
Deformations of algebras and their diagrams

We will work over a fixed characteristic zero field k. Everyone knows

that deformations of an associative algebra (A, µ) are controlled by

the Hochschild cohomology H∗(A,A), which is the cohomology of

0
δ
−→ C0(A,A)

δ
−→ C1(A,A)

δ
−→ · · ·

δ
−→ Cn(A,A)

δ
−→ · · ·

where Cn(A,A) := Lin(A⊗n+1, A) and the coboundary δ given by

δf (a0 ⊗···⊗ an) := (−1)n+1a0f (a1 ⊗···⊗ an) + f (a0 ⊗···⊗ an−1)an

+

n−1∑

i=0

(−1)i+nf (a0 ⊗···⊗ aiai+1 ⊗···⊗ an).

Graphically, modulo signs, with •❅� symbolizing the multiplication,
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.

By ‘controlled by’ we usually mean that

– H1(A,A) classifies infinitesimal deformations and

– H2(A,A) contains obstructions for their extensions.

More precisely, C∗(A,A) carries the Gerstenhaber bracket [−,−]

which turns it into a dg-Lie algebra

g := (C∗(A,A), [−,−], δ).

Let L be the Lie group g ⊗ (t) ⊂ g ⊗ k[[t]]. Consider the solutions

of the Maurer-Cartan equation in L

MC(g) := {s ∈ L1; δs +
1

2
[s, s] = 0}, G(g) := exp(L0).

The moduli space of formal deformations of µ equals the quotient

Def(g) = MC(g)/G(g).
1
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Our aim is to show that the same scheme holds for a wide class of

algebras and their diagrams, though instead of dg-Lie one sometimes

needs an L∞-algebra. We will show how to construct, for a (diagram

of) algebra(s) A belonging to a specified class of structures, an L∞-

algebra g = (C∗(A,A), δ = l1, l2, . . .) governing its deformations.

We will focus on explicit calculations and examples. We, in par-

ticular, show that deformations of morphisms are controlled by a

fully-fledged L∞-structure. We give an example where a ‘curved’ (=

with l0-term) L∞-algebra occurs. We also show that L∞-deformation

algebras are required for deformations of exotic structures.

– – – – –

By a ‘class of structures’ we mean algebras over a (colored, in the

case of diagrams) k-vector space operad P . We assume that operads

are familiar; yet we we recall that:

⊲ An operad P is a collection {P(n)}n≥1 of vector spaces together

with composition operations

◦i : P(m)⊗ P(n)→ P(m + n− 1), 1 ≤ i ≤ m.

Each P(n) has moreover a right Σn-action. n is called the arity.

These data satisfy axioms evident in the most important example of

the endomorphism operad of V , EndV = {EndV (n)}n≥1,

EndV (n) := Lin(V ⊗n, V ),

with

(f ◦i g)(v1 ⊗ · · · ⊗ vn+m−1) :=

:= f (v1 ⊗ · · · ⊗ vi−1, g(vi ⊗ · · · ⊗ vi+m−1), vi+m ⊗ · · · ⊗ vm+n−1)

and Σn permuting the arguments.
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⊲ An algebra over P (or a P-algebra) is an operadic morphism

a : P → EndV . Examples:

1. An associative algebra is a vector space A with an associative

multiplication µ : A⊗ A→ A:

µ(µ(a, b), c) = µ(a, µ(b, c)).

If we ‘visualize’ µ as an ‘operation’ with two inputs and one output,

µ = •❅� , the associativity is depicted as

=
•
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•
•

�
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�❅
❅❅

�
�

The operad Ass describing associative algebras is the quotient

Ass := F ( •❅� ) /
(

−
•
•

•
•

�
❅
❅�

�❅
❅❅

�
�

)

of the free operad F( •❅� )1 modulo the operadic ideal generated by

the associativity. Formally,

Ass = F(µ)/(µ ◦1 µ = µ ◦2 µ).

2. The operad Com for commutative associative algebras is obtained

fromAss by further assuming that the multiplication µ is symmetric,

µ(a, b) = µ(b, a).

3. A Lie algebra is a vector space L with an antisymmetric product

[−,−] : L⊗ L→ L (the ‘bracket’), satisfying the Jacobi identity:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

The operad Lie for Lie algebras is the quotient

Lie := F ( •❅� ) /

(
++
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)

1Explain.
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To describe diagrams of algebras, we need colored operads.

