On the Complexity of k-Piecewise Testability and the Depth of Automata

Tomáš Masopust and Michaël Thomazo

TU Dresden, Germany

DLT 2015

・ロト・西ト・山下・山下・山下・

Problems

Problems

Problem (k-PiecewiseTestability)

Input: an automaton (min. DFA or NFA) \mathscr{A} Output: YES if and only if $\mathscr{L}(\mathscr{A})$ is *k*-PT Quest.: complexity

Problem (Bounds on automata of k-PT languages)

Input: $\Sigma = \{a_1, a_2, \dots, a_n\}, n \ge 1$, and $k \ge 1$ Quest.: length of a longest word, w, such that 1. $sub_k(w) := \{u \in \Sigma^* \mid u \preccurlyeq v, |u| \le k\}^1 = \Sigma^{\le k},$ 2. prefixes $w_1 \ne w_2$ of w, $sub_k(w_1) \ne sub_k(w_2)$ Piecewise testable languages (PT)

Definition

A regular language is piecewise testable if it is a finite boolean combination of languages of the form

$$\Sigma^* a_1 \Sigma^* a_2 \Sigma^* \cdots \Sigma^* a_n \Sigma^*$$

where $n \ge 0$ and $a_i \in \Sigma$.

It is k-piecewise testable (k-PT) if $n \le k$.

Piecewise testable languages (PT)

Definition

A regular language is piecewise testable if it is a finite boolean combination of languages of the form

$$\Sigma^* a_1 \Sigma^* a_2 \Sigma^* \cdots \Sigma^* a_n \Sigma^*$$

where $n \ge 0$ and $a_i \in \Sigma$.

It is k-piecewise testable (k-PT) if $n \le k$.

Example (PT language)

$$\bigcup_{a_1a_2\cdots a_n\in L} \Sigma^*a_1\Sigma^*a_2\Sigma^*\cdots\Sigma^*a_n\Sigma^*$$

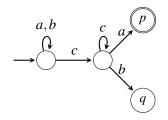
・ロ・・団・・団・・団・ クタク

PT recognition

$$\mathfrak{Bool}(\Sigma^*a_1\Sigma^*a_2\Sigma^*\cdots\Sigma^*a_n\Sigma^*)$$

Theorem (min. DFA characterization²)

- 1. Partially ordered acyclic, but with self-loops
- 2. Confluent $-\forall q \in Q, \forall a, b \in \Sigma, \exists w \in \{a, b\}^* \text{ s.t. } (qa)w = (qb)w$

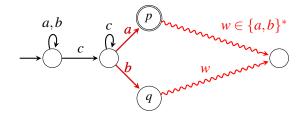


PT recognition

$$\mathfrak{Bool}(\Sigma^*a_1\Sigma^*a_2\Sigma^*\cdots\Sigma^*a_n\Sigma^*)$$

Theorem (min. DFA characterization²)

- 1. Partially ordered acyclic, but with self-loops
- 2. Confluent $\forall q \in Q, \forall a, b \in \Sigma, \exists w \in \{a, b\}^*$ s.t. (qa)w = (qb)w



▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

Simon 1975

piecewise testable = *J*-trivial

Simon 1975

piecewise testable = *J*-trivial

Stern 1985

piecewise testability for DFAs is in PTIME, $O(n^5)$

Simon 1975

piecewise testable = *J*-trivial

Stern 1985

piecewise testability for DFAs is in $\ensuremath{\mathsf{PTIME}}$, $O(n^5)$

 Trahtman 2001 piecewise testability for DFAs in quadratic time

Simon 1975

piecewise testable = *J*-trivial

- ► Stern 1985 piecewise testability for DFAs is in PTIME, O(n⁵)
- Trahtman 2001 piecewise testability for DFAs in quadratic time
- Klíma, Polák 2013 another quadratic-time algorithm for DFAs

Simon 1975

piecewise testable = *J*-trivial

- ► Stern 1985 piecewise testability for DFAs is in PTIME, O(n⁵)
- Trahtman 2001 piecewise testability for DFAs in quadratic time
- Klíma, Polák 2013 another quadratic-time algorithm for DFAs
- Cho and Huynh 1991 piecewise testability for DFAs is NL-complete

