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Definition (John Beck). Assume T1 = (T1, µ1, η1) and T2 =

(T2, µ2, η2) are triples on a category C. A distributive law guarantees

that for every T2-algebra A in C, the object T2(A) ∈ C is a T1-algebra

in a very specific way. More precisely, a distributive law is a natural

transformation

λ : T1T2 → T2T1,

such that, for every T2-algebra A = (A,α : T2(A) → A), the object

T2(A) ∈ C is a T1-algebra with structure morphism

T1T2A
λ
−→ T2T1A

T2α−−→ T2A.

This imposes certain conditions on λ whose explicit form can be

found in the literature. The endofunctor T = T2T1 is then again a

triple, with structure transformations

µ = T2µ1 ◦ µ2T
2
1 ◦ T2λT1, η = η1 ◦ η2 ◦ T1.

The equality

T (X) = T2

(

T1(X)
)

, X ∈ C,

may be interpreted as saying that the free T -algebra on X is (as an

object of C) naturally isomorphic to the free T2-algebra generated by

the free T1-algebra on X .



3

‘Definition.’ A distributive law is given by a rewriting rule

D : •(◦) ◦ (•)

specifying how to rewrite iterated products involving • and ◦ to

expressions where all •’s go first (• is ‘heavier’ so it goes down). The

rewriting rule determines a distributive law if it is coherent in that

it does not generate unexpected relations. We say that the rewriting

rule (and the induced distributive law) is

(i) operadic if it does not involve repetition of variables (it is in-

jective in the terminology of universal algebra).

(ii) homogeneous if all terms have the same bidegree in (•, ◦), and

(iii) quadratic if all terms contain precisely two operations.

Notice that (ii)+(iii) means that all terms are of bidegree (1, 1).
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Example. An inhomogeneous quadratic operadic distributive law

is e.g. the one which describes associative algebras as algebras with

two operations, a commutative nonassociative multiplication − · −

and a Lie bracket [−,−], with the ‘Leibniz rule’

(1) [a · b, c] = a · [b, c] + [a, b] · c

plus

[b, [a, c]] = (a · b) · c− a · (b · c)

whose left hand side has bidegree (2, 0) while the right hand side

bidegree (0, 2). Notice that the green term is the deviation from the

associativity of − · −.

Example. Poisson algebras have a Lie bracket [−,−] and a com-

mutative associative multiplication − ·− tied by the rewrite rule (1)

of the form

D : Lie(Com) Com(Lie).

Coherence is manifested by the isomorphism

Pois(X) ∼= Com(Lie(X)).

This and all the remaining rewrite rules (distributive laws) will be

homogeneous, quadratic and operadic.

Example. Non-symmetric Poisson algebras – two associative non-

commutative multiplications • and ◦ tied by the distributive law:

(x ◦ y) • z = x ◦ (y • z), x • (y ◦ z) = (x • y) ◦ z.

or, denoting 〈a, b〉 := a • b, ab := a ◦ b,

〈x, yz〉 = 〈x, y〉z, 〈xy, z〉 = x〈y, z〉.

It is a perfectly self-dual rewrite rule Ass(Ass) Ass(Ass).
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Example of the coherence check:

The compatibility of the distributive law for Poisson algebras with

the anticommutativity of [−,−]:

(2) [ab, cd] = −[cd, ab].

Expanding the left-hand side using the distributive law twice gives:

[ab, cd] = a[b, cd] + [a, cd]b

= ac[b, d] + a[b, c]d + c[a, d]b + [a, c]db.

Expanding the right-hand side using the distributive law twice gives:

−[cd, ab] = −c[d, ab]− [c, ab]d

= −ca[d, b]− c[d, a]b− a[c, b]d− [c, a]bd.

Applying the anti-symmetry of [−,−] leads to:

−[cd, ab] = ca[b, d] + c[a, d]b + a[b, c]d + [a, c]bd.

Rearranging the terms, we get the tautological equality

ac[b, d] + c[a, d]b + a[b, c]d + [a, c]db

ca[b, d] + c[a, d]b + a[b, c]d + [a, c]bd

showing that (2) is compatible with the distributive law.

Notice that in order to compare the first and the last terms, we need

to know that ac = ca and that bd = db, i.e. that the · -product

is commutative, cf. the non-example of non-commutative Poisson

algebras!

The compatibility with the associativity and commutativity of the

· -product, and the Jacobi identity can be verified similarly.
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Why it is reasonable to restrict to operadic homogeneous quadratic

(abbrev. OHQ) distributive laws? Some 20 years ago in Chapel Hill,

while visiting Jim, I proved:

Theorem. For an OHQ distributive law (rewrite rule) it is enough

to check the coherence for products of 4 elements only. Therefore we

face only a finite, though possibly very big, number of equations.

