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Abstract. We present a criterion for extending convexity preserving maps of convexity spaces.
In a special case of convexity generated by a lattice structure this gives the Sikorski’s Extension
Criterion for extending of maps of lattices. We also consider the class of convexity absolute
extensors. It appears that complete Boolean algebras with a natural convexity belong to this
class. In particular, we present an analogue of Tietze-Urysohn’s Extension Theorem for maps
of convexity spaces with values in a complete Boolean algebra.

1. General definitions

By a convexity space we mean a set X together with a collection G ⊂ P(X) satisfying the
following axioms:

(1) ∅, X ∈ G,
(2)

∩
A ∈ G for nonempty A ⊂ G,

(3)
∪

A ∈ G whenever A ⊂ G is a chain.

Elements of G we call convex sets. For A ⊂ X we define the convex hull of A as follows

convA =
∩

{G ∈ G : A ⊂ G}.

We will write [a, b] instead of conv{a, b}. One can prove that convA =
∪
{convF : F ∈ [A]<ω}

(see [5]). The most important class of convexity spaces seems to be the class of so called spaces
of arity two, i.e. spaces satisfying

(3’) If A ⊂ X and for every a, b ∈ A there exists a G ∈ G with a, b ∈ G ⊂ A then A ∈ G,

instead of (3), which is stronger than (3). Clearly, condition (3’) can be formulated also in the
form: A ∈ G whenever for every a, b ∈ A, [a, b] ⊂ A. Throughout this paper a convexity space of
arity two will be called briefly a geometrical space. The convexity of a geometrical space is said
to be an interval convexity, see [1]. For a systematic study of the theory of convexity see e.g.
van de Vel [8] or Soltan [5].

A map f : X → Y of convexity spaces is called convexity preserving (cp-map for short) provided
f−1(G) is convex inX wheneverG is convex in Y . This is equivalent to the condition f(convA) ⊂
conv f(A) for any finite A ⊂ X and, in the class of geometrical spaces, to f([a, b]) ⊂ [f(a), f(b)]
for a, b ∈ X (see [8]).

A convexity space is called S3 provided one-element subsets are convex and for every x ∈ X and
a finite subset F ⊂ X with x /∈ convF there exists a halfspace H (i.e. a convex set with convex
complement) such that x /∈ H and F ⊂ H. This property implies that a point can be separated

Date: November, 1997.
1991 Mathematics Subject Classification. Primary: 52A01, Secondary: 06B05.
Key words and phrases. convexity, geometrical space, cp-map, lattice.

1



from any convex set by a halfspace (see [5]). Finally, a convexity space is S4 if points are convex
and any two disjoint convex sets can be separated by a halfspace.

The convexity in a lattice. Let L be a lattice. For a, b ∈ L we set I(a, b) = {x ∈ L : ab ⩽
x ⩽ a + b}, where ab and a + b denote the infimum and the supremum of a, b respectively. A
subset G ⊂ L is convex provided I(a, b) ⊂ G whenever a, b ∈ A. This defines a convexity in L
(called the convexity of a lattice), the set L endowed with this convexity is a space of arity two
(see [6], [7]) and [a, b] = I(a, b) for a, b ∈ L. A lattice is distributive iff it is S3 (see [7] or [2]). A
subset G of a lattice L is convex iff G = I ∩F where I is an ideal and F is a filter in L (see [6]).

We will consider only bounded lattices, with the least element 0 and the greatest element 1. If
S = {a1, . . . , an} is a subset of a bounded lattice then

convS = [a1 . . . an, a1 + · · ·+ an] = conv(S ∪ {0}) ∩ conv(S ∪ {1}).

It is well-known that a map f of bounded lattices is a homomorphism if and only if f is a
cp-map, f(0) = 0 and f(1) = 1 (see [7, 3.5.4]).

An important example of a (distributive) lattice is a Boolean algebra and, in particular, a power
set P(S) for any set S.

2. Extension Criterion

Condition (I). Let X,Y be two convexity spaces and let f : M → Y be a map, M ⊂ X. We
say that f has property (I) provided for every n ∈ N, S1, . . . , Sn ∈ [M ]<ω

convS1 ∩ · · · ∩ convSn ̸= ∅ =⇒ conv f(S1) ∩ · · · ∩ conv f(Sn) ̸= ∅

(here ”conv” means the convex hull in X and Y respectively).

Clearly, if f can be extended to a cp-map over X then f has to satisfy the condition (I). Our
purpose is to show that, in some situations, the converse is also true.

Let X be a convexity space, a, b, c ∈ X. Any member of [a, b]∩ [a, c]∩ [b, c] is called a median of
a, b, c. A subset A ⊂ X is median-stable if for every a, b, c ∈ A every median of a, b, c belongs to
A (see [7]). We say that M ⊂ X generates X if X is the only median-stable subset containing
M .

