the total gravitational matter-energy in an ‘average’ galaxy. It is a composition
of the appearance of a classical gravitational field of the baryonic matter and the
influence of the cosmological bending of the space in the hierarchical environment
of the galaxy appearing as the dark matter, with reference to rule (iii-a) above. In
the diagram are plotted squares v2 of the observed values of orbital velocities in the
galactic disc (smooth line), their expected values (dashed line) and their respective
differences caused by the presence of dark matter (bold smooth line), in relation to
radial distance d from the galactic center.

same bending of the cosmic space, it is possible to describe them mathematically
together by means of a sum of an infinite geometric series with quotient q:

ρtot. =
ρbar.

1− q
, (16)

where ρ are the average cosmological relative values (ρtot. = 1) of the respective
densities. Since ρbar. for our epoch has the value 0.049 (which means that 4.9% is
the relative density of the baryonic matter), we obtain for feedback-quotient q the
value equal to 0.951.

Any retardation of information about the state of the homogeneous Universe is
(according to the Standard model) eliminated as:

(i) The cosmological space bending is for a given epoch τ the same in the whole
Universe.

(ii) All hierarchic inhomogeneities have a scale lying under/within the causality hori-
zon for every fundamental cosmological observer.
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The dark energy and dark matter are determined by the bending of the cosmic
space, i.e. – more generally – by the curvature of the spacetime of our Universe.
Since the spacetime curvature is tightly related to the gravitation, it is possible to
state that the gravitational interaction is the mediating agent in the phenomenon of
appearance of both dark energy and dark matter.

9. Entropy of the dimensionally-elastic energy

In our previous paper [33] the entropy of the dimensionally-elastic energy was
denoted (in a rather intuitive manner) as the entropy appertaining to the expansion
of the Universe. Now we can present the same idea more precisely: It is the entropy
appertaining to the energy that is the direct cause of the expansion of our Universe,
which is possible to claim since the matter and energy are merely two qualitatively
different forms of the same substance. Also, the conclusion was made that the
total generalized entropy of a closed universe, being a totally isolated reversible and
cyclic system, is constant. Its reversibility is determined, besides the closedness
of the Universe, exclusively by the Planck density of the matter-energy, as the only
parameter characterizing the cosmic stratum at the world-start (big bang) and world-
end (big crunch). In the cosmology it is possible and useful to normalize such entropy
to zero, as the mentioned parameter is unique for the Universe13.

Thus, in the same manner as total entropy S , the specific entropy, defined as

S0 = S V −1, (17)

is consequently normalized. In the formula, V is the volume of a closed compact
universe, as specified by relation (7). (In cosmology it is reasonable to relate specific
entropy S0 to volume V as the sole – for the intended purpose available – parame-
ter, being well-defined during the whole process of evolution of the Universe; thus,
specific entropy S0 becomes the generalized entropy-density.) Actually, the total
generalized entropy of the cosmic stratum filling the cosmic space consists only of
two components, one being the entropy of the dimensionally-elastic energy and the
second, the entropy of the baryonic matter with all possible conventional forms of
energy pertaining to it. Their sum is the generalized entropy, which is the constant
equal – as we choose – to zero, while the entropy of the baryonic matter-component
is positive.

Then, the entropy of the dimensionally-elastic energy necessarily must be nega-
tive. Yet, from our perspective it is impossible to decide whether the absolute values
of the entropy-components are increasing or decreasing with the cosmic expansion.
(In [33] it was assumed that they are decreasing, but today we realize that such
an assumption was not reserved enough.) It is however plausible to claim that the

13We consider that the volume of the Universe at its start has a value resulting from the laws of
the GRT and quantum physics. A thorough explanation of the idea, however, lies outside the frame
of this essay. (Here it can only be said that the validity of the Law of mass-energy conservation is
the starting point of the explanation.)
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absolute values of respective entropy-densities are decreasing. Such an outstanding
character of those densities is determined by the fact – being special for cosmology
– that for the rate of expansion of the Universe the condition dr/dτ � 1 (where
c = 1) is valid in the decisive stages of its evolution; actually, the rate is still greater
than one14

10. Course of the generalized total entropy and its components during the
evolution of the Universe until now

(a) During the short era of the very beginning of the Universe, its stratum consisted
exclusively of unified bosons, which can be called ‘hyper-photons’; in terms of
thermodynamics, it consisted of the ideal adiabatic photon-gas, which is ex-
tremely ultra-relativistic and homogeneous. The pressure of the gas during those
short moments is possible to identify with concrete conventional pressure P0, be-
ing at that time the only component of total cosmological pseudo-pressure P .
The pressure-energy of the photon-gas may be of use in the process of expansion
only in the positively bent cosmic space, i.e. in the closed Universe, while the
same energy is determined by the pertinent bending. (For more details, see [35].)
In this sense, the pressure-energy of the photonic gas could still be considered
(which we will anyhow avoid in the subsequent text) as a kind of dimensionally-
elastic energy, even though it can be specified to be the sum of the energies of
the single photons; regarding the cosmic expansion, it is possible to claim that
“the space, in such a special manner, struggled to establish its optimal dimen-
sionality (i.e. the ‘Euclidicity’)”. The pressure-energy of the photonic gas had
been consumed during that era solely for the compensation of the negative15 cos-
mological potential energy of (as assumed) closed Universe in the process of the
cosmic expansion; the mechanism is quite similar to the gravitational redshift
of the photons moving outwards in a local gravitational field, when a photon is
moving from one place to another with a successively diminishing absolute value
of the (negative) gravitational potential at the respective places.

From the viewpoint of thermodynamics, the energy consumed for the expansion
of the Universe is analogous to the work done be the expanding ideal gas pushing
on a piston in an adiabatic process. If the stratum of the Universe forever
remained only in the form of homogeneous photon-gas, its pressure P0 (with

14The value of dr/dτ can actually be equal, very roughly, to 21 ± 2, if the results from the
Planck space telescope are regarded. Assuming a closed Universe, the result of the Planck space
telescope by itself limits this value to be greater than 19 [22], [23]. Thus, since the positive entropy-
density component of the cosmic stratum is decreasing owing to the expansion of the Universe,
the conditions are given for the origination of local sources and sinks of energy, as well as for the
formation of the hierarchic systems on subsequently increasing space scales, i.e., of the process of
self-organization of the baryonic matter filling our Universe.

15In consistence with the FE (4), the cosmological potential energy is negative when it is related
to the epoch of the maximal expansion, while the FE is considered to be the Law of mass-energy
conservation applied to the Universe.
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the physical character described above) would be non-negligible even at the
epoch of maximal expansion, being still/constantly in equilibrium with the space
tension Σ, while dr/dτ momentarily would be equal to zero. Neither dark energy
nor dark matter would exist.

Knowing the character of the adiabatic photon-gas, as described in Section 4,
its picture presented there is hereby completed; the usual concept of entropy of
the cosmic stratum, being hitherto constant, need not yet be generalized. We
put that entropy equal to zero, which was motivated in Section 9; its value is
usually considered to be quite arbitrary, or it has another fixed value motivated
in another way [10, p. 99]. Anyway, from the Planck era the photonic gas is
starting with an entropy, which is the maximal possible in the given situation.

(b) The character of the composition of the cosmic stratum, however, began to
change already in the consecutive – still very early – stage of the expansion of
the Universe. The original pressure-energy of the photonic gas (being always
equal to the sum of the energies of the single photons), besides the overwhelm-
ing consumption of it by the above mentioned energetically ‘voracious’ expansion
of the Universe, began to transform to baryonic matter. (The notion ‘baryonic
matter’ – as it is used in this paper – comprises all non-photonic elementary
particles16 together with their kinetic energies relative to a fundamental cosmo-
logical observer, as well as their mutual binding energies.) Together with the
origination of the baryonic matter the adjacent dark energy (together with its
feedback component) was also arising, undoubtedly in a process of transforma-
tion from the pressure-energy of the photon-gas. Further, it is needed to take
note that in the era we consider, the cosmic stratum was still highly homoge-
neous on the scale-level higher than that of elementary particles, and thus, the
dark matter was not yet present; the very dimensionally-elastic energy consisted
exclusively of dark energy. That era could possibly be called the ‘era of mixed
photon-baryon Universe’.

