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Abstract. We address the structure of nonconvex closed subsets of the Eu-

clidean plane. A closed subset S ⊆ R2 which is not presentable as a countable
union of convex sets satisfies the following dichotomy:

(1) There is a perfect nonempty P ⊆ S so that |C ∩P | < 3 for every convex

C ⊆ S. In this case covering S by convex subsets of S is equivalent to
covering P by finite subsets, hence no nontrivial convex covers of S can

exist.

(2) There exists a continuous pair coloring f : [N ]2 → {0, 1} of the space N
of irrational numbers so that covering S by convex subsets is equivalent

to covering N by f -monochromatic sets. In this case it is consistent that
S has a convex cover of cardinality strictly smaller than the continuum
c in some forcing extension of the universe.

We also show that if f : [N ]2 → {0, 1} is a continuous coloring of pairs,
and no open subset of N is f -monochromatic, then the least number κ of f -
monochromatic sets required to cover N satisfies that κ+ ≥ c. Consequently, a

closed subset of R2 that cannot be covered by countably many convex subsets,
cannot be covered by any number of convex subsets other than the continuum

or the immediate predecessor of the continuum. The analogous fact is false for

closed subset of R3.

1. Introduction

Since the 50s there has been continuous interest in classifying nonconvexity of
closed subsets of Euclidean spaces. A coarse measurement of nonconvexity of a
set S is its convexity number γ(S): the least number of convex subsets required
to cover S. Sets with infinite γ, with which we are concerned here, are divided to
the countably convex sets — those that can be presented as a countable union of
convex sets — and to the uncountably convex ones.

Countably convex closed subsets of Banach spaces have been classified in [17]
by means of an ordinal rank. A countably convex closed subset of a Banach space
has a rank %(S) < ω1 which measures the complexity of countable convex covers
of S, and which bears geometric information about S. For example, a countable
compact Hausdorff space K is completely determined by the rank of the unit sphere
in the space C(K) with the supremum norm. The class of closed sets with γ = ℵ0

is classified by % into uncountably many types.
If a closed subset S of some Banach space is not countably convex, then after

removing from S its maximal open countably convex subset, a perfect nonempty
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subset K(S) remains with the property that for every convex C ⊆ S the set C∩K(S)
is nowhere dense in K(S) [17]. Let I(S) be the σ-ideal which is generated on K(S)
by the intersections C∩K(S) for all convex C ⊆ S. I(S) is contained in the σ-ideal
of meager subsets of K(S). It follows that to cover K(S) or, equivalently, to cover
S itself, by convex subsets of S is at least as difficult as covering a Polish space by
its meager subsets1.

Let us quote two examples of such ideals. The extreme example is when the set S
in question is contained in R1. In this case it is easy to observe that |C∩K(S)| ≤ 2
for any convex C ⊆ S. Put differently, for an uncountably convex 1-dimensional
closed set, I(S) is just the trivial ideal of countable sets; thus, covering K(S) by
convex subsets of S is strictly more difficult than covering a Polish space by meager
sets: A Polish space can consistently be coverable by fewer than continuum meager
sets, but one can never cover the continuum by fewer than continuum countable
sets.

In R3 the existence of a simply connected compact S has been known for which
I(S) is isomorphic to the ideal over the space 3N which is generated by all subset
which do not contain an equilateral triangle under the usual metric on this space.
It was shown that this ideal may have a cover of an arbitrary regular cardinality
below the continuum [15, 17]. In other words, the continuum may be very big, but
S may still be coverable by a small (uncountable) number of convex subsets.

The correspondence S 7→ I(S) between closed sets and sub-ideals of the meager
ideal facilitates a mutual and fruitful connection between convex geometry and
cardinal invariants of the continuum. On the one hand, one can classify uncountably
convex sets S in terms of set-theoretic properties of I(S), using the vast literature
on cardinal invariants of the continuum; on the other hand, new cardinal invariants
of the continuum may be discovered by looking at I(S) for various closed S.

Our present investigation of uncountably convex closed subsets of the plane
yields results in both directions. The geometric investigation reveals a new type of
meager ideal which, apart from the trivial ideal of countable sets, is the only type
of ideal which can occur as I(S) for a closed planar S. The set theoretic properties
of this type of ideals are quite unusual, and when translated back to geometry give
a complete classification of uncountable convexity in closed planar sets. Let us
describe these ideals briefly. Let N denote the space of the irrationals. Suppose
that f : [N ]2 → {0, 1} is a continuous pair coloring of N , so that no open subset of
N is monochromatic with respect to f . Each nontrivial ideal I(S) that can occur
in the plane is isomorphic to the ideal which is generated by the monochromatic
sets of such colorings.

Although the most natural context for studying covering properties of those
ideals is set theory of the reals, it is in this geometric context that they appear and
are being studied for the first time. We show that these ideals can admit non-trivial
covers — but only barely: the successor of the covering number of such an ideal
must always be greater than or equal to the continuum! To be more concrete, if
the continuum were ℵ100 then no uncountably convex closed planar set could be
covered by fewer than ℵ99 convex subsets; but at the same time, some uncountably
convex closed subsets of R3 could be covered by just ℵ1 convex subsets.

1The number of meager sets needed to cover a perfect Polish space is, as is well known, identical

in all perfect Polish spaces.
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Covering numbers of continuous pair colorings are, thus, new cardinal invariants
of the continuum at the high end of the spectrum of cardinal invariants, and can
assume, in any universe of set theory, at most one value below the continuum —
the immediate predecessor of the continuum (which does not always exist).

Combining the geometric results with the set theoretic ones, we obtain a complete
classification of infinite convex covers of closed planar sets. A closed planar set S
contains a perfect P with |P ∩ C| < 3 for all convex C ⊆ S if and only if it may
have a nontrivial convex cover in a forcing extension.

1.1. Shelah’s theorem. No uncountably convex closed subsets of R2 were pre-
viously known which could have a nontrivial convex cover. In fact, for 10 years
it was believed to be impossible to have such sets in the plane, because Theorem
2.2 in [15], due to Saharon Shelah, asserted that every uncountably convex closed
subset of the Euclidean plane contained a perfect set P ⊆ S with the property that
|P ∩ C| ≤ 2 for all convex C ⊆ S.

The starting point of the present paper is the discovery, made by W. Kubís when
he was trying to extend Shelah’s Theorem to Gδ sets, of a counter-example. Several
key ideas from Shelah’s proof have been adopted in our proof of the Decomposition
Theorem in Section 3.

1.2. Organization of the paper.

Section 2. An uncountably convex closed subset of R2 which does not contain
uncountable cliques is constructed.

Section 3. The convexity number of the set from Section 2 is shown to be equal
to the covering number of the Cantor space by c-monochromatic sets for a par-
ticular continuous pair coloring c : [2ω]2 → {0, 1}. Then it is shown that for any
Polish space and any continuous pair coloring c : [X]2 → 2, if countably many
c-homogeneous sets do not suffice to cover X, then also κ c-homogeneous sets do
not suffice if κ+ < c.

Section 4. The main decomposition theorem for closed planar sets is proved in
this section: every closed planar set which does not contain a perfect 3-clique is
the union of countably many convex sets and countably many graphs of contin-
uously differentiable functions on each of which I(S) is isomorphic to the ideal
generated by monochromatic sets for some continuous pair coloring. Several con-
sequences are drawn from the decomposition theorem. At the end of the Section
the decomposition theorem is extended to Gδ subsets of the plane.

Section 5. It is proved that in the Sacks model, in which c = ℵ2, for every
Polish space X and a continuous coloring c : [X]2 → 2, X is covered by ≤ ℵ1

c-homogeneous sets. As a corollary, in the Sacks model the convexity number of
every closed planar set which does not contain a perfect 3-clique is ℵ1.

Section 6. A model is constructed in which the least number of monochromatic
sets required to cover N is continuum for every continuous pair coloring with no
open monochromatic sets, and the continuum is strictly larger than all cardinals in
Cichoń’s diagram. In this model, every closed planar set is either countably convex
or has γ = c, but some closed S ⊆ R3 satisfies γ(S) = ℵ1 < c.

Section 7. Several open problems are listed.
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The set in Section 2 was discovered by W. Kubís, who also proved the decom-
position theorem in Section 4. The independence results in Section 4 are due to
S. Geschke and R. Schipperus. The proof in Section 3 that hm+ ≥ c is due to S.
Geschke.

1.3. Notation and Preliminaries. A subset C of a linear space is convex if for
any two points p1, p2 ∈ C the line segment [p1, p2] is contained in C. For a subset
X, conv(X) denotes the convex hull of X, and [x1, x2, x3] is also used to denote the
convex hull of {x1, x2, x3}. A subset X ⊆ S is called defected in S if conv(X) 6⊆ S.
The convexity number γ(S) of a set S is the least cardinality of a collection of convex
sets whose union is S. S is countably convex if γ(S) ≤ ℵ0 and is uncountably convex
otherwise. A subset P ⊆ S is a k-clique in S, k ≥ 2, if every k-element subset of P
is defected in S. By [S]k the collection of all k-element subsets of S is denoted.

For two points a = (x1, y1), b = (x2, y2) in the plane, dir(a, b) is defined if x1 6= x2

and is equal to (y2 − y1)/(x2 − x1). By B1 < B2 for B1, B2 ⊆ R2 it is meant that
every point in proj(B1), projection of B1 to the x-axis, is smaller than every point
in proj(B2). If B1 < B2 we write dir(B1, B2) for {dir(a, b) : a ∈ B1, b ∈ B2}.

A function is a set or ordered pairs, and a sequence is a function defined on an
initial segment (not necessarily proper) of ω, the set of natural numbers. Finite
sequences are usually denoted by s, t, r, infinite sequences by σ, η, τ, ν. For two
sequences s and t, s ⊆ t means that s is an initial segment of t. A natural number
n is identified with the set {0, 1, . . . , n− 1}.