Lemma 2.1. Let Y be an S3 convexity space and let y be a median of a, b, c ∈ Y . Then for
every S ⊂ Y the following holds true:

conv(S ∪ {y}) = conv(S ∪ {a, b}) ∩ conv(S ∪ {a, c}) ∩ conv(S ∪ {b, c}).

Proof. Denote by A the set on the right hand side of the above equality. Clearly S ∪ {y} ⊂ A
and hence conv(S ∪{y}) ⊂ A. Assume z /∈ conv(S ∪{y}). As Y is S3, there exists a halfspace H
with z /∈ H ⊃ conv(S ∪ {y}). Observe that |H ∩ {a, b, c}| ⩾ 2 since y ∈ H and X \H is convex.
Now, if for instance a, b ∈ H then we get conv(S ∪ {a, b}) ⊂ H and therefore z /∈ A. □

Now we are ready to prove the extension theorem, which is an analogue of Sikorski’s Extension
Criterion.

Theorem 2.2. Let X be a convexity space and let M generate X. If f : M → Y is a map
satisfying condition (I) and Y is S3, then there exists a unique convexity preserving map g : X →
Y extending f .

2



Proof. Clearly, the union of a chain of maps with the property (I) satisfies (I) as well. Thus,
by the Lemma of Kuratowski-Zorn, there exists a maximal map g extending f and satisfying
(I). Suppose that dom(g) ̸= X, where dom(g) denotes the domain of g. As M generates X and
M ⊂ dom(g), dom(g) is not median-stable, which means that there are a, b, c ∈ dom(g) and
its median x /∈ dom(g). Since g satisfies condition (I), there exists a point y ∈ [g(a), g(b)] ∩
[g(a), g(c)] ∩ [g(b), g(c)]. We set N = dom(g) ∪ {x} and define g1 : N → Y by g1 | dom(g) = g
and g1(x) = y. To get a contradiction it is enough to show that g1 satisfies (I).

Assume S1, . . . , Sn ∈ [N ]<ω and convS1 ∩ · · · ∩ convSn ̸= ∅. If x ∈ Si then setting Ti = Si \ {x},
by the choice of x we get

convSi ⊂ conv(Ti ∪ {a, b}) ∩ conv(Ti ∪ {a, c}) ∩ conv(Ti ∪ {b, c}).

On the other hand, as g1(x) is a median of g1(a), g1(b), g1(c), by Lemma 2.1 we have

conv g1(Si) = conv g(Ti ∪ {a, b}) ∩ conv g(Ti ∪ {a, c}) ∩ conv g(Ti ∪ {b, c}).

Hence, we can replace every Si containing x by the sets Ti ∪ {a, b}, Ti ∪ {a, c}, Ti ∪ {b, c} which
do not contain x, preserving the intersection conv g1(S1) ∩ · · · ∩ conv g1(Sn). Now the property
(I) for g1 follows from that of g. Thus we have proved that dom(g) = X.

Now observe that g is cp. Indeed, if s ∈ convS and S ∈ [X]<ω then conv{s} ∩ convS ̸= ∅ and,
by condition (I), conv{g(s)} ∩ conv g(S) ̸= ∅ which means g(s) ∈ conv g(S).

The uniqueness of g follows from the fact that for two cp-maps g1, g2 : X → Y the set {x ∈ X :
g1(x) = g2(x)} is median-stable. This completes the proof. □

3. An Application to the lattice theory

The convexity of a lattice is binary in the following sense: if A is a finite family of convex sets
such that each two of its members intersect, then

∩
A ̸= ∅ (see [7]). Thus, for a mapping f with

values in a lattice, the condition (I) is equivalent to the following

(I’) For every S1, S2 ∈ [dom(f)]<ω if convS1∩ convS2 ̸= ∅ then conv f(S1)∩ conv f(S2) ̸= ∅.

If M is a subset of a lattice L and 0, 1 ∈ M then M generates L in the sense of our definition if
M generates L as a lattice. Indeed, ab is a median of 0, a, b and a+ b is a median of a, b, 1.

As a consequence of Theorem 2.2 we get the following generalization of the Sikorski Extension
Criterion.

Theorem 3.1. Let Kand L be bounded lattices, let L be distributive and let M generate K as
a lattice. A map f : M → L can be (uniquely) extended to a homomorphism if and only if for
every a1, . . . , an, b1, . . . , bm ∈ M the following condition holds true:

(*) a1 . . . an ⩽ b1 + · · ·+ bm =⇒ f(a1) . . . f(an) ⩽ f(b1) + · · ·+ f(bm).

