Perfect cliques and $G_δ$ colorings of Polish spaces

Wiesław Kubis

Ben-Gurion University of the Negev, Beer-Sheva
Israel

and

University of Silesia, Katowice
Poland

E-mail: kubis@math.bgu.ac.il

July, 2001

Abstract

A coloring of a set X is any subset C of $[X]^N$, where $N > 1$ is a natural number. We give some sufficient conditions for the existence of a perfect C-homogeneous set, in case where C is $G_δ$ and X is a Polish space. In particular, we show that it is sufficient that there exist C-homogeneous sets of arbitrarily large countable Cantor-Bendixson rank. We apply our methods to show that an analytic subset of the plane contains a perfect 3-clique if it contains any uncountable k-clique, where k is a natural number or $ℵ_0$ (a set K is a k-clique in X if the convex hull of any of its k-element subsets is not contained in X).

2000 AMS Subject Classification: Primary: 52A37, 54H05, Secondary: 03E02, 52A10.

Keywords: Open ($G_δ$) coloring, perfect homogeneous set, clique.

1 Introduction

For a set X and natural number N, $[X]^N$ denotes the collection of all N-element subsets of X. A (two-color) coloring of X is (represented by) a set $C ⊆ [X]^N$. We identify $[X]^N$ with a suitable subspace of the product X^N. We are interested in the following problem: find sufficient conditions for the existence of a perfect C-homogeneous set $P ⊆ X$, where X is a Polish space and $C ⊆ [X]^N$ is open (or more generally $G_δ$). A natural example for this problem is the following: let $X ⊆ ℝ^N$ be closed and $C = \{ s ∈ [X]^k : \text{conv } s ⊆ X \}$. Then C is open and a C-homogeneous set is called a k-clique in X. It is known (see [3]) that there exists a closed set $X ⊆ ℝ^2$ such that X is not a countable union of convex sets but every k-clique in X is countable for every $k < ω$. On the other hand, it is proved in [3] that if a closed set $X ⊆ ℝ^2$ contains an uncountable k-clique for some k then it contains a perfect 3-clique. We prove that if C is a $G_δ$ coloring of a Polish space and there are no perfect C-homogeneous sets, then there is a countable ordinal $γ$ such that the Cantor-Bendixson rank of every C-homogeneous set is $< γ$. In the context of cliques, this strengthens the result of Kojman [2].
(see Theorem 3.1(a) below). From our result it follows that if C is a $G_δ$ coloring of an analytic space then either there exists a perfect C-homogeneous set or all C-homogeneous sets are countable. This is not true for $F_σ$ colorings: a result of Shelah [4] states that consistently there exist $F_σ$ 2-colorings with uncountable but not perfect homogeneous sets. Concerning cliques, we investigate analytic subsets of the plane. We prove that if an analytic set $X \subseteq \mathbb{R}^2$ contains an uncountable \aleph_0-clique then X contains also a perfect 3-clique.

1.1 Notation

Any subset of $|X|^N$ is called a coloring (or an N-coloring) of X. We write $\neg C$ instead of $|X|^N \setminus C$. A set $S \subseteq X$ is C-homogeneous if $|A|^N \subseteq C$. We identify $|X|^N$ with the subspace of X^N consisting of all N-tuples (x_0, \ldots , x_{N-1}) with $x_i \neq x_j$ for $i \neq j$. Thus we may consider topological properties of colorings. If $f : X \to Y$ is a function then we write $f[S]$ for the image of a set $S \subseteq X$ and $f(s)$ for the value at a point $s \in X$. By a perfect set we mean a compact, nonempty, topological space with no isolated points.

2 On colorings

First we recall a simple result on open 2-colorings of analytic spaces (see Todorčević-Farah’s book [5, p. 81]). We present a proof for completeness.

Proposition 2.1. Let X be an analytic space and let $C \subseteq |X|^2$ be open. Then either there exists a perfect C-homogeneous set or else X is a countable union of $\neg C$-homogeneous sets, i.e. $X = \bigcup_{n\in\omega} A_n$ where $|A_n|^2 \cap C = \emptyset$ for every $n \in \omega$.