Pressure P0 of the photon-gas was becoming less and less significant and the
value of the constant on the right-hand side of equation (15) was diminishing,
caused by the decrement of the total number of photons in the Universe. In
spite of this, the remaining photon-gas was still adiabatic (as is the state of the
CBR, which actually has a cosmologically quite negligible total energy). Then,
the entropy of the remaining photonic gas is not changing, i.e., it is constantly
equal to zero, as originally chosen. It is so, because at any epoch, with a given
value of the right-hand side of equation (15), the process is – at least potentially
– reversible (which means – if the conversion to baryonic matter was stopped at
the same moment).

16The term ‘non-photonic elementary particles’ here refers to particles not moving at the absolute
velocity c. The term ‘baryonic matter’ is used because we could not find a proper established
adequate term.
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Now the notion of the total entropy of the Universe needs to be generalized.
It split into three components with the sum equal to zero, as explained in Sec-
tion 9. The concept of the (zero-)entropy of the remaining photon-gas need
not be changed, as already indicated above, while the positive entropy of the
baryonic matter must be generalized, because its form can differ very strongly
from the aggregation state of a gas. The same conclusion is applicable for the
dimensionally-elastic energy, since its form is quite abstract; anyway, its genera-
lized entropy-component is necessarily negative.

(c) The end of the mixed photon-baryon era is characterized by the decrease of pho-
ton pressure P0 to the values so low that the relevant energy-component becomes
cosmologically negligible. After the establishment of the baryon-dominated Uni-
verse, the whole effective pressure P has the form of the abstract representative
pseudo-pressure. The extremely high expansion rate dr/dτ of the Universe man-
ifested itself in the earliest eras in form of enormous recession rate already on the
scale of elementary particles, which probably made the process of photon trans-
formation into baryonic matter quite necessary. The expansion, still having the
high rate, caused rather later that statistical fluctuations in the density of the
baryonic matter could not dissipate, yet — just oppositely – they diverged. It
resulted necessarily in the dehomogenization of the cosmic stratum on a succes-
sively increasing scale of extension in the space, from the scale of elementary
particles in the earliest beginning-epochs to the scale of super-groups of galaxies
much more later.

In the angle of view of thermodynamics, the divergent fluctuations in the density
of the baryonic matter created local sources of energy – the stars, together with
the effective energy-sinks (for the radiation produced by the stars) in the form of
cavities – the voids. In such a way, the local regions arose where the respective
local thermodynamic systems became open and where the cosmic baryonic stra-
tum were not in a state of thermodynamic equilibrium. As a consequence, the
conditions for validity of the second law of thermodynamics were not fulfilled
there, which means that deviations from the validity of the law could appear
there, and thus, the entropy in the considered regions could locally decrease.
The process (still actually) manifests as self-organization of baryonic matter.
In conventional physics, such a process in one locality must be followed by an
increase of entropy in another place. In cosmology, however, the process of the
hierarchic self-organization of the cosmic stratum is determined by the very spe-
cial condition of the high expansion rate of the Universe, together with the (not
just locally, but on average) decreasing entropy-density of the baryonic matter.
Thus, a local entropy-decrement at the given place, which is a manifestation
of the process of self-organization in the baryonic matter of the cosmic stratum,
need not have, as a consequence, any local entropy increment in some other place.
Nonetheless, the local entropy decrement (being practically the same notion as
the decrement of the entropy-density) of the baryonic matter is compensated at
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a given place by the co-local increment of the negative entropy (being practically
the same notion as the increment of the entropy-density) of the dark matter.

In the hierarchically dehomogenized cosmic stratum, the energy of pseudo-pressure P
consists only of the dimensionally-elastic energy in the forms of the dark energy
and dark matter together.

The last logical query at this moment is: From what source came the dark matter
that arose in the era when the pool of energy of photon-gas, with photons of sig-
nificant individual energies and of sufficient numerical density, was already empty?
Only two possible sources existed: (i) The pool of dark energy, which was partially
consumed in the pertinent process, and/or (ii) a part of the already existing baryonic
matter. In spite of the fact that no mechanism of transformation of the baryonic mat-
ter into dark matter is mentioned in the – for us known – literature, we consider that
the existence of such a mechanism is not completely excluded. For instance, a new
description of the physics at the event horizon of black holes [34], and/or the impact
of the expansion of the Universe on peculiar velocities in its stratum [32, pp. 405–408]
or – equivalently – [16, formula (2.30), p. 38], seems to us a possible, though rather
complex, solution to the present query.
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Abstract: S.M.T. (Surrounding Matter Theory), an alternative theory to
dark matter, is presented. It is based on a modification of Newton’s law. This
modification is done by multiplying a Newtonian potential by a given factor,
which is varying with local distribution of matter, at the location where the
gravitational force is exerted. With this new equation the model emphasizes
that a gravitational force is roughly inversely proportional to mass density at
the location where this force is applied. After presentation of the model, its
dynamic is quickly applied to cosmology and galaxy structure. Some possi-
ble caveats of the model are identified. But the simple mechanism described
above suggests the idea of a straightforward solution to the following issues:
virial theorem mystery, the bullet cluster (1E 0657-56 galaxy clusters) issue,
the strong relative velocity of its sub-clusters, the value of cosmological critical
density, the fine tuning issue, and expansion acceleration. Nucleosynthesis is
not explained and would require a different model for radiation era. But a de
Sitter Universe is predicted, this means that the spatial curvature K is 0, and
today’s deceleration parameter q is −1. The predicted time since last scatter-
ing is 68h−1 Gyr. With this value SMT explains heterogeneities of large scale
structure and galaxy formation. Each kind of experimental speed profile is
retrieved by a simulation of a virtual galaxy. In the simulations, ring galax-
ies are generated by SMT dynamic itself, without the help of any particular
external event. Those studies give motivation for scientific comparisons with
experimental data.

Keywords: gravitation, dark matter, dark energy, galaxy

PACS: 95.35+d, 98.80.-k, 98.35.Hj

1. Introduction

This article presents Surrounding Matter Theory (SMT), and is a very quick
survey of its predictions and results. This model is an alternative to dark matter
in solving today’s gravitational mysteries. The solving principle is a modification of
Newton’s law. SMT is composed of 1 equation and 2 parameters. This simplicity
allows a robust survey of the model, and restricts enormously the amount of possible
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regression on other parts of physics. Stated in one sentence, the whole behavior
of those equations is that a gravitational force is inversely proportional to matter
density at the location where the force is exerted. The first motivation is an old
one: Machs principle [1]. Here an attempt is made to express fully this principle by
getting the ratio of inertial to gravitational mass, or let us say a � modified G �,
directly coupled to matter. And to avoid any resulting changes in the local be-
haviour of matter, and the local equations of motion, the first idea is to restrict
this variation to large distances only. The second idea is a novelty: relating this
G variation only to matter located at the location where the force is exerted. This
will keep valid linearity with attracting matter. The second motivation concerns
General Relativity (GR). Indeed, in GR, the Bianchi identity and the resulting null
covariant divergence ∇Gµν = 0 of the Einstein tensor is linked directly to energy
conservation ∇Tµν = 0 of Tµν , the stress-energy tensor, via Einstein equation. But
one could notice that the first one comes from pure geometry, whereas the second one
comes from physics, namely energy conservation physics principle. This leads me to
consider the possibility that those 2 equations are not directly binded together, but
could rely on one another through a more complex relation. In particular, I allowed
for the Einstein tensor not to be proportional to the stress-energy tensor but rather
to be a more general function of it. Furthermore, for reasons such as linearity with
respect to energy, I was led to the form Gµν = κCρ

µC
σ
ν Tρσ. Here κ is the multiplica-

tive constant of Einstein equation. Furthermore Cν
µ is a mixed tensor which remains

to be calculated using the GR case and the non relativistic limit. For the latter this
modification undergo to the simple modification of a gravitational potential. This
led to Φ = CSMTΦn, where Φ is the final gravitational potential, Φn is a Newtonian
potential and CSMT is a varying factor, being a function of matter density at the
location where the force is exerted. Today’s gravitational mysteries are solved or
partially solved using various different theories, for example in [2]–[8]. After the
SMT description, its dynamic will be illustrated in the context of the appearance of
those mysteries.

