Deformations of algebras and their diagrams

We will work over a fixed characteristic zero field **k**. Everyone knows that deformations of an associative algebra (A, μ) are controlled by the Hochschild cohomology $H^*(A, A)$, which is the cohomology of

$$0 \xrightarrow{\delta} C^0(A, A) \xrightarrow{\delta} C^1(A, A) \xrightarrow{\delta} \cdots \xrightarrow{\delta} C^n(A, A) \xrightarrow{\delta} \cdots$$

where $C^n(A, A) := Lin(A^{\otimes n+1}, A)$ and the coboundary δ given by $\delta f(a_0 \otimes \cdots \otimes a_n) := (-1)^{n+1} a_0 f(a_1 \otimes \cdots \otimes a_n) + f(a_0 \otimes \cdots \otimes a_{n-1}) a_n$ $+ \sum_{i=0}^{n-1} (-1)^{i+n} f(a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n).$

Graphically, modulo signs, with \checkmark symbolizing the multiplication,

By 'controlled by' we usually mean that

 $-H^1(A, A)$ classifies infinitesimal deformations and $-H^2(A, A)$ contains obstructions for their extensions.

More precisely, $C^*(A, A)$ carries the Gerstenhaber bracket [-, -] which turns it into a dg-Lie algebra

$$\mathfrak{g} := (C^*(A, A), [-, -], \delta).$$

Let L be the Lie group $\mathfrak{g} \otimes (t) \subset \mathfrak{g} \otimes \mathbf{k}[[t]]$. Consider the solutions of the Maurer-Cartan equation in L

$$MC(\mathfrak{g}) := \{ s \in L^1; \ \delta s + \frac{1}{2}[s, s] = 0 \}, \ G(\mathfrak{g}) := \exp(L^0).$$

The moduli space of formal deformations of μ equals the quotient $\mathfrak{Def}(\mathfrak{g}) = \mathrm{MC}(\mathfrak{g})/\mathrm{G}(\mathfrak{g}).$

Our aim is to show that the same scheme holds for a wide class of algebras and their diagrams, though instead of dg-Lie one sometimes needs an L_{∞} -algebra. We will show how to construct, for a (diagram of) algebra(s) A belonging to a specified class of structures, an L_{∞} -algebra $\mathfrak{g} = (C^*(A, A), \delta = l_1, l_2, \ldots)$ governing its deformations.

We will focus on explicit calculations and examples. We, in particular, show that deformations of morphisms are controlled by a fully-fledged L_{∞} -structure. We give an example where a 'curved' (= with l_0 -term) L_{∞} -algebra occurs. We also show that L_{∞} -deformation algebras are required for deformations of exotic structures.

By a 'class of structures' we mean algebras over a (colored, in the case of diagrams) **k**-vector space operad \mathcal{P} . We assume that operads are familiar; yet we we recall that:

▷ An operad \mathcal{P} is a collection $\{\mathcal{P}(n)\}_{n\geq 1}$ of vector spaces together with composition operations

$$\circ_i : \mathcal{P}(m) \otimes \mathcal{P}(n) \to \mathcal{P}(m+n-1), \quad 1 \le i \le m.$$

Each $\mathcal{P}(n)$ has moreover a right Σ_n -action. n is called the arity.

These data satisfy axioms evident in the most important example of the endomorphism operad of V, $\mathcal{E}nd_V = {\mathcal{E}nd_V(n)}_{n\geq 1}$,

$$\mathcal{E}nd_V(n) := Lin(V^{\otimes n}, V),$$

with

$$(f \circ_i g)(v_1 \otimes \cdots \otimes v_{n+m-1}) :=$$

:= $f(v_1 \otimes \cdots \otimes v_{i-1}, g(v_i \otimes \cdots \otimes v_{i+m-1}), v_{i+m} \otimes \cdots \otimes v_{m+n-1})$

and Σ_n permuting the arguments.

