A CHARACTERIZATION OF COMPLETE BOOLEAN ALGEBRAS

WIESŁAW KUBIŚ

ABSTRACT. Every lattice and, in particular, every Boolean algebra is a convexity space with a naturally defined convexity structure. We characterize complete Boolean algebras as the only S_3 convexity spaces having an extension property for certain classes of convexity preserving maps. This answers our question posed in [1]. Our characterization provides also a short proof of Sikorski's Extension Theorem for homomorphisms of Boolean algebras.

1. INTRODUCTION

By a convexity on a set X we mean, as in [7], a collection $\mathcal{G} \subset \mathcal{P}(X)$ containing \emptyset, X , closed under arbitrary intersections and closed under the unions of chains. The elements of \mathcal{G} are called *convex sets*. The convex hull of a set $A \subset X$ is conv $A = \bigcap \{ G \in \mathcal{G} : A \subset G \}$. The convex hull of $\{a, b\}$ is called the segment joining a, b and denoted by [a, b]. The pair (X, \mathcal{G}) is called a convexity space. A convexity space X is S_4 provided for each two disjoint convex sets $A, B \subset X$ there exists a halfspace (i.e. a convex set with the convex complement) $H \subset X$ such that $A \subset H$ and $B \subset X \setminus H$. A convexity space is S_3 provided all one-point subsets are convex and every convex set is an intersection of halfspaces (this differs from the definition of S_3 in [7], where singletons are not presumed to be convex). A convexity space is called *binary* (or *its Helly number is at most two*) if every finite linked (i.e. meeting two by two) collection of its convex sets has nonempty intersection. This is equivalent to the condition $[a, b] \cap [a, c] \cap [b, c] \neq \emptyset$ for every $a, b, c \in X$, see [7, p. 167]. A map of convexity spaces $f: X \to Y$ is called *convexity preserving* (*cp* for short) provided $f^{-1}(G)$ is convex in X whenever G is convex in Y. Equivalently: $f(\operatorname{conv} S) \subset \operatorname{conv} f(S)$ for every finite $S \subset X$, see e.g. [7, p. 15]. For a general theory of convexity we refer to [7] or [3].

Our fundamental examples of convexity spaces will be lattices and, in particular, Boolean algebras. Namely, if L is a lattice then the collection of all its order-convex sublattices forms a convexity on L, which will be referred to as the natural convexity on a lattice (see [5, 6]). Observe that $[a, b] = \{x \in L : a \land b \leq x \leq a \lor b\}$ and conv $S = [\inf S, \sup S]$ for a finite set S. A subset $G \subset L$ is convex iff for every $a, b \in G$, $[a, b] \subset G$. In particular all ideals and filters are convex. Every lattice is binary, see [6]. A lattice is S_4 iff it is distributive, see [5, 6]. Every lattice homomorphism is convexity preserving. Conversely,

Date: October, 1999.

¹⁹⁹¹ Mathematics Subject Classification. 52A01, 06E05.

Key words and phrases. convexity space, cp map, complete Boolean algebra.

a cp map of lattices $f: K \to L$ is a homomorphism if $f(0_K) = 0_L$ or $f(1_K) = 1_L$ or f is order-preserving, see [6].

A result in [1] (Theorem 2.3 below) says that certain maps defined on subsets of S_4 convexity spaces and with values in a complete Boolean algebra can be extended to convexity preserving maps onto the whole space. The proof used the theorem of Sikorski [2] on injectivity of complete Boolean algebras. Here we give a straightforward proof, obtaining the theorem of Sikorski as a corollary. The mentioned extension theorem implies in particular that every complete Boolean algebra \mathbb{B} has the following property: for every S_4 convexity space X, every cp map $f: G \to \mathbb{B}$ defined on a convex subset of X, can be extended to a cp map $\overline{f}: X \to \mathbb{B}$. We shall say that a convexity space Y is a convexity absolute extensor if it has the above extension property. In [1] we asked whether complete Boolean algebras are the only S_3 convexity absolute extensor is isomorphic to a complete Boolean algebra, thus giving a positive answer. These results together provide an external characterization of complete Boolean algebras in the category of S_3 convexity spaces.

2. Extension theorem

We start with two auxiliary lemmas.

Lemma 2.1. In every Boolean algebra, the following equivalence holds:

 $\operatorname{conv}(A \cup B) \cap \operatorname{conv}(C \cup D) \neq \emptyset \Longleftrightarrow \operatorname{conv}(A \cup \neg D) \cap \operatorname{conv}(C \cup \neg B) \neq \emptyset,$

where $\neg S = \{\neg s : s \in S\}$ and $\neg s$ denotes the complement of s.