Proof. Suppose f satisfies condition (*). We can assume that 0, 1 ∈ M and f(0) = 0, f(1) = 1.
Now, (*) means that conv{0, b1, . . . , bm} ∩ conv{a1, . . . , an, 1} ̸= ∅ implies

conv f({0, b1, . . . , bm}) ∩ conv f({a1, . . . , an, 1}) ̸= ∅.

In view of our remarks above, this is equivalent to the property (I). Hence f can be uniquely
extended to a cp-map g : K → L (since M generates K). Finally g is a homomorphism as it is
cp and preserves 0, 1. Obviously, condition (*) is necessary. □
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Corollary 3.2 (Sikorski Extension Criterion [4]). Let A,B be two Boolean algebras and let M
generate A as a Boolean algebra. A map f : M → B can be uniquely extended to a homomorphism
iff for every a1, . . . , an, b1, . . . , bm ∈ M an equality

a1 . . . an¬b1 . . .¬bm = 0

implies

f(a1) . . . f(an)¬f(b1) . . .¬f(bm) = 0.

Proof. Define M ′ = M ∪ {¬x : x ∈ M} and extend f to a map f ′ : M ′ → B by setting
f ′(¬x) = ¬f(x) for x ∈ M (if both x,¬x ∈ M then f(x)f(¬x) = 0 and ¬f(x)¬f(¬x) = 0
which means f(¬x) = ¬f(x)). Now, M ′ generates A as a lattice and f ′ satisfies condition (*) of
Theorem 3.1. Using Theorem 3.1 we obtain the desired extension of f . □

4. Extension theorem for S4 convexity spaces

Now we investigate the problem of extending maps with the condition (I) defined on subsets
of S4 convexity spaces. If we want to extend such maps over the whole space, the image space
must have some additional properties. Let us introduce the notation analogue to that of the
(topological) extension theory: we will say that a convexity space Y is a convexity absolute
extensor (CAE for short) provided for every subset M of an S4 convexity space X every map
f : M → Y with the property (I) can be extended to a convexity preserving map g : X → Y .

As we have mentioned above, every Boolean algebra is a convexity space with the convexity of
a lattice. If α is an element of a set S then we denote by α+ the principal ultrafilter in P(S)
generated by α, namely α+ = {A ⊂ S : α ∈ A}. Our aim is to show that every complete
Boolean algebra is a CAE.

We shall start with a couple of lemmas.

Lemma 4.1. The two-element lattice {0, 1} is a convexity absolute extensor.

Proof. Let f : M → {0, 1} satisfy (I), we set Ai = f−1(i), i = 0, 1. The condition (I) means
that convA0 ∩ convA1 = ∅. Hence, as X is S4, there exists a halfspace H with A1 ⊂ H and
A0 ∩H = ∅. One can easily check that the characteristic function of H is the desired extension
of f . □

Lemma 4.2. Let S be a set. The collection

B = {α+ : α ∈ S} ∪ {P(S) \ α+ : α ∈ S}

is a subbase of the convexity space P(S), i.e. the convexity of P(S) is the least one which contains
B.

Proof. In view of [8, Proposition I.1.7.3] it is enough to show that for any x /∈ conv{a1, . . . , an} =
P there exists an α ∈ S such that α+ and α− = P(S)\α+ separate x from P . We have P = [c, d]
where c = a1 . . . an and d = a1 + · · ·+ an. Now c ̸⊂ x or x ̸⊂ d which means that there is some
α in c \ x or in x \ d. The first case gives x ∈ α−, P ⊂ α+ while the second one gives x ∈ α+

and P ⊂ α−. □

Lemma 4.3. For every set S the Boolean algebra P(S) is a CAE.
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Proof. Let f : M → P(S) be a map from a subset of an S4 space X, satisfying (I). For α ∈ S
define pα : P(S) → {0, 1} as pα(a) = 1 iff α ∈ a. Clearly, pα is a cp-map. By Lemma 4.1 for
every α ∈ S the map pαf can be extended to a cp-map gα : X → {0, 1}. We set

g(x) = {α ∈ S : gα(x) = 1},

to obtain a map g : X → P(S) which is an extension of f (an easy calculation). It remains to
check that g is cp. In view of [8, Proposition I.1.12] and Lemma 4.2 this is equivalent to the
fact that g−1(α+) is a halfspace in X for every α ∈ S. Observe that g−1(α+) = {x ∈ X : α ∈
g(x)} = g−1

α (1), hence g−1(α+) is a halfspace in X since gα is cp. This completes the proof. □

Now we immediately obtain the main theorem of this section. One can look at this as a gener-
alization of Sikorski’s theorem on injectivity of complete Boolean algebras.