2. The model

As introduced above, the starting point is the following gravitational potential
equation

Φn = −MG

x
, (1)

where x is the distance from an attracting infinitesimal object, M the mass of this
object and G is gravitational constant. The model consists of modifying this equa-
tion. Three more variables are added. The first one is ρ, mass density calculated in
a sphere of ray rmax around the location where the force is applied. This sphere will
be called the �SMT sphere�: in this document. There is rmax = 10h−1 kpc, h be-
ing Hubble constant in units of 100 km s−1 Mpc−1. Using H0 = 68 km s−1 Mpc−1,
there is rmax ' 15 kpc. It is this rmax value which will be used in this document.
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ρ0 is today’s value of ρ in the vicinity of the Sun. It will be used: ρ0 = 0.98 km/m3.
The modified potential equation is the following

Φ = −MG

x
CSMT = −MG

x

α0ρ0 + ρu0

αρ+ ρu
. (2)

The second variable is ρu, the Universe mass density. ρu0 is today’s value of ρu. The
third variable is α, which can be set to 2 values only. There is α = α0 = 1.6× 10−5

inside the galaxies, and α = 1 outside any galaxy. Those values are stated to be
independent of Universe expansion.

3. Relativistic version

In the equation giving CSMT, through a Lorentz transform, each parameter on
the numerator evolves exactly the same way as its corresponding counterpart in the
denominator. The result is that CSMT is a Lorentz invariant.

The first remark before searching for a relativistic version is the role of M in
equation (1) and (2). Since CSMT depends only on matter at the location, where
the force is exerted, it does not depend directly on M . Therefore, like equation (1),
equation (2) shows acceleration as being linear with respect to attracting matter (M).
This is a distinctive characteristic of SMT as a modification of Newton’s law. Only
variations with distance (x), and G (in some sense, because it is in fact CMTG)
are modified, not variation with M . One could even guess that this characteristic
would hold with the relativistic version of SMT. Now modifying Einstein equation
with a metric related scalar would not give back equation (2) as the non relativistic
limit. It would be the same with any scalar-tensor theory [9], which would finally
add a scalar tensor to the physical stress-energy tensor. Einstein modified equation
would not show its left-handed term as being strictly linear with respect to attracting
energy. Any modification acting on Lagrangian level would probably result in the
same caveats, except if modifying the scalar curvature itself in GR Lagrangian. SMT
Lagrangian will be given below, but only after calculation of the modified Einstein
equation. For this calculation the algebraic constraints are the following.

• Bianchi identity,
• stress-energy tensor conservation,
• variation of CSMT,
• linearity of curvature with respect to attracting matter.

The latter implies that any added term is forbidden. Therefore, a simple so-
lution is to replace CSMT by its space-time tensorial expression. Here CSMT is re-
placed by Cρ

µC
σ
ν , where Cν

µ is a mixed multiplying tensor, allowing a different factor
than CSMT to be applied to the space components of Tµν . Since the result must
retrieve equation (2) in the non-relativistic case, there is (C0

0)2 = CSMT in the co-
moving bases. Bianchi identity and energy conservation along with CSMT variation
imply a separate variation of each Cν

µ factor in front of its corresponding component
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in the stress-energy tensor. Now this factor depends on the component being multi-
plied, that is, it depends on µ and ν. These constraints lead to the generalization of
Rµν − 1

2
Rgµν = 8πG

c4
Tµν by the following group of equations.

Rµν −
1

2
Rgµν =

8πG

c4
Sµν ,

Sµν = Cρ
µC

σ
ν Tρσ,

Cν
0 =

√
CSMTδ

ν
0 ,

Cν
i =
√
sδνi (3)

where c is the speed of light, Rµν is the Ricci tensor, gµν is the metric, R is the
trace of Rµν , δ

ν
µ is Kronecker’s symbols and i indice is varying between 1 and 3.

Equations (3) shows that Cν
µ is a time dilation by the CSMT factor, and a space

dilation by the s factor, s being a positive scalar. For calculating s, ∇Gµν = 0
implies the following

2∂0(CSMTρ) + (CSMTρ+ sT ii )g
ii∂0gii = 0,

2∂i(sT
i
i ) + (CSMTρ+ sT ii )g

00∂ig00 + s(T ii − T kk )gkk∂igkk = 0. (4)

Here it has been supposed c = 1 for simplification. The notation ∂µ = ∂/∂xµ has
been used. The calculation is done in co-moving bases such as gµν matrices are
diagonal, and supposing no shear forces in Tµν . Therefore, Tµν matrices are also
diagonal. Here the non SMT case CSMT = 1 is simply solved by setting s = 1. In
the general case equations (4) allow a calculation of a finite s, but only under the
supposition of a non null pressure T ii 6= 0. Otherwise it corresponds to the more
general hypothesis of a null stress tensor. And this can be argued as being never
completely physically relevant. A static Universe is also forbidden for calculating s
(exactly there must be ∂0gii 6= 0). And it can be argued also that a static Universe
is never physically relevant.

Nevertheless, for avoiding those slight caveats, another solution is the following.
As mentioned in the motivation, let us postulate that the null covariant divergence
∇Gµν = 0 of the Einstein tensor is independent of energy conservation ∇Tµν = 0,
in the general case. This can be modeled by a Sµν isotropic space part, independent
of Tµν . In this case ∇Sµν = 0 yields the following, using again the co-moving bases
and searching for a diagonal Sµν matrix, but now without any supposition on Tµν ,

2∂0(CSMTρ) + (CSMTρ+ PSMT)gii∂0gii = 0,

2∂iPSMT + (CSMTρ+ PSMT)g00∂ig00 = 0. (5)

It has been written PSMT = S11 = S22 = S33. This should allow to calculate PSMT

in any cases. But here the non SMT case CSMT = 1 implies either an unrealistic
simplification of the physical stress tensor, or its independence from space-time cur-
vature. Therefore, the validation of GR equation in the particular context of a non
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null space part of the stress-energy tensor must be searched for, in order to possi-
bly invalidate this last solution, and then choose the other one. This completes the
construction of equations (3). Finally, those equations must be validated backward.
And the result is that they fulfill each of their initial constraints. In the specific
case of today’s solar system, SMT prediction is exactly GR. More generally, GR is
retrieved in the �constant CSMT = 1�: case. This is of course mandatory. Equa-
tion (2) is retrieved in the non-relativistic case. But in the other cases, differences
with GR must be analyzed.

4. Possible regressions

In the�constant CSMT �: case, GR is not exactly retrieved: if CSMT 6= 1, there
is also s 6= 1, with s 6= CSMT. Therefore, not only G appears to be different, but
also a dilatation factor appears on the space part of the stress-energy tensor. This
implies that some PPN formalism parameters will be different from their GR values.
But comparing those new predicted values with reality would require testing gravity
today 15 kpc beyond the solar system, or inside the solar system but more than
50 000 years in the past (since there is 15 kpc ' 50 000 ly). At first glance those
experiments seems difficult to realize. Even the �varying CSMT �: case in which
matter density is varying consistently, must be thoroughly analyzed. In particular,
a possible time variation of CSMT in the solar system must be studied. The resulting
apparent G variation must be calculated from matter density variation in the SMT
sphere around the Sun, and then compared to experimental data. The case of binary
stars and exoplanets will be addressed further in this document. An important case
is the spherically symmetric Universe. The Schwarzschild metric behaves like the
classical one but with a different G value. Here emptiness Tµν = 0 leads to a radically
unrealistic situation: there is a singularity everywhere in the Universe. And this is,
now, compatible with Mach’s principle. The cosmological case will be addressed
below.

5. Lagrangian version

Let us review GR Lagrangian: LGR =
∫ √
−gRdx4 + LM , where g is the metric

determinant and LM the energy Lagrangian such as Tµν = − 1
8πG

δLM
δgµν

. Now let us
calculate LSMT, the SMT Lagrangian replacing LGR. Writing Dν

µ such as

Dν
λC

λ
µ = Cν

λD
λ
µ = δνµ, RSMT = gµνDρ

µD
σ
νRρσ,

and LCSMT such as

LCSMT = −
∫ √

−gXdx4,

X being a scalar such as δX
δgµν

= gρσRλδ
δ(DλρD

δ
σ)

δgµν
, there is:

LSMT =

∫ √
−gRSMTdx

4 + LM + LCSMT. (6)
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It looks like GR Lagrangian. Here R has been replaced by RSMT, which can be
interpreted as R modified by CSMT. An added term, LCSMT, has appeared. It can
be interpreted as the Lagrangian corresponding to CSMT. The following suppositions
have been done in order to yield equation (6).

• The mean value of CSMT has been supposed constant over the Universe, this
�mean�: value being calculated over a given distance greater than the visible
Universe size.