Proof. Suppose that $\operatorname{conv}(A \cup \neg D) \cap \operatorname{conv}(C \cup \neg B) = \emptyset$ and let H be such a halfspace that $A \cup \neg D \subset H$ and $(C \cup \neg B) \cap H = \emptyset$. Then $D \cap H = \emptyset$ and $B \subset H$. It follows that H separates $\operatorname{conv}(A \cup B)$ from $\operatorname{conv}(C \cup D)$.

Lemma 2.2. Every linked collection of segments in a complete Boolean algebra has nonempty intersection.

Proof. Let $\{[a_{\alpha}, b_{\alpha}]\}_{\alpha < \lambda}$ be linked. We can assume that $a_{\alpha} \leq b_{\alpha}$. Now $[a_{\alpha}, b_{\alpha}] \cap [a_{\beta}, b_{\beta}] \neq \emptyset$ implies $a_{\alpha} \leq b_{\beta}$. Setting $x = \sup_{\alpha < \lambda} a_{\alpha}$ we get $x \in \bigcap_{\alpha < \lambda} [a_{\alpha}, b_{\alpha}]$.

Theorem 2.3. Let \mathbb{B} be a complete Boolean algebra and let X be an S_4 -convexity space. If $M \subset X$ then every map $f: M \to \mathbb{B}$ satisfying the condition

(I)
$$\forall S, T \in [M]^{<\omega} \Big(\operatorname{conv} S \cap \operatorname{conv} T \neq \emptyset \implies \operatorname{conv} f(S) \cap \operatorname{conv} f(T) \neq \emptyset \Big),$$

can be extended to a convexity preserving map $\overline{f} \colon X \to \mathbb{B}$.

Proof. Observe that the union of a chain of maps satisfying condition (I) also satisfies (I) and every map satisfying (I) is convexity preserving. Thus, it is enough to show that for a fixed $x \in X \setminus M$ there exists a map $g: M \cup \{x\} \to \mathbb{B}$ satisfying condition (I) and extending f. Consider the collection of intervals

$$\mathcal{A} = \{\operatorname{conv}(f(S) \cup \neg f(T)) : S, T \in [M]^{<\omega}, \operatorname{conv} S \cap \operatorname{conv}(T \cup \{x\}) \neq \emptyset\}.$$

Let $S_i, T_i \in [M]^{<\omega}$ be such that $\operatorname{conv} S_i \cap \operatorname{conv}(T_i \cup \{x\}) \neq \emptyset$, where i = 0, 1. Observe that $\operatorname{conv}(S_0 \cup T_1) \cap \operatorname{conv}(S_1 \cup T_0) \neq \emptyset$. Indeed, otherwise by S_4 there exists a halfspace $H \subset X$ with $S_1 \cup T_0 \subset H$ and $S_0 \cup T_1 \subset X \setminus H$. Consequently, if e.g. $x \in H$ then $\operatorname{conv} S_0 \cap \operatorname{conv}(T_0 \cup \{x\}) = \emptyset$, a contradiction. Now, condition (I) gives

$$\operatorname{conv}(f(S_0) \cup f(T_1)) \cap \operatorname{conv}(f(S_1) \cup f(T_0)) \neq \emptyset.$$

Applying Lemma 2.1 we get

$$\operatorname{conv}(f(S_0) \cup \neg f(T_0)) \cap \operatorname{conv}(f(S_1) \cup \neg f(T_1)) \neq \emptyset.$$

Thus we have shown that the collection \mathcal{A} is linked.

As \mathbb{B} is complete, we can find a point $y \in \bigcap \mathcal{A}$. Define $g: M \cup \{x\} \to \mathbb{B}$ by setting g|M = fand g(x) = y. It remains to check that g satisfies condition (I). Let $S, T \in [M]^{<\omega}$ be such that conv $S \cap \operatorname{conv}(T \cup \{x\}) \neq \emptyset$. Then $y \in \operatorname{conv}(f(S) \cup \neg f(T))$ and applying Lemma 2.1 for $A = \{y\}, B = f(T), C = f(S), D = \emptyset$, we get conv $g(T \cup \{x\}) \cap \operatorname{conv} g(S) \neq \emptyset$. This completes the proof. \Box

In the special case when the domain is a distributive lattice, it is easy to observe that every partial lattice homomorphism satisfies condition (I). Thus, applying Theorem 2.3, we obtain the classical extension theorem of Sikorski [2].

Corollary 2.4. Let K be a sublattice of a distributive lattice L and let \mathbb{B} be a complete Boolean algebra. Then every homomorphism $f: K \to \mathbb{B}$ can be extended to a homomorphism $\overline{f}: L \to \mathbb{B}$.

3. Convexity absolute extensors

We shall use the following characterization of Boolean algebras, which is an immediate consequence of [6, Thm. 3.5].

