Supervisory Control with Complete Observations Examples for the Tool Session

Tomáš Masopust and Jan H. van Schuppen

June 3, 2011

Example 1

Given a generator

$$G = (\{1, 2, \dots, 9\}, \{a, b, c, d\}, f, \{2, 6, 9\}),$$

where f is defined as described in Figure 1.

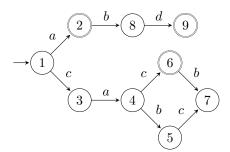


Figure 1: The generator G.

Task 1: Is the plant G nonblocking? If not, compute its trim Trim(G).

Task 2: Let $SPEC = \{a, cac\}$ be a specification, and let $E_c = \{a, d\}$. Decide whether the specification is controllable with respect to the plant G and the set of uncontrollable events E_{uc} . If not, compute the supremal controllable sublanguage SPEC' of the specification.

Task 3: Find the supervisor S such that L(S/G) = SPEC'? Is the supervisor nonblocking?

Task 4: Decide whether the specification is controllable with respect to the plant Trim(G) and the set of uncontrollable events E_{uc} . If not, compute the supremal controllable sublanguage $SPEC'_{trim}$ of the specification.

Task 5: Find the supervisor S_{trim} such that $L(S_{trim}/Trim(G)) = SPEC'_{trim}$? Is the supervisor nonblocking?

Example 2

Let $n \in \mathbb{N}$ be a fixed constant. Given n generators

$$G_i = (\{1, 2, 3, 4\}, \{r_i, a_i, e_i\}, f_i, \{4\}),\$$

for i = 1, 2, ..., n, where f_i is defined as described in Figure 2.

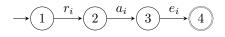


Figure 2: The generators.

Task 1: Compute the parallel composition $G = \prod_{i=1}^{n} G_i$. What is the maximal n for which you can compute it in a reasonable time? Is the plant G nonblocking?

Task 2: Let $E_i = \{r_i, a_i, e_i\}$, and define $E = \bigcup_{i=1}^n E_i$. Define a generator G_{spec} for the specification language

$$SPEC = \{ w \in E^* \mid \text{ for all } i \neq j,$$

if $a_i x a_j$ is a substring of w , then e_i appears in $x \}.$

In other words, considering a_i and e_i as a pair of brackets, different for each i, the strings of the specification contains only well-balanced bracket pairs. For instance, $a_1r_2r_3a_2r_4e_1$ does not belong to the specification.

Task 3: Decide whether the specification is controllable with respect to the plant G and the set of uncontrollable events $E_{uc} = \bigcup_{i=1}^{n} \{r_i, e_i\}$. If not, compute the supremal controllable sublanguage SPEC' of the specification.

Task 4: What is the supervisor S such that L(S/G) = SPEC'? Is the supervisor nonblocking?