• CSMT is supposed to vary around this mean value regularly (that is, with a fre-
quency bounded by a minimum value).

6. Gravitational mysteries

6.1. Aim of these overviews

Some gravitational mysteries will be studied in this document. This will be
done in a very quick, mostly qualitative, and careful manner. These studies are
not scientific comparisons. They are only very quick applications of SMT to some
particular contexts. Their aim is only to reveal some interesting characteristics
of SMT dynamic.

6.2. Critical Universe density

In the context of Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, there
is ρ = ρu. This is imposed by Universe homogeneity in this case. First of all, let us
calculate the first Friedmann-Lematre (FL) equation.

H2 +
Kc2

a2
=

8πG

3
CSMT ρu. (7)

This result is independent of the choice of the model, that is, the choice between
equations (4) or equations (5). Here H is the Hubble parameter, a is the scale factor,
and K is space curvature. In FLRW metric context, there is α = 1 therefore equa-
tion (2) shows that CSMTρu is constant. This will produce dramatic simplifications of
cosmological model. Indeed, writing PSMT = wSMTCSMTρ, the classical version of en-
ergy conservation under FLRW metric implies wSMT = −c2 and K = 0: FL equations
yield a de Sitter Universe. And once again, this result is independent of the choice of
the model, that is, the choice between equations (4) and equations (5). Let us notice
that another possible solution from any chosen group of equations, (4) or (5), could
be a static Universe with a positive space curvature. But this is physically irrelevant.
The result is that wSMT has no interesting physical meaning. In FLRW co-moving
bases Sµν is simply −ρcc2 times the Minkowski metric diagonal matrix ηµν , such as
η0ν = −δ0ν and ηiν = δiν for ν between 0 and 3. Because of the well-suited tensor
product of equations (3), the physically meaning state equation ρ = wP , P being
Tµν pressure, has no specific effect on space-time curvature. Everything acts as if
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Tµν has been replaced by Sµν , having a constant matrix in FLRW co-moving bases.
Now, equation (7) can be written:

H2 =
8πG

3
ρc. (8)

This equation is valid from last scattering until today. Before last scattering, SMT
is no longer valid. The solution of this de Sitter universe is the following

a = a0eH0t. (9)

It will be supposed a = a0 = 1 at present time. The predicted elapsed time since
last scattering, TLS is given by the following equation, using als = 1

1+zls
.

TLS =
ln(a−1

ls )

H0

= 68h−1Gyr. (10)

This is in strong disagreement with ΛCDM model value of 13.798± 0.037 Gyr =
9.35 h−1 Gyr (using H0 = 67.80 km s−1 Mpc−1). It could be allowed by a much longer
dark age period. But such a duration explains the formation of galaxies. For example,
now a galaxy such as UGC 2885 [10] will have more than (68/9.35) × 12 ' 87
revolutions to create, since last scattering, in place of only 12 revolutions with ΛCDM
value. Also, the localization of UDFJ-39546284 [11], [12] at z ' 12 is possible in
the context of SMT. The important result of this chapter is that the issue of critical
Universe density [13], [14], is solved directly and in a simple manner by SMT. No
more cosmological constant is needed.

6.3. Nucleosynthesis, fine tuning, singularity, particle’s horizon and accel-
eration of Universe’s expansion

In the context of SMT, there is no fine tuning issue, since matter density has
been simplified during the modification of FL equations. At first glance, particles
horizon issue is solved by the disappearance of any time limit in the past, ensuring
the Universes homogeneity and isotropy, and �big-bang�: singularity is solved
altogether. These are direct consequences of the previous calculations.

But primordial nucleosynthesis is not explained by SMT: the predicted Deuterium
abundances are incorrect. It would probably require microscopic scale, or high energy
specific predictions for studying radiation-dominated era. And this is a domain in
which SMT is probably inoperative. Therefore, particles horizon and �big-bang�:
singularity would need different or refined explanations.

Let us write the deceleration parameter q such as q = − äa
ȧ2

, ȧ = da
dt

, ä = d2a
dt2

.
From equation (8), we have

q = −1. (11)

This is in accordance with experimental data [15], Table 8. SMT predictions,
K = 0 and equation (11), are compatible with today’s measured values [15], [16].
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6.4. Heterogeneity of large scale structure

The problem of heterogeneities of large scale structure [17] can first be addressed
with Jeans instability. Let us start from the classical collapse time tj, valid under
Newton’s law

tj =
1√
Gρu

. (12)

This value in the context of SMT is also calculated from hydrodynamic and is the
following

t′j =
1√
Gρc

= 28h−1Gyr. (13)

Equations (12) and (13) are valid in a homogenous Universe, at any time. But
equation (13) shows a very important difference: SMT collapse calculation is no
longer driven by Universe’s expansion, like Newton’s law collapses are. Using cs =
5 km/s for the sound speed just after decoupling, the Jeans length is the following

l′j = cst
′
j = 140h−1kpc. (14)

This allows for the creation of voids and walls structures.
Now let us suppose a wall, located between x = 0 and x = xwall > 0, parallel to

the y − z plane, at today’s time. From equation (2), if ~a is the SMT acceleration
corresponding to any ~an Newtonian acceleration, there is:

~a =
2ρc

ρu0 + ρ

(
1 +

r

ρu0 + ρ

∂ρ

∂r

)
~an, (15)

where r is the distance between the infinitesimal object generating ~an, and the loca-
tion where it is exerted. The distance between two walls is always far greater than
the Jeans length given by equation (14). Therefore, any hydrodynamic equilibrium
will be driven by equation (15) only. The astonishing prediction is that no more
counteracting pressure is required in order to achieve a hydrodynamic equilibrium.
And this is even independent of the exact wall and filament structure. Between the
filaments and walls, if one neglect the matter density with respect of matter density
of the wall and filaments, there exist a completely new, stable equilibrium, given
by the following equation. It expresses the distribution of matter density, valid, for
example, on the right-hand side of this wall,

ρ = (ρwall + ρu0)
xwall

x
− ρu0, (16)

where ρwall is the matter density of the wall. The approximations driving this equa-
tion were x� xwall, and only small perturbations allowed with ρ� ρwall . Supposing
also ρwall � ρu0, equation (16) shows the void falling into complete emptiness at
this xe coordinate,

xe '
ρwall

ρu0

xwall. (17)
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This repartition of matter remains to be compared with experimental data [18].
But the novelty here is the existence of this stable equilibrium. It has no equivalent
in the context of Newton’s law. Of course, once the equilibrium obtained, the clas-
sical hydrodynamic equations still drive the behavior of matter for small and local
perturbations. Anyhow in a void, gravitational force is much stronger than that
predicted by Newton’s law. Supposing ρ� ρu0, equation (2) yields:

CSMT '
α0ρ0 + ρu0

ρu0

=
2

Ω
= 40. (18)

The result is an evacuation of voids as soon as they are created. Collapse time in
a void is now t′′j = 20h−1Gyr. As an intermediate conclusion, with SMT equations,
the gravitational collapses are unaffected by expansion. The collapse time (equa-
tion (13)) is 2.4 times weaker than the predicted elapsed time, since last decoupling
(equation (10)). A stable equilibrium and an evacuation of voids are also predicted.
This gives a possible explanation of the heterogeneities of large scale structure.

6.5. Galaxy dynamic

This well-known mystery is, for example, evident in [19]. Simulations has been
executed, based on [20] and [21]. Exactly the same initialization has been set, except
that a greater initial mass and a smaller ray has been used in place of those used
in [20]. Simulating immediately SMT model from [21] initial state results in a burst
which greatly increases the disparity of stars velocities. To avoid this, SMT model
is implemented progressively in the simulations, starting from Newton’s model. The
available data for calculating CSMT on each point of the galaxy, is the number of
simulated stars NbP , which are located in the �SMT disk�: of ray rmax, centered
on this point. And since the width of the galaxy is not easily available, the simulated
volume matter density is not known. That is why the computed equations are the
following

NbPadded =
m0

m

h

h0

NbP0,

NbPm = max

(
NbP,

7

39
NbPadded

)
,

CSMT =
40NbPadded

39NbPm +NbPadded

, (19)

where NbPadded is the constant which corresponds to 39 times ρu0 in equation (2)
and which has been progressively decreased during the simulations, starting from
a very high value. This progression is described below: NbPm corresponds to matter
density in a galaxy, which is not exactly proportional to NbP , because ρIGM, IGM
(intergalactic medium) matter density must be taken into account outside of the
galaxy. It has been used ρIGM/ρu0 = 7, and this specific value will be explained
below in the study of virial theorem mysteries, m is the mass of a simulated star,
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m0 is the mass of a star which is used in the simulation of the Milky-Way, and which
is therefore in accordance with Milky-Way’s mass, h is the width of the simulated
galaxy disk, supposed proportional to the size of the galaxy. h0 is the width of the
Milky-Way’s disk. NbP0 is the number of stars located in the SMT disk, at the
Sun’s galactocentric distance of 8 kpc. Its value, 76 000 , has been measured on the
corresponding curve during the permanent regime of the Milky-Way simulation.