Lemma 3.1. A convexity space Y is isomorphic to a Boolean algebra iff it is S_3 , binary and complemented, i.e. for every $a \in Y$ there exists $b \in Y$ with [a, b] = Y.

We shall also use the fact that every S_3 -space is *inner transitive* [4], i.e. it satisfies the formula $(\forall a, b, c, d) \ d \in [a, b] \land c \in [a, d] \implies d \in [c, b]$. Indeed, $d \notin [c, b]$ would imply that there is a halfspace H with $d \notin H \supset [c, b]$ and then either $d \notin [a, b]$ or $c \notin [a, d]$.

Theorem 3.2. Every S_3 convexity absolute extensor is isomorphic to a complete Boolean algebra.

Proof. Let Y be an S_3 convexity absolute extensor. We first check the assumptions of Lemma 3.1.

Fix $a \in Y$ and consider a space $P = Y \cup \{p\}$, where $p \notin Y$, with the convexity $\mathcal{G} = \{A \subset P : \text{ either } |A \cap \{a, p\}| = 1 \text{ or } A = P\}$. It is easy to check that (P, \mathcal{G}) is S_4 and $Y \in \mathcal{G}$. Let $f: Y \to Y$ be the identity map. Then f is cp. Let $\overline{f}: P \to Y$ be a cp extension of f. Since $Y \subset [a, p]$ in P we get $Y \subset [a, \overline{f}(p)]$ in Y. Thus $\overline{f}(p)$ is a complement of a.

We check that Y is binary. Fix $a, b, c \in Y$. Consider a subspace $Q = G \cup \{q\}$ of $\mathbb{R} \times \mathbb{R}$ with the lattice convexity (with coordinate-wise order), where $G = \{(0,0), (2,0), (1,1), (3,1)\}$,

q = (4, 0). It is easy to check that Q is S_4 and G is convex in Q. Now define $f: G \to Y$ by setting $f(0, 0) = \neg c$, f(2, 0) = b, $f(1, 1) = \neg a$, f(3, 1) = c, where $\neg a, \neg c$ denote the complements of a, c (which are unique by S_3). One can easily observe that f is cp. If $\overline{f}: Q \to Y$ is an extension of f then setting $y = \overline{f}(q)$ we get $b, c \in [\neg a, y]$ and $b \in [\neg c, y]$. Applying inner transitivity we obtain $y \in [a, b] \cap [a, c] \cap [b, c]$.

Thus, applying Lemma 3.1, we see that Y is isomorphic to a Boolean algebra. Fix a partial order \leq on Y induced by a given isomorphism. We show that every maximal linearly ordered subset $L \subset Y$ is complete, which implies the completeness of Y itself. Consider $A, B \subset L$ such that a < b for all $a \in A, b \in B$. Let $X = A \cup B \cup \{p\}$ where $p \notin L$ and define a linear order \leq^* on X by letting

$$x \leq^* y \text{ iff } \begin{cases} x = p & \text{or} \\ x \in B \& y \in A & \text{or} \\ x, y \in A \& x \leq y & \text{or} \\ x, y \in B \& y \leq x. \end{cases}$$

Every linearly ordered set is an S_4 convexity space (being a distributive lattice). Define $f: A \cup B \to Y$ by setting $f(a) = \neg a$ for $a \in A$ and f(b) = b for $b \in B$. Clearly, f is cp; if $\overline{f}: X \to Y$ is a cp extension of f then by inner transitivity we get $a \leq \overline{f}(p) \leq b$ for all $a \in A, b \in B$. Now, if B is the set of all upper bounds of A then $\overline{f}(p) = \sup A$ in L. \Box

References

- W. KUBIŚ, Extension theorems in axiomatic theory of convexity, Bull. Pol. Ac.: Math., 45 (1997) 73-76.
- [2] R. SIKORSKI, Boolean Algebras, Springer-Verlag 1960.
- [3] V.P. SOLTAN, An Introduction to the Axiomatic Theory of Convexity (in Russian), Shtiintsa, Kishinev 1984.
- [4] W. SZMIELEW, Oriented and nonoriented linear orders, Bull. Pol. Ac.: Math., 25 (1977) 659-665.
- [5] J.C. VARLET, Remarks on distributive lattices, Bull. Pol. Ac.: Math., 23 (1975) 1143-1147.
- [6] M. VAN DE VEL, Binary convexities and distributive lattices, Proc. London Math. Soc. (3), 48 (1984) 1-33.
- [7] M. VAN DE VEL, Theory of Convex Structures, North-Holland, Amsterdam 1993.

INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY, UL. BANKOWA 14, 40-007 KATOWICE, POLAND

(INSTYTUT MATEMATYKI, UNIWERSYTET LSKI) E-mail address: kubis@ux2.math.us.edu.pl