 \triangleright An algebra over \mathcal{P} (or a \mathcal{P} -algebra) is an operadic morphism $a: \mathcal{P} \to \mathcal{E}nd_V$. Examples:

1. An associative algebra is a vector space A with an associative multiplication $\mu : A \otimes A \to A$:

$$\mu(\mu(a,b),c)=\mu(a,\mu(b,c)).$$

If we 'visualize' μ as an 'operation' with two inputs and one output, $\mu = \not$, the associativity is depicted as

The operad $\mathcal{A}ss$ describing associative algebras is the quotient

$$\mathcal{A}ss := \mathbb{F}\left(\bigstar\right) / \left(\bigstar^{-} \checkmark \right)$$

of the free operad $\mathbb{F}(\checkmark)^1$ modulo the operadic ideal generated by the associativity. Formally,

$$\mathcal{A}ss = \mathbb{F}(\mu)/(\mu \circ_1 \mu = \mu \circ_2 \mu).$$

2. The operad Com for commutative associative algebras is obtained from Ass by further assuming that the multiplication μ is symmetric, $\mu(a, b) = \mu(b, a).$

3. A Lie algebra is a vector space L with an antisymmetric product $[-, -]: L \otimes L \to L$ (the 'bracket'), satisfying the Jacobi identity:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

The operad $\mathcal{L}ie$ for Lie algebras is the quotient

 $1_{\text{Explain.}}$

To describe diagrams of algebras, we need colored operads.

 \triangleright Fix a set of colors C (= nodes of the diagram). We modify the definition of an operad by assuming that each $\mathcal{P}(n)$ decomposes as

$$\mathcal{P}(n) = \bigoplus_{c,c_1,\ldots,c_n \in \mathbf{C}} \mathcal{P}\begin{pmatrix}c\\c_1,\ldots,c_n\end{pmatrix}.$$

Let $f \in \mathcal{P}\left(\begin{array}{c}c\\c_{1},\ldots,c_{i-1},c_{i},c_{i+1},\ldots,c_{m}\end{array}\right)$ and $g \in \mathcal{P}\left(\begin{array}{c}d\\d_{1}\ldots,d_{k}\end{array}\right)$.

We require that $f \circ_i g \neq 0$ implies $d = c_i$, in which case

$$f \circ_i g \in \mathcal{P} \left(\begin{array}{c} c \\ c_1, \dots, c_{i-1}, d_1, \dots, d_k, c_{i+1}, \dots, c_m \end{array} \right).$$

Thus one may plug g into the *i*-th slot of f only if the colors match, otherwise the result is zero. If $\mathbf{C} = \{ \text{Pt} \}$, we get ordinary operads.

The main example is provided by the colored endomorphism operad $\mathcal{E}nd_{\mathbf{U}}$ on a 'colored' vector space $\mathbf{U} = \bigoplus_{c \in \mathbf{C}} \mathbf{U}_c$ given by

$$\mathcal{E}nd_{\mathbf{U}}\binom{c}{c_1,\ldots,c_n} := Lin(U_{c_1}\otimes\cdots\otimes U_{c_n},U_c).$$

 \triangleright An algebra over a colored operad \mathcal{P} is an morphism of colored operads $a: \mathcal{P} \to \mathcal{E}nd_{\mathbf{U}}$. Examples:

4. The two-colored operad $\mathcal{A}ss_{\bullet\to\bullet}$, with $\mathbf{C} := \{v, w\}$, describing morphisms $(V, \mu) \xrightarrow{f} (W, \nu)$ of associative algebras is the quotient

 $\frac{\mathbb{F}(\mu,\nu,f)}{(\mu(\mu\otimes\mathbb{1})=\mu(\mathbb{1}\otimes\mu),\ \nu(\nu\otimes\mathbb{1})=\nu(\mathbb{1}\otimes\nu),\ f\mu=\nu(f\otimes f))},$ where

$$\mu \in \mathcal{A}ss_{\bullet \to \bullet} \begin{pmatrix} v \\ v, v \end{pmatrix}, \ \nu \in \mathcal{A}ss_{\bullet \to \bullet} \begin{pmatrix} w \\ w, w \end{pmatrix} \text{ and } f \in \mathcal{A}ss_{\bullet \to \bullet} \begin{pmatrix} w \\ v \end{pmatrix}$$