⊲ Fix a set of colors C (= nodes of the diagram). We modify the

definition of an operad by assuming that each P(n) decomposes as

P(n) =
⊕

c,c1,...,cn∈C

P
( c
c1, . . . , cn

)
.

Let f ∈ P
( c
c1, . . . , ci−1, ci, ci+1, . . . , cm

)
and g ∈ P

( d
d1, . . . , dk

)
.

We require that f ◦i g 6= 0 implies d = ci, in which case

f ◦i g ∈ P
( c
c1, . . . , ci−1, d1, . . . , dk, ci+1, . . . , cm

)
.

Thus one may plug g into the i-th slot of f only if the colors match,

otherwise the result is zero. If C = {Pt}, we get ordinary operads.

The main example is provided by the colored endomorphism operad

EndU on a ‘colored’ vector space U =
⊕

c∈CUc given by

EndU

( c
c1, . . . , cn

)
:= Lin(Uc1 ⊗ · · · ⊗ Ucn, Uc).

⊲ An algebra over a colored operad P is an morphism of colored

operads a : P → EndU. Examples:

4. The two-colored operad Ass•→•, with C := {v, w}, describing

morphisms (V , µ)
f
→ (W, ν) of associative algebras is the quotient

F(µ, ν, f )

(µ(µ⊗ 11) = µ(11⊗ µ), ν(ν ⊗ 11) = ν(11⊗ ν), fµ = ν(f ⊗ f ))
,

where

µ ∈ Ass•→•
( v
v, v

)
, ν ∈ Ass•→•

( w
w,w

)
and f ∈ Ass•→•

(w
v

)
.
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A morphism (V , µ)
f
→ (W, ν) is clearly the same as an ‘algebra’

a : Ass•→• → EndU, where U := Uv ⊕ Uw with Uv := V and

Uw := W . If

µ =
v v

v
•
❅❅��

, ν =
w w

w

❅❅��
, f =

v

w
,

then the axioms

(v′v′′)v′′′ = v′(v′′v′′′), (w′w′′)w′′′ = w′(w′′w′′′), f (v′v′′) = f (v′)f (v′′)

of the ‘diagram’ (V , µ)
f
→ (W, ν) are depicted as

(1)
v v

v v v v v v

=
•
•

•
•

��

❅
❅❅�

��❅
❅❅❅❅

�
��

,
w w

w w w w w w

=
��

❅
❅❅�

��❅
❅❅❅❅

�
��

,

w

❅
❅

�
�

v v

=

w

v v

•
❅
❅

�
�

.

Pictorially,Ass•→• is the free colored operad F( •❅❅��
, ❅❅��

, ) modulo

the operadic ideal generated by (1). Similarly one defines Com•→•,

Lie•→• and P•→• for a ‘non-colored’ P .

5. Let again C := {v, w}, f : v → w, g : w → v be two arity 1

generators and denote

Iso :=
F(f, g)

(fg = 11W , gf = 11V )
.

An algebra a : Iso → EndU consists of two maps f : V → W ,

g : W → V that are inverse to each other:

✐

f

g

q
WV , fg = 11W and gf = 11V .

We abuse the notation by using the same symbols for operad gen-

erators and the corresponding operations. It is clear now how to

construct the colored operad PD for D-diagrams of P-algebras.
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⊲ The construction of the L∞-deformation complex

g = (C∗(A,A), δ = l1, l2, . . .)

goes in two steps:

Step (1): Finding (if exists) the minimal model α : (F(E), ∂) →

(P , 0). By definition, α is a homology isomorphism, F(E) the free

operad on a collection E, and the minimality means that ∂(E) con-

sists of decomposable elements of F(E). This step is nontrivial. Rich

theory of minimal models is available, but will not be discussed here.

Step (2): The minimal model determines g via a straightforward

procedure. We illustrate everything on the example of the

⊲ Hochschild cohomology. Step (1): Recall that

Ass := F(µ)/(µ(µ⊗ 11)− µ(11⊗ µ)).

The minimal model for the operad Ass is well known to be

Ass
α
←− (F(µ2, µ3, µ4, . . .), ∂) , deg(µn) = n− 2,

with α(µ2) = µ while α is trivial on the remaining generators. The

differential ∂ is given by

∂(µn) =
∑

i+j=n+1

∑

0≤s≤i−1

±µi(11
⊗s ⊗ µj ⊗ 11⊗i−s−1).