Simon 1975

piecewise testable = *J*-trivial

- ► Stern 1985 piecewise testability for DFAs is in PTIME, O(n⁵)
- Trahtman 2001 piecewise testability for DFAs in quadratic time
- Klíma, Polák 2013 another quadratic-time algorithm for DFAs
- Cho and Huynh 1991 piecewise testability for DFAs is NL-complete
- Holub, M., Thomazo 2014⁺ piecewise testability for NFAs is PSPACE-complete

A D A A B A A B A A B A B B

Simon 1975

piecewise testable = *J*-trivial

- ► Stern 1985 piecewise testability for DFAs is in PTIME, O(n⁵)
- Trahtman 2001 piecewise testability for DFAs in quadratic time
- Klíma, Polák 2013 another quadratic-time algorithm for DFAs
- Cho and Huynh 1991 piecewise testability for DFAs is NL-complete
- Holub, M., Thomazo 2014⁺ piecewise testability for NFAs is PSPACE-complete
- Bojańczyk, Segoufin, Straubing 2012
 PT tree languages

A D A A B A A B A A B A B B

Problem 1

$\mathfrak{Bool}(\Sigma^* a_1 \Sigma^* a_2 \Sigma^* \cdots \Sigma^* a_n \Sigma^*) \quad \text{with } n \leq k$

Problem (k-PiecewiseTestability)

Input: An automaton (min. DFA or NFA) \mathscr{A} Output: YES if and only if $\mathscr{L}(\mathscr{A})$ is k-PT

Trivially decidable – finite number of k-PTL over $\Sigma_{\mathscr{A}}$

DFAs

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Complexity of k-Piecewise Testability for DFAs

Theorem

The following problem

NAME: K-PIECEWISETESTABILITY INPUT: *a minimal DFA* \mathscr{A} OUTPUT: YES *if and only if* $\mathscr{L}(\mathscr{A})$ *is k-PT*

belongs to co-NP.

0-Piecewise Testability DFAs

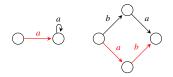
$$L(\mathscr{A}) \text{ is } \mathbf{0}\text{-}\mathsf{PT} \text{ iff } L(\mathscr{A}) = \begin{cases} \Sigma^* \\ \emptyset \end{cases}$$

Complexity $O(1)$

Theorem

To decide whether a min. DFA recognizes a 1-PT language is in LOGSPACE.

 $L(\mathscr{A})$ 1-PT iff the two patterns hold in every state and letter(s)



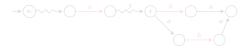
Syntactic monoids of 1-PTL defined by equations $x = x^2$ and $xy = yx^3$

・ロ・・雪・・雪・・目・・ つくぐ

³Simon, Blanchet-Sadri

Theorem To decide whether a min. DFA recognizes a 2-PT language is NL-complete.

 \mathscr{A} min. acyclic and confluent DFA (checked in NL); $L(\mathscr{A})$ 2-PT iff $\forall a \in \Sigma, \forall s \in Q \text{ s.t. } q_0w = s \text{ for a } w \in \Sigma^* \text{ with } |w|_a \ge 1, sba = saba \ \forall b \in \Sigma \cup \{\varepsilon\}.$



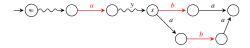
Synt. monoids of 2-PT defined by xyzx = xyxzx and $(xy)^2 = (yx)^2$ (Blanchet-Sadri)

・ロト・4回ト・4回ト・4回ト・4回ト

Theorem

To decide whether a min. DFA recognizes a 2-PT language is NL-complete.

 \mathscr{A} min. acyclic and confluent DFA (checked in NL); $L(\mathscr{A})$ 2-PT iff $\forall a \in \Sigma, \forall s \in Q \text{ s.t. } q_0 w = s \text{ for a } w \in \Sigma^* \text{ with } |w|_a \ge 1, sba = saba \ \forall b \in \Sigma \cup \{\varepsilon\}.$

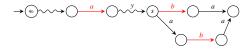


Synt. monoids of 2-PT defined by xyzx = xyxzx and $(xy)^2 = (yx)^2$ (Blanchet-Sadri)

・ロト・4回ト・4回ト・4回ト・4回ト

Theorem To decide whether a min. DFA recognizes a 2-PT language is NL-complete.

 \mathscr{A} min. acyclic and confluent DFA (checked in NL); $L(\mathscr{A})$ 2-PT iff $\forall a \in \Sigma, \forall s \in Q \text{ s.t. } q_0 w = s \text{ for a } w \in \Sigma^* \text{ with } |w|_a \ge 1, sba = saba \ \forall b \in \Sigma \cup \{\varepsilon\}.$



Synt. monoids of 2-PT defined by xyzx = xyxzx and $(xy)^2 = (yx)^2$ (Blanchet-Sadri)

▲口 > ▲母 > ▲臣 > ▲臣 > ▲臣 > ④ < ⊙ < ⊙

Theorem

To decide whether a min. DFA recognizes a 3-PT language is NL-complete.

Blachet-Sadri: Equations $(xy)^3 = (yx)^3$, xzyxvxwy = xzxyxvxwy and ywxvxyzx = ywxvxyzx

Theorem

NAME: K-PIECEWISETESTABILITY INPUT: *a minimal DFA* \mathscr{A} OUTPUT: YES *if and only if* $\mathscr{L}(\mathscr{A})$ *is k-PT*

Complexity: in co-NP

- O(1) for k = 0,
- LOGSPACE for k = 1,
- NL-complete for k = 2, 3,

Theorem

NAME: K-PIECEWISETESTABILITY INPUT: *a minimal DFA* \mathscr{A} OUTPUT: YES *if and only if* $\mathscr{L}(\mathscr{A})$ *is k-PT*

Complexity: in co-NP

- O(1) for k = 0,
- LOGSPACE for k = 1,
- NL-complete for k = 2, 3,

Recently, a co-NP upper bound in terms of separability Hofman, Martens, "Separability by Short Subsequences and Subwords", ICDT 2015

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem

NAME: K-PIECEWISETESTABILITY INPUT: *a minimal DFA* \mathscr{A} OUTPUT: YES *if and only if* $\mathscr{L}(\mathscr{A})$ *is k-PT*

Complexity: in co-NP

- O(1) for k = 0,
- LOGSPACE for k = 1,
- NL-complete for k = 2, 3,
- co-NP-complete for $k \ge 4$.

Recently, a co-NP upper bound in terms of separability Hofman, Martens, "Separability by Short Subsequences and Subwords", ICDT 2015

Even more recently, co-NP-completeness for $k\geq 4$ Klíma, Kunc, Polák, "Deciding k-piecewise testability", submitted, unaccessible O Thanks to an anonymous reviewer and the authors

・ロト・(型)・(目)・(目)・目)のへの

Complexity of k-PT for NFAs

Theorem The following problem NAME: κ -PIECEWISETESTABILITYNFA INPUT: an NFA \mathscr{A} OUTPUT: YES if and only if $\mathscr{L}(\mathscr{A})$ is k-PT is PSPACE-complete.

Problem 2

▲□▶▲□▶▲□▶▲□▶ ■ のへの

Bounds on min. DFAs of k-PT languages

Problem (Bounds on automata of k-PT languages)

Input:
$$\Sigma = \{a_1, a_2, \dots, a_n\}, n \ge 1$$
, and $k \ge 1$
Quest.: length of a longest word, w, s.t.
1. $sub_k(w) := \{u \in \Sigma^* \mid u \preccurlyeq v, |u| \le k\}^4 = \Sigma$

2. prefixes $w_1 \neq w_2$ of w, sub_k $(w_1) \neq$ sub_k (w_2)

Bounds on min. DFAs of k-PT languages

Problem (Bounds on automata of k-PT languages)

Input:
$$\Sigma = \{a_1, a_2, \dots, a_n\}, n \ge 1$$
, and $k \ge 1$
Quest.: length of a longest word, w , s.t.
1. $sub_k(w) := \{u \in \Sigma^* \mid u \preccurlyeq v, |u| \le k\}^4 = \Sigma^{\le k},$
2. prefixes $w_1 \ne w_2$ of w , $sub_k(w_1) \ne sub_k(w_2)$

Solution

$$|w| = \binom{k+n}{k} - 1$$

 $^{4}abc \preccurlyeq bacabbabca$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Theorem (Klíma + Polák 2013)

Given a min. DFA recognizing a PT language. If the depth is k, then the language is k-PT.

⁶states are \sim_k classes: $u \sim_k v$ iff $sub_k(u) = sub_k(v)$

・ロト・(理)・・ヨト・ヨト・

⁵depth = # states on longest simple path-1; simple path = all states pairwise different

Theorem (Klíma + Polák 2013)

Given a min. DFA recognizing a PT language. If the depth is k, then the language is k-PT.

Opposite does not hold.

Ex.: $(4\ell - 1)$ -PTL with the min. DFA of depth $4\ell^2$, for $\ell > 1$.

⁶states are \sim_k classes: $u \sim_k v$ iff $sub_k(u) = sub_k(v)$

・ロ・・ 御・・ 御・・ 御・ 「御」

⁵depth = # states on longest simple path-1; simple path = all states pairwise different

Theorem (Klíma + Polák 2013)

Given a min. DFA recognizing a PT language. If the depth is k, then the language is k-PT.

Opposite does not hold.

Ex.: $(4\ell - 1)$ -PTL with the min. DFA of depth $4\ell^2$, for $\ell > 1$.

Corollary (of Problem 2) Depth⁵ of min. DFA for a *k*-PTL over an *n*-letter alphabet is at most $\binom{k+n}{k} - 1$. The bound is tight.

⁶states are \sim_k classes: $u \sim_k v$ iff $sub_k(u) = sub_k(v)$

A D A A B A A B A A B A B B

⁵depth = # states on longest simple path-1; simple path = all states pairwise different

Theorem (Klíma + Polák 2013)

Given a min. DFA recognizing a PT language. If the depth is k, then the language is k-PT.

Opposite does not hold.

Ex.: $(4\ell - 1)$ -PTL with the min. DFA of depth $4\ell^2$, for $\ell > 1$.

Corollary (of Problem 2)

Depth⁵ of min. DFA for a k-PTL over an n-letter alphabet is at most $\binom{k+n}{k} - 1$. The bound is tight.

= depth of the \sim_k -canonical DFA⁶

Number of equiv. classes of \sim_k investigated by Karandikar, Kufleitner, Schnoebelen, "On the index of Simon's congruence for piecewise testability", IPL 2015

⁶states are \sim_k classes: $u \sim_k v$ iff $sub_k(u) = sub_k(v)$

⁵depth = # states on longest simple path-1; simple path = all states pairwise different

For positive integers k and n,

$$\binom{k+n}{k} - 1 = \frac{1}{k!} \sum_{i=1}^{k} {\binom{k+1}{i+1}} n^i,$$

where $\begin{bmatrix} k \\ n \end{bmatrix}$ denotes the Stirling cyclic numbers.

k-PT, NFAs and DFAs

Theorem

For every $k \ge 2$, there exists a language *L* such that

- L is k-PT
- ► L is not (k-1)-PT
- L is recognized by an NFA of depth k 1, and
- *L* is recognized by the min. DFA of depth $2^k 1$.

22/24

k-PT, NFAs and DFAs

Theorem

For every $k \ge 2$, there exists a language L such that

- L is k-PT
- ► L is not (k-1)-PT
- L is recognized by an NFA of depth k 1, and
- *L* is recognized by the min. DFA of depth $2^k 1$.

Note

NFA has *k* states \rightsquigarrow there are NFAs s.t. 2^k states of their min. DFAs form a simple path

イロト 不得 トイヨト イヨト

Are NFAs better?

Are NFAs more convenient for upper bounds on k?

Are NFAs better?

Are NFAs more convenient for upper bounds on k?

No

Are NFAs better?

Are NFAs more convenient for upper bounds on k?

No

Even for 1-PT, the depth of NFA depends on the alphabet.

The language

$$L = \bigcap_{a \in \Sigma} \Sigma^* a \Sigma^*$$

is 1-PT and any NFA requires at least $2^{|\Sigma|}$ states and depth $|\Sigma|$.

Thank you!

Summary of main results

k-PT of DFAs is in co-NP

			k = 2, 3	
Comp.	<i>O</i> (1)	LOGSPACE	NL-complete	co-NP-complete7

- k-PT for NFAs is PSPACE-complete
- ▶ $k, n \ge 1$, the depth of min. DFA of any k-PTL over *n* letters $\le \binom{k+n}{k} 1$
- For every k≥ 2, there exists L s.t. L is k-PT and not (k−1)-PT, L is recognized by an NFA with k states and depth k − 1, and the min. DFA for L has depth 2^k − 1.

24/24

⁷Klíma, Kunc, Polák