The set of unordered pairs from A is denoted by [A]2. For a natural number k,
the Ramsey number R(k) of k is the least n which satisfies n → (k)22, namely, for
every pair coloring c : [n]2 → 2 there exists a k-element subset of n on which c is
constant.

A subset P ⊆ S for a subset S of a topological vector space is called a semi-clique
if for all p ∈ P and open neighborhood u 3 p, P ∩ u is defected in S. The union
of all semi-cliques in S is a closed and maximal semi-clique, called the convexity
radical of S and is denoted by K(S). A closed subset S of a Polish linear space is
countably convex if and only if K(S) = ∅.

A subset of a topological space is Gδ if it is an intersection of countably many
open sets. If X is a Polish space, a subset S ⊆ X is completely metrizable, that is,
its induced topology is generated by some complete metric, if and only if S is Gδ

in X.
By ωω or by N the Baire space of all infinite sequences of natural numbers

is denoted, and 2ω, the space of all infinite sequences over {0, 1} is the Cantor
space. For two different sequences η, ν of the same length denote by dif(η, ν) the
first number n for which η(n) 66= ν(n).

We denote by <lx the lexicographic order on either 2≤ω or on ω≤ω. Concatena-
tion of sequences is denoted by a.

For an infinite cardinal κ the symbol κ+ denotes the successor cardinal of κ,
namely, if κ = ℵα, then κ+ = ℵα+1. The symbol c denotes the cardinality of the
real line.

1.4. Acknowledgments. The authors wish to thank Saharon Shelah for his in-
terest in the results presented here, and not less for his enthusiasm about the new
open problems. We thank Uri Abraham, who listened to an early version of one of
the independence proofs and detected an error in it. We are also grateful to Anna
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Matura, who presented some of the material in this paper at the seminar of the
group in topology and set theory at the University of Silesia, Katowice, and whose
questions and comments helped us improve the presentation.

The first, third and fourth authors were supported by post-doctoral fellowships
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2. A closed uncountably convex subset of R2 with no uncountable
clique

This Section is devoted to:

Theorem 1. There exists an uncountably convex closed set S ⊆ R2 which does not
contain an uncountable clique.

Proof. We begin by constructing a certain function f ⊆ R2, defined on a Cantor
set. Let {Is}s∈2<ω be the standard tree of subintervals of [−1, 1] producing the
Cantor set, namely I∅ = [−1, 1] and for every s ∈ 2<ω, Isa0 is the closed bottom
third of Is, Isa1 the closed top third of Is. For each s ∈ 2<ω let Js be the closed
middle subinterval of Is of length 1/9 the length of Is.

Let ϕ : 2≤ω → 2≤ω be defined by dom(ϕ(s)) = dom(s), ϕ(s)(k) = s(k) if k is
odd and ϕ(s)(k) = 1− s(k) if k is even. Note that ϕ(s) ⊆ ϕ(t) whenever s ⊆ t and
that ϕ is continuous.

Now define a tree {Bs}s∈2<ω of open balls in R2 with the following properties:

(a) each Bs is a nonempty open ball of radius ≤ 2− length(s) and clBsai ⊆ Bs

for all s and i < 2.
(b) clBsa0 < clBsa1;
(c) dir(Bsa0, Bsa1) ⊆ Jϕ(s).

Let B∅ be the open unit ball. Start by picking in B∅ two points x0 < x1 with
dir(x0, x1) ∈ int J∅ and enlarging them to open sets B0, B1 preserving conditions
(a),(b) and (c). The inductive step is similar: to split Bs find x, y ∈ Bs with x < y
and dir(x, y) ∈ int Jϕ(s), next enlarge them to open balls Bsa0, Bsa1 preserving
(a), (b) and (c).

Let f =
⋂

n∈ω

⋃
s∈2n clBs. For every σ ∈ 2ω let tσ =

⋂
n proj(Bσ�n). By (a)

and (b), f is a function with domain C = {tσ : σ ∈ 2ω}, a Cantor set in R. Put
xσ = (tσ, f(tσ)). Let dσ be the unique point in

⋂
n∈ω Iϕ(σ�n).

Fix σ, τ ∈ 2ω with σ <lx τ and n = dif(σ, τ). Let s = σ � n = τ � n. By
(c) we have dir(xσ, xτ ) ∈ Jϕ(s). It follows that dir(xσ, xτ ) tends to dσ when τ
tends to σ. Hence f ′(tσ) = dσ and consequently f is continuously differentiable
(since ϕ is continuous). Now suppose that n is even. Then ϕ(sai) = ϕ(s)ai and
σ � (n + 1) = sa0, τ � (n + 1) = sa1 so f ′(tσ) < dir(xσ, xτ ) < f ′(tτ ). Similarly, if
n is odd then f ′(tσ) > dir(xσ, xτ ) > f ′(tτ ). We have thus proved:

Lemma 2. f : C → R is continuously differentiable and for all σ <lx τ in 2ω,
(1) dif(σ, τ) ≡ 0 mod 2 ⇒ f ′(tσ) < dir(xσ, xτ ) < f ′(tτ ).
(2) dif(σ, τ) ≡ 1 mod 2 ⇒ f ′(tσ) > dir(xσ, xτ ) > f ′(tτ ).

Hence, no three points of f are collinear.
For convenience, let us write f ′(xσ) instead of f ′(tσ). We say that a pair xσ, xτ

is in configuration u (resp. t) if xσ < xτ and f ′(xσ) > dir(xσ, xτ ) > f ′(xτ ) (resp.
f ′(xσ) < dir(xσ, xτ ) < f ′(xτ )).
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If x, y, z ∈ f are distinct and all pairs in {x, y, z} are in the same configuration,
call [x, y, z] decided ; Otherwise we say that [x, y, z] is undecided. We write x < y
whenever x = (x1, x2), y = (y1, y2) and x1 < y1.

Define

S = f ∪
⋃ {

[x, y, z] : x, y, z ∈ f and [x, y, z](1)

has decided configuration
}

Claim 3. For each x, y ∈ f we have [x, y] ⊆ S.

Proof. Find z ∈ f such that the triangle [x, y, z] has decided configuration. Then
[x, y] ⊆ [x, y, z] ⊆ S. �

Claim 4. If x, y ∈ f , x < y and x, y are in configuration t then all points of f
between x and y lie below the segment [x, y], and symmetrically for u.

Proof. Suppose that x < z < y and z lies above the segment [x, y]. Then dir(z, y) <
dir(x, y) < dir(x, z) and f ′(x) < dir(x, y) < f ′(y). On the other hand, dir(x, z) <
f ′(z) because f ′(x) < dir(x, z). Similarly f ′(z) < dir(z, y); a contradiction. �

Claim 5. The set S is closed.

Proof. It is enough to observe that the set of all pairs (x, y) ∈ f×f such that either
x = y or (x, y) is in configuration t, is closed in f×f . Thus, if vn ∈ [an, bn, cn] ⊆ S
and v = limn→∞ vn then, using the compactness of f , we may assume that the
sequence (an, bn, cn) converges to (a, b, c) and each pair from an, bn, cn is in the
same configuration. Then either [a, b, c] is a decided triangle or |{a, b, c}| < 3. In
both cases v ∈ [a, b, c] ⊆ S (in the second case we use Claim 3). �

Claim 6. The set S \ f is countably convex.

Proof. Let D consist of all eventually constant sequences in 2ω. Thus D is countable
and dense in 2ω. Let X = {xσ : σ ∈ D}. We show that S \ f =

⋃
{[a, b, c] \

{a, b, c} : a, b, c ∈ X & [a, b, c] is a decided triangle}.
Fix p ∈ S\f . If p ∈ int[a, b, c] for some decided triangle [a, b, c] then in sufficiently

small neighborhoods of a, b, c we can find vertices a′, b′, c′ ∈ X of a triangle with
the same configuration as [a, b, c] and such that p ∈ [a′, b′, c′]. So assume that
p /∈ int[a, b, c] for any decided triangle [a, b, c]. Then p ∈ [a, b] for some a, b ∈ f . We
show that a, b ∈ X.

Suppose that a /∈ X, a < b and a, b are in configuration t. Let U be a ball
around a such that p /∈ U and x, b are in configuration t whenever x ∈ U ∩ f . Now
we can find a0, a1 ∈ U such that a0 < a < a1 and a0, a1 are in configuration t.
Then [a0, a1, b] is a decided triangle. By Claim 4, p ∈ int[a0, a1, b], because p /∈ U .
This contradicts our assumption, thus a ∈ X. Similarly b ∈ X. �

Claim 7. If x, y, z ∈ f are distinct and [x, y, z] has undecided configuration then
[x, y, z] 6⊆ S.

Proof. Suppose that x < y < z, and x, z are in configuration t. By Claim 4, y
lies below the segment [x, z]. Assume that x, y are in configuration t while y, z are
in configuration u. Let y′, z′ be such that y ≤ y′ < z′ ≤ z and that there are no
points of f between y′, z′ (this is possible since the order of f is the same as the
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order of C). By Claim 4, y′, z′ ∈ [x, y, z]. Furthermore, we can choose y′, z′ in the
same configuration as y, z. Thus, without loss of generality, we can assume that
y = y′ and z = z′. Let ∆ = {p ∈ [x, y, z] : y < p < z}. We show that ∆ 6⊆ S.

Fix a decided triangle [a, b, c] such that a ≤ y, b ≥ z and c is not between
a, b. Observe that, by Claim 4, both y, z lie on the same side of the segment [a, b].
Suppose that a, b are in configuration u. Then y, z are above [a, b] but the triangle
[a, b, c] lies below the line passing through a, b, because it has decided configuration
(here we use Claim 4 again). Thus [a, b, c] ∩ ∆ = ∅ whenever [a, b, c] is a triangle
with configuration u.

