Deformations of algebras and their diagrams

We will work over a fixed characteristic zero field k. Everyone knows
that deformations of an associative algebra (A, u) are controlled by
the Hochschild cohomology H*(A, A), which is the cohomology of
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0— CYAA) = CHAA) — - = C"(AA) —
where C"(A, A) := Lin(A®""1 A) and the coboundary 4 given by
0f(ay®@-®ay,) = (— )”“aof(al R ® an) + flag @@ ap_1)ay,
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Graphically, modulo signs, with /‘\ symbolizing the multiplication,

5(f)=i/><i%\ +Zi%

By ‘controlled by’ we usually mean that

— HY(A, A) classifies infinitesimal deformations and
— H?(A, A) contains obstructions for their extensions.

More precisely, C*(A, A) carries the Gerstenhaber bracket [—, —]
which turns it into a dg-Lie algebra

9= (C*(Av A)v [_7 _]7 5)

Let L be the Lie group g ® (t) C g ® k|[t]]. Consider the solutions
of the Maurer-Cartan equation in L

MC(g) = {s € L'; §s+ %[s, s] =0}, G(g) = exp(L°).

The moduli space of formal deformations of u equals the quotient

Def(g) = MC(g)/G(g).
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Our aim is to show that the same scheme holds for a wide class of
algebras and their diagrams, though instead of dg-Lie one sometimes
needs an L..-algebra. We will show how to construct, for a (diagram
of ) algebra(s) A belonging to a specified class of structures, an L-
algebra g = (C*(A, A),6 = 11,1y, ...) governing its deformations.

We will focus on explicit calculations and examples. We, in par-
ticular, show that deformations of morphisms are controlled by a
fully-fledged Loo-structure. We give an example where a ‘curved’ (=
with [p-term) L..-algebra occurs. We also show that L.-deformation

algebras are required for deformations of exotic structures.

By a ‘class of structures’ we mean algebras over a (colored, in the
case of diagrams) k-vector space operad P. We assume that operads

are familiar; yet we we recall that:

> An operad P is a collection {P(n)},>1 of vector spaces together
with composition operations

o, P(m)®@P(n) - Pim+n—-1), 1<i<m.
Each P(n) has moreover a right ,-action. n is called the arity.

These data satisfy axioms evident in the most important example of
the endomorphism operad of V', Endy = {Endy (n) }n>1,

Endy(n) .= Lin(VE" V),
with
(foig)vi® - ®Upym—1) =
=f1® - ®@vi1,9(Vi @ B Vigm1), Vigm @+ @ Uppyp1)

and Y2, permuting the arguments.
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> An algebra over P (or a P-algebra) is an operadic morphism
a:P — Endy. Examples:

1. An associative algebra is a vector space A with an associative
multiplication y: A® A — A:

p(pla,b), c) = pla, p(b, c)).
If we ‘visualize’ i as an ‘operation’ with two inputs and one output,

(= )\, the associativity is depicted as
The operad Ass describing associative algebras is the quotient

he s R A

of the free operad F( & )' modulo the operadic ideal generated by

the associativity. Formally,
Ass =TF(p)/(por p=porp).

2. The operad Com for commutative associative algebras is obtained

from Ass by further assuming that the multiplication u is symmetric,
ula,b) = (b, a).

3. A Lie algebra is a vector space L with an antisymmetric product
—, —]: L® L — L (the ‘bracket’), satisfying the Jacobi identity:

la, [b, c]] + [b, e, a]] + ¢, [a, 0] = 0.
The operad Lie for Lie algebras is the quotient

(A A )

123231312

1 Explain.
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To describe diagrams of algebras, we need colored operads.

> Fix a set of colors C (= nodes of the diagram). We modify the

definition of an operad by assuming that each P(n) decomposes as

P(n) = @ P (cl,..c.,cn) '

€,C1yeecn€C
LethP( ¢ )andgEP( d )
Cly.-.4Ci—-1,CiyCiy1y...,Cmp dl,...,dk
We require that f o; g # 0 implies d = ¢;, in which case
c
foigeP ( ) '

Cl)“‘7Ci—17d17°'°7dkjaci+17'°'7cm

Thus one may plug ¢ into the ¢-th slot of f only if the colors match,

otherwise the result is zero. If C = {Pt}, we get ordinary operads.