Moreover, one has the following superimportant:

Theorem. If P1 and P2 are quadratic Koszul operads and

D : P1(P2) P2(P1)

a OHQ, then the combination P of P1 and P2 via D is Koszul, too.

Corollary. Poisson, non-commutative Poisson (properly defined),

non-symmetric Poisson, Gerstenhaber, &c. are Koszul.



7

Theorem. To each OHQ

D : P1(P2) P2(P1)

one has the canonical dual OHQ distributive law

D! : P!
2(P

!
1) P

!
1(P

!
2),

such that the resulting combined operad Q is the Koszul dual of the

operad P which is the combination of P1 and P2 using D.

Thanks to this theorem, in order to describe all OHQ distributive

laws between the Three graces, it is enough to investigate the follow-

ing cases:

- distributive laws Ass(Ass) Ass(Ass),

- distributive laws Ass(Com) Com(Ass),

- distributive laws Ass(Lie) Lie(Ass),

- distributive laws Com(Com) Com(Com),

- distributive laws Com(Lie) Lie(Com), and

- distributive laws Lie(Com) Com(Lie).

The remaining cases, i.e.

- distributive laws Lie(Ass) Ass(Lie),

- distributive laws Com(Ass) Ass(Com), and

- distributive laws Lie(Lie) Lie(Lie)

follow by taking the Koszul dual of the appropriate cases of the first

list. The colors indicate the correspondence, the black ones are self-

dual.
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Distributive laws Ass(Ass) Ass(Ass).

Analyzing the coherence leads to quadratic equations in 24 variables.

Solving them requires at some point a 960× 960 -matrix. Murray’s

computer found the following:

Theorem. The only distributive laws between two associative mul-

tiplications are given by

(1) (x ◦ y) • z = 0, x • (y ◦ z) = 0
(2) (x ◦ y) • z = 0, x • (y ◦ z) = (x • y) ◦ z
(3) (x ◦ y) • z = x ◦ (y • z), x • (y ◦ z) = 0
(4) (x ◦ y) • z = x ◦ (y • z), x • (y ◦ z) = (x • y) ◦ z
(5) (x ◦ y) • z = 0, x • (y ◦ z) = y ◦ (x • z)
(6) (x ◦ y) • z = (x • z) ◦ y, x • (y ◦ z) = 0
(7) (x ◦ y) • z = (x • z) ◦ y, x • (y ◦ z) = y ◦ (x • z).

Laws of the same color are isomorphic modulo the (Z2 × Z2)-action

given by • → •op resp. ◦ → ◦op.

The black law is the trivial one, the blue laws the truncated ones,

and the red laws are the laws for non-symmetric Poisson algebras.

So, up to isomorphism, there are only three distributive laws between

two associative multiplications.

Corollary. Up to isomorphism, there is only one distributive law

between two associative multiplications which lives in the category

Sets of sets, namely the one for non-symmetric Poisson algebras.
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What we know about the remaining cases

(1) distributive laws Ass(Com) Com(Ass),

(2) distributive laws Ass(Lie) Lie(Ass),

(3) distributive laws Com(Com) Com(Com),

(4) distributive laws Com(Lie) Lie(Com), and

(5) distributive laws Lie(Com) Com(Lie)?

(1), (2) – only the trivial distributive law exists.

(3), (4) – ?

(5) – only Poisson and the trivial one exists, cf. [Bremner-Dotsenko].

Outside the Three Graces anything may happen.

Example. The formulas

(x◦y)•z = 0

x•(y◦z) = − γ (x•y)◦z +
√

γ2+γ (x•z)◦y

+ (γ+1) y◦(x•z)−
√

γ2+γ z◦(x•y)

represent an one-parametric family of distributive laws between an

associative bilinear multiplication • and a free (= satisfying no ax-

ioms) bilinear operation ◦.

For instance, taking γ = −1
2 we get

(x◦y)•z = 0

x•(y◦z) =
1

2
(x•y)◦z +

√

−
1

2
(x•z)◦y +

1

2
y◦(x•z)−

√

−
1

2
z◦(x•y).