A morphism $(V, \mu) \xrightarrow{f} (W, \nu)$ is clearly the same as an 'algebra' $a : \mathcal{A}ss_{\bullet \to \bullet} \to \mathcal{E}nd_{\mathbf{U}}$, where $\mathbf{U} := U_v \oplus U_w$ with $U_v := V$ and $U_w := W$. If

$$\mu = \underbrace{v}_{v v}, \ \nu = \underbrace{w}_{w w}, \ f = \underbrace{w}_{v},$$

then the axioms

 $(v'v'')v''' = v'(v''v'''), \ (w'w'')w''' = w'(w''w'''), \ f(v'v'') = f(v')f(v'')$ of the 'diagram' (V, μ) \xrightarrow{f} (W, ν) are depicted as

Pictorially, $\mathcal{A}ss_{\bullet\to\bullet}$ is the free colored operad $\mathbb{F}(\checkmark, \checkmark, \bullet)$ modulo the operadic ideal generated by (1). Similarly one defines $\mathcal{C}om_{\bullet\to\bullet}$, $\mathcal{L}ie_{\bullet\to\bullet}$ and $\mathcal{P}_{\bullet\to\bullet}$ for a 'non-colored' \mathcal{P} .

5. Let again $\mathbf{C} := \{v, w\}, f : v \to w, g : w \to v$ be two arity 1 generators and denote

$$\mathcal{I}so := \frac{\mathbb{F}(f,g)}{(fg = \mathbb{1}_{W} \ ,gf = \mathbb{1}_{V})}$$

An algebra $a : \mathcal{I}so \to \mathcal{E}nd_{\mathbf{U}}$ consists of two maps $f : V \to W$, $g : W \to V$ that are inverse to each other:

$$V \underbrace{f}_{q} W, fg = \mathbb{1}_{W} \text{ and } gf = \mathbb{1}_{V}.$$

We abuse the notation by using the same symbols for operad generators and the corresponding operations. It is clear now how to construct the colored operad $\mathcal{P}_{\mathcal{D}}$ for \mathcal{D} -diagrams of \mathcal{P} -algebras. \triangleright The construction of the L_{∞} -deformation complex

$$\mathfrak{g} = (C^*(A, A), \delta = l_1, l_2, \ldots)$$

goes in two steps:

Step (1): Finding (if exists) the minimal model α : ($\mathbb{F}(E), \partial$) \rightarrow ($\mathcal{P}, 0$). By definition, α is a homology isomorphism, $\mathbb{F}(E)$ the free operad on a collection E, and the minimality means that $\partial(E)$ consists of decomposable elements of $\mathbb{F}(E)$. This step is nontrivial. Rich theory of minimal models is available, but will not be discussed here.

Step (2): The minimal model determines \mathfrak{g} via a straightforward procedure. We illustrate everything on the example of the

 \triangleright Hochschild cohomology. Step (1): Recall that

$$\mathcal{A}ss := \mathbb{F}(\mu)/(\mu(\mu \otimes \mathbb{1}) - \mu(\mathbb{1} \otimes \mu)).$$

The minimal model for the operad $\mathcal{A}ss$ is well known to be

$$\mathcal{A}ss \xleftarrow{\alpha} (\mathbb{F}(\mu_2, \mu_3, \mu_4, \ldots), \partial), \ \deg(\mu_n) = n - 2,$$

with $\alpha(\mu_2) = \mu$ while α is trivial on the remaining generators. The differential ∂ is given by

$$\partial(\mu_n) = \sum_{i+j=n+1} \sum_{0 \le s \le i-1} \pm \mu_i(\mathbb{1}^{\otimes s} \otimes \mu_j \otimes \mathbb{1}^{\otimes i-s-1}).$$

Pictorially

$$\mathbb{F}(E) = \mathbb{F}\left(\underbrace{}, \underbrace{}, \underbrace{}, \underbrace{}, \underbrace{}, \cdots\right), \operatorname{deg}\left(\underbrace{}_{n-\operatorname{times}}\right) = n - 2$$

with the differential given on generators by

Algebras over $(\mathbb{F}(\mu_2, \mu_3, \mu_4, \ldots), \partial)$ are Stasheff's A_{∞} -algebras. This principle is general – strongly homotopy \mathcal{P} -algebras are algebras over the minimal model of \mathcal{P} .