Pictorially

F(E) = F

(
· · ·,,• ••

❆✁❅�❅�❅�

)
, deg

(
· · ·
•
❅
❅

✁
✁
�

�︸︷︷︸
n-times

)
= n− 2

with the differential given on generators by

∂

(

· · ·
•
❅
❅

✁
✁
�

�

)
=

∑

i+j=n+1

∑

1≤s≤i

✱
✱✱

✁
✁✁

❇
❇
❇
❇

�
�

�

☞
☞☞

❅
❅❅

❍❍❍❍· · ·· · ·

· · ·

s-th input

•

•
.
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Algebras over (F(µ2, µ3, µ4, . . .), ∂) are Stasheff’s A∞-algebras. This

principle is general – strongly homotopy P-algebras are algebras over

the minimal model of P .

Step (2): The underlying vector space C∗(A,A) of g is determined

by the generators of the minimal model as

Cn(A,A) := LinΣ(En−1, EndA).

In our particular case, En−1 = Σn+1[µn+1], so

Cn(A,A) = LinΣn+1
(Σn+1[µn+1], EndA(n + 1))

= LinΣn+1
(Σn+1[µn+1],Lin(A

⊗n+1, A)) = Lin(A⊗n+1, A).

We recover the Hochschild cochains as expected.

The construction of δ and higher lk, k ≥ 2, uses the algebra structure

a : P → EndA. Let β := a ◦ α : F(E)
α
→ P

a
→ EndA.

Let T be an E-decorated tree representing an element of F(E). We

denote by ev ∈ E the decoration of a vertex v ∈ Vert(T ).

For cochains F1, . . . , Fk ∈ LinΣ(E, EndA) = C∗(A,A), homomor-

phism β : F(E)→ EndA and distinct vertices v1, . . . , vk ∈ Vert(T ),

denote by

T
{v1,...,vk}
{β} [F1, . . . , Fk]

the EndA-decorated tree whose vertices vi, 1 ≤ i ≤ k, are decorated

by Fi(evi) ∈ EndA and the remaining vertices v 6∈ {v1, . . . , vk} by

β(ev) ∈ EndA. We finally denote by

comp(T
{v1,...,vk}
{β} [F1, . . . , Fk]) ∈ EndA

the composition of the decorations along the tree. See:
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· · ·

β
...
•

❅
❅

✁
✁

�
�

β
...
•

❅
❅

✁
✁

�
�

β
...
•

❅
❅

✁
✁

�
�

Fk

...
•

❅
❅

✁
✁

�
�

F2

...
•

❅
❅

✁
✁

�
�

F3

...
•

❅
❅

✁
✁

�
�

F1

...
•

❅
❅

✁
✁

�
�

✻

✻✻✻

✬

✫

✩

✪

For a generator ξ ∈ E, ∂(ξ) ∈ F(E) is a sum of E-decorated trees,

∂(ξ) =
∑

s∈Sξ

Ts,

over a finite set Sξ. Define lk(F1, . . . , Fk)(ξ) ∈ EndA by

lk(F1, . . . , Fk)(ξ) :=
∑

s∈Sξ

∑

v1,...,vk

±comp(T
{v1,...,vk}
s,{β} [F1, . . . , Fk]).

2

The equivariant map E ∋ ξ 7→ lk(F1, . . . , Fk)(ξ) ∈ EndA de-

termines an element lk(F1, . . . , Fk) ∈ C∗(A;A). The assignment

F1, . . . , Fk 7→ lk(F1, . . . , Fk) is the requisite L∞-structure map.

Theorem. The object (C∗(A,A), δ = l1, l2, . . .) is an L∞-algebra.

Formal deformations of the P-algebra A are parametrized by el-

ements κ ∈ C1(A;A) that satisfy the L∞-Master Equation:

0 = δ(κ) +
1

2!
l2(κ, κ) +

1

3!
l3(κ, κ, κ) +

1

4!
l4(κ, κ, κ, κ) + · · · .

2A drawing on board would help.
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Let us continue analyzing the associative algebra case. We start by

describing δ = l1. Let f : A⊗n+1 → A ∈ Cn(A,A) and F : E →

EndA be the corresponding map of collections given by

F (µk) =

{
f, if k = n + 1, and
0, otherwise.