Proof. Let $f : \omega^\omega \to X$ be continuous and onto X. Define

$$C' = \{ s \in [\omega^\omega]^2 : f[s] \in C \}.$$

Note that if $\{x, y\} \in C'$ then $f(x) \neq f(y)$. Now observe that if ω^ω is a union of countably many $\neg C'$-homogeneous sets, then the same holds for X. Also, if P is a compact, perfect, C'-homogeneous subset of ω^ω then $f \upharpoonright P$ is one-to-one and hence $f[P]$ is a perfect C-homogeneous set. Thus we may assume that $X = \omega^\omega$ and that X cannot be covered by countably many $\neg C$-homogeneous sets.

Let V consist of all $x \in \omega^\omega$ such that some neighborhood of x is a countable union of $\neg C$-homogeneous sets. By assumption, it follows that $V \neq \omega^\omega$. Let $B = \omega^\omega \setminus V$. Now we are working in B: construct a tree $T = \{ u_s : s \in 2^{<\omega} \}$ of open subsets of B such that T defines a Cantor set and $\{ x, y \} \in C$ whenever $x \in u_s$, $y \in u_t$ and $s, t \in 2^k$ are distinct, $k < \omega$. Coming to split u_s, where $s \in 2^k$, we first find a pair $\{ x, y \} \in [u_s]^2 \cap C$ (this is possible since u_s is not $\neg C$-homogeneous). Next, using the fact that C is open, enlarge x, y to open sets u_s^{-0}, u_s^{-1}, preserving C-homogeneity. The perfect set obtained from T is evidently C-homogeneous.

The above result is no longer valid when we replace the word "open" with "closed", see [5, p. 83]. Also, the above proposition cannot be strengthened for colorings of triples: there exists a clopen 3-coloring of 2^ω such that there are no uncountable homogeneous sets neither of this
color nor of its complement, see Blass’ example [1]. In this example, the Cantor-Bendixson rank of any homogeneous set is at most 1. Below we show that in this situation, there always exists a countable ordinal which bounds the Cantor-Bendixson ranks of all homogeneous sets. In fact this is true for \(G_\delta \) colorings.

For a topological space \(Y \) and an ordinal \(\alpha \) we denote by \(Y^{(\alpha)} \) the \(\alpha \)-derivative of \(Y \); the Cantor-Bendixson rank of \(Y \) is the minimal ordinal \(\gamma \) such that \(Y^{(\gamma+1)} \) is empty.

Theorem 2.2. Let \(C \) be a \(G_\delta \) \(N \)-coloring of a Polish space \(X \). If for every countable ordinal \(\gamma \) there exists a \(C \)-homogeneous set of the Cantor-Bendixson rank \(\geq \gamma \) then \(X \) contains a perfect \(C \)-homogeneous set.

Proof. Fix a countable base \(B \) in \(X \) and fix a complete metric on \(X \). Let \(C = \bigcap_{n \in \omega} C_n \), where each \(C_n \) is open and \(C_{n+1} \subseteq C_n \). We will construct a tree of open sets \(T = \{ u_s : s \in 2^{<\omega} \} \) with the following properties:

1. \(\text{cl } u_{s^{-1}} \subseteq u_s \), \(\text{cl } u_s \cap \text{cl } u_t = \emptyset \) if \(s, t \) are incompatible and \(\text{diam}(u_s) < 2^{-\text{length}(s)} \);

2. if \(k < \omega \) and \(s_0, \ldots, s_{N-1} \in 2^k \) are pairwise distinct then
 \[
 \{ x_0, \ldots, x_{N-1} \} \in C_k
 \]
 whenever \(x_i \in u_{s_i}, i < N \);

3. if \(k < \omega \) then for each \(\gamma < \omega_1 \) there exists a \(C \)-homogeneous set \(P = P_{k,\gamma} \) such that \(P^{(\gamma)} \cap u_s \neq \emptyset \) for each \(s \in 2^k \).