Now consider the set F of all pairs (a, b) ∈ f × f such that a ≤ y, b ≥ z and a, b
are in configuration t. Suppose that ∆ ⊆ S and choose a sequence {vn}n∈ω ⊆ int∆
converging to v = y+z

2 . Then for each n ∈ ω we can find (an, bn) ∈ F such that vn

is above or belongs to the segment [an, bn]. By compactness, we may assume that
the sequence (an, bn) converges to (a, b). Observe that (a, b) ∈ F which yields that
a, b are in configuration t and hence y, z lie below (or one of them belongs to) the
segment [a, b]. Thus v ∈ [a, b] and also y, z ∈ [a, b]. This is a contradiction to the
fact that no three points of f are collinear. Thus ∆ 6⊆ S. �

¿From the last claim it follows that f is a semi-clique in S. Thus S is uncountably
convex.

Assume now that P is a k-clique in S. By Claim 6, P \ f is countable. To show
that P itself is also countable, we show that P ∩f is finite, actually |P ∩f | < R(k),
where R(k) is the Ramsey number of k. Suppose otherwise. We have [P ∩ f ]2 =
E ∪O where E consists of all pairs with configuration t and O = [f ]2 \E. There is
T ∈ [P ∩ f ]k such that either [T ]2 ⊆ E or [T ]2 ⊆ O, which means that all triangles
with vertices in T have decided configurations. It follows that convT ⊆ S contrary
to the assumption that P is a k-clique. �

The set constructed above can be modified to obtain an additional property:
every clique in this set is a union of a discrete and a finite set.

Let us look at the proof of Claim 7. Let X be the set of all pairs in f which
form a jump. In fact we have proved that if (a, b) ∈ X form a jump then there is an
open semi-circle Ua,b centered at a+b

2 and determined by the segment [a, b], which
is disjoint from any decided triangle with vertices in f ; moreover every undecided
triangle contains Ua,b for some (a, b) ∈ X. For each (a, b) ∈ X choose a small open
triangle ∆a,b ⊆ Ua,b. We can do this in such a way that the collection {∆a,b}(a,b)∈X

is discrete outside f . Now define

S′ = convf \
⋃
{∆a,b : (a, b) ∈ X}.

Then S′ has the same properties as S, namely f is a semi-clique in S′ and S′ is
closed. Moreover, every point of S′ \ f has a neighborhood V which intersects at
most one triangle ∆a,b. If V is a ball then V ∩ S′ is the union of at most two
convex sets. It follows that if P is a clique in S′ then P \ f is discrete. Thus the
Cantor-Bendixson degree of any clique in S′ is at most 1.

3. Pair colorings of Polish spaces

Let S be the set defined in (1) in the previous Section. The convexity radical of
S is f = {xσ : σ ∈ 2ω} and [xσ1 , xσ2 , xσ3 ] ⊆ S if and only if dif(σi, σj) is even for
all 0 < i < j < 4 or dif(σi, σj) is odd for all 0 < i < j < 4.
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Let us define a pair coloring c : [2ω]2 → {0, 1} as follows:

(2) c(η, ν) =

{
0 if dif(η, ν) is even
1 if dif(η, ν) is odd

Call a subset A ⊆ 2ω homogeneous if c � [A]2 is constant (and call A “homoge-
neous even” or “homogeneous odd” according to the constant color).

Since for every subset of X ⊆ K(S) the convex hull of X is contained in S if and
only if the set of corresponding points in 2ω is homogeneous, γ(S) = hm, where:

(3) hm = min{|F| :
⋃
F = 2ω, X ∈ F ⇒ X is homogeneous}

Since every homogeneous set is clearly nowhere dense in 2ω with the usual prod-
uct topology and of measure zero in the usual product measure, hm > ℵ0. In fact,
hm is greater than or equal to the covering numbers of the line by either meager or
measure zero sets.

The first surprising property about hm is that it cannot trail far behind c.

Lemma 8. hm+ ≥ c. In particular, hm = c whenever c is a limit cardinal.

Proof. For any two sequences η, ν ∈ 2ω let η ⊗ ν ∈ 2ω be defined by (η ⊗ ν)(n) =
η(n/2) for even n and (η ⊗ ν)(n) = ν((n − 1)/2) for odd n, namely η ⊗ ν =
〈η(0), ν(0), η(1), ν(1), . . .〉. The operation ⊗ is neither commutative nor associative.

Suppose X ⊆ 2ω is homogeneous even. Let η ∈ 2ω be arbitrary. There is at
most one sequence ν for which ν ⊗ η ∈ X, since if ν1 6= ν2 then dif(η ⊗ ν1, η ⊗ ν2)
is odd and therefore either η ⊗ ν1 /∈ X or η ⊗ ν2 /∈ X. Given a homogeneous even
X let fX : 2ω → 2ω be the partial function that assigns for η the unique ν such
that η ⊗ ν ∈ X whenever such ν exists. Similarly, if Y is homogeneous odd then
for every η ∈ 2ω there is at most one ν ∈ 2ω for which ν⊗ η ∈ X, and fY is defined
analogously.

Suppose now that {Xα : α < κ} is a collection of homogeneous even sets, {Yα :
α < κ} a collection of homogeneous odd sets, and κ+ < c. Fix some A ⊆ 2ω with
|A| = κ+. Closing A under the functions fXα

for all α < κ does not increase the
cardinality of A, so let us suppose that A is already closed under those functions.
Since |A| = κ+ < c we can pick η ∈ 2ω \A. Choose ν ∈ A \ {fYα(η) : α < κ}. Now
for every α < κ it holds that η 6= fXα(ν) and ν 6= fYα(η) (one could of course use
Hajnal’s free-set theorem [12] to obtain this, but that would be an over-kill).

Therefore η⊗ν /∈
⋃
{Xα : α < κ}∪{Yα : α < κ}, which completes the proof. �

Corollary 9. γ(S)+ ≥ c.

We have thus bounded the convexity number of S from below by the predecessor
of the continuum — if a predecessor exists, of course. If the continuum is a limit
cardinal the lower bound is the continuum itself. At the end of the next Section
this bound will be established for all closed uncountably convex planar sets.

To get the consistency that γ(S) < c for all closed planar sets with no perfect 3-
clique we need to bound γ(S) from above. For that end, another cardinal invariant
is introduced.

Let X be a topological space and let c : [X]2 → 2 be a pair-coloring of X. c is
continuous if, when viewed as a symmetric two-place function on c � (X2 \ idX), it
is continuous with respect to the product topology on X2.



CONVEX DECOMPOSITION 9

Suppose c : [X]2 → 2 is given. A c-homogeneous subset A ⊆ X is one for which
c � [A]2 is constant. The c-covering number cov(c) is the least cardinality of a
collection of c-homogeneous subsets needed to cover X.

(4) cb = max{cov(c) | c : [X]2 → 2 is continuous and X is Polish}

Theorem 10. Let X be a Polish space and let c : [X]2 → 2 be continuous. Suppose
that no open subset of X is c-homogeneous. Then cov(c) ≥ hm.

Proof. Let c : [X]2 → 2 be given as in the theorem, and fix some complete metric
on X. We find a closed copy T ⊆ X of 2ω so that every c-homogeneous subset of
T is either homogeneous odd or homogeneous even in T .

Suppose that {Bs : s ∈ 2≤n} are chosen so that:

(1) Bs is a closed ball of positive radius ≤ 1/ length(s)
(2) s ⊆ t ⇒ Bt ⊆ int Bs

(3) If s, t are incomparable, x ∈ Bs and y ∈ Bt then dif(s, t) ≡ c(x, y) mod 2

At step n + 1 one chooses in each intBs, for s ∈ 2n, two points xsa0 and
xsa1 so that c(xsa0, xsa1) ≡ (n + 1) mod 2. This is possible since int Bs is not
homogeneous. By continuity of c, find open balls xsai ∈ Bsai, i ∈ {0, 1}, with
Bsai ⊆ intBs, each of radius < 1/(n + 1), so that for every choice of xi ∈ Bsai it
holds that c(x0, x1) ≡ (n + 1) mod 2. The proof is now clear. �

Corollary 11. cb ≥ hm

Proof. The coloring c in (2) is continuous and 2ω is Polish. �

Consider now any continuous pair coloring of a Polish space X. Since X has a
countable basis for its topology, the set of all points for which some open neigh-
borhood is a countable union of c-homogeneous sets is a union of countably many
c-homogeneous sets. If the complement of this union is not empty, it is a perfect
Polish subspace on which the coloring has no open homogeneous set. Hence:

Theorem 12. For every continuous c : [X] → 2 for a Polish space X, either X is
a countable union of c-homogeneous sets or cov(c)+ ≥ c.

This theorem does not hold for triple colorings (see Section 6).

4. The structure of uncountably convex closed S ⊆ R2

In this Section a structure theorem is proved for closed planar sets: every closed
S ⊆ R2 without a perfect 3-clique is coverable by countably many convex subsets
and countably many “special subsets”. The crucial property of a special subset is
that I(S) on it is isomorphic to the ideal generated by all monochromatic sets for
some continuous pair coloring of the Baire space ωω.

Definition 13. Let S be a subset of a Polish linear space. Call a nonempty subset
K of S special in S if K is homeomorphic to ωω and there is a coloring c : [K]2 → 2
with the following properties:

(i) a subset of K is defected in S iff it is not c-homogeneous;
(ii) no open subset of K is c-homogeneous.
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By (i) + (ii), every special set in S is a semi-clique in S (in particular, has no
isolated points) and from Theorem 10 it follows that a special subset of S cannot be
covered by less than hm many convex subsets of S. A special set is homeomorphic
to a complete metric space and hence is Gδ in S.