Step (2): The underlying vector space $C^*(A, A)$ of \mathfrak{g} is determined by the generators of the minimal model as

 $C^n(A,A) := Lin_{\Sigma}(E_{n-1}, \mathcal{E}nd_A).$

In our particular case, $E_{n-1} = \sum_{n+1} [\mu_{n+1}]$, so

$$C^{n}(A, A) = Lin_{\Sigma_{n+1}}(\Sigma_{n+1}[\mu_{n+1}], \mathcal{E}nd_{A}(n+1))$$

= $Lin_{\Sigma_{n+1}}(\Sigma_{n+1}[\mu_{n+1}], Lin(A^{\otimes n+1}, A)) = Lin(A^{\otimes n+1}, A).$

We recover the Hochschild cochains as expected.

The construction of δ and higher $l_k, k \geq 2$, uses the algebra structure $a: \mathcal{P} \to \mathcal{E}nd_A$. Let $\beta := a \circ \alpha : \mathbb{F}(E) \xrightarrow{\alpha} \mathcal{P} \xrightarrow{a} \mathcal{E}nd_A$.

Let T be an E-decorated tree representing an element of $\mathbb{F}(E)$. We denote by $e_v \in E$ the decoration of a vertex $v \in Vert(T)$.

For cochains $F_1, \ldots, F_k \in Lin_{\Sigma}(E, \mathcal{E}nd_A) = C^*(A, A)$, homomorphism $\beta : \mathbb{F}(E) \to \mathcal{E}nd_A$ and distinct vertices $v_1, \ldots, v_k \in Vert(T)$, denote by

$$T^{\{v_1,\ldots,v_k\}}_{\{\beta\}}[F_1,\ldots,F_k]$$

the $\mathcal{E}nd_A$ -decorated tree whose vertices v_i , $1 \leq i \leq k$, are decorated by $F_i(e_{v_i}) \in \mathcal{E}nd_A$ and the remaining vertices $v \notin \{v_1, \ldots, v_k\}$ by $\beta(e_v) \in \mathcal{E}nd_A$. We finally denote by

$$comp(T^{\{v_1,\ldots,v_k\}}_{\{\beta\}}[F_1,\ldots,F_k]) \in \mathcal{E}nd_A$$

the composition of the decorations along the tree. See:

For a generator $\xi \in E$, $\partial(\xi) \in \mathbb{F}(E)$ is a sum of *E*-decorated trees,

$$\partial(\xi) = \sum_{s \in S_{\xi}} T_s,$$

over a finite set S_{ξ} . Define $l_k(F_1, \ldots, F_k)(\xi) \in \mathcal{E}nd_A$ by

$$l_k(F_1,\ldots,F_k)(\xi) := \sum_{s \in S_{\xi}} \sum_{v_1,\ldots,v_k} \pm comp(T_{s,\{\beta\}}^{\{v_1,\ldots,v_k\}}[F_1,\ldots,F_k]).^2$$

The equivariant map $E \ni \xi \mapsto l_k(F_1, \ldots, F_k)(\xi) \in \mathcal{E}nd_A$ determines an element $l_k(F_1, \ldots, F_k) \in C^*(A; A)$. The assignment $F_1, \ldots, F_k \mapsto l_k(F_1, \ldots, F_k)$ is the requisite L_∞ -structure map.

Theorem. The object $(C^*(A, A), \delta = l_1, l_2, ...)$ is an L_{∞} -algebra. Formal deformations of the \mathcal{P} -algebra A are parametrized by elements $\kappa \in C^1(A; A)$ that satisfy the L_{∞} -Master Equation:

$$0 = \delta(\kappa) + \frac{1}{2!}l_2(\kappa,\kappa) + \frac{1}{3!}l_3(\kappa,\kappa,\kappa) + \frac{1}{4!}l_4(\kappa,\kappa,\kappa,\kappa) + \cdots$$

 $^{2}\mathrm{A}$ drawing on board would help.