We start with \(u_0 = X \). Suppose that \(u_s \) has been defined for all \(s \in 2^{\leq k} \). Fix \(\gamma < \omega_1 \) and consider \(P = P_{k,\gamma+1} \), as in (iii). Then for each \(s \in 2^k \) the set \(P^{(\gamma)} \cap u_s \) is infinite. Fix \(S \subseteq P^{(\gamma)} \) such that \(|S \cap u_s| = 2 \) for each \(s \in 2^k \). Next, enlarge each \(x \in S \cap u_s \) to a small open set \(v_x \in B \), contained in \(u_s \), such that \(\{ y_0, \ldots, y_{N-1} \} \in C_{k+1} \) whenever \(y_t \) are taken from pairwise distinct \(v_x \)'s. This is possible, because \(C_{k+1} \) is open. Let \(\varphi(\gamma) = \{ v_x : x \in S \} \). This defines a mapping \(\varphi : \omega_1 \to [B]^{<\omega} \). As \(B \) is countable, there is unbounded \(F \subseteq \omega_1 \) such that \(\varphi \restriction F \) is constant, say \(\{ v_{s^{-1}} : s \in 2^k, i < 2 \} \), where \(v_{s^{-1}} \subseteq u_s \). Set \(u_{s^{-1}} = v_{s^{-1}} \). Observe that (i) holds if we let \(v_x \)'s to be small enough. Also (ii) holds, by the definition of \(v_x \)'s. Finally, (iii) holds, because \(P_{k,\gamma+1}^{(\gamma)} \cap u_t \neq \emptyset \) for \(t \in 2^{k+1} \) whenever \(\gamma \in F \). By (ii) the perfect set obtained from this construction is \(C \)-homogeneous.

Using the above theorem and arguments from the proof of Proposition 2.1 we obtain the following (see Shelah [4, Remark 1.14]):

Corollary 2.3. Let \(1 \leq N < \omega \) and let \(C \) be a \(G_\delta \) \(N \)-coloring of an analytic space \(X \). If there exists an uncountable \(C \)-homogeneous set then there exists also a perfect one.
3 Applications to convexity

Let $X \subseteq E$, where E is a real vector space. A subset K of X is a k-clique (k can be a cardinal or just a natural number, we will use this notion for $k < \omega$ and $k = \aleph_0$) if $\text{conv } S \nsubseteq X$ whenever $S \in [K]^k$. If E is finite-dimensional and $k > \dim E$ then we can define the notion of a strong k-clique replacing $\text{conv } S$ by $\text{int } \text{conv } S$ in the definition. A finite set $S \subseteq X$ is (strongly) defected in X if $\text{conv } S \nsubseteq X$ (int $\text{conv } S \nsubseteq X$). It is clear that the relation of strong defectedness is open and defectedness is open provided that X is closed.

Applying the results of the previous section we get the following:

Theorem 3.1. (a) Let X be a closed set in a Polish linear space and let $N < \omega$. If X does not contain a perfect N-clique then all N-cliques in X are countable. Moreover, there exists an ordinal $\gamma < \omega_1$ which bounds the Cantor-Bendixson ranks of all N-cliques in X.

(b) Let X be an analytic subset of \mathbb{R}^m. If $m < N < \omega$ and X contains an uncountable strong N-clique then X contains also a perfect one.

Theorem 3.1(a) was proved, under the stronger assumption that X is a countable union of convex sets, by Kojman in [2].

In [3] we proved, in particular, that in a closed planar set either all cliques are countable or there exists a perfect 3-clique. Here we prove the same for analytic sets, namely:

Theorem 3.2. Let $X \subseteq \mathbb{R}^2$ be analytic. If X contains an uncountable \aleph_0-clique then X contains a perfect 3-clique.

Proof. Fix a continuous function $f: \omega^\omega \to X$ onto X and fix an uncountable \aleph_0-clique $K \subseteq X$. We may assume that every line contains only countably many points of L: otherwise, for some line L, $X \cap L$ contains an uncountable \aleph_0-clique, so it contains a perfect 2-clique (Proposition 2.1), which is also a 3-clique in X. Fix uncountable $K' \subseteq \omega^\omega$ such that $f \upharpoonright K'$ is a bijection onto K.

A finite collection $\{u_0, \ldots, u_{k-1}\}$ of open subsets of ω^ω will be called relevant if each u_i contains uncountably many points of K', $\text{cl } u_i \cap \text{cl } u_j = \emptyset$ whenever $i < j < k$ and

$$\text{int } \text{conv } \{f(x_0), f(x_1), f(x_2)\} \nsubseteq X$$

whenever x_0, x_1, x_2 are taken from pairwise distinct u_i’s. To find a perfect 3-clique in X, it suffices to construct a perfect tree of open sets in ω^ω with relevant levels. If P is a perfect set obtained from such a tree then $f \upharpoonright P$ is one-to-one and $f[P]$ is a perfect strong 3-clique.