The program execution is divided into 2 phases. The first one is usual simulation
of a virtual galaxy using Newton’s law. This is done exactly like in [20], starting with
the initialized galaxy described by the paragraph untitled �Initial conditions�:
in [21]. The end of this phase occurs after 50 galactic revolutions. At this time
the 2nd phase begins, in which Newton’s law is replaced progressively by SMT. For
ensuring this progressivity, the following equation is used, modifying equations (19).

CSMT =
39NbPadded +NbPprog

39NbPm +NbPprog

. (20)

At the beginning of this 2nd phase, a very strong value (19 500 000) is given
to NbPprog. Therefore, at this time the simulation does not yield a great modification
of the whole galaxy. The galaxy’s shape is still very similar to the Newton’s law per-
manent regime. Then, very slowly, NbPprog is decreased. Therefore, the shape of the
simulated galaxy slowly changes. This decrease stops as soon as NbPprog = NbPadded

is reached, after 750 revolutions. Therefore, at this time the full equations (19) are
finally computed. Figure 1a shows the results. For comparison, Figure 1b shows
exactly the same initial galaxy, after the same number of revolutions, but always
simulating Newton’s law. The galactic center shows the apparition of a ring [22].
This is discussed below. Newtonian logarithmic matter density profile is curved pos-
itively, from 0 to 50 kpc galactocentric distances. But SMT one is a straight line
between 20 and 70 kpc. This is more compatible with experimental data. But of
course, below 20 kpc, the curve is no longer a straight line due to the existence of
the ring. Radial and tangential speed dispersions are 2 or 3 times worse than the
one obtained with Newton’s law. No stable spiral arms are noticed, like in [20].
Like in [20], they can appear only from time to time and are not stable structures.
But the kind of apparition of arms shown by Figure 2 seems to be provoked by the
overall increase of CSMT though the whole galaxy. A Kepler-like speed profile is of
course shown under Newton’s law (Figure 1a). Those speed profiles are completely
ruled out by experimental data, as commonly accepted. But SMT speed profiles are
much closer to flat curves. Of course this comes from the�smoothing�: behavior of
SMT model, on velocities: CSMT increases with distance from the galactic center, due
to matter density decrease. The galaxy speed profile of Figure 1b has a shape which
can be easily compared to the Milky-Way speed profile shape, for example. The
speed profiles yielded by SMT are always far closer to experimental ones than those
yielded by Newton’s law. This was true for each executed simulation, which were
done using various values of SMT parameters (an NbPadded different value, and also
other constants than 7/39, 40, 39). The values of those parameters in equations (19)
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are predicted by SMT but are not the most appropriate in order to yield the best
profiles when comparing to experimental data. Nevertheless in this document, the
simulations are always computing equations (19), except when expressly mentioned.
Assuming different values for the parameters than those in equations (19), an almost
perfectly flat speed profile can be obtained, for giant galaxies. This is also very much
compatible with experimental data. Indeed, such a flat profile is observed in the case
of UGC 2885 [23], NGC 801, or NGC 2403, for instance. Assuming different values
for the parameters a typical �increasing bell shape�: profile can also be obtained,
for smaller galaxies. This is obtained in particular when the ring is weak, or absent.
Finally, a little �wave�: is often noticed at the beginning of the speed profiles,
which is often present in experimental speed profiles. For example, on Figure 1b this
wave is located around 10 kpc from the galactic center. Galaxy stability is increased
in lower density environments for medium- or large-sized galaxies. Indeed, it has
been supposed when calculating equations (19), that IGM matter density is equal to
ρIGM = 7ρu0. But supposing ρIGM = 0 implies a modification of equations (19), such
as NbPm = max(NbP, (7/39)NbPadded) is replaced by NbPm = NbP . This increases
the maximum CSMT possible value from 5 to 40. This multiplication of gravitational
forces by a factor of 8, valid only when located out of the galaxy (or at the edge of it)
will of course increase its stability. This has been confirmed by simulations (under
the h = h0 hypothesis) and might be in accordance with experimental data [24].
In this ρIGM = 0 case, after its slow dissolution, a giant galaxy yields a very faint
large galaxy, which can be easily compared with a LSB galaxy. But this does not
occur under the ρIGM = 7ρu0 supposition, in which case this galaxy is only dissolving
faster, without any remaining structure. The computational flexibility is low and
the liberty degrees are in the galaxy characteristics input. The first characteristic is
the simulated matter density with respect to ρ0, in other words NbP with respect
to NbP0. This depends on parameters such as the width and volume matter density
in a galaxy, with respect to its size. The second characteristic is the exact knowledge
of gas and star distribution in the galaxies. This gas distribution was not taken into
account in those simulations. Hopefully, in spiral galaxies the gas density is only
a few percent of that of stars, and in elliptical galaxies it is even lower. Therefore,
this error might have no strong effects. But this might not be true for simulating
a standalone dwarf galaxy. Anyhow this gas behavior simulation would require a spe-
cific kind of computation. The issue of this chapter is the most difficult and delicate.
It would need a huge amount of work. But even without such a workload, here the
SMT results speak for themselves.

6.6. Dwarf galaxies

The simulations show an occasional generation of dwarf galaxies, orbiting around
the main galaxy. But this occurs only when simulating under SMT model. When
simulating Newton’s law, no dwarf galaxies were noticed. Dwarf galaxies are almost
systematically generated during the burst which occurs at the start of the simu-
lation, when SMT model is immediately fully calculated, without beginning with
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Figure 1: On the left (a) are shown the results of a simulation executed under
Newton’s law. The simulated galaxy is the same as in [20] after 750 revolutions,
except that the galaxy mass is equal to 1.8 × 1012 Sun’s masses, the initial galaxy
ray is equal to 1.4 kpc. 105 stars has been simulated in a 256× 256 grid calculation
over a 67 × 67 kpc2 square. On top the 2D localization of the stars is drawn. In
the middle 8 + log(ρ) is drawn, where ρ is the mean value over 13 kpc of galactic
surface matter density and ρ unit is kg/m2. On the bottom the tangential speed of
the stars in km/s is drawn. For those three drawings, horizontal values (and vertical
values for the top drawing) are galactocentric distances, with unit in kpc. On the
right of (b) are shown the results of another simulation, which is the same as the one
represented on the left, except that SMT model has been progressively introduced
in place of Newton’s law. Finally those results are obtained, after 750 revolutions,
with an exact SMT simulation (equations (19)). The same axis and units are used
as on the left.
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a first phase in which Newton’s law is active. Dwarf galaxies may also be generated
with a simulation using a progressive installation of SMT model calculation. In this
case, they can appear just at the beginning of the second phase of the simulation,
which is executing progressively SMT model. A faint galaxy, because it is faint, is
probably located in a low or very low matter density environment. Therefore, CSMT

is strong and the perceived gravitational attraction is high (may be up to 40 times
greater than Newton’s law attraction). As a result, the existence of this faint dwarf is
more understandable under SMT than under Newton’s law, as well as its important
velocity in its revolution around a main galaxy. In front of this, faint and ultra-faint
galaxies existence could be an issue under MOND theory [25]. The same mecha-
nism might explain the mystery of �the lower the surface brightness of a system,
the larger its mass discrepancy�: [26]. Indeed, low surface brightness galaxies are
mainly isolated field galaxies. As such, they might also be located in a low matter
density environment. Those dwarf galaxies 2D generations are in accordance with
experimental data. Indeed, studies of M31 [27], of the Milky-Way [28], and even of
globular clusters and streams around the Milky-Way [28] has shown a systematic
preferred location of dwarf galaxies along a common disk. Of course, it would be
better to simulate in 3D, but the existence of 2D generations itself might be a result
since no such dwarf galaxies were generated by the same simulations under Newton’s
law. After a while they often dissolved progressively by themselves. When the main
galaxy contains a ring, those dwarf orbiting galaxies are generated only outside of
this ring, therefore at more than 15 kpc from the galactic center. It was noticed also
that they are often encountering the galactic center along their trajectory. But when
this center contains a ring, which is often the case, they cannot dissolve themselves
into it. They are systematically bouncing on the ring edge, forbidding any merge.
This might result in a better stability of dwarf galaxies, with SMT, than with New-
ton’s law. By other means, the location of the Milky-Way on the plane containing
the dwarf orbiting galaxies around M31 [27] is not explained by the model and would
need a 3D simulation.