Let us continue analyzing the associative algebra case. We start by describing $\delta = l_1$. Let $f : A^{\otimes n+1} \to A \in C^n(A, A)$ and $F : E \to \mathcal{E}nd_A$ be the corresponding map of collections given by

$$F(\mu_k) = \begin{cases} f, & \text{if } k = n+1, \text{ and} \\ 0, & \text{otherwise.} \end{cases}$$

We easily see that $\delta(F)(\mu_k) = 0$ if $k \neq n+2$, while

In the second line, $\mu = \bigwedge$. We recognize the pictorial form of the Hochschild differential from page 1. Analogously, assuming that $F_i: E \to \mathcal{E}nd_A$ are determined by multilinear maps $f_i \in C^{n_i}(A, A)$, i = 1, 2, as F was determined by f above, one gets

$$l_{2}(F_{1}, F_{2}) (\mu_{n_{1}+n_{2}+1}) = \sum \pm \underbrace{F_{1}(f_{1})}_{F_{2}(f_{1})} \pm \underbrace{F_{2}(f_{2})}_{F_{1}(f_{2})} \pm \underbrace{F_{1}(f_{2})}_{F_{1}(f_{2})} \\ = \sum \pm \underbrace{f_{1}}_{f_{2}} + \underbrace{f_{2}}_{f_{2}} + \underbrace{f_{2}}_{f_{1}} + \underbrace{f_{2}}_{f_{2}} + \underbrace{f_{2}}_{f_{1}} + \underbrace{f_{2}}_{f_{2}} + \underbrace{f_{2}}_{f_$$

which is the graphical form of the Gerstenhaber bracket. The higher l_n 's are trivial since the differential in the minimal model is quadratic i.e. given by sum over trees with two vertices. We clearly have:

Fact. The L_{∞} -alebra $\mathfrak{g} = (C^*(A, A), [-, -], \delta = l_1, l_2, \ldots)$ is dg-Lie if and only if the minimal model of \mathcal{P} is quadratic.

Non-quadratic minimal models are typical for non-Koszul operads. All reasonable cases are Koszul. This explains why we do not see L_{∞} -proper very often in Nature.

▷ An anti-associative algebra is a vector space A with an anti-associative multiplication $\mu : A \otimes A \rightarrow A$:

$$\mu(\mu(a,b),c)+\mu(a,\mu(b,c))=0.$$

The operad $\widetilde{\mathcal{A}ss}$ describing anti-associative algebras,

$$\widetilde{\mathcal{A}ss} := \mathbb{F}\left(\bigstar\right) / \left(\checkmark + \checkmark \right)$$

is not Koszul. Its minimal model of $\widetilde{\mathcal{A}ss}$ is of the form

$$(\widetilde{\mathcal{A}ss}, 0) \xleftarrow{\alpha} (T(\mu_2, \mu_3, \mu_5^1, \mu_5^2, \mu_5^3, \mu_5^4, \ldots), \partial),$$

where the subscripts denote the arity. Notice the gap in the arity 4 generators! From this one easily sees that in the relevant part

$$C^{0}(A;A) \xrightarrow{\delta} C^{1}(A;A) \xrightarrow{\delta} C^{2}(A;A) \xrightarrow{\delta} C^{3}(A;A) \xrightarrow{\delta} \cdots$$

of the deformation complex one has

$$\begin{split} C^0(A;A) =& Lin(A,A) \\ C^1(A;A) =& Lin(A^{\otimes 2},A) \\ C^2(A;A) =& Lin(A^{\otimes 3},A), \text{ and} \\ C^3(A;A) =& Lin(A^{\otimes 5},A) \oplus Lin(A^{\otimes 5},A) \\ \oplus Lin(A^{\otimes 5},A) \oplus Lin(A^{\otimes 5},A) \end{split}$$

Observe that $C^{3}(A; A)$ consists, unlike the Hochschild case, of 5-linear maps!