The main example is provided by the colored endomorphism operad

Endy on a ‘colored’ vector space U = .. U, given by

Endy(, © ) =Lin(U,@ - @U,,U).

1y - -
> An algebra over a colored operad P is an morphism of colored
operads a : P — Endy. Examples:

4. The two-colored operad Asse o, with C := {v,w}, describing
morphisms (V, ) ER (W, v) of associative algebras is the quotient

F(u, v, f)
(pel)=pleu), vivel)=vlev), fu=v(fef))
where

1 E ASSe_se (vvv) , UV E ASSe_se (www) and f € ASSe_e (?j) .

J ?
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A morphism (V' u) EN (W, v) is clearly the same as an ‘algebra’
a : ASSese — Endy, where U = U, ® U, with U, := V and
U, =W.If

w
p= A= A L= 8
W v

then the axioms

(UIU”)U”/ — (U//U/”), (w/w//)w/// — w/(w//w///)7 f(U/U”) — f(/Ul)f(U”)
of the ‘diagram’ (V, ) ER (W, v) are depicted as

S

v vvVvV vV v

Pictorially, Asse_,e is the free colored operad F( )\ : * , + ) modulo

the operadic ideal generated by (1). Similarly one defines Come_.,

Li€e_ye and Po_,e for a non-colored’ P.

5. Let again C := {v,w}, f v — w, g : w — v be two arity 1
generators and denote

F(f.9)
(fg=1w ,g9f =1y)
An algebra a : Zso — Endy consists of two maps f : V. — W,
g : W — V that are inverse to each other:

Tso =

4 "W, fg =1y and gf = 1y.

We abuse the notation by using the same symbols for operad gen-
erators and the corresponding operations. It is clear now how to
construct the colored operad Pp for D-diagrams of P-algebras.
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> The construction of the L..-deformation complex

g = (C*(A, A), d = ll, lg, - )
goes 1n two steps:
Step (1): Finding (if exists) the minimal model o : (F(E),0) —
(P,0). By definition, « is a homology isomorphism, F(FE) the free
operad on a collection F, and the minimality means that O(F) con-

sists of decomposable elements of F(E). This step is nontrivial. Rich
theory of minimal models is available, but will not be discussed here.

Step (2): The minimal model determines g via a straightforward
procedure. We illustrate everything on the example of the

> Hochschild cohomology. Step (1): Recall that
Ass == F(p)/(p(p @ 1) — u(1 & p)).
The minimal model for the operad Ass is well known to be

Ass «— (Flua, pi3, fta, - . .),0), deg(p,) =n — 2,

with a(p2) = p while « is trivial on the remaining generators. The
differential 0 is given by

)= 3 Y (1% @ @19 ),

i+j=n+10<s<i—1

= F (A A s (Z\/) —n 2

n-times

Pictorially

with the differential given on generators by

0 <)\) § , E , s-th input
1+7=n+1 1<s<s
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Algebras over (IF(us, i3, fia, - - .), 9) are Stasheft’s A -algebras. This
principle is general — strongly homotopy P-algebras are algebras over

the minimal model of P.

Step (2): The underlying vector space C*(A, A) of g is determined
by the generators of the minimal model as

C"(A,A) = Liny(E,_1,End ).
In our particular case, F, 1 = >, 1[tns1], 0
C"(A, A) = Lins, , ,(Ep1[pnt1], Enda(n + 1))
= Liny,, ., (Sni1[tni1], Lin(A®" A)) = Lin(A®", A).
We recover the Hochschild cochains as expected.

The construction of § and higher [, & > 2, uses the algebra structure
a:P —=Endy Let B=aoca F(E)SP S Endy.