6.7. Ring galaxies

During the simulations a surprising result was found. Ring galaxies are oftenly
generated by the SMT dynamic itself, without the help of any particular external
event. They appear to be self-generated and stable structures. There is no longer the
need to imagine any collision scenario between galaxies in order to explain their ex-
istence. And this is in complete accordance with experimental data. For instance, in
a region called �the general field galaxy population lying behind the Tucana dwarf
galaxy�: [29], an �unexpectedly large number of ring galaxies�: is found. This
number is inconsistent with the hypothesis of ring galaxies generated only by colli-
sion. SMT might predict this abundance directly, without supposing any �steeply
increasing galaxy interaction rate with red-shift�: [30]. Also, it could be difficult
to understand why those ring galaxies are so young [31]. But this mean age of
1 Gyr might be understood by the simulations. Indeed, several dislocations of rings
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Figure 2: A simulated ring galaxy

were noticed during the simulations. Those dislocations were always very quick and
resulted in the same galaxy but without any more ring. This could indicate that nev-
ertheless this stability is fragile, and therefore could explain this relatively young age.
Even our Milky-Way galaxy has been recently found to host a�ring of stars�: [22].
When simulating a galaxy with the same characteristics (mass, star velocities, diam-
eter) as the Milky-Way, this ring is found. It has a radius of 18 kpc, which is exactly
the experimentally observed ring radius. Also, the simulations has shown multi-ring
stable structures. When simulating equations (19) they are noticed for big galaxies
(having a ray greater than 50 kpc). This is confirmed by experimental data. For
example NGC 2859 double ring is obvious. The simulated ring shows strong matter
density values also beyond the ring itself. This is not consistent with the visible rings
of observational data. But as explained in [32], there is probably a low luminosity
gaseous disk in ring galaxies. The simulations seem to show that SMT prediction is
the following. The width of the empty ring could not be greater than rmax. More-
over, it should be often below or just below this value. The simulations, for example
the one of Figure 2, shows a ring diameter of 34 kpc, composed of a nucleus diam-
eter of 10 kpc, and an empty ring width of 12 kpc (just below rmax value). Those
dimensions are similar to the Cartwheel galaxy dimensions, for example.

The galaxy simulations shows that the ring’s ray of the simulated galaxies, when
they contain a ring, is always just below rmax. Therefore, an attempt could be to
retrieve on existing galaxies the statistical distribution of such a ray. The simulation
has shown that the particular truncated shape of the observed bars in the galaxies,
along with the particular enrolled shape of arms around it, can result from the
existence of a ring in those galaxies. For instance, on Figure 3 the length of the bar
is roughly equal to 35 kpc. This bar is the nucleus of an ancient ring galaxy. This
nucleus started to deform itself and to rotate quickly. As a result the generated arms
quickly enrolled around it. The result is then shown on the figure.

The similarity with observations is noticeable. And this was not obtained when
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Figure 3: This galaxy shape appears when executing equations (20) with NbPprog =
705 000, NbPm = NbP , and equations (20) with h = h0. At this time NbPprog is
decreasing at a pace of 15 600 per galactic revolution. The central bar is rotating
quickly, enrolling 2 arms around it. The simulated galaxy has a mass equal to
1.5× 1014 Sun’s masses, and an initial ray equal to 1.9 kpc.

simulating Newton’s law with the same program. With Newton’s law, the bar and
its arms always showed a �slow S�:, as in [19]. This particular observed shape
described above was never noticeable neither for the bar nor for the arms, under
Newton’s law. Finally another weird prediction of the simulations is that the rota-
tional speed of the stars located in the nucleus is sometimes opposite to the speed
of the stars located outside of the ring. This prediction is validated by NGC 7217
speed profile. Of course, this work is still in progress. A 3D simulation is needed, in
order to know if the exact prediction is a ring, or a radial hole. And this simulation
must be done using real galaxy data, and then compared with observations. Finally,
comparing this with the corresponding MOND and ΛCDM model predictions would
be very interesting.

6.8. Galaxy mass and scale

The observational fact that galaxy masses are proportional to their size [33], is
not predicted immediately by the model. It would require a deeper understanding
of galaxy dynamics in the context of SMT.

6.9. Virial theorem

Let us try to quantify what predicts the model in the cases studied by [34], [35]
(gravitational forces greater than expected in Virgo or Coma clusters, among others).
It will be assumed that ρIGM/ρu0 = 7, which is roughly the lowest of the commonly
accepted bounds [36] for this ratio. Equation (2) yields the following value for the
SMT increase of gravitational forces in IGM:

CSMT =
α0ρ0 + ρu0

ρIGM + ρu0

= 5. (21)
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This equation yields the measured value of 5. Therefore with SMT it might be
possible to explain the virial theorem classical mystery. Also, other gravitational
anomalies like the bending of light, or the Great Attractor [37] anomalies might be
explained, exactly the same way.

6.10. Bullet cluster

This is �1E 0657-56�: galaxy cluster [38], [39], [40]. Possible explanations of
its strange dynamic have been given for example in [41] and [42]. The main cluster’s
length is around 700 kpc. With rmax = 15 kpc, this makes a relative value of 2%.
That’s why the probability of intersection of a galaxy with the SMT sphere has
been approximated to 0. But of course this must be confirmed based on a detailed
information about the bullet cluster. Hence, only the gas cloud has been taken
into account for evaluating ρ in equation (2). A simulation of SMT prediction has
been executed. It has been supposed a plane distribution of matter (on the plane
which is perpendicular to the line of sight). Therefore only a 2D simulation has been
executed. Of course a 3D simulation would be better. But this simplification allows
the SMT dynamic to be easily perceived in such a case. A Gaussian distribution
of matter has been used for each of the two clusters, and for the gas distribution.
The fitted standard deviations of the gas cloud and the clusters distributions has
been set respectively to 560 kpc and 130 kpc. Their fitted relative amplitude has
been set respectively to 1 and 0.3. The distance between the centers of the two
clusters has been set to 750 kpc. For simulating equation (2), the simulated matter
density has been multiplied by a fitted constant. It has been supposed also that
ρu = ρu0. Then, the calculation of the algorithm was the following. Based on those
mass distributions, the acceleration potential is calculated. In the case of Figure 4, it
is Newton’s potential. In case of Figure 5, it is SMT potential given by equation (2).
Then, mass distributions are calculated (back) again, based on those potentials. But
now for Figures 4 and 5, those mass densities are calculated supposing that the
potential Φ is a Newtonian potential. A precise FFT is not available, therefore,
the usual Poisson formulation of Newton’s law is used: ∆Φ = 4πGρf , where ρf is
the final mass density shown on the figures. The numerical calculation of this ∆Φ
Laplacian uses the following matrix:

A =

 0.4 0.2 0.4
0.2 −2.4 0.2
0.4 0.2 0.4

 . (22)

This is calculated with a 64 bits floating point format on a 256 grid covering
the bullet cluster. It yields visible errors in the final result. But on Figure 4 this
calculated mass distribution is qualitatively the same as the initial one, and the
interesting result is obtained when comparing Figure 4 with Figure 5. Figure 5
reveals the following SMT mechanism. Mainly, CSMT is inversely proportional to
local gas matter density. In the clusters, since there is almost no more gas among
the galaxies, this factor is strong. Conversely, between the two clusters, in the gas
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Figure 4: On the left is drawn in 3D the surface from which the contours are shown
on the right. It represents a modelled mass distribution of the bullet cluster. Three
gaussian distributions have been used for modelling the two galaxy clusters and
the gas cloud. The result shown is the calculated Laplacian of the potential. This
potential has been calculated using Newton’s law, based on this mass distribution.
This figure is here for comparison with Figure 5. This final result is slightly different
from initial mass distribution due to program execution precision errors. Vertical
units are relative matter density.

cloud, it is lower. This explains qualitatively the bullet cluster weak lensing mass
distribution. More precisely, based on equation (2), SMT predicts that Φg(M), the
SMT acceleration potential generated by the gas cloud only, and applied on a given
point, is proportional to the following expression.