We easily see that δ(F )(µk) = 0 if k 6= n + 2, while

δ(F ) (µn+2) =
∑
±

β( )

F ( )

✱
✱✱

✁
✁✁
❇
❇
❇
❇

�
�

�

☞
☞☞

❅
❅❅

❍❍❍❍· · ·· · ·

· · ·

•

•

F ( )

β( )

✱
✱✱

✁
✁✁
❇
❇
❇
❇

�
�

�

☞
☞☞

❅
❅❅

❍❍❍❍· · ·· · ·

· · ·

•

•

±

= ± f
•

· · ·
◦

❅
❅

✁
✁

�
�

�
�

��

❅❅ ±
•

f

· · ·
◦

❅
❅

✁
✁

�
�

❅
❅
❅❅

�� +
∑
±

◦ f
�

�
��

✓
✓

✓✓

❅
❅
❅❅

•
❆❆✁✁ · · ····

.

In the second line, µ = •❅� . We recognize the pictorial form of

the Hochschild differential from page 1. Analogously, assuming that

Fi : E → EndA are determined by multilinear maps fi ∈ Cni(A,A),

i = 1, 2, as F was determined by f above, one gets

l2(F1, F2) ( µn1+n2+1) =
∑
±

F1( )

F2( )

✱
✱✱

✁
✁✁

❇
❇
❇
❇

�
�

�

☞
☞☞

❅
❅❅

❍❍❍❍· · ·· · ·

· · ·

•

•

F2( )

F1( )

✱
✱✱

✁
✁✁
❇
❇
❇
❇

�
�

�

☞
☞☞

❅
❅❅

❍❍❍❍· · ·· · ·

· · ·

•

•

±

=
∑
±

f1

f2

✱
✱✱

✁
✁✁

❇
❇
❇
❇

�
��

☞
☞☞

❅
❅❅

❍❍❍❍· · ·· · ·

· · ·

◦

◦

f2

f1

✱
✱✱

✁
✁✁

❇
❇
❇
❇

�
��

☞
☞☞

❅
❅❅

❍❍❍❍· · ·· · ·

· · ·

◦

◦

,±

which is the graphical form of the Gerstenhaber bracket. The higher

ln’s are trivial since the differential in the minimal model is quadratic

i.e. given by sum over trees with two vertices. We clearly have:
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Fact. The L∞-alebra g = (C∗(A,A), [−,−], δ = l1, l2, . . .) is dg-

Lie if and only if the minimal model of P is quadratic.

Non-quadratic minimal models are typical for non-Koszul operads.

All reasonable cases are Koszul. This explains why we do not see

L∞-proper very often in Nature.

⊲An anti-associative algebra is a vector spaceAwith an anti-associative

multiplication µ : A⊗ A→ A:

µ(µ(a, b), c) + µ(a, µ(b, c)) = 0.

The operad Ãss describing anti-associative algebras,

Ãss := F ( •❅� ) /
(

+
•
•

•
•

�
❅
❅�

�❅
❅❅

�
�

)

is not Koszul. Its minimal model of Ãss is of the form

(Ãss , 0)
α
←− (T (µ2, µ3, µ

1
5, µ

2
5, µ

3
5, µ

4
5, . . .), ∂),

where the subscripts denote the arity. Notice the gap in the arity 4

generators! From this one easily sees that in the relevant part

C0(A;A)
δ
−→ C1(A;A)

δ
−→ C2(A;A)

δ
−→ C3(A;A)

δ
−→ · · ·

of the deformation complex one has

C0(A;A) =Lin(A,A)

C1(A;A) =Lin(A⊗2, A)

C2(A;A) =Lin(A⊗3, A), and

C3(A;A) =Lin(A⊗5, A)⊕ Lin(A⊗5, A)

⊕Lin(A⊗5, A)⊕ Lin(A⊗5, A).

Observe that C3(A;A) consists, unlike the Hochschild case, of 5-

linear maps!
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One calculates the initial part of the differential as:

∂(µ2) := 0,

∂(µ3) := µ2 ◦1 µ2 + µ2 ◦2 µ2,

∂(µ1
5) := (µ2 ◦2 µ3) ◦4 µ2 − (µ3 ◦3 µ2) ◦4 µ2 + (µ2 ◦1 µ2) ◦3 µ3

− (µ3 ◦1 µ2) ◦3 µ2 + (µ2 ◦1 µ3) ◦1 µ2 − (µ3 ◦1 µ2) ◦1 µ2

+ (µ2 ◦1 µ3) ◦4 µ2 − (µ3 ◦2 µ2) ◦4 µ2;

the formulas for ∂(µ2
5), ∂(µ

3
5) and ∂(µ4

5) are similar. The cubicity of

∂(µ1
5) implies that C∗(A,A) carries a nontrivial

l3 : C
1(A;A)⊗ C1(A;A)⊗ C2(A;A)→ C3(A;A).