One calculates the initial part of the differential as:

$$\begin{aligned} \partial(\mu_2) &:= 0, \\ \partial(\mu_3) &:= \mu_2 \circ_1 \mu_2 + \mu_2 \circ_2 \mu_2, \\ \partial(\mu_5^1) &:= (\mu_2 \circ_2 \mu_3) \circ_4 \mu_2 - (\mu_3 \circ_3 \mu_2) \circ_4 \mu_2 + (\mu_2 \circ_1 \mu_2) \circ_3 \mu_3 \\ &- (\mu_3 \circ_1 \mu_2) \circ_3 \mu_2 + (\mu_2 \circ_1 \mu_3) \circ_1 \mu_2 - (\mu_3 \circ_1 \mu_2) \circ_1 \mu_2 \\ &+ (\mu_2 \circ_1 \mu_3) \circ_4 \mu_2 - (\mu_3 \circ_2 \mu_2) \circ_4 \mu_2; \end{aligned}$$

the formulas for $\partial(\mu_5^2)$, $\partial(\mu_5^3)$ and $\partial(\mu_5^4)$ are similar. The cubicity of $\partial(\mu_5^1)$ implies that $C^*(A, A)$ carries a nontrivial

$$l_3: C^1(A; A) \otimes C^1(A; A) \otimes C^2(A; A) \to C^3(A; A).$$

While in the single-algebra case one need exotic structures to get a fully-fledged L_{∞} , nontrivial higher l_n 's are typical for diagrams.

▷ Deformations of a morphism of associative algebras. The construction of the L_{∞} -deformation complex can be easily modified to the colored case.

We start by describing the minimal model of the two-colored operad $\mathcal{A}ss_{\bullet\to\bullet}$. Let *E* be the $\{v, w\}$ -colored Σ -module with the generators:

$$\mu_n : v^{\otimes n} \to v$$
 of degree $n-2$ and biarity $(1,n)$ $(n \ge 2)$,
 $\nu_n : w^{\otimes n} \to w$ of degree $n-2$ and biarity $(1,n)$ $(n \ge 2)$, and

$$f_n: v^{\otimes n} \to w$$
 of degree $n-1$ and biarity $(1, n)$ $(n \ge 1)$.

Then the minimal model for $\mathcal{A}ss_{\bullet\to\bullet}$ is

$$(\mathbb{F}(E),\partial)\xrightarrow{\alpha}\mathcal{A}ss_{\bullet\to\bullet},$$

where

$$\alpha(\mu_n) = \begin{cases} \mu & \text{if } n = 2, \\ 0 & \text{otherwise} \end{cases}, \ \alpha(\nu_n) = \begin{cases} \nu & \text{if } n = 2, \\ 0 & \text{otherwise} \end{cases},$$

$$\alpha(f_n) = \begin{cases} f & \text{if } n = 1, \\ 0 & \text{otherwise} \end{cases}.$$

The differential ∂ is given by:

$$\partial(\mu_n) = \sum_{\substack{i+j=n+1\\i,j\ge 2}} \sum_{s=0}^{n-j} \pm \mu_i \circ_{s+1} \mu_j,$$

$$\partial(\nu_n) = \sum_{\substack{i+j=n+1\\i,j\ge 2}} \sum_{s=0}^{n-j} \pm \nu_i \circ_{s+1} \nu_j,$$

$$\partial(f_n) = \sum_{l=2}^n \sum_{r_1+\dots+r_l=n} \pm \nu_l (f_{r_1} \otimes \dots \otimes f_{r_l}) + \sum_{\substack{i+j=n+1\\i\ge 1, j\ge 2}} \sum_{s=0}^{n-j} \pm f_i \circ_{s+1} \mu_j.$$

Since $\partial(f_n)$ contains terms of arbitrary homogeneity, in the L_{∞} deformation complex for a morphism, l_n is nontrivial for all $n \geq 1$!
In the last example we show that diagrams with loops lead to curved L_{∞} -algebras.