Φg(M) ∝
G

D(M,N)
∗ ρg(N)

DM(N) ∗ ρg(N)
, (23)

where ρg(N) is the gas density located on a given N point, d(M,N) is the distance
between M and N , DM(N) is equal to 1 if d(M,N) < rmax, else it is equal to 0.

When comparing Figure 5 with Figure 1a of [38], the 2D whole profiles are qual-
itatively the same and many similarities are noticed. On those two figures the gas
cloud seems to generate no Newton-like gravitational attraction. This is predicted
by equation (23), because G/d(M,N) and DM(N), as functions of N , are symmet-
rically centered, and thin. This is also because ρg(N) varies on a 700 kpc scale,
and rmax � 700 kpc. The result is that equation (23) shows nearly no variation
of φg(M). Due to this specific quotient of convolutions yielding φg(M), it might
even be predicted other similarities with the experimental figure. Noticeably, on
Figure 1b of [38], the mass contours on the left are following the end of the gas cloud
limits. Also, the mass contours tend to surround closely the two bowls of gas (in
black). This could be predicted because G/d(M,N) and DM(N), although sym-
metric and thin, are nevertheless different. Noticeably, DM(N) has finite support
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Figure 5: On the left is drawn in 3D the surface from which the contours are shown on
the right. The same initial mass distribution has been used as for drawing Figure 4.
The shown result is the calculated Laplacian of acceleration potential. This potential
has been calculated using SMT, based on this initial mass distribution. This figure
must be compared with Figure 4 and uses the same units.

whereas G/d(M,N) has not. Moreover, on the left of the right part of Figure 5, the
mass contour predicted by SMT draws an� ε�: shape. This shape is quite similar
on Figure 1b of [38]. Finally, a small valley can be seen, between the two clusters
(top center of Figure 1a of [38]). This valley is also present in Figure 5, as well
as another one just below. Different simulations shows that those two symmetrical
valleys are a systematic result of SMT when varying the parameters of the modelled
mass distribution. Of course, this simulation would better be executed in 3D. It
would better use real experimental data, such as real matter densities, as well as the
exact galaxy locations and dimensions. But the overall result is that SMT suggests
a possible explanation of bullet cluster weak lensing mass reconstruction. Concern-
ing the strange relative velocity of the clusters [43], [44], equation (18) shows that
gravitational acceleration can increase by a CSMT factor of up to 40. This value, valid
inside a void, is much greater than the corresponding values of ΛCDM and MOND
models [44], which are in the range (2–6). For example, a cluster located in a void
can be strongly accelerated by the neighboring walls, during the predicted evacuation
of the void. Therefore, this cluster will receive an acceleration much greater than
the one coming only from any other cluster. In fact, this acceleration is generated
by the attracting walls, not only by the other cluster. And, also, CSMT ' 40 is valid
in this case. The result is that the relative velocity between the two clusters might
be much greater than the one generated only by their own masses, and much greater
than Newton’s law prediction. Therefore, the SMT predicted velocity might be in
accordance with the observed value of 4700 km/s [44]. And for the same reasons,
SMT might predict that such a cluster velocity would not be a rare event [43]. But
of course this has to be confirmed by precise calculations or simulations.
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6.11. Tully-Ficher law

Trying to explain Tully-Ficher law [45] in the context of SMT leads to the con-
clusion that α in a galaxy depends on the galaxy characteristics. This is of course
not satisfying. But a slight modification of the model is possible, yielding the exact
Tully-Ficher relation. This work is in progress.

6.12. Miscellaneous

The tremendous amount of gravitational mysteries [46], [47], is not easy to address
in one article. For example, simulation of the galaxy interactions and mergers, such
as the Antennae [25], would be interesting. But some issues listed in [47] are already
qualitatively answered in the context of SMT. Among others, each of the following
issues might be explained simply by some of the basic SMT mechanisms which have
been described in this document.

• Features in the baryonic distribution imply features in the rotation curve.
• The bulk flow challenge.
• The high-z clusters challenge.
• The Local Void challenge.
• a0/G as a critical mean surface density for stability.
• a0 as a transition acceleration.

The issue titled �Features in the baryonic distribution imply features in the
rotation curve�: seems easy to solve in the context of SMT since it is a modified
gravity theory, not a Dark Matter theory. The �bulk flow challenge�: might be
qualitatively answered exactly the same way as above, for the measured relative ve-
locity of the sub-clusters of the bullet cluster. The �high-z clusters challenge�:
is answered simply by equation (10): the time since last scattering is 68/9.35 ' 7
times greater than ΛCDM one. Existence of big structures at high red-shift is possi-
ble with SMT. The �Local Void challenge�: issue, which asks why the local void,
located around the Milky-Way, has so few galaxies, has a simple direct explanation
in the context of SMT. Indeed, as stated above, in a void, the applied gravitational
force is up to 40 times greater than Newton’s one. Therefore, the remaining galaxies
are strongly attracted to each other, resulting in a quicker creation of giant galax-
ies. Another SMT behavior is that those giant galaxies are more stable in a low
matter density environment. This mechanism has been explained above. Also, the
main proportion of matter in a giant galaxy is not located on its edge. Therefore,
CSMT can stay close to 1 in an inner and major part of the galaxy. As a consequence,
a giant galaxy might not follow the evacuation of a void, which drives only sparsely
distributed and isolated objects. The final result is a low number of galaxies, and
a higher proportion of giant galaxies predicted by SMT in low matter density envi-
ronments. And exactly this is shown by experimental data [24]. The issue untitled
� a0/G as a critical mean surface density for stability�: has been partially explored
when simulating the galaxies. Indeed, Figures 1 and 2 shows that matter density of
the same virtual galaxy in a Newton’s context has its maximum more than 102 times
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greater than the corresponding one in SMT. This is due to the strong SMT decrease
of gravitational forces at locations where matter density is strong. This creates
a cutting off behavior of SMT for strong matter density values. And it might be
guessed that this implies a decrease of a galaxy mean surface density between the
two models. This might give a first answer to this issue. The issue untitled � a0 as
a transition acceleration�: is well resumed by Figure 48 of [47]. It shows that the
mean acceleration inside galaxies and clusters stays roughly constant, independent
of the scale. This might be a consequence of the existence of the cutting-off value,
suggested above. By the way, GR singularities and closed time-like curves can be
addressed by SMT for the same reason. Indeed, under SMT context, very high mat-
ter densities are much harder to occur than under GR, because of the cutting-off
value suggested above. SMT predicts also a varying, or, different orbital period for
binary stars and exoplanets (different from Newton’s law prediction). This must be
calculated, using a measurement of the surrounding matter density in each case. But
this might give an explanation of the issue of the strange variation of orbital period
of black hole X-ray binaries [48].

7. Violation of momentum conservation at large scale

In the context of SMT, the principle of momentum conservation is violated at
large scale. Indeed, equation (2) shows that two mutually attracted objects might
not exert on one another exactly opposing gravitational forces. But this prediction
concerns only objects attracted to one another that are more than 15 kpc apart.
Comparing this prediction with observational data, for example in the case of clusters
of galaxies, is extremely important. But this violation appears only when matter
density is varying consistently. Hence it would need precise calculations based on
detailed information on gas and stars distributions.

8. Testing the model

8.1. Intragalactic

This test consists in continuing the simulation of a galaxy under the SMT model.
A specific focus on flat profiles of giant galaxies might be done.

8.2. Extragalactic

One test could be to measure matter density and a possible increase of gravity,
outside of any galaxy. Indeed, the following equation is the rewriting of equation (2)
for extragalactic spaces.

G′

G
= 2

ρc
ρ+ ρu

(24)

Let us remind the notations:
G is the gravitational constant.
G′ is the equivalent value of G as predicted by the model. Therefore G′/G is the

increase of the gravitational force, but at a given M space-time location, as predicted
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by the model. M must be located outside of any galaxy. It is the increase of G
which must be used for calculating any exerted force in M . It is not a generated one,
because the generated ones are simply using G, that is, unmodified Newton’s law.