Let T be an F-decorated tree representing an element of F(E). We
denote by e, € E the decoration of a vertex v € Vert(T).

For cochains Fi,..., Fy € Ling(E,Endy) = C*(A, A), homomor-
phism 3 : F(E) — &End 4 and distinct vertices vy, ..., v € Vert(T),
denote by

Ty R
the End 4-decorated tree whose vertices v;, 1 <1 < k, are decorated
by Fi(e,) € Enda and the remaining vertices v & {vy,..., v} by
B(e,) € End 4. We finally denote by

comp(T{{gi """ UWEL . F)]) € Enda

the composition of the decorations along the tree. See:



N /

For a generator € € E, (€) € F(FE) is a sum of F-decorated trees,

og) =Y T,

8655
over a finite set Se. Define I(F1, ..., F;)(&) € End 4 by

WPy F)E) = S Heomp(TH M F, .. F))2

The equivariant map E > & w— [(Fy, ..., Fy)(&) € Endy de-
termines an element lx(Fi,..., Fy) € C*(A; A). The assignment
Fi, ..., Fp— lp(FY, ..., Fy) is the requisite Loo-structure map.

Theorem. The object (C*(A, A),d =11,1o,...) is an Ly-algebra.
Formal deformations of the P-algebra A are parametrized by el-
ements k € CH(A; A) that satisfy the Lo-Master Equation:

1 1 1
0=0(k)+ Elz(li, k) + glg(/ﬁl, K, K) + ZZAI(H, Ry Ky K) -

2A drawing on board would help.
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Let us continue analyzing the associative algebra case. We start by
describing 6 = I1. Let f: A" — A e C"(A,A)and F : £ —
End 4 be the corresponding map of collections given by

, ifk=n-+1, and
ka)—{f

0, otherwise.

We easily see that 6(F)(uy) = 0 if k # n + 2, while

In the second line, u = /*\ We recognize the pictorial form of
the Hochschild differential from page 1. Analogously, assuming that
F; . E — &ndy are determined by multilinear maps f; € C"i(A, A),

1 = 1,2, as F' was determined by f above, one gets

which is the graphical form of the Gerstenhaber bracket. The higher
[,,’s are trivial since the differential in the minimal model is quadratic

i.e. given by sum over trees with two vertices. We clearly have:
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Fact. The Ly-alebra g = (C*(A, A),[—,—],0 = l1,1a,...) is dg-

Lie if and only if the minimal model of P s quadratic.

Non-quadratic minimal models are typical for non-Koszul operads.
All reasonable cases are Koszul. This explains why we do not see

L-proper very often in Nature.

> An anti-associative algebra is a vector space A with an anti-associative
multiplication y: A ® A — A:

p(pla,b),c) + pla, p(b, c)) = 0.
The operad Ass describing anti-associative algebras,

%:=F<A>/(,§+/>\)

is not Koszul. Its minimal model of Ass is of the form

(-/4587 O) & (T(,u% 3, /’L%7 M%v :uga :U’gla o ')7 8)7

where the subscripts denote the arity. Notice the gap in the arity 4
generators! From this one easily sees that in the relevant part

COA: A) -25 CH(A; A) =25 CX (A A) -5 O3 (A A) 5 -+
of the deformation complex one has

CY(A; A) =Lin(A, A)

CY(A; A) =Lin(A%?, A)

C*(A; A) =Lin(A®, A), and

C?(A; A) =Lin(A®°, A) @ Lin(A®°, A)
DLin(A®, A) @ Lin(A®, A).

Observe that C3(A; A) consists, unlike the Hochschild case, of 5-

linear maps!
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One calculates the initial part of the differential as:

O(p2) =0,
O(p3) = p2 01 pia + 12 03 o,
Opi5) = (2 09 13) 04 12 — (13 03 f12) ©4 o + (12 01 fi) 03 i3
— (3 01 f12) 03 fig + (12 01 p13) 01 f2 — (3 01 fi2) O1 H
+ (2 01 p3) 04 p2 — (3 02 p2) 04 fi2;
the formulas for O(u2), (u2) and O(ui) are similar. The cubicity of
O(u3) implies that C*(A, A) carries a nontrivial
I3: CH A A) @ CHA; A) @ C*(A; A) — C3(A; A).
While in the single-algebra case one need exotic structures to get a

fully-fledged Lo, nontrivial higher [,,’s are typical for diagrams.