Suppose that K is a special subset of S and P is a k-clique in S. Then necessarily
|P ∩K| < R(k), since |P ∩K| ≥ R(k) implies that this intersection contains a c-
homogeneous subset of size k. Thus we have:

Fact 14. A special subset of S contains only finite cliques of S.

The purpose of this Section is to prove the following theorem:

Theorem 15 (Decomposition Theorem for R2). Let S be a closed set in the plane.
If S does not contain a perfect 3-clique then S = A∪B, where γ(A) ≤ ℵ0 and B is
a countable union of special sets.

The proof comes at the end of the Section, after a chain of lemmas about the
structure of the radical in closed planar S with no perfect 3-clique.

For the rest of this section we fix a closed uncountably convex planar set S which
does not contain a perfect 3-clique. We use ideas from the proof of Shelah’s theorem
in [15].

Let B be a Gδ subset of S and fix a complete metric on B. A sequence {Us}s∈T

is a perfect tree of open sets in B, if

(1) T is a perfect subtree of 2<ω (or, more generally, of ωω);
(2) clUs ⊆ Ut whenever s ) t;
(3) clUs ∩ clUt = ∅ whenever s, t are incompatible;
(4) each Us is a nonempty open set with diameter ≤ 2− length(s).

If we have such a tree then
⋂

n∈ω

⋃
s∈T∩2n clUs is a compact perfect subset of S.

A triangle [a, b, c] with a, b, c ∈ S is called bad if [a, b, c] 6⊆ S. In this case we
can find neighborhoods Ua, Ub, Uc of a, b, c respectively, so that [a′, b′, c′] is bad
whenever (a′, b′, c′) ∈ (Ua × Ub × Uc) ∩ (S × S × S).

We will consider Gδ semi-cliques in S. Every semi-clique is dense-in-itself and
a Gδ semi-clique is completely metrizable. We start with the following remark:
if B is a Gδ semi-clique in S then U ∩ B is not contained in a single line unless
U ∩B = ∅. Indeed, otherwise U ∩B is affinely isomorphic to an uncountably convex
Gδ subset of R which, easily seen, contains a perfect 2-clique — which contradicts
our assumption on S.

Lemma 16. Let B be a Gδ semi-clique in S. Then there exists a nonempty open
set U ⊆ B such that [a, b] ⊆ S for each a, b ∈ U .

Proof. Suppose not. Then in any nonempty open subset of B we can find a defected
pair of points. Thus we can construct a perfect tree of open sets {Us}s∈2<ω in B such
that {a, b} is defected in S whenever a ∈ Us, b ∈ Ut and s, t are incompatible. The
perfect set obtained by this construction is a 2-clique, which is also a 3-clique. �

Lemma 17. Let B be a Gδ semi-clique in S. Then there is an open nonempty set
W ⊆ B which is affinely isomorphic to the graph of a Lipschitz function.

Proof. We claim that B has the following property:
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(P1) For each nonempty open W ⊆ B there are nonempty open sets V0, V1, V2 ⊆
W such that [x0, x1, x2] is not a bad triangle whenever (x0, x1, x2) ∈ V0 ×
V1 × V2.

Suppose not and fix a complete metric in B. As we have noticed, if p ∈
int[x0, x1, x2] \ S then there are open sets W0,W1,W2 with xi ∈ Wi, such that
p ∈ int[y0, y1, y2] whenever (y0, y1, y2) ∈ W0 ×W1 ×W2. Thus we can construct a
perfect tree of open nonempty subsets of B, {Us}s∈T , T ⊆ 2<ω, such that each Us

is contained in W , where W ⊆ B is open nonempty which witnesses ¬(P1). Our
tree should have the following property:

(i) If s0, s1, s2 ∈ T∩2n are distinct then [x0, x1, x2] is bad whenever (x0, x1, x2) ∈
Us1 × Us2 × Us3 .

This property implies that
⋂

n<ω

⋃
s∈T∩2n clUs is a perfect 3-clique in B.

Thus B has property (P1), which means that there are disjoint nonempty open
sets U0, U1, U2 ⊆ B such that [y0, y1, y2] is a not a bad triangle whenever (y0, y1, y2) ∈
U0 × U1 × U2. Observe that in this case int[y0, y1, y2] ∩ B = ∅, because B is
a semi-clique. Shrinking U0, U1, U2 if necessary, we may assume that no triple
(a, b, c) ∈ U0 × U1 × U2 is collinear; otherwise S would contain a perfect 2-clique.

Fix a ∈ U2, b ∈ U1. By using, if necessary, an affine transformation, we can
assume that a = (−1, 0), b = (2, 0) and U0 is contained in [0, 1] × [0, 1]. Thus
U0 ∩ ({t} × [0, 1]) contains at most one point and if p, q ∈ U0 then the line passing
through p, q may not intersect the interval (a, b). It follows that U0 is a graph of a
function. This function has the Lipschitz constant not greater than 1, because the
direction between two points of U0 is between the extremal directions of sides of
triangles of the form [a, b, x], where x ∈ U0; these directions are in [−1, 1]. �

Lemma 18. Assume that P ⊆ K(S) is a dense-in-itself Gδ set which is affinely
isomorphic to the graph of a Lipschitz function f . Then f is differentiable on a
dense set.

Proof. Suppose otherwise. By using an affine transformation, we may assume that
P = b where b : A → R is a nowhere differentiable function. We also assume that
the Lipschitz constant of b is 1. Define

Dn = {t ∈ A : b
′
(t)− b′(t) ≥ 1

n
}.

As A is homeomorphic to P , it is a Baire space. Let n > 0 and W ⊆ A be such
that Dn is dense in W and W 6= ∅ is open in A. Let [−1, 1] = I0 ∪ · · · ∪ Ik−1 where
each Ii is open in [−1, 1], Ii ∩ Ij 6= ∅ iff |i− j| ≤ 1, and if |s− t| ≥ 1/n then s ∈ Ii,
t ∈ Ij and |i − j| > 1. Thus if t ∈ Dn, then b

′
(t) ∈ Ii, b′(t) ∈ Ij and i − j > 1.

By shrinking W , we can fix i, j < k with i − j > 1 and with the property that
b
′
(t) ∈ Ii, b′(t) ∈ Ij whenever t ∈ Dn ∩W .
We construct a perfect tree of open sets in B ∩ (W × [0, 1]). Our induction

hypothesis is
(∗) If x ∈ Us, y ∈ Ut, s <lx t and s, t ∈ T ∩ 2k then dir(x, y) ∈ Ij ,

(∗∗) If s, t, r ∈ T ∩ 2k are distinct and (x, y, z) ∈ Us × Ut × Ur then [x, y, z] is
bad.

Suppose we want to split Ur, r ∈ T ∩ 2k. Find x, y ∈ Ur with dir(x, y) ∈ Ij and
x < y. This is possible if we take x or y from Dn. Then enlarge x, y to small open
sets Vx, Vy, preserving this property. Let z ∈ Us where s ∈ T ∩ 2k, s 6= r. Assume
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s <lx r. Then the vertex x of the triangle [z, x, y] has an obtuse angle. In Vx we can
find a pair x′, x′′ with dir(x′, x′′) ∈ Ii. Replacing, if necessary, x with x′ or x′′, we
obtain a bad triangle. Thus we can shrink Vx, Vy and Ur to get only bad triangles
spanned by all triples (p, p′, p′′) ∈ Vx × Vy × Vr. If we do this for each s ∈ T ∩ 2k

then we get open sets Ura0, Ura1 and Usa0 for s ∈ (T ∩ 2k) \ {r}, preserving (∗)
and (∗∗). By (∗∗) the perfect set obtained from {Us}s∈T is a 3-clique. �

Lemma 19. Let B be a Gδ semi-clique in S which is affinely isomorphic to a
real function f . Then f ∩ V is not a convex function for any open V ⊆ R2 with
f ∩ V 6= ∅.

Proof. We may assume that B = f and that V is an open ball in R2. Suppose
that f ∩ V is a convex function. Let U = f ∩ V . Fix a bad triangle [a, b, c], where
a, b, c ∈ U and a < b < c. Let p ∈ int[a, b, c] \ S. If for some q < a the triangle
[q, a, b] contains p then [q′, a, b] is bad whenever q′ < q. Define

L(a, b, c) = {q ∈ U : ∀ q′ ≤ q [q′, a, b] is a bad triangle }.

Then L(a, b, c) is an order interval in (U,<). We claim that there exists a perfect
tree of open sets {Us}s∈T in U with the following property:

(∗) If s0, s1, s2 ∈ T ∩2n, s0 <lx s1 <lx s2 and dif(s0, s1) < dif(s1, s2) then each
triangle [x0, x1, x2] with (x0, x1, x2) ∈ Us0 × Us1 × Us2 is bad.

Consider now the following condition:

(L) There is a nonempty open W ⊆ U such that L(a, b, c) ∩W = ∅ whenever
[a, b, c] is a bad triangle with a, b, c ∈ W .

Suppose first that (L) does not hold. Then the induction step can be done as follows.
Assume that we want to split Ur. Our induction hypothesis is that Us < Ut (i.e.
x < y whenever x ∈ Us, y ∈ Ut) whenever s <lx t. According to ¬(L), we can
choose a bad triangle [a, b, c] where a, b, c ∈ Ur, a < b < c and L(a, b, c) ∩ Ur 6= ∅.
Then for each s <lx r with length(s) = length(r), each triangle [q, a, b], where q ∈
Us, is bad. Now we can enlarge q, a, b to small open sets Usa0,W

a
s ,W b

s , preserving
this property. Finally, we can set Ura0 =

⋂
s<lxr W a

s , Ura1 =
⋂

s<lxr W b
s , where all

s’s are taken from 2length(r). Clearly, (∗) holds.
Now if (L) holds and W witnesses (L) then we can do the same construction

inside W but we should take b, c instead of a, b. Let P be the perfect set obtained
from {Us}s∈T . Then in each nonempty open subset of P we can find a bad triangle.
Define analogously a set R(a, b, c) for each bad triangle [a, b, c] with a, b, c ∈ P .
Similarly as above, we can construct a perfect subtree T ′ ⊆ T such that the set P ′

obtained from {Us}s∈T ′ is a 3-clique. This contradiction completes the proof. �

Now we assume that f : A → R is a Lipschitz function contained in S; assume
also that f is a Gδ semi-clique in S, so A is a Gδ dense-in-itself subset of R. Let D
denote the set of differentiability points of f , which by Lemma 18, is dense in A.
Recall that we write f ′(a) instead of f ′(a0) whenever a = (a0, f(a0)).

Let (x, y) ∈ D ×D. We say that (x, y) is in configuration ∼ if x 6= y and either
f ′(x), f ′(y) < dir(x, y) or f ′(x), f ′(y) > dir(x, y).

Lemma 20. There is an open nonempty set W ⊆ f such that there are no pairs
with configuration ∼ in W .
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Proof. Suppose not. Then we can construct a perfect tree of open sets {Us}s∈T

in f , such that for each distinct s, t, r ∈ T ∩ 2n each pair (x, y) ∈ Us × Ut has
configuration ∼ and each triple (x, y, z) ∈ Us × Ut × Ur form a bad triangle. The
inductive step is easy: if we want to split Ur then we find a pair x, y ∈ Ur with
configuration ∼; next we observe that if x, y, z are distinct and such that each two
of them are in configuration ∼ then, as close as we wish, we can find x′, y′, z′ which
form a bad triangle. The perfect set obtained from our tree is a 3-clique. �

Suppose now that f does not contain pairs with configuration ∼. Let K(f)
denote the function f � (A \ J), where J is the set of all points in A which from at
least one side are not limits of A. As A is dense-in-itself, A \ J is a dense-in-itself
Gδ set so that between any two elements from the set there is a third element from
the set. Moreover, J is countable. Fix {a, b} ∈ [K(f)]2. We say that a, b are in
configuration t (u) if there are no points of f which are between a, b and which lie
above (below) the segment [a, b].

Lemma 21. Suppose f does not contain pairs with configuration ∼. Then:
(a) Each pair in K(f) is either in configuration t or u.
(b) If a, b ∈ K(f) ∩ D and a < b then a, b are in configuration t iff f ′(a) ≤

dir(a, b) ≤ f ′(b).
(c) For each {a, b} ∈ [K(f)]2 there are neighborhoods Ua, Ub ⊆ K(f) of a

and b respectively such that a′, b′ are in the same configuration for each
(a′, b′) ∈ Ua × Ub.

Proof. Fix a, b ∈ K(f) with a < b. Let f0 = {p ∈ f : a < p < b}. Suppose that
there are c, d ∈ f0 such that c is above the segment [a, b] while d is below the
segment [a, b]. Find a′, b′, c′, d′ ∈ D which are close to a, b, c, d respectively and
which have the same properties. Suppose that f ′(a′) ≤ dir(a′, b′) ≤ f ′(b′). As c′

is above [a′, b′], we have dir(a′, c′) > dir(a′, b′) > dir(c′, b′). On the other hand,
dir(a′, c′) ≤ f ′(c′) because otherwise a′, c′ would be in configuration ∼. Similarly,
f ′(c′) ≤ dir(c′, b′). Thus dir(a′, c′) ≤ dir(c′, b′), a contradiction.

It follows that either no point of f0 is above [a, b] or no point of f0 is below
[a, b]. This shows that a configuration of a, b can be defined. Observe that a, b
cannot be in both configurations, because then f0 ⊆ [a, b] and consequently f0

contains a perfect 2-clique (f0 is a semi-clique so S ∩ [a, b] is uncountably convex
in case f0 ⊆ [a, b]). Thus configurations are defined uniquely. This shows (a). The
arguments above also show (b).

For the proof of (c), let us assume that (an, bn) converges to (a, b), an, bn are in
configuration t for every n ∈ ω but a, b are in configuration u. Then there is c ∈ f
such that c is between a, b and above the segment [a, b]. Now, if an, bn are close
enough to a, b then c is also between an, bn and lies above the segment [an, bn], a
contradiction. �

A triangle [a, b, c] with vertices in K(f) will be called decided if all pairs in
{a, b, c} are in the same configuration; otherwise it will be called undecided.

Lemma 22. Suppose that f does not contain pairs with configuration ∼. Then:
(a) In each nonempty open subset of f there are pairs both in configuration t

and in u.
(b) Every undecided triangle is defected in S.



14 S. GESCHKE, M. KOJMAN, W. KUBIŚ, AND R. SCHIPPERUS

(c) There is a nonempty open set U ⊆ f such that no decided triangle in U is
defected.

Proof. The first statement is clear: otherwise, f ∩U is a convex or concave function
for some nonempty open U and, by Lemma 19, f contains a perfect 3-clique.

Let [a, b, c] be an undecided triangle. Assume that a < c < b and a, b are in
configuration t. Suppose that c, b are in configuration u. Then there is p ∈ f which
is between c, b and above the segment [c, b]. Then p is not above the segment [a, b].
Now, if p ∈ [a, b] then we can find p′ ∈ f close to p, which is below [a, b] (otherwise
some neighborhood of p would be contained in a line). Thus p′ ∈ int[a, b, c] which
means that [a, b, c] is defected in S, because no neighborhood of p′ in S is countably
convex. This shows (b).

For the proof of (c), suppose that in every nonempty open subset of f we can
find a defected decided triangle. We may assume that we can densely find defected
triangles with configuration t. Then we can construct a perfect tree of open sets
{Us}s∈3<ω in K(f) so that for each distinct r, s, t ∈ 3n each triple (a, b, c) ∈ Ur ×
Us ×Ut forms a bad triangle in S and each pair (a, b) ∈ Ur ×Us is in configuration
t. The inductive step is possible: to split Us we can find a bad triangle [a, b, c] with
a, b, c ∈ Us and such that all pairs from a, b, c are in configuration t. Finally, we
can enlarge these points to some open sets preserving this property. The perfect
set P obtained by this construction, is a Gδ semi-clique in S and it is a graph of a
convex function. This contradicts Lemma 19. �

Lemma 23. Let B be a Gδ semi-clique in S. Then there is a nonempty open set
U ⊆ B such that U = K ∪ L, where K is a special subset of S and L is countable.

Proof. By Lemma 17, there is an open nonempty W ⊆ B such that W is affinely
isomorphic to a Lipschitz function f . By Lemma 16, we may assume that [a, b] ⊆ S
whenever a, b ∈ W . By Lemma 18, we may also assume that f is differentiable on
a dense set. Now, using Lemma 20, we can shrink W in such a way that f does
not contain pairs in configuration ∼. Let U ⊆ W be open nonempty and such
that decided triangles in U are not defected in S; such a set exists by Lemma 22.
Now let K = K(f) ∩ U , L = U \ K. Then L is countable (by the definition of
K(f)). By Lemma 21, the coloring c : [K]2 → 2 defined by c({a, b}) = 0 iff a, b
are in configuration t, is continuous, no open subset of K is c-homogeneous, and
c-homogeneous subsets of K are precisely nondefected subsets of S (by Lemma 22).
Since K is homeomorphic to a subset of R, by removal of a countable set we may
assume that K is homeomorphic to ωω. This shows that K is a special subset of
S. �

Now we can prove the main theorem of the Section:

Proof of Theorem 15. Call a point p ∈ S special in S if p has a neighborhood V
such that V ∩ S = A ∪ B, where γ(A) ≤ ℵ0 and B is a countable union of special
subsets of S. Denote by X the subset of all special points in S. If X = S, then
the proof is complete, because S can be covered with countably many open sets V
with the above property. Suppose that X 6= S. Then B = S \X is closed in S and
it is a semi-clique in S. Applying Lemma 23, we can find an open U ⊆ B such that
U = K ∪ L, where L is countable and K is a special subset of S. If U = V ∩ B,
where V is open in R2 then V ∩ S can be represented as the union of countably
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many convex sets and countably many special sets. Thus every point of U is special
in S, a contradiction. �

Corollary 24. A closed subset of R2 contains an uncountable k-clique for some
k ≥ 3 iff it contains a perfect 3-clique.

Proof. Suppose S ⊆ R2 is closed and does not contain a perfect 3-clique. By
Theorem 15, S =

⋃
n Cn ∪

⋃
n Kn where each Cn is convex and each Kn is special

in S. Every clique in S has finite intersection with every Cn and also with every
Kn by Fact 14. �

4.1. Uncountably convex plane Gδ sets. All lemmas in this Section, except
Lemma 19 and Lemma 22(c), apply also to Gδ subsets of the plane, because in
these lemmas we use the fact that a defected triangle in S is in fact defected in its
interior. Fix some Gδ set S ⊆ R2. Call a triangle [a, b, c] in S bad if int[a, b, c] 6⊆ S.
Call a semi-clique P ⊆ S strong if any nonempty open subset of P contains a bad
triangle. Then Lemma 19 holds if we replace the word ”semi-clique” with ”strong
semi-clique”. In the proof of Lemma 22(c) we construct a semi-clique which is a
graph of a convex function. Now we should modify this to obtain a strong semi-
clique. We do this below.

Also, the notion of a special set should be weakened: A subset K of S is almost
special in S if K is Gδ and there exists a continuous coloring c : [K]2 → 2 such that
no open subset of K is c-homogeneous, non-c-homogeneous subsets are defected
and also no c-homogeneous triple is defected in S. The difference between special
and almost special sets is that we do not require anything about defectedness of
pairs: namely if a pair of points in K can be extended to a homogeneous triple
then this pair is not defected, otherwise it may be defected or not.

Lemma 25. Let f be a Gδ semi-clique in S which is a graph of a continuous convex
function. Then either f is a strong semi-clique or some nonempty open subset of
f can be covered by countably many convex subsets of S.

Proof. Suppose that f is convex and int[a, b, c] ⊆ S whenever a, b, c ∈ W , where W
is nonempty and open in f . We may assume that W = f . We show that f can be
covered by countably many convex subsets of S. Fix a, b ∈ f with a < b. Suppose
that there is c ∈ f with b < c and that b is an accumulation point of {x ∈ f : x < b}.
Observe that

[a, b] \ {a, b} ⊆
⋃
{int[a, p, c] ⊆ S : p ∈ f ∧ p < b},

and thus [a, b] ⊆ S. It follows that, if we remove the first and the last element
of f (if they exist) and if we remove all pairs {a, b} such that both a, b are not
accumulation points of {x ∈ f : a < x < b}, then we get a subset P ⊆ f with
convP ⊆ S (by Carathéodory’s theorem). It follows that

f ⊆ convP ∪ (
⋃

p∈f\P

{p}),

and all those sets are convex subsets of S. �

Here is an analogue of Lemma 23 for Gδ sets.

Lemma 26. Let B be a nonempty Gδ-semi-clique in S. Then there exists a non-
empty open set U ⊆ B such that either U can be covered by countably many convex
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subsets of S or U = K ∪ L, where K is an almost special subset of S and L is
countable.

Proof. Suppose that the first possibility does not hold. Then, using the previous
lemma we can apply Lemmas 17,18,19,20 and 21 to obtain a nonempty open subset
of B which is affinely isomorphic to a continuous Lipschitz function f which is
differentiable on a dense set, which does not contain pairs with configuration ∼
and which is nowhere a convex function nor a concave one. As before, denote by
K(f) the subset of K obtained by removing all points which are isolated in f from
at least one side.

We want to know that, in some neighborhood, no decided triangle with vertices
in K(f) is defected in S. Then we can prove a version of Lemma 22(c). We have
the following:

Claim 27. If [a, b, c] is a defected decided triangle with vertices in K(f) then, as
close as we wish, we can find a bad decided triangle with the same configuration as
[a, b, c].

Proof. Suppose that p ∈ [a, b, c] \ S. Find small neighborhoods of a, b, c preserving
the configurations. Now, as a, b, c are not isolated from left or right, we can move
one of them in such a way that p is in the interior of the triangle. Specifically, if e.g.
a < b < c and p ∈ [a, c] then we can find c′ > c close enough to c so that [a, b, c′]
has the same configuration and c′ lies strictly above the line passing through a, c.
Then p ∈ int[a, b, c′]. �

Now we can repeat all the arguments from the proof of Lemma 22(c): if in
any neighborhood in K(f) we can find a decided non-defected triangle, then using
the above claim, we can construct a strong Gδ semi-clique in K(f) which is the
graph of a convex (or concave) function; then we can apply Lemma 19, to get a
contradiction. Thus, in some nonempty open set U ⊆ f , the set K = U ∩K(f) is
almost special, of course L = U \K is countable. �

Now, using almost the same arguments as in the proof of Theorem 15, we can
prove the following.

Theorem 28. Let S be an uncountably convex Gδ subset of the plane. If S does not
contain a perfect 3-clique then S = A ∪ B, where γ(A) ≤ ℵ0 and B is a countable
union of almost special subsets of S.

Proof. Call a point p ∈ S almost special if it has a neighborhood V such that S∩V
can be represented in the desired form. Let B be the set of all points in S which are
not almost special. Then B is a Gδ semi-clique and no nonempty open subset of
B can be covered by countably many convex subsets of S. Now, if B is nonempty
then use Lemma 26 to get a contradiction. �

5. Consistency Results

In this Section and the next we prove

(1) Consistency of cb < c and
(2) There is an uncountably convex closed set S ⊆ R3 such that consistently

γ(S) < hm.
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We will use countable support iteration and countable support products of Sacks
forcing. We use the representation of Sacks forcing S as the set of perfect subtrees
of 2<ω ordered by inclusion.

The Sacks model, i.e., the model obtained by adding ℵ2 Sacks reals to a model
of CH, is the canonical model model for small cardinal invariants. Assuming the
existence of certain large cardinals, Zapletal proved the following [25]: If I is a
projective ideal (on the reals) and cov(I) < c can be forced, then cov(I) < c holds
after adding c+ Sacks reals.

There is another reason to look at the Sacks model to show the consistency of
cb < c. Recall the proof of Lemma 8. There we assigned a function fX to every
homogeneous subset X of 2ω such that whenever H is a family of homogeneous sets
covering 2ω and two sets A,B ⊆ 2ω are closed under the functions fX , X ∈ H,
then A ⊆ B or B ⊆ A. It follows that if the universe V is a forcing extension of L
and 2ω is covered by homogeneous sets coded in L, then the constructible degrees
in V are linearly ordered.

It was shown by M. Groszek in [11] that in the Sacks model over L the con-
structible degrees are wellordered of ordertype ω2. In Section 6 we will construct
a model of set theory in which hm = c because for every family H of homogeneous
subsets of 2ω of size < c there are incomparable sets A,B ⊆ 2ω which are closed
under the functions fX , X ∈ H.

We first show that in the Sacks model, for all continuous colorings c of ωω only
ℵ1 c-homogeneous sets are needed to cover ωω. In Subsection 4 we show how to
generalize this to colorings of arbitrary Polish spaces.

Let us start with some preparation. Let c : [ωω]2 → 2 be continuous. Then c is
coded by a real c. We present one way to define c. For s ∈ ω<ω let Us denote the
set of all x ∈ ωω with s ⊆ x. For s, t ∈ ω<ω we write s ⊥ t if Us ∩ Ut = ∅.

Definition 29. Let c : (ω<ω)2 → {0, 1,undecided} be such that for s, t ∈ ω<ω,
c(s, t) = i if s ⊥ t and for all x ∈ Us and all y ∈ Ut, c({x, y}) = i, and c(s, t) =
undecided otherwise.

By the continuity of c, if x, y ∈ ωω are different, then there are s, t ∈ ω<ω such
that s ⊆ x, t ⊆ y, and c(s, t) = c(x, y). This shows that c is determined by c. Call
a tree T ⊆ ω<ω c-homogeneous of color i if the set [T ] of all infinite branches of
T is c-homogeneous of color i. Then a tree T without leaves is c-homogeneous of
color i if c[T 2] ⊆ {i, undecided}.

If we want to show that after adding ℵ2 Sacks reals to a model of CH, for every
continuous coloring c : [ωω] → 2 we have cov(c) ≤ ℵ1, it is sufficient to consider
colorings in the ground model since every continuous coloring is coded by a real
(which is added at some initial stage of the iteration, where CH is still satisfied).
We show that for every coloring c in the ground model, every new real is contained
in a c-homogeneous set coded in the ground model.

5.1. Some forcing notation. As usual with Sacks forcing, we make heavy use of
fusion arguments. (See [1] for a general treatment of fusion in forcing iterations
and [2] for more on Sacks forcing.) Some of the notation in this section is inspired
by or directly taken from [21].

For n ∈ ω and p ∈ S let pn consist of those t ∈ p such that t has exactly 2
immediate successors in p and t has exactly n proper initial segments with the
same property. For p, q ∈ S we write p ≤n q if p ≤ q and pn = qn.



18 S. GESCHKE, M. KOJMAN, W. KUBIŚ, AND R. SCHIPPERUS

A sequence (pn)n∈ω in S is a fusion sequence if there is a nondecreasing un-
bounded function f : ω → ω such that for all n ∈ ω, pn+1 ≤f(n) pn. If (pn)n∈ω is a
fusion sequence, then pω =

⋂
n∈ω pn is a condition in S, the fusion of the sequence.

In this definition, the function f is only added for technical convenience. If we only
talk about the identity function instead of arbitrary f , we arrive at an essentially
equivalent notion.

The idea behind fusion is that in S, even though it is not countably closed, lower
bounds exist for suitably chosen countable sequences. All we have to do while
inductively thinning out a condition, is to leave more and more splittings of the
tree (the condition) untouched. This method can be extended to countable support
iterations.

Let α be an ordinal and let Sα be the countable support iteration of Sacks forcing
of length α. For F ∈ [α]<ℵ0 , η : F → ω, and p, q ∈ Sα let p ≤F,η q if p ≤ q and for
all β ∈ F , p � β  p(β) ≤η(β) q(β). Roughly speaking, p ≤F,η q means that on each
coordinate from F , p is ≤n-below q where n is given by η.

A sequence (pn)n∈ω of conditions in Sα is a fusion sequence if there is an increas-
ing sequence (Fn)n∈ω of finite subsets of α and a sequence (ηn)n∈ω such that for
all n ∈ ω, ηn : Fn → ω, pn+1 ≤Fn,ηn

pn, for all γ ∈ Fn we have ηn(γ) ≤ ηn+1(γ),
and for all γ ∈ supt(pn) there is m ∈ ω such that γ ∈ Fm and ηm(γ) ≥ n.

This notion is precisely what is needed in countable support iterations to get
suitable fusions. It essentially means that once we have touched (i.e., decreased) a
coordinate of p0, we have to build a fusion sequence in that coordinate.

If (pn)n∈ω is a fusion sequence in Sα, its fusion pω is defined inductively. Let
Fω :=

⋃
Fn.

Suppose pω(γ) has been defined for all γ < β for some β < α. If β 6∈ Fω, let
pω(β) be a name for 1S. If β ∈ Fω, then pω � β forces pn(β) to be a fusion sequence
in S. Let pω(β) be a name for the fusion of the pn(β)’s.

5.2. A preliminary lemma. Our strategy is the following: Let c : [ωω]2 → 2 be
continuous and ẋ an Sω2-name for a new element of ωω. We may assume that there
is α < ω2 such that ẋ is an Sα-name for a real not added at any proper initial stage
of the iteration Sα. Let q be a condition in Sα. We define a tree Tq ⊆ ω<ω, the tree
of q-possibilities for ẋ, by

Tq := {s ∈ ω<ω : ∃q′ ≤ q(q′  s ⊆ ẋ)}.

It should be clear that q forces ẋ to be a branch through Tq.
For each p ∈ Sα we will construct a condition q ≤ p such that Tq is c-homogeneous.

The next lemma tells us how to choose the color of Tq. That is, we can decrease
p such that p becomes an element of one of the sets Ei, i ∈ 2, defined below. If
p ∈ Ei, we can build q such that Tq is c-homogeneous of color i.

Let us fix some more notation. If P is any forcing notion and ẏ is a P-name for a
new element of ωω let y[p] be the maximal element of ω<ω such that p  y[p] ⊆ ẏ.
y[p] exists since ẏ is a name for a new real.

For i ∈ 2 let

Ei := {p ∈ Sα : ∀β < α∀q ≤ p∃q′ ≤ q∃q0, q1

(q′ � β  q0, q1 ≤ q′ � [β, α) ∧ c(x[q0], x[q1]) = i)}.

Recall that c(s, t) ∈ 2 implies s ⊥ t.
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Lemma 30. E0 and E1 are open and E0 ∪ E1 is dense in Sα.

This lemma is true for all forcing iterations, not only of Sacks forcing. We do
not even use countable supports.

Proof of Lemma 30. Let us start with two claims.

Claim 31. Let P be any notion of forcing, ẏ a P-name for a new element of ωω,
and c as before. Then for every condition p ∈ P there are p0, p1 ≤ p such that
c(y[p0], y[p1]) ∈ 2.

For the proof of this claim let p0
0, p

0
1 ≤ p be such that y[p0

0] ⊥ y[p0
1]. p0

0 and p0
1

exist since ẏ is not decided by a single condition. For each j ∈ 2 pick a sequence
p1

j ≥ p2
j ≥ . . . below p0

j such that pn
j decides ẏ � n. Let yj :=

⋃
n∈ω y[pn

j ]. Since c is
continuous, there is n ∈ ω such that c(y[pn

0 ], y[pn
1 ]) = c(y0, y1). Now p0 := pn

0 and
p1 := pn

1 work for the claim.

Claim 32. Let β < α and let q ∈ Sα be such that for some i ∈ 2 there are q0 and
q1 such that

q � β  q0, q1 ≤ q � [β, α) ∧ c(x[q0], x[q1]) = i.

Let γ < β. Then there are q′ ≤ q and q′0 and q′1 such that

q′ � γ  q′0, q
′
1 ≤ q′ � [γ, α) ∧ c(x[q′0], x[q′1]) = i.

To see this, let q′ ≤ q be such that q′ � [β, α) = q � [β, α) and q′ � β decides x[q0]
and x[q1]. For j ∈ 2 let q′j := q′ � [γ, β)_qj . Now q′, q′0, and q′1 work for the claim.

For the proof of the lemma let p ∈ Sα. Suppose p 6∈ E0. We show that p has an
extension in E1. Since p 6∈ E0, there are γ < α and q ≤ p such that for all q′ ≤ q and
any two sequences q0 and q1 for names of conditions, if q′ � γ  q0, q1 ≤ q′ � [γ, α),
then q′ � γ 6 c(x[q0], x[q1]) = 0. We are done if we can show

Claim 33. q ∈ E1.

Let r ≤ q and β < α. Note that by Claim 32, the sets Ei are not changed if in
the definition we replace “∀β < α” by “for cofinally many β < α”. Thus we may
assume β ≥ γ.

Let q0 and q1 be such that

r � β  q0, q1 ≤ r � [β, α) ∧ c(x[q0], x[q1]) ∈ 2.

The existence of q0 and q1 follows from Claim 31 together with the assumption
that ẋ is not added at any proper initial stage of the iteration. Decreasing r � β if
necessary, we may assume that r � β decides c(x[q0], x[q1]) to be i ∈ 2.

By Claim 32, there are r′ ≤ r and r0 and r1 such that

r′ � γ  r0, r1 ≤ r′ � [γ, α) ∧ c(x[r0], x[r1]) = i.

By the choice of q, i 6= 0. Thus i = 1. This shows q ∈ E1. �

5.3. cov(c) is small in the Sacks model. Let c, ẋ, and α be as before. The
way to build a condition q for which Tq is c-homogeneous is the following: q will
be the fusion of a fusion sequence (pn)n∈ω with witness (Fn, ηn)n∈ω. For each n,
(pn, Fn, ηn) will determine a finite initial segment Tn of Tq. We have to make sure
that Tq is the union of the Tn and that the Tn are good enough to guarantee the
c-homogeneity of Tq. The latter will be ensured by the (Fn, ηn)-faithfulness of each
pn, which is defined below.
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First we introduce some tools that help us to carry out the necessary fusion
arguments.

For p ∈ S and n ∈ ω, each % ∈ 2n determines an element s% of pn. Let p% := {t ∈
p : s% ⊆ t ∨ t ⊆ s%}. Let stem(p) be the maximal element of p which is comparable
with all the other elements of p.

Let α be an ordinal. For F ∈ [α]<ℵ0 , η : F → ω, σ ∈
∏

γ∈F 2η(γ), and q ∈ Sα let
q ∗ σ be defined as follows:

For γ ∈ F let (q ∗σ)(γ) be a name for a condition in S such that Sγ
(q ∗σ)(γ) =

q(γ)σ(γ). For γ ∈ α \ F let (q ∗ σ)(γ) := q(γ).
The q∗σ form a finite maximal antichain below q. Consider the tree T generated

by {x[q ∗ σ] : σ ∈
∏

γ∈F 2η(γ)}. If q′ ≤F,η q, then Tq′ is an end-extension of T .

Definition 34. Let i ∈ 2 and ẋ be fixed. For F and η as before, a condition q ∈ Sα

is (F, η)-faithful if for all σ, τ ∈
∏

γ∈F 2η(γ) with σ 6= τ , c(x[q ∗ σ], x[q ∗ τ ]) = i.

Now we are ready to formulate the lemma that will serve for the induction steps
in our construction.

Lemma 35. Let c : [ωω]2 → 2 be continuous and let ẋ be a Sα-name for an element
of ωω which is not added by an initial stage of the iteration. Let F , η, and i be as
in Definition 34 and suppose that q ∈ Sα is (F, η)-faithful.

a) Let β ∈ α \ F and let F ′ := F ∪ {β} and η′ := η ∪ {(β, 0)}. Then q is
(F ′, η′)-faithful.

b) Suppose q ∈ Ei. Let β ∈ F and let η′ := η � F \ {β} ∪ {(β, η(β) + 1)}. Then
there is r ≤F,η q such that r is (F, η′)-faithful.

Proof. a) follows immediately from the definitions.
For b) let δ := max(F ).

Claim 36. There is a condition q′ ≤F,η q such that for each σ ∈
∏

γ∈F 2η(γ) there
are sequences qσ,0 and qσ,1 of names for conditions such that

q′ ∗ σ � δ  qσ,0, qσ,1 ≤ q′ ∗ σ � [δ, α) ∧ c(x[qσ,0], x[qσ,1]) = i

and q′ ∗ σ � δ decides x[qσ,0] and x[qσ,1].

For the proof of the claim, let {σ1, . . . , σn} be an enumeration of
∏

γ∈F 2η(γ).
We build a ≤f,η-decreasing sequence (qm)m<n such that q0 := q and q′ := qn works
for the claim. As we construct qm, we find suitable qσm,0 and qσm,1.

Let m ∈ {1, . . . , n} and assume that qm−1 has already been constructed. Since
q ∈ Ei and Ei is open, there are q′m ≤ qm−1 ∗ σm and sequences qσm,0 and qσm,1 of
names of conditions such that

q′m � δ  qσm,0, qσm,1 ≤ q′ � [δ, α) ∧ c(x[qσm,0], x[qσm,1]) = i.

We may assume that q′m � δ decides x[qσm,0] and x[qσm,1]. Let qm ≤F,η qm−1 be
such that qm ∗ σm � δ = q′m � δ and qm � [δ, α) = q � [δ, α). This finishes the
construction, and it is easy to check that it works.

Continuing the proof of the lemma, let qσ,j and q′ be as in the claim. Decreasing
the qσ,j if necessary, we may assume that for all σ ∈

∏
γ∈F 2η(γ),

q′ ∗ σ � δ  stem(qσ,0(δ)) ⊥ stem(qσ,1(δ)).

The assumption about the incompatibility of the stems of the qσ,j(δ) will only be
needed in the case β = δ.
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For % ∈ 2η(δ) let r%_0 and r%_1 be sequences of names for conditions such that
for all j ∈ 2 and all σ ∈

∏
γ∈F 2η(γ) with σ(δ) = %,

q′ ∗ σ � δ  r%_j = qσ,j .

If β = δ, let r be a sequence of names for conditions such that r � δ = q′ � δ and
for all σ ∈

∏
γ∈F 2η′(γ),

q′ ∗ σ � δ  r ∗ σ � [δ, α) = rσ(δ).

If β is strictly smaller than δ, let r be a sequence of names for conditions such that
r � δ = q′ � δ and for all σ ∈

∏
γ∈F 2η′(γ),

q′ ∗ σ � δ  r � [δ, α) = rσ(δ)_j

where j = σ(β)(η(β)).
Note that in any case, r ≤F,η q′ and thus r ≤F,η q. It follows from the construc-

tion that r is (F, η′)-faithful. �

Recall that every continuous c : [ωω]2 → 2 is coded by c. If M [G] is a generic
extension of M and c ∈ M , then if we talk about c in the context of M [G], we refer
to the mapping that has the same definition in M [G] as the original c has in M
with respect to c.

Lemma 37. Let G be Sω2-generic over the ground model M . Let c : [ωω]2 → 2 be
continuous with c ∈ M . Then in M [G], ωω is covered by c-homogeneous sets coded
in the ground model.

Proof. We work in M . Let ẋ be a name for an element of ωω. We show that ẋ is
forced to be a branch through a c-homogeneous tree in M . We may assume that
for some α < ω2, ẋ is an Sα-name for a real not added by an initial stage of the
iteration Sα. Clearly, cf(α) ≤ ℵ0. Let p ∈ Sα. Using Lemma 30, we can decrease p
such that for some i ∈ 2, p ∈ Ei. By induction, we define a sequence (pn, Fn, ηn)n∈ω

such that
(1) for all n ∈ ω, pn ∈ Sβ , pn ≤ p, Fn ∈ [α]<ℵ0 , ηn : Fn → ω, and pn is

(Fn, ηn)-faithful,
(2) for all n ∈ ω, Fn ⊆ Fn+1, pn+1 ≤Fn,ηn pn, and for all γ ∈ Fn we have

ηn(γ) ≤ ηn+1(γ), and
(3) for all n ∈ ω and all γ ∈ supt(pn) there is m ∈ ω such that γ ∈ Fm and

ηm(γ) ≥ n.
This construction can be done using parts a) and b) of Lemma 35 to extend Fn

or to make ηn bigger, together with some bookkeeping to ensure 3. Now (pn)n∈ω

is a fusion sequence. Let q be the fusion of this sequence. For each n ∈ ω let
Tn be the tree generated by {x[pn ∗ σ] : σ ∈

∏
γ∈Fn

2ηn(γ)}. It is easily seen that
Tq =

⋃
n∈ω Tn.

It now follows from the faithfulness of the pn that Tq is c-homogeneous of color i.
Moreover, q forces ẋ to be a branch through Tq. It follows that the set of conditions
in Sα forcing ẋ to be an element of a c-homogeneous set coded in M is dense in Sα.
Since Sα is completely embedded into Sω2 , this finishes the proof of the lemma. �

Theorem 38. In the Sacks model, for all continuous c : [ωω]2 → 2, not more than
ℵ1 c-homogeneous sets are needed to cover ωω.
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Proof. Let M be the ground model satisfying CH and let G be Sω2-generic over M .
We argue in M [G]. Let c be a continuous coloring of the two-element subsets of
ωω. Since every real is added by an initial stage of the iteration, there is α < ω2

such that c ∈ M [G ∩ Sα]. By Lemma 37, ωω is covered by the c-homogeneous
sets coded in M [G ∩ Sα]. But |R ∩M [G ∩ Sα]|= ℵ1. It follows that there are ℵ1

c-homogeneous sets covering ωω. �

5.4. cb is small in the Sacks model. We extend Theorem 38 to continuous
colorings of arbitrary Polish spaces. Let X be a Polish space and c : [X]2 →
2 continuous. Since every Polish space is a continuous image of ωω, there is a
continuous surjection f : ωω → X. We define c : (ω<ω)2 → {0, 1,undecided}
coding this situation.

Definition 39. For s, t ∈ ω<ω let c(s, t) := i ∈ 2 if f [Us] ∩ f [Ut] = ∅ and for all
x ∈ Us and all y ∈ Ut, c({f(x), f(y)}) = i. Otherwise let c(s, t) := undecided.

By the continuity of c and f , if x, y ∈ ωω are such that f(x) 6= f(y), then there
are s, t ∈ ω<ω such that s ⊆ x, t ⊆ y, and c(s, t) = c({f(x), f(y)}).

Call a set A ⊆ ωω c-homogeneous of color i if for any two different points x, y ∈ A,
f(x) 6= f(y) and c({f(x), f(y)}) = i. If A is c-homogeneous, then clearly f [A] is a
c-homogeneous subset of X.

Note that if X and f are in the ground model, P is any notion of forcing, p is a
condition in P, and ẋ is a name for an element of ωω such that f(ẋ) is forced to be
a new element of X, then there are p0, p1 ≤ p such that f [Ux[p0]] ∩ f [Ux[p1]] = ∅.

Now it easy to see that the lemmas needed for the proof of Theorem 38 go
through as before even with this more general definition of c. It follows that in the
Sacks model, for every Polish space X, every continuous c : [X]2 → 2, and every
continuous surjection f : ωω → X, ωω is covered by ℵ1 c-homogeneous sets. Since
c-homogeneous subsets of ωω are mapped onto c-homogeneous subsets of X and f
is onto, we have proved

Theorem 40. In the Sacks model, for every Polish space X and every continuous
c : [X]2 → 2 only ℵ1 c-homogeneous sets are needed to cover X.

Let V be a universe of set theory and suppose that S ∈ V , S ⊆ R2 is closed
and does not contain a perfect 3-clique. If necessary, collapse the continuum to ℵ1

using a σ-complete forcing. Since no new reals are introduced, no closed sets are
introduced either, and S does not contain a perfect clique also after the collapse.
So without loss of generality V |= CH.

By Theorem 15, S is a union of countably many convex sets and countably many
sets which are special in S. Now by Theorem 40, in the Sacks model over V every
special subset of S is a union of ℵ1 convex sets. Therefore γ(S) = ℵ1. This implies

Theorem 41. There exists a forcing notion Q so that every closed planar set either
contains a perfect 3-clique or is a union of ℵ1 < c convex sets in V Q.

6. Distinguishing R2 from R3

In this Section we show that the geometry of R2 imposes stricter restrictions
on convexity numbers of closed sets than the geometry of R3 does. We provide a
model in which all convexity numbers of uncountably convex closed planar sets are
equal to the continuum — namely, a closed planar set is either countably convex or
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not coverable by fewer than c convex sets — but in which there are closed subsets
S ⊆ R3 with ℵ0 < γ(S) < c.

We use the fact that countable support products of Sacks forcing have the so
called 2-localization property. This was shown by Newelski and Roslanowski in [21].

A subtree T of ω<ω is binary if every t ∈ T has at most 2 immediate successors
in T . A forcing notion P has the 2-localization property if every new element of ωω

added by P is forced to be a branch through a binary tree from the ground model.

Theorem 42. It is consistent that hm = c = ℵ100 and there are ℵ1 binary subtrees
of ω<ω such that every x ∈ ωω is a branch of one of these trees.

The biggest cardinal invariant in Cichoń’s diagram is cof(N ), the cofinality of
the ideal of measure zero subsets of the real line. Note that by Bartoszyński’s
characterization of cof(N ) in terms of slaloms found in [3], this cardinal invariant
is ℵ1 in the model used for Theorem 42. In particular, it is consistent that hm is
strictly larger than all the cardinal invariants in Cichoń’s diagram.

Theorem 42 will follow from

Lemma 43. Let M be a model of set theory satisfying GCH. Let κ be an infinite
cardinal of cofinality > ℵ0 in M and let P be the countable support product of κ
copies of Sacks forcing in M . Let G be P-generic over M . Then in M [G], hm = c.

Proof. Note that forcing with a countable support product of Sacks forcing over a
model of CH does not collapse cardinals (see [14]). It is clear that c = κ in M [G].
Suppose that F is an uncountable family of homogeneous subsets of 2ω in M [G]
such that |F|< κ. We may assume that F consists of perfect sets. For X ∈ M with
X ⊆ κ let PX be the subordering of P consisting of those conditions the support of
which is a subset of X. In M there is a set X ⊆ κ such that F ∈ M [G ∩ PX ] and
|X|< κ. Let α, β ∈ κ \X and let x, y ∈ 2ω be the generic reals added by the α-th,
respectively β-th Sacks forcing in the product P. x and y are typically not Sacks
reals over M [G∩PX ], however, we have y 6∈ (2ω)M [G∩PX ][x] and x 6∈ (2ω)M [G∩PX ][y].
It follows from the proof of Lemma 8 that x⊗ y is not an element of

⋃
F . �

Proof of the theorem. Let M and P be as in the lemma with κ = (ℵ100)M . Let G
be P-generic over M . By the 2-localization property of P, every x ∈ (ωω)M [G] is a
branch of a binary tree in M . But M [G] thinks that there are only ℵ1 binary trees
in M . By the lemma, hm = c in M [G]. �

In [15] a closed subset S of R3 was constructed such that γ(S) is precisely the
minimal size of a family of binary subtrees of 3<ω such that every element of 3ω

is a branch of one of these trees. (More properties of this set were established in
[17].) This together with Theorem 42 clearly implies

Corollary 44. There is a closed set S ⊆ R3 such that it is consistent that γ(S) = ℵ1

while hm = c = ℵ100.

7. Open problems and conjectures

The results above do not contradict the following statement: the convexity num-
ber of every closed planar S is in the set {ℵ0,ℵ1, c}. So let us phrase:

Problem 1. Is there a model of ZFC in which some closed S ⊆ R2 satisfies ℵ1 <
γ(S) < c?
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Such a model has to satisfy, of course, c = γ(S)+.
Closed sets in R2 can possess at most 2 different uncountable convexity numbers.

Let us phrase a wild conjecture:

Conjecture 2. Convexity numbers of Borel subsets of Rn can assume at most n
different uncountable values.

From the main theorem it follows that if a closed planar set has a clique of size
ℵ1 then it also has a clique of size c.

Problem 3. Is there a definable cardinal κ so that whenever a Borel subset of Rn

contains a clique of cardinality ≥ κ it also contains a clique of size c?
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