We see a distributive law whose existence depends on the existence

of the square root of −1
2 in the ground field!
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0.1. Example. Let us consider the rewriting law

(x◦y)•z = 0(4a)

x•(y◦z) = −γ (x•y)◦z +
√

γ2+γ (x•z)◦y + (γ+1) y◦(x•z)−
√

γ2+γ z◦(x•y)(4b)

between an associative bilinear multiplication • and a free (= satisfying no axioms) bilinear
operation ◦. To verify that it defines a distributive law, we need to consider the following
three equalities that follow from the associativity of •:

((u◦v)•a)•b = (u◦v)•(a•b),(5a)

(u•(v◦a))•b = u•((v◦a)•b), and(5b)

(u•v)•(a◦b) = u•(v•(a◦b)),(5c)

and apply the rewrite rule to both sides of them. In all cases we must obtain equalities
again. Let us illustrate this on (5c). Expanding its left hand side gives

(u•v)•(a◦b) =− γ
(

(u•v)•a
)

◦b+
√

γ2+γ
(

(u•v)•b
)

◦a

+ (γ+1) a ◦
(

(u•v)•b
)

−
√

γ2+γ b ◦
(

(u•v)•a
)

=− γ (u•v•a)◦b+
√

γ2+γ (u•v•b)◦a

+ (γ+1) a ◦(u•v•b)−
√

γ2+γ b ◦(u•v•a),

while its right hand side leads to

u•
(

v•(a◦b)
)

=− γ u•
(

(v•a)◦b
)

+
√

γ2+γ u•
(

(v•b)◦a
)

+ (γ+1)u•
(

a◦(v•b)
)

−
√

γ2+γ u•
(

b◦(v•a)
)

= γ 2
(

u•(v•a)
)

◦b− γ
√

γ2+γ (u•b)◦(v•a)

− γ (γ+1) (v•a)◦(u•b) + γ
√

γ2+γ b◦
(

u•(v•a)
)

− γ
√

γ2+γ
(

u•(v•b)
)

◦a+ (γ2+γ) (u•a)◦(v•b)

+ (γ+1)
√

γ2+γ (v•b)◦(u•a)− (γ2+γ) a◦
(

u•(v•b)
)

− γ (γ+1) (u•a)◦(v•b) + (γ+1)
√

γ2+γ
(

u•(v•b)
)

◦a

+ (γ +1)2a◦
(

u•(v•b)
)

− (γ+1)
√

γ2+γ (v•b)◦(u•a)

+ γ
√

γ2+γ (u•b)◦(v•a)− (γ2+γ)
(

u•(v•a)
)

◦b

− (γ+1)
√

γ2+γ b ◦
(

u•(v•a)
)

+ (γ2+γ) (v•a)◦(u•b)

= γ 2(u•v•a)◦b− γ
√

γ2+γ (u•b)◦(v•a)

− (γ2+γ) (v•a)◦(u•b) + γ
√

γ2+γ b◦(u•v•a)

− γ
√

γ2+γ (u•v•b)◦a + (γ2+γ) (u•a)◦(v•b)

+ (γ+1)
√

γ2+γ (v•b)◦(u•a)− (γ2+γ) a◦(u•v•b)

− (γ2+γ) (u•a)◦(v•b) + (γ+1)
√

γ2+γ (u•v•b)◦a
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+ (γ +1)2a◦(u•v•b)− (γ+1)
√

γ2+γ (v•b)◦(u•a)

+ γ
√

γ2+γ (u•b)◦(v•a)− (γ2+γ) (u•v•a)◦b

− (γ+1)
√

γ2+γ b ◦ (u•v•a) + (γ2+γ) (v•a)◦(u•b).

What we obtained is indeed an equality. For instance,
√

γ2+γ appears as the coeffocient at
the term (u•v•b)◦a (the boxed term) in the expansion of (u•v)•(a◦b), while in the expansion

of u•
(

v•(a◦b)
)

we see this term twice, once with coefficient −γ
√

γ2+γ , once with coefficient

(γ+1)
√

γ2+γ . Since
√

γ2+γ = −γ
√

γ2+γ + (γ+1)
√

γ2+γ ,

these terms cancel. We leave a similar (and in fact, easier) analysis of (4a) and (4b) to the
reader. The last property to be verified is that the resuts of succesive applications of the
rewriting rule to (u◦v)•(a◦b) rule does not depend on the order of applications.

Applying (4a) with x = u, y = v and z = a◦b gives (u◦v)•(a◦b) = 0 immediately. Rule (4b)
with x = u◦v, y = a and z = b leads to

(u◦v)•(a◦b) =− γ
(

(u◦v)•y
)

◦z +
√

γ2+γ
(

(u◦v)•z
)

◦y

+ (γ+1) y◦
(

(u◦v)•z
)

−
√

γ2+γ z◦
(

(u◦v)•y
)

.

Its right hand side equals zero by (4a), as required.