While in the single-algebra case one need exotic structures to get a

fully-fledged L∞, nontrivial higher ln’s are typical for diagrams.

⊲ Deformations of a morphism of associative algebras. The construc-

tion of the L∞-deformation complex can be easily modified to the

colored case.

We start by describing the minimal model of the two-colored operad

Ass•→•. Let E be the {v, w}-colored Σ-module with the generators:

µn : v
⊗n → v of degree n− 2 and biarity (1, n) (n ≥ 2),

νn : w
⊗n → w of degree n− 2 and biarity (1, n) (n ≥ 2), and

fn : v
⊗n → w of degree n− 1 and biarity (1, n) (n ≥ 1).

Then the minimal model for Ass•→• is

(F(E), ∂)
α
−→ Ass•→•,

where

α(µn) =

{
µ if n = 2,

0 otherwise
, α(νn) =

{
ν if n = 2,

0 otherwise
,
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α(fn) =

{
f if n = 1,

0 otherwise
.

The differential ∂ is given by:

∂(µn) =
∑

i+j=n+1
i,j≥ 2

n−j∑

s=0

±µi ◦s+1 µj,

∂(νn) =
∑

i+j=n+1
i,j≥ 2

n−j∑

s=0

±νi ◦s+1 νj,

∂(fn) =
n∑

l=2

∑

r1+···+rl=n

±νl(fr1 ⊗ · · · ⊗ frl) +
∑

i+j=n+1
i≥ 1, j≥ 2

n−j∑

s=0

±fi ◦s+1 µj.

Since ∂(fn) contains terms of arbitrary homogeneity, in the L∞-

deformation complex for a morphism, ln is nontrivial for all n ≥ 1!

In the last example we show that diagrams with loops lead to curved

L∞-algebras.

⊲ Deformations of an isomorphism. A small cofibrant resolution of

Iso is a {v, w}-colored operad

Riso := (F(f0, f1, . . . ; g0, g1, . . .), ∂),

with generators of two types,

(i) generators {fn}n≥0, deg(fn) = n,

{
fn : v → w if n is even,

fn : v → v if n is odd,

(ii) generators {gn}n≥0, deg(gn) = n,

{
gn : w → v if n is even,

gn : w → w if n is odd.
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The differential ∂ is given by

∂f0 := 0, ∂g0 := 0,

∂f1 := g0f0 − 1, ∂g1 := f0g0 − 1

and, on the remaining generators, by the formula

∂f2m :=
∑

0≤i<m

(f2if2(m−i)−1 − g2(m−i)−1f2i), m ≥ 0,

∂f2m+1 :=
∑

0≤j≤m

g2jf2(m−j) −
∑

0≤j<m

f2j+1f2(m−j)−1, m ≥ 1,

∂g2m :=
∑

0≤i<m

(g2ig2(m−i)−1 − f2(m−i)−1g2i), m ≥ 0,

∂g2m+1 :=
∑

0≤j≤m

f2jg2(m−j) −
∑

0≤j<m

g2j+1g2(m−j)−1, m ≥ 1.

One easily gets the underlying cochain complex (notice its 2-periodicity!)

Cn(A;A) =

{
Lin(V ,W )⊕ Lin(W,V ) for n ≥ 1 odd, and

Lin(V , V )⊕ Lin(W,W ) for n ≥ 1 even.

The occurrence of 1’s in ∂f1 and ∂g1 indicates the existence of a

curvature. Our recipe makes sense also for k = 0 and describes

l0 ∈ C2(A;A) as the direct sum of the identity maps

11V ⊕ 11W ∈ Lin(V , V )⊕ Lin(W,W ) = C2(A;A).

If κ = f ⊕ g ∈ C1(A;A) = Lin(V ,W ) ⊕ Lin(W,V ), then the

‘curved’ Maurer-Cartan equation

−l0 +
1

2
l2(κ, κ) = 0

expands into

−(11V ⊕ 11W ) +
1

2
(2gf ⊕ 2fg) = 0 ∈ Lin(V , V )⊕ Lin(W,W ),

which says that f and g are mutually inverse isomorphisms.
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The deformation cohomology based on a resolution of the correspond-

ing operad was first considered in the proceedings [2] of the Winter

School ‘Geometry and Physics,’ Zd́ıkov, Bohemia, January 1993. The

L∞-deformation complex was constructed by van der Laan in [5].

The explicit description used in the talk was obtained in [3], its col-

ored version then in [1]. The minimal model of the anti-associative

operad was studied in [4].
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