On the Complexity of k-Piecewise Testability
and the Depth of Automata

Tomas Masopust and Michaél Thomazo
TU Dresden, Germany

DLT 2015

1/24

Problems

Problems

Problem (k-PiecewiseTestability)

Input: an automaton (min. DFA or NFA) <
Output: YEs ifand only if £ (<) is k-PT
Quest.: complexity

Problem (Bounds on automata of k-PT languages)

Input: £={ay,az,...,a,},n>1,andk > 1
Quest.: length of a longest word, w, such that
1. suby(w):={uec* luxv,|ul <k}'=1x=k
2. prefixes wy # wy of w, Suby(wy) # suby(w»)

1abe =< bacabbabca

3/24

Piecewise testable languages (PT)

Definition
A regular language is piecewise testable if it is a finite boolean
combination of languages of the form
Yar X ap Xt - Xra,r*
where n>0and g; € X.

It is k-piecewise testable (k-PT) if n < k.

4/24

Piecewise testable languages (PT)

Definition
A regular language is piecewise testable if it is a finite boolean
combination of languages of the form
Yar X ap Xt - Xra,r*
where n>0and g; € X.

It is k-piecewise testable (k-PT) if n < k.

Example (PT language)

U Zaffart--2a,r

ayay---a,€L

4/24

PT recognition

Bool(X'a; T a X" - La,X")

Theorem (min. DFA characterization®)

1. Partially ordered — acyclic, but with self-loops

2Version by Klima + Polak 2013

5/24

PT recognition

Bool(X'a; T a X" - La,X")

Theorem (min. DFA characterization®)

1. Partially ordered — acyclic, but with self-loops

2. Confluent —vq € Q,Va,b € L, 3w € {a,b}* s.t. (qa)w = (gb)w

c a we{ab}

%%—» O

2Version by Klima + Polak 2013

5/24

What do we know about PT languages?

6/24

What do we know about PT languages?

» Simon 1975
piecