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ON CONTEXT-FREE REWRITING WITH A SIMPLE RESTRICTION
AND ITS COMPUTATIONAL COMPLETENESS ∗

TOMÁŠ MASOPUST 1 AND ALEXANDER MEDUNA 1

Abstract. This paper discusses context-free rewriting systems in which there
exist two disjoint finite sets of rules, and a symbol, referred to as a condition
of applicability, is attached to each rule in either of these two sets. In one set,
a rule with a symbol attached to it is applicable if the attached symbol occurs
in the current rewritten string while in the other set, such a rule is applicable if
the attached symbol does not occur there. The present paper demonstrates that
these rewriting systems are computationally complete. From this main result,
the paper derives several consequences and solves several open problems.
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1. INTRODUCTION

The theory of formal languages has introduced a broad variety of modified context-
free grammars in order to increase their generative power. Placing certain conditions of
applicability upon grammatical rules represents an important type of these modifications.
That is, only grammatical rules satisfying prescribed conditions of applicability are appli-
cable during every derivation step of the generative process. As obvious, keeping these
conditions as simple as possible always represents a highly appreciated property of this
type of modifications. The present paper discusses context-free rewriting systems with
conditions of applicability that satisfy this property.

More specifically, this paper discusses the notion of a context-free rewriting system
that contains two disjoint finite sets of rules. A condition of applicability consisting of a
single symbol is attached to each rule in either of these two sets. In one set, a rule with a
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symbol attached to it is applicable if the attached symbol occurs in the current rewritten
string while in the other set, such a rule is applicable if the attached symbol does not occur
there at all. As its main result, the present paper demonstrates that the resulting rewriting
systems are computationally complete.

From this main result, the paper derives several consequences and side results in terms
of other conditional grammars, recently summarized in [4]. Specifically, it includes ran-
dom context grammars (see [7]) and their special variants—semi-conditional grammars
(see [5]) and simple semi-conditional grammars (see [3])—and concludes that they are
computationally complete.

2. PRELIMINARIES

In this paper, we assume that the reader is familiar with the theory of formal languages
(see [1, 6]). For an alphabet (finite nonempty set) V , V ∗ represents the free monoid gen-
erated by V . The unit of V ∗ is denoted by ε . Set V + = V ∗−{ε}. For w ∈V ∗, |w| denotes
the length of w and alph(w) denotes the set of all symbols occurring in w. Let LRE denote
the family of recursively enumerable languages.

A context-free grammar is a quadruple G = (N,T,P,S), where N is a nonterminal
alphabet, T is a terminal alphabet such that N ∩ T = /0, V = N ∪ T , S ∈ N is the start
symbol, and P is a finite set of rules of the form A → x, where A ∈ N and x ∈ V ∗. For
u,v ∈V ∗, uAv directly derives uxv, denoted by uAv⇒ uxv, provided that A→ x ∈ P. The
language generated by G is defined as L(G) = {w ∈ T ∗ : S⇒∗ w}, where ⇒∗ denotes the
reflexive and transitive closure of ⇒. The family of languages generated by context-free
grammars is denoted by LCF.

2.1. UNORDERED SCATTERED CONTEXT GRAMMARS

An unordered scattered context grammar is a quintuple G = (N,T,P,S,R), where N is
a nonterminal alphabet, T is a terminal alphabet such that N∩T = /0, V = N∪T , S ∈ N is
the start symbol, P is a finite set of rules of the form

(A1,A2, . . . ,An)→ (w1,w2, . . . ,wn) ,

for some n≥ 1, where Ai ∈ N, wi ∈V ∗, for all i = 1, . . . ,n, and

R⊆ {ri → si : (r1, . . . ,ri, . . . ,rk)→ (s1, . . . ,si, . . . ,sk) ∈ P, 1≤ i≤ k}

is a set of context-free rules that can be skipped in the parallel application of a finite
number of context-free rules if their left-hand sides do not appear in the current sentential
form. Specifically, a rule (A1,A2, . . . ,An)→ (w1,w2, . . . ,wn) from P is applied to a string
x = x1Ai1x2Ai2 . . .xuAiuxu+1, where xi ∈V ∗, for all i = 1, . . . ,u+1, provided that

(1) (Ai1 ,Ai2 , . . . ,Aiu) is a permutation of a subsequence of (A1,A2, . . . ,An), and
(2) if A j ∈ {A1,A2, . . . ,An}−{Ai1 ,Ai2 , . . . ,Aiu}, then A j /∈ alph(x) and A j → w j ∈ R.
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This application results in the string y = x1wi1x2wi2 . . .xuwiuxu+1, written as x ⇒ y. The
language generated by G is defined as L(G) = {w ∈ T ∗ : S⇒∗ w}, where ⇒∗ denotes the
reflexive and transitive closure of ⇒.

An unordered scattered context grammar G = (N,T,P,S,R) is said to be 2-limited if
(1) (A1,A2, . . . ,An)→ (w1,w2, . . . ,wn) ∈ P implies n≤ 2 and |wi| ≤ 2, i = 1,2, and
(2) n = 1 implies A1 = S.

The following theorem is proved in [2].

Theorem 2.1. Every recursively enumerable language is generated by a 2-limited un-
ordered scattered context grammar.

3. DEFINITIONS

Definition 3.1. A conditional context-free rewriting system is a quintuple

G = (N,T,P+,P−,S) ,

where N is a nonterminal alphabet, T is a terminal alphabet such that N∩T = /0, S ∈ N is
the start symbol, and P+ and P− are two finite sets of rules of the form (A→ x,X), where
A → x is a context-free rule and X ∈ N is a condition of applicability, such that the sets
{A→ x : (A→ x,X) ∈ P+} and {A→ x : (A→ x,X) ∈ P−} are disjoint.

Remark 3.2. Context-free rules can be thought of as rules of the form (A→ x,A) ∈ P+.

As usual, V = N∪T denotes the total alphabet.

Definition 3.3. For all u,v ∈V ∗ and (A→ x,X) ∈ P+∪P−, uAv directly derives uxv in G,
symbolically written as uAv⇒ uxv, provided that

(1) either (A→ x,X) ∈ P+ and X ∈ alph(uAv),
(2) or (A→ x,X) ∈ P− and X 6∈ alph(uAv).

The language generated by G is defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}, where ⇒∗ de-
notes the reflexive and transitive closure of ⇒. The family of languages generated by
conditional context-free rewriting systems is denoted by LCCFRS.

Remark 3.4. For the better readability, we often write (A → x,X)+ and (A → x,X)−
instead of (A→ x,X) ∈ P+ and (A→ x,X) ∈ P−, respectively.

4. MAIN RESULT

This section demonstrates that LCCFRS = LRE . From this main result, several corol-
laries follow. Some of them represent well-known results proved in an alternative way.
Specifically, these results demonstrate that random context grammars (see [7]) and semi-
conditional grammars of degree (i, j), for all i, j ≥ 1, (see [5]) are computationally com-
plete. More importantly, some other corollaries solve open problems in formal language
theory. For instance, they establish that simple semi-conditional grammars of degree
(i, j), for all i, j ≥ 1, (see [3]) are computationally complete.
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As the proof of LCCFRS = LRE is complicated, we structure this section into several
subsections to make the proof as readable as possible.

Theorem 4.1. LCCFRS = LRE.

Before we prove Theorem 4.1, we need to slightly modify 2-limited unordered scat-
tered context grammars in order not to have the start symbol on the right-hand side of any
rule.

Lemma 4.2. Every recursively enumerable language is generated by a 2-limited un-
ordered scattered context grammar G = (N,T,P,S,R), where S does not occur on the
right-hand side of any rule from P; i.e., if (A,B)→ (x,y) ∈ P, then S /∈ alph(xy), and if
(S)→ (w) ∈ P, then S /∈ alph(w).

Proof. Let L be a recursively enumerable language and G = (N,T,P,S,R) be a 2-limited
unordered scattered context grammar such that L = L(G). Assume that S occurs on the
right-hand side of a rule from P. Construct an unordered scattered context grammar, G′,
satisfying the lemma as follows.

Let S′ and S1 be two new nonterminals not contained in N, and set N′ = N ∪{S′,S1},
P′ = P∪{(S′)→ (S1S)}, and replace all rules of the form (S)→ (w) in P′ with (S1,S)→
(S1,w) and (S1,S) → (ε,w). Thus, G′ = (N′,T,P′,S′,R) and it is not hard to see that
L(G) = L(G′). ¤

4.1. CONSTRUCTION

Let L be a recursively enumerable language. Without loss of generality, we can assume
that L is generated by a 2-limited unordered scattered context grammar G = (N,T,P,S,R)
satisfying Lemma 4.2. Let n be the number of rules in P. Then,

P =
u−1⋃
i=1

((S)→ (wi))∪
n⋃

i=u

((Ai1,Ai2)→ (wi1,wi2)) ,

where 1≤ u≤ n. We construct a conditional context-free rewriting system

G′ = (N′,T,P+,P−,S′)

as follows:
• For each A ∈ N, let A′ and A′′ be new nonterminals.
• Let #, $, X , X ′, X ′′, X ′′′, Y , Z be new nonterminals.

Then, set

N′ = N∪{A′ : A∈N}∪{A′′ : A∈N}∪{#,$,X ,X ′,X ′′,X ′′′,Y,Z}∪{[p]i : p∈P, 0≤ i≤ 7} ,

V = N∪T , and V ′ = N′∪T . Finally, define P+ and P− as follows:

(1) for each (S)→ (w) ∈ P, add (S→ w,S) to P+.
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(2) for each p = (A,B)→ (x,y) ∈ P, add the following rules to P+∪P−:
(a) (A→ X ′#A′,#)−
(b) (X ′→ X ′′,Y )−
(c) (X ′′→ X ,Z)−
(d) (B→ X ′′′$B′,$)−
(e) (X ′′′→ ε,Z)−
(f) (X → [p]0,A′)+
(g) (A′→ A′′, [p]0)+
(h) ([p]0 → [p]1,A′′)+
(i) ([p]1 → [p]2,B′)+
(j) ([p]2 → [p]3,X ′′′)−
(k) (A′′→ x, [p]3)+
(l) (B′→ y, [p]3)+

(m) ([p]3 → [p]4,A′′)−
(n) ([p]4 → Y Z,B′)−
(o) (#→ ε,Y )+
(p) ($→ ε,Z)+
(q) (Y → ε,X ′)−
(r) (Z → ε,X ′′′)−

(3) If B→ y ∈ R, add to P+∪P− also
(s) ([p]1 → [p]5,B)−
(t) ([p]5 → [p]6,$)−
(u) ([p]6 → [p]7,B′′)−
(v) (A′′→ x, [p]7)+
(w) ([p]7 → Y,A′′)−

(4) If A→ x ∈ R, add (B,A)→ (y,x) to P.

4.2. BASIC IDEA

Clearly, the basic idea of the proof is to show how G′ simulates G, and, on the other
hand, to show that every successful derivation of G′ can be simulated by G. To give an
insight into the proof, we first explain the meaning of the newly introduced symbols:

• Symbols A′ and A′′ corresponding to each A ∈ N are introduced to mark the sym-
bols we want to replace during the simulation of one derivation step of G.

• Symbols # and $ are introduced to block the simulation of another rule; of course,
if there is # or $ in the sentential form, we cannot mark any other pair of nonter-
minals (see rules (a) and (d)).

• Symbols X , X ′, X ′′, and X ′′′ are introduced to make sure that the previous simu-
lation of a rule is successfully finished.

• All the symbols [p]i check (step by step) that there are two marked symbols, say
A and B, in the sentential form corresponding to two symbols of the left-hand
side of p = (A,B)→ (x,y) (or only one symbol, A, if there is no symbol B in the
sentential form and B→ y ∈ R).
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• Finally, by symbols Y and Z, the system verifies that the simulation of p is suc-
cessfully completed.

Now, we briefly explain how the rewriting system is synchronized. Let p = (A,B)→
(x,y) ∈ P. Then, the rewriting system works as follows.

• Rules (a) and (d) mark symbols A and B and introduce X ′, X ′′′, #, and $ in
the current sentential form. As mentioned above, while there are # and $ in the
sentential form, the system cannot start the simulation of another rule. Then, by
using X ′, X ′′, and X ′′′, the system makes sure that there is no Y or Z in the current
sentential form; i.e., the previous simulation is finished.

• Then, rule ( f ) nondeterministically selects a rule of G, say for instance p, of the
form (A,B)→ (x,y) to simulate.

• Rules (g) through (m) then simulate the application of p so that they first check
that there are marked symbols A and B, and if so, A and B are replaced with x and
y, respectively.

• By rule (n), the system verifies that the simulation has been successful by in-
troducing symbols Y and Z. Notice that there are still # and $ in the current
sentential form. Therefore, the simulation of another rule is not possible.

• Finally, rules (o) and (p) remove # and $, respectively, and then rules (q) and (r)
remove Y and Z, respectively. After eliminating # or $, the simulation of another
rule begins. However, symbols Y and Z have to be removed before X (allowing
a new nondeterministic selection of a rule to be simulated) is introduced in the
current sentential form (see rules (b) and (c)).

Note that one could see this synchronization as a semaphore, where
(1) some processes (rules of G to be applied) want to reach the critical section trying

so by rules (a) through (e) nondeterministically marking two nonterminals to be
rewritten inside of the critical section,

(2) a process reaches the critical section, where it simulates the derivation of a rule
of G replacing the marked symbols and introduces Y and Z if the simulation is
successful (see rules ( f ) through (n)), and, finally,

(3) the process leaves the critical section by removing symbols #, $, Y , and Z, and
allows another process to enter the critical section (see rules (o) through (r)).

4.3. PROOF OF L(G)⊆ L(G′)

To prove that L(G)⊆ L(G′), consider a derivation step in G, w1Aw2Bw3 ⇒ w1xw2yw3,
according to p = (A,B)→ (x,y). Then, in G′, this derivation step is simulated as follows.
Note that in what follows,⇒(x) means that the derivation step⇒ is made by an application
of rule (x).

w1Aw2Bw3 ⇒(a) w1X ′#A′w2Bw3 ⇒(d) w1X ′#A′w2X ′′′$B′w3
⇒(b) w1X ′′#A′w2X ′′′$B′w3 ⇒(c) w1X#A′w2X ′′′$B′w3
⇒(e) w1X#A′w2$B′w3 ⇒( f ) w1[p]0#A′w2$B′w3
⇒(g) w1[p]0#A′′w2$B′w3 ⇒(h) w1[p]1#A′′w2$B′w3
⇒(i) w1[p]2#A′′w2$B′w3 ⇒( j) w1[p]3#A′′w2$B′w3
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⇒(k) w1[p]3#xw2$B′w3 ⇒(l) w1[p]3#xw2$yw3
⇒(m) w1[p]4#xw2$yw3 ⇒(n) w1Y Z#xw2$yw3
⇒(o) w1Y Zxw2$yw3 ⇒(p) w1Y Zxw2yw3
⇒(q) w1Zxw2yw3 ⇒(r) w1xw2yw3 .

If there is no B in the sentential form and B → y ∈ R, the derivation step is simulated as
follows.

w1Aw2 ⇒(a) w1X ′#A′w2 ⇒(b) w1X ′′#A′w2
⇒(c) w1X#A′w2 ⇒( f ) w1[p]0#A′w2
⇒(g) w1[p]0#A′′w2 ⇒(h) w1[p]1#A′′w2
⇒(s) w1[p]5#A′′w2 ⇒(t) w1[p]6#A′′w2
⇒(u) w1[p]7#A′′w2 ⇒(v) w1[p]7#xw2
⇒(w) w1Y #xw2 ⇒(o) w1Y xw2
⇒(q) w1xw2 .

The proof then proceeds by induction. ¤

4.4. PROOF OF L(G′)⊆ L(G)

To prove that L(G′)⊆ L(G), consider a successful derivation of G′. Since the applica-
bility of rules depends only on occurrences of symbols in sentential forms, we disregard
their positions. That is, such a successful derivation begins by a derivation of the form
S ⇒∗ w, where w ∈ {w1Aw2Bw3,w1Aw2 : w1w2w3 ∈ V ∗, A,B ∈ N}. In the rest of this
proof, we proceed as follows:

A: We explore all possible beginnings of successful derivations starting from w.
B: We demonstrate that all the beginnings of derivations in A simulate the applica-

tion of a rule of the form (A,B)→ (x,y).

Let w be of the form w1Aw2Bw3. Figure 1 presents all possible successful derivations
starting from w. Now, we explain why some rules are not applicable in a successful
derivation so that we explore all possible derivations starting from the sentential forms
from nodes of the graph in Figure 1.

Clearly, in node 0, i.e., in the sentential form w1Aw2Bw3, only rules constructed in (a)
and (d) are applicable. If (a) is applied, # is introduced to the sentential form, and while
there is # in the sentential form, no other rule constructed in (a) can be applied. Thus,
only rules constructed in (b) and (d) are applicable in node 1. Analogously for the other
nodes. Note that in some cases, there are applicable rules that are not depicted in Figure 1.
We now show that such rules block the derivation, i.e., the derivation is not able to derive
a terminal string. These rules are listed below with respect to numbers of nodes in which
they are applicable.

Node 16: Only rules constructed in (g) (in case A = B), (h), and (e) are applica-
ble. However, if (g) is applied, the derivation cannot generate a terminal string;
indeed, Y cannot be generated because neither [p]2 nor [p]6 can be generated.

Node 18: Only rules constructed in (i), (e), and (s) are applicable. However, if
rule (s) is applied, then only (e) is applicable, i.e., w1[p]1#A′′w2X ′′′$B′w3 ⇒(s)
w1[p]5#A′′w2X ′′′$B′w3 ⇒(e) w1[p]5#A′′w2$B′w3, and the derivation is blocked.
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Node 19: Only rules (g) and (h) are applicable. However, applying (g), the deriva-
tion cannot generate a terminal string as mentioned above (see Node 16).

Node 21: Only rules constructed in (i) and (s) are applicable. However, if (s) is ap-
plied, we get the following sentential form, w1[p]5#A′′w2$B′w3, and the deriva-
tion is blocked.

0 : w1Aw2Bw3

1 : w1X
′#A′w2Bw3 2 : w1Aw2X

′′′$B′w3

3 : w1X
′′#A′w2Bw3 4 : w1X

′#A′w2X
′′′$B′w3 5 : w1Aw2$B′w3

6 : w1X#A′w2Bw3 7 : w1X
′′#A′w2X

′′′$B′w3 8 : w1X
′#A′w2$B′w3

9 : w1[p]0#A′w2Bw3 10 : w1X#A′w2X
′′′$B′w3 11 : w1X

′′#A′w2$B′w3

12 : w1[p]0#A′′w2Bw3 13 : w1[p]0#A′w2X
′′′$B′w3 14 : w1X#A′w2$B′w3

15 : w1[p]1#A′′w2Bw3 16 : w1[p]0#A′′w2X
′′′$B′w3 17 : w1[p]0#A′w2$B′w3

18 : w1[p]1#A′′w2X
′′′$B′w3 19 : w1[p]0#A′′w2$B′w3

20 : w1[p]2#A′′w2X
′′′$B′w3 21 : w1[p]1#A′′w2$B′w3

22 : w1[p]2#A′′w2$B′w3

(a) (d)

(b) (d) (a) (e)

(c) (d) (b) (e) (a)

(f) (d) (c) (e) (b)

(g) (d) (f) (e) (c)

(h) (d) (g) (e) (f)

(d) (h) (e) (g)

(i) (e) (h)

(e) (i)

FIGURE 1. All possible beginnings of successful derivations starting
from w1Aw2Bw3. (Nodes are numbered; in this case from 0 to 22.)

In all cases, we have generated the string w1[p]2#A′′w2$B′w3. The derivation now
continues as shown in Figure 2.

Node 24: Only rules constructed in (m) and (l) are applicable. However, if rule (m)
is applied, i.e., we get w1[p]4#xw2$B′w3, the derivation is blocked.

Thus, we have derived the following sentential form w1Y Z#xw2$yw3. The derivation
now continues as shown in Figure 3.



TITLE WILL BE SET BY THE PUBLISHER 9

22 : w1[p]2#A′′w2$B′w3

23 : w1[p]3#A′′w2$B′w3

24 : w1[p]3#xw2$B′w3 25 : w1[p]3#A′′w2$yw3

26 : w1[p]3#xw2$yw3

27 : w1[p]4#xw2$yw3

28 : w1Y Z#xw2$yw3

(j)

(k) (l)

(l) (k)

(m)

(n)

FIGURE 2. All possible beginnings of successful derivations starting
from w1[p]2#A′′w2$B′w3.

Node 28: Only rules (o), (p), (q), and (r) are applicable. If (q) is applied, i.e.,
w1Y Z#xw2$yw3 ⇒(q) w1Z#xw2$yw3, then only rules (r) and (p) are applicable.
If (r) is applied, the sentential form is w1#xw2$yw3, and the derivation is blocked.
If (p) is applied, the sentential form is w1Z#xw2yw3, and the derivation is blocked
as in (2) below.

If (r) is applied, w1Y Z#xw2$yw3 ⇒(r) w1Y #xw2$yw3, then only rules (q) and
(o) are applicable. If (q) is applied, the derivation is blocked. If (o) is applied,
the sentential form is w1Y xw2$yw3, and the derivation is blocked as in (1) below.

Node 29: Only rules (a), (p), (q), and (r) are applicable. If rule (a) is applied, we
get v1X ′#C′v2Y Zxw2$yw3, and the derivation is blocked according to rules (b)
and (q) because neither Y nor X ′ can be removed.

If (r) is applied, i.e.,

w1Y Zxw2$yw3 ⇒(r) w1Y xw2$yw3 , (1)

then only rules (a) and (q) are applicable. If (a) is applied, Y and X ′ are in the
sentential form—the derivation is blocked. If (q) is applied, the sentential form
is w1xw2$yw3, and the derivation is blocked as in (6) below.

Node 30: Only rules (d), (o), (q), and (r) are applicable. If (d) is applied, the
current sentential form contains Z and X ′′′—the derivation is blocked.

If (q) is applied, i.e.,

w1Y Z#xw2yw3 ⇒(q) w1Z#xw2yw3 , (2)
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FIGURE 3. All possible beginnings of successful derivations starting
from w1Y Z#xw2$yw3.
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the only (d) and (r) are applicable. If (d) is applied, the derivation is blocked; Z
and X ′′′ are in the sentential form. If (r) is applied, then only rule (d) followed
by (e) is applicable, i.e.,

w1Z#xw2yw3 ⇒(r) w1#xw2yw3 (3)

⇒(d) w1#xw2yv1X ′′′$D′v2 (4)

⇒(e) w1#xw2yv1$D′v2 . (5)

Again, the derivation is blocked.
Node 31: Only rules (a), (p), and (r) are applicable. If (r) is applied, then only the

following sequence of rules is applicable: (a), (b), (c), ( f ), (g), (h), and (s), i.e.,

w1Zxw2$yw3 ⇒(r) w1xw2$yw3 (6)

⇒(a) u1X ′#C′u2xw2$yw3 (7)

⇒(b) u1X ′′#C′u2xw2$yw3 (8)

⇒(c) u1X#C′u2xw2$yw3 (9)

⇒( f ) u1[q]0#C′u2xw2$yw3 (10)

⇒(g) u1[q]0#C′′u2xw2$yw3 (11)

⇒(h) u1[q]1#C′′u2xw2$yw3 (12)

⇒(s) u1[q]5#C′′u2xw2$yw3 , (13)

and the derivation is blocked.
Node 32: Only rules (a), (d), (q), and (r) are applicable. If (a) is applied, the

sentential form contains Y and X ′; the derivation is blocked. If (d) is applied, we
get w1Y Zxw2yv1X ′′′$D′v2, and the derivation is blocked according to rules (e)
and (r).

Node 33: Only (d), (q), and (o) are applicable. If (q) is applied, we get w1#xw2yw3,
and the derivation is blocked as in (3).

Node 34: Only rules (b), (p), and (r) are applicable. If (r) is applied, the sentential
form is u1X ′#C′u2xw2$yw3, and the derivation is blocked as in (7).

Node 35: Only (a), (d), and (r) are applicable. However, if (d) is applied, we get
w1Zxw2yv1X ′′′$D′v2, and the derivation is blocked, see rules (e) and (r).

Node 36: Only (a), (d), and (q) are applicable. If (a) is applied, the sentential form
is u1X ′#C′u2Y xw2yw3, and the derivation is blocked, see rules (b) and (q).

Node 37: Only (q), (o), and (e) are applicable. If (q) is applied, we get the senten-
tial form w1#xw2yv1X ′′′$D′v2, and the derivation is blocked as in (4).

Node 38: Only (p) and (r) are applicable. If rule (r) is applied, the sentential form
is u1X ′′#C′u2xw2$yw3, and the derivation is blocked as in (8).

Node 39: Only (b), (d), and (r) are applicable. However, if (d) is applied, we get
u1X ′#C′u2Zxw2yv1X ′′′$D′v2, and the derivation is blocked, see (e) and (r).

Node 41: Only (a), (q), and (e) are applicable. If (a) is applied, the sentential form
is u1X ′#C′u2Y xw2yv1X ′′′$D′v2, and the derivation is blocked, see rules (b) and
(q).
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Node 42: Only (q) and (o) are applicable. If rule (q) is applied, the sentential form
is w1#xw2yv1$D′v2, and the derivation is blocked as in (5).

Node 43: Only (d) and (r) are applicable. If (d) is applied, the sentential form is
u1X ′′#C′u2Zxw2yv1X ′′′$D′v2, and the derivation is blocked.

Node 46: Only (a) and (q) are applicable. However, if (a) is applied, the derivation
is blocked; Y and X ′ are in the sentential form.

Thus, S ⇒∗ w ⇒∗ α ⇒∗ z, where z ∈ T ∗ and α is in one of the following sentential
forms:

(i) w1xw2yw3
(ii) u1X ′#C′u2xw2yw3

(iii) u1X ′′#C′u2xw2yw3
(iv) w1xw2yv1X ′′′$D′v2
(v) w1xw2yv1$D′v2

In this moment, we have simulated rule p = (A,B)→ (x,y), and the derivation contin-
ues starting to simulate another rule, q = (C,D)→ (u,v). The rule (A,B)→ (x,y) does
the same in G. The proof now proceeds by induction from nodes 0, 1, 3, 2, 5, respectively,
or as follows if there is no D (D′ and D′′) in the sentential form.

Above, we have considered the sentential form w containing B. Now, assume that
there is no B in w. Then, the following sequence of rules has to be applied in a successful
derivation: (a), (b), (c), ( f ), (g), and (h);

w1Aw2 ⇒(a) w1X ′#A′w2 ⇒(b) w1X ′′#A′w2 ⇒(c) w1X#A′w2
⇒( f ) w1[p]0#A′w2 ⇒(g) w1[p]0#A′′w2 ⇒(h) w1[p]1#A′′w2 .

Clearly, as there are no B, B′, and B′′ (if B = A) in the current sentential form, rules (s),
(t), and (u), respectively, can be applied.

w1[p]1#A′′w2 ⇒(s) w1[p]5#A′′w2 ⇒(t) w1[p]6#A′′w2 ⇒(u) w1[p]7#A′′w2
⇒(v) w1[p]7#xw2 ⇒(w) w1Y #xw2 .

Last two derivation steps follow from the construction. Now, the derivation continues as
in Node 33. The rule (A,B)→ (x,y) with B→ y ∈ R does the same in G. ¤

4.5. COROLLARIES

Corollary 4.3. The following families of languages coincide.
• The family of languages generated by conditional context-free rewriting systems.
• The family of recursively enumerable languages.
• The family of languages generated by random context grammars.
• The family of languages generated by semi-conditional grammars of degree (1,1).
• The family of languages generated by simple semi-conditional grammars of de-

gree (1,1).

Proof. Conditional context-free rewriting systems are special variants of random context
grammars, semi-conditional grammars, and simple semi-conditional grammars. ¤
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