> Deformations of a morphism of associative algebras. The construc-
tion of the L,,-deformation complex can be easily modified to the
colored case.

We start by describing the minimal model of the two-colored operad

Asse se. Let E be the {v, w}-colored Y -module with the generators:
fn s 0" — v of degree n — 2 and biarity (1,n) (n > 2),
vy w®" — w of degree n — 2 and biarity (1,n) (n > 2), and
fn: v®" — w of degree n — 1 and biarity (1,n) (n > 1).

Then the minimal model for Asse_e 1S

(F(E), D) % Asse s,

where

if n =2, v o ifn=2,
alp,) = {,u a(v,) = {

0 otherwise’ 0 otherwise ’
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0 otherwise

oz(fn)—{f ifn=1,

The differential 9 is given by:

n—j
Opn) = Z Z /i Ost1 [y,

i+j=n+1 s=0
0,j =2

n—j
8(%) = Z Z TV Ogt1 Vi,

t+7=n+1 s=0
1] =2

Ofn) =) > Eunlfy @@ f)+Y > Efiosp.

[=2 r1+-4r=n 1+j=n+1 s=0
i>1,j>2

Since O(f,) contains terms of arbitrary homogeneity, in the L.o-

deformation complex for a morphism, [, is nontrivial for all n > 1!

In the last example we show that diagrams with loops lead to curved

L-algebras.

> Deformations of an isomorphism. A small cofibrant resolution of

Tso is a {v, w}-colored operad

Riso = (F(f()afla ---5 90,91, - -

with generators of two types,

(i) generators { f,, }n>0, deg(f,) = n,

(ii) generators { g, tn>0, deg(g,) = n,

), 0),

fn v — w if nis even,
fniv— vifnisodd,

gn - w — v if n is even,
gn :w — w if n is odd.
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The differential 0 is given by
8f0 = 07 ago = 07
ofi == gofo—1, 01 = fogo—1

and, on the remaining generators, by the formula

dfom = Z (f2i fam—i)—1 = G2(m—i)—1f2i), m >0,

0<i<m
O fom+1 = Z 925 fo(m—j) — Z foje1fom—jy—1, m 21,
0<j<m 0<j<m
Ogom = Z (92i92(m—iy—1 = fogm—i)—192i), m >0,
0<i<m
Ogomi1 = Z f2jGa(m—j) — Z 92j+192(m—j)—1, M = 1.
0<j<m 0<j<m

One easily gets the underlying cochain complex (notice its 2-periodicity!)

Lin(V, W) & Lin(W,V) forn >1odd, and

C"(AA) =
(44 {Lz’n(V, V)@ Lin(W,W) forn > 1 even.

The occurrence of 1’s in 0f; and dg; indicates the existence of a
curvature. Our recipe makes sense also for & = 0 and describes
lp € C?*(A; A) as the direct sum of the identity maps

ly @ Iy € Lin(V,V) @ Lin(W, W) = C*(A; A).
fr=fdge CYAA) = Lin(V,W) @ Lin(JW,V), then the

‘curved” Maurer-Cartan equation
—ly + %lg(li, k)=0
expands into
_(ly & 1y) + %(29 F@20g) =0€ Lin(V,V)® Lin(W. W),

which says that f and g are mutually inverse isomorphisms.
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The deformation cohomology based on a resolution of the correspond-
ing operad was first considered in the proceedings [2| of the Winter
School ‘Geometry and Physics,” Zdikov, Bohemia, January 1993. The
L-deformation complex was constructed by van der Laan in [5].
The explicit description used in the talk was obtained in [3], its col-
ored version then in [1]. The minimal model of the anti-associative
operad was studied in [4].
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