Suppose that we have a relevant collection $\{u_0, \ldots, u_k\}$. We have to show that it is possible to split each u_i to obtain again a relevant collection. We will split u_k. Let $L = K' \cap u_k$ and pick $y_i \in u_i$ for $i < k$. Define $c_i: [L]^2 \to 2$ by letting $c_i(x_0, x_1) = 1$ if $\text{conv } \{f(x_0), f(x_1), f(y_i)\} \nsubseteq X$. Observe that there are no infinite c_i-homogeneous sets of color 0: if $S \subseteq L$ is infinite then, by Carathéodory’s theorem, there is $s \in [S]^3$ such that $f[s]$ is defected in X (because $f[S]$ is defected) and hence for some $x_0, x_1 \in s$ we have $\text{conv } \{f(x_0), f(x_1), f(y_i)\} \nsubseteq X$, because $\text{conv } T \subseteq \bigcup_{x,y \in T} \text{conv } \{x, y, p\}$ for $T \subseteq \mathbb{R}^2$, $p \in \mathbb{R}^2$. Using k times the theorem of Dushnik-Miller we obtain uncountable $L' \subseteq L$ which is c_i-homogeneous of color 1 for $i < k$. Shrinking L' we may assume that each nonempty open subset of L' is uncountable. Now choose disjoint
open sets \(v_0, v_1 \) with \(\text{cl} v_j \subseteq u_k \) and \(v_j \cap L' \neq \emptyset \) for \(j < 2 \). To finish the proof we need the following geometric property of the plane:

Claim 3.3. Let \(A, B \subseteq X \subseteq \mathbb{R}^2 \) and \(c \in \mathbb{R}^2 \) be such that \(A, B \) are uncountable, each line contains countably many points of \(A \cup B \) and \(\text{conv}\{a, b, c\} \nsubseteq X \) whenever \(a \in A, b \in B \). Then there are \(a_0 \in A, b_0 \in B \) such that \(\text{int} \ \text{conv}\{a_0, b_0, c\} \nsubseteq X \).

Proof. Suppose this is not true. Observe that, replacing \(a \) with \(b \) the right side of \(a \) and not in \([b, c] \). Now, if some vertical line contains two elements of \(A \) then we are done: we take \(a_0 \in A \) such that some \(a_1 \in A \) is below \(a_0 \), then the relative interiors of segments \([b_0, a_1], [c, a_1] \) are contained in the interior of \(\text{conv}\{a_0, b_0, c\} \).

Assume that each vertical line contains at most one element of \(A \). As \(A \) is uncountable, there is \(a_1 \in A \) such that arbitrarily close to \(a_1 \) there are uncountably many points both on the left and the right side of \(a_1 \). Suppose now that e.g. \(\{b_0, a_1\} \) is defected in \(X \). As \([b_0, a_1] \) contains only countably many points of \(A \), we can find \(a_2 \in A \) which is close enough to \(a_1 \), on the left side of \(a_1 \) and not in \([b_0, a_1] \). If \(a_2 \) is below \([b_0, a_1] \) then we can set \(a_0 = a_1 \), otherwise we can set \(a_0 = a_2 \).

Let \(i = 0 \). Using Claim 3.3 for \(A = f[v_0 \cap L'], B = f[v_1 \cap L'] \) and \(c = f(y_i) \) we get \(x_j \in v_j \) such that \(\text{int} \ \text{conv}\{f(x_0), f(x_1), f(y_i)\} \nsubseteq X \). By continuity, shrink \(v_0, v_1 \) and enlarge \(y_i \) to an open set \(u'_i \subseteq u_i \) such that each triple selected from \(f[v_0] \times f[v_1] \times f[u'_i] \) is (strongly) defected in \(X \). Repeat the same argument for each \(i < k \), obtaining a relevant collection \(\{u'_0, \ldots, u'_{k-1}, v'_0, v'_1\} \) which realizes the splitting of \(u_k \). This completes the proof.

Actually, we have proved that if an analytic planar set \(X \) contains any uncountable \(\aleph_0 \)-clique then either \(X \) contains a perfect strong 3-clique or else, \(X \cap L \) contains a perfect 2-clique for some line \(L \).

References