Theorem 4.4. Every complete Boolean algebra is a convexity absolute extensor.

Proof. Let B be a complete Boolean algebra. By Stone’s representation theorem there exists a
set S such that B is a subalgebra of P(S). By the theorem of Sikorski [4] there exists a retraction
r : P(S) → B. Now, let f : M → B be a map with the property (I) where M is a subset of an S4

convexity space X. By Lemma 4.3 there exists a convexity preserving extension g : X → P(S).
The superposition rg is the desired extension of f . □

Recall that a subset of a convexity (geometrical) space X is again a convexity (geometrical)
space with the (interval) convexity generated by the traces of all convex subsets of X (see
[8]). We say that a subset M of a convexity (geometrical) space X is well-posed in X provided
convA ∩ convB = ∅ whenever A,B are disjoint and convex in M , where ”conv” denotes the
convex hull in X. Observe that any convex subset is well-posed. Sublattices of a lattice provide
examples of not necessarily convex well-posed subsets.

Recall that a convexity is binary provided each finite collection of convex sets such that any two
of them intersect, has nonempty intersection.

Proposition 4.5. If M is a well-posed subset of a convexity (geometrical) space X and Y is a
binary convexity space then every cp-map f : M → Y has property (I).

Proof. As the convexity of Y is binary, it is enough to show that conv f(S) ∩ conv f(T ) ̸= ∅
whenever conv S∩conv T ̸= ∅ for S, T ∈ [M ]<ω. If f is cp then, asM is well-posed, there exists an
m ∈ convM S∩convM T and f(m) ∈ conv f(S)∩conv f(T ). Hence conv f(S)∩conv f(T ) ̸= ∅. □

Using Theorem 4.4 and Proposition 4.5 we obtain a ”geometrical” extension theorem, which is
similar to Tietze-Urysohn’s Extension Theorem in topology.

Theorem 4.6. If B is a complete Boolean algebra and M is a well-posed subset of an S4

convexity (geometrical) space X then every convexity preserving map f : M → B can be extended
to a convexity preserving map g : X → B.

It is well-known that a Cantor cube {0, 1}κ is a topological absolute extensor in the class of
zero-dimensional spaces. On the other hand, {0, 1}κ can be regarded as an algebra of subsets of
κ. These two structures in a Cantor cube bring about that we might expect a topological version
of Theorem 4.6. Slightly modifying the proofs of Lemmas 4.1 and 4.3 we obtain the following
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Theorem 4.7. Let X be a topological space being simultaneously a convexity space. Let M be
a subset of X such that any two disjoint closed and convex in M subsets of M can be separated
by a clopen halfspace in X. Then every continuous cp-map f : M → {0, 1}κ can be extended to
a continuous cp-map g : X → {0, 1}κ.

It is natural to ask whether a complete Boolean algebra is the only candidate for a convexity
absolute extensor. The answer is affirmative, if we consider the class of S4 binary convexity
spaces. It is known [8, Proposition II.1.15] that such spaces are of arity two.

Lemma 4.8. Every S4 convexity space is isomorphic to a well-posed subset of P(H) for a
sufficiently large set H.

Proof. Let X be an S4 convexity space, let H be the collection of all (proper) halfspaces in X.
Define a map ϕ : X → P(H) by setting ϕ(x) = {H ∈ H : x ∈ H}. It is easy to show (see [8,
Lemma I.3.16]) that ϕ is a convexity preserving embedding. Assume A,B are nonempty, disjoint
and convex in X. There exists a halfspace H ∈ H with A ⊂ H and B ⊂ X \H. Now ϕ(A) ⊂ H+

and ϕ(B) ⊂ P(H) \H+. This shows that ϕ(A), ϕ(B) are separated by a halfspace, consequently
ϕ(X) is well-posed in P(H). □
Theorem 4.9. If an S4 binary convexity space is a convexity absolute extensor then it is iso-
morphic (in the category of convexity spaces) to a complete Boolean algebra.

Proof. Let X be an S4 space with binary convexity. By Lemma 4.8 we may assume that X
is a well posed subset of an algebra B = P(H). Now if X is a CAE then the identity map
i : X → X can be extended to a cp-retraction r : B → X. Thus X is a retract of B. Since B
is homogenous (being isomorphic to a power of a homogenous 2-element space {0, 1}) we can
assume that ∅ ∈ X. Now r(∅) = ∅ and consequently r is a lattice homomorphism from B into a
relative subalgebra P(r(H)) of B. Hence X is a complete Boolean algebra. □

We do not know whether there exists an S3 convexity absolute extensor space which is not a
complete Boolean algebra.
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