 \triangleright Deformations of an isomorphism. A small cofibrant resolution of $\mathcal{I}so$ is a $\{v,w\}$ -colored operad

$$\mathcal{R}_{\mathrm{iso}} := (\mathbb{F}(f_0, f_1, \ldots; g_0, g_1, \ldots), \partial),$$

with generators of two types,

(i) generators $\{f_n\}_{n\geq 0}$, $\deg(f_n) = n$, $\begin{cases}
f_n : v \to w \text{ if } n \text{ is even,} \\
f_n : v \to v \text{ if } n \text{ is odd,} \\
g_n : w \to v \text{ if } n \text{ is even,} \\
g_n : w \to w \text{ if } n \text{ is odd.} \\
\end{cases}$ (ii) generators $\{g_n\}_{n\geq 0}$, $\deg(g_n) = n$, $\begin{cases}
f_n : v \to w \text{ if } n \text{ is even,} \\
g_n : w \to w \text{ if } n \text{ is odd.} \\
\end{cases}$ The differential ∂ is given by

$$\partial f_0 := 0, \qquad \partial g_0 := 0,$$

 $\partial f_1 := g_0 f_0 - 1, \ \partial g_1 := f_0 g_0 - 1$

and, on the remaining generators, by the formula

$$\begin{split} \partial f_{2m} &:= \sum_{0 \leq i < m} (f_{2i} f_{2(m-i)-1} - g_{2(m-i)-1} f_{2i}), \ m \geq 0, \\ \partial f_{2m+1} &:= \sum_{0 \leq j \leq m} g_{2j} f_{2(m-j)} - \sum_{0 \leq j < m} f_{2j+1} f_{2(m-j)-1}, \ m \geq 1, \\ \partial g_{2m} &:= \sum_{0 \leq i < m} (g_{2i} g_{2(m-i)-1} - f_{2(m-i)-1} g_{2i}), \ m \geq 0, \\ \partial g_{2m+1} &:= \sum_{0 < j < m} f_{2j} g_{2(m-j)} - \sum_{0 < j < m} g_{2j+1} g_{2(m-j)-1}, \ m \geq 1. \end{split}$$

One easily gets the underlying cochain complex (notice its 2-periodicity!)

$$C^{n}(A; A) = \begin{cases} Lin(V, W) \oplus Lin(W, V) & \text{for } n \ge 1 \text{ odd, and} \\ Lin(V, V) \oplus Lin(W, W) & \text{for } n \ge 1 \text{ even.} \end{cases}$$

The occurrence of 1's in ∂f_1 and ∂g_1 indicates the existence of a curvature. Our recipe makes sense also for k = 0 and describes $l_0 \in C^2(A; A)$ as the direct sum of the identity maps

 $\mathbb{1}_V \oplus \mathbb{1}_W \in Lin(V, V) \oplus Lin(W, W) = C^2(A; A).$

If $\kappa = f \oplus g \in C^1(A; A) = Lin(V, W) \oplus Lin(W, V)$, then the 'curved' Maurer-Cartan equation

$$-l_0 + \frac{1}{2}l_2(\kappa,\kappa) = 0$$

expands into

 $-(\mathbb{1}_V \oplus \mathbb{1}_W) + \frac{1}{2}(2gf \oplus 2fg) = 0 \in Lin(V, V) \oplus Lin(W, W),$

which says that f and g are mutually inverse isomorphisms.

The deformation cohomology based on a resolution of the corresponding operad was first considered in the proceedings [2] of the Winter School 'Geometry and Physics,' Zdíkov, Bohemia, January 1993. The L_{∞} -deformation complex was constructed by van der Laan in [5]. The explicit description used in the talk was obtained in [3], its colored version then in [1]. The minimal model of the anti-associative operad was studied in [4].

REFERENCES

- [1] Y. Frégier, M. Markl, and D. Yau. The L_{∞} -deformation complex of diagrams of algebras. New York J. of Math., 15:353–392, 2009.
- [2] M. Markl. Deformations and the coherence. Proc. of the Winter School 'Geometry and Physics,' Zdíkov, Bohemia, January 1993, Supplemento ai Rend. Circ. Matem. Palermo, Serie II, 37:121–151, 1994.
- [3] M. Markl. Intrinsic brackets and the L_{∞} -deformation theory of bialgebras. Journal of Homotopy and Related Structures, Vol. 5(2010), No. 1, pp. 177–212.
- [4] M. Markl and E. Remm. (Non-)Koszulity of operads for *n*-ary algebras, cohomology and deformations. Preprint 2009.
- [5] P. van der Laan. Operads up to homotopy and deformations of operad maps. Preprint math.QA/0208041, August 2002.