• ρ is the matter density calculated in a 10 h−1kpc ray sphere centered in M .
• ρu is the mean matter density of the Universe at the time of the M event.
• ρc is Universe critical matter density. This equation shows a big difference with

ΛCDM, in the case of voids: G
′
/G ' 40 if ρ = 0. More generally, the model pre-

dicts a difference with Newton’s law in areas in which ρ = ρIGM varies consistently.

8.3. Large scale structure

This is the test of the very SMT specific stable equilibrium. It is predicted
by SMT over large scale structure. Either equation (16) or equation (17) might be
used. The test might consist in measuring the observed matter density distributions
which are used in those equations, and then to check if those equations are retrieved.

9. Conclusion

SMT is composed of equation (2) and of 2 parameters, rmax and α. Each gravita-
tional mystery, or any gravitation behavior acting below rmax ' 15 kpc from the Sun
does not have to be checked by the model. Indeed, for those cases the model behaves
exactly like Newton’s law. The overall behaviour of this model shows gas and dust
playing a major role in the strength of the perceived gravitational force. First of
all they generate Newton-like gravitational attraction like any other energy. This is
done at the location where gravitational force is created (generated). But also, the
presence or absence of gas or dust at the location where gravitational force is applied
(exerted), respectively decreases or increases its strength. This is the main novelty
of this model. It might explain, in a simple manner and quite directly, the virial the-
orem mystery, and the bullet cluster issue. It might explain also the strong relative
velocity of the sub-clusters of the bullet cluster, and similar issues. On cosmologi-
cal scale SMT predicts a correcting factor of gravitational forces which is inversely
proportional to Universe density. This leads to a de Sitter Universe with K = 0
and q = −1, which is compatible with measured values. The value of critical Uni-
verse density, fine tuning, and the issue of particle’s horizon are in accordance with
this de Sitter behaviour. Large scale singularities are avoided by SMT. Complete
emptiness, or infinite matter densities lead to an infinite equivalent G for the former
case, and to a null equivalent G for the latter case. This appears to be compatible
with Mach’s principle. But primordial nucleosynthesis is not predicted by SMT.
This shows that, however, a more sophisticated model could be required in order to
model the microscopic scale. SMT might explain heterogeneities of large scale struc-
ture and galaxy formation. This is because the predicted time since last scattering
is 7 times greater than with ΛCDM. But this is mostly because with SMT, the effect
of matter density is independent of the scale factor. An explanation of the voids
emptiness might also be given by the prediction of a specific equilibrium. Galaxy

224



speed profiles are complex to work on because they need an important and detailed
experimental data. They also require a huge amount of work. But the predicted
speed profiles seems to be closer to experimental ones than Newton’s law prediction.
Varying SMT parameters, each kind of experimental speed profile might be actually
retrieved by a simulation of a virtual galaxy. Even very flat curves of giant galaxies
seems to be retrieved. The structure and dynamic of the galaxies seem compatible
with experimental data. An unexpected prediction is also found by the model’s sim-
ulations: ring galaxies are easily created by SMT specific dynamic, in a stable state.
Their structure, frequency and age might be in accordance with experimental data.
The �Local Void�: challenge might be solved qualitatively as well as the �lower
the surface brightness of a system, the larger its mass discrepancy�. SMT predicts
exactly the same behavior as GR, but with a possibly different and constant value
of G, in each cases where matter density stays constant (evaluated in the 15 kpc
ray SMT sphere). Conversely in each case in which this matter density consistently
varies, SMT predicts a variation of G. In those cases the variation of a dilatation
factor is also predicted, acting on the space components of the stress-energy tensor.
This remains to be thoroughly calculated and compared with experimental data.
The only required test in solar system is testing the variation of G over more than
50 000 years. Outside the solar system, testing any modified G must be done only
15 kpc beyond solar system. The Tully-Ficher law and the linear variation of galaxy
mass with size are not explained. A scientific comparison of the model’s predictions
with experimental data must be done. And this has not even been started here. But
nevertheless this work could suggest that the new kind of dynamic yielded by SMT
might help to understand some of the today’s gravitational mysteries.
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Czech Republic
Jaroslav.Mlynek(at)tul.cz

Klaus Morawetz

Münster University of Applied Sciences, Stegerwaldstrasse 39, D-48565 Steinfurt,
Germany; Max Planck Institute for the Physics of Complex Systems,
D-01187 Dresden, Germany
morawetz(at)fh-muenster.de

Vladimı́r Novotný
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14:45–15:30 Igor Karachentsev, Ksenia Telikova, Stellar and dark matter density
in the local universe

15:30–16:00 Lidia Makarova, Dwarf satellites in the Local Universe: insights to the
cosmology

16:00–16:30 Dmitry Makarov, Multiparametric Tully-Fisher relation for late type
edge-on galaxies

16:30–17:00 Coffee Break

Chair: Michal Kř́ıžek

17:00–18:00 André Maeder, Glaciers, geysers, dry rivers, volcanoes on Mars. Was
there a beginning of life? (Public lecture)

Friday, September 28

Chair: Pavel Kroupa

9:00–9:45 Alessandro D. A. M. Spallicci, Perspectives for astrophysics and cos-
mology from non-Maxwellian light

9:45–10:30  Lukasz Bratek, Lower bound estimates for the Milky Way mass from
various observables

10:30–11:00 Coffee Break

Chair: Lidia Makarova

11:00–12:00 André Maeder, Scale invariant theory and dark matter, observational
tests

12:00–12:15 Pierre Magain, Clémentine Hauret, Could the dark matter problem
be solved without dark matter nor alternative theories?

12:15–14:00 Lunch Break
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Chair: Dmitry Makarov

14:00–14:45 Stacy McGaugh, Cosmic signatures of scale-invariant dynamics

14:45–15:15 Oleg Tsupko, Analytical investigation of black hole shadow

15:15–15:30 Thomas Prevenslik, Cosmology and redshift in cosmic dust

15:30–15:45 Radoslaw Jan Wojtak, Observational constraints on redshift remap-
ping and its correspondence to conformally Friedmann-Lemâıtre-Robertson-Walker
cosmologies

15:45–16:00 Attila Mészáros, Classification of distances in cosmology

16:00–16:30 Coffee Break

Chair: Yurii V. Dumin

16:30–16:45 Frederic Lassiaille, Surrounding matter theory

16:45–17:00 Olga Kashibadze, Kinematic study of the local supercluster plane

17:00–17:15 Sohyun Park, Nonlocal gravity for dark energy and/or dark matter

17:15–17:30 Pavel Voráček, Possible common solution to the problems of dark
energy and dark matter in the Universe

17:30–17:45 Rajendra Gupta, Determination of the Mach effect contribution to
the redshift

17:45–18:00 Francesco Bajardi, Alternative theories of gravity: gauge theories,
topological theories, affine and metric theories

18:00–18:15 Encieh Erfani, Primordial black holes as dark matter

18:15–18:30 Chemseddine Ananna, Local expansion of the universe
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Saturday, September 29

9:00–12:00 Excursion to the astronomical and cosmological sights of Prague guided
by Michal Kř́ıžek. We will meet at 9:00 in front of the main gate of the Institute
of Mathematics at Žitná 25.

Map of the proposed walk through the astronomical and cosmological sightseeings
of Hradčany and Malá Strana:

1. Funicular to the hill Petř́ın (formerly water funicular)
2. Štefánik Astronomical Observatory with analemma
3. Mirror Labyrinth
4. Strahov Monastery
5. Group of statues of Tycho Brahe and Johannes Kepler
6. Kepler’s Gymnasium
7. Tomb of Josef Jüttner
8. Plaque of Tycho Brahe
9. Prague’s Elbow Standard
10. Schwarzenberk Palace, where Tycho Brahe had his last dinner
11. Mathematical Tower
12. Sundials from 1567
13. Busts of Luna and Sun
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14. House of the two Suns in Neruda street 47/233
15. Observatory of the alchemist Edward Kelley
16. Memorial Plaque of the Czech Nobel Prize Winner Prof. Jaroslav Heyrovský
17. House 21/259, where the Danish astronomer Theodor Brorsen lived
18. Faculty of Mathematics and Physics of Charles University no. 5/240
19. Sundials in the Malostranské Square
20. Astronomical corridor in the Valdštejn Square

For more details see A. Šolcová and M. Kř́ıžek: Pokroky Mat. Fyz. Astronom. 52

(2007), 127–141, available at www.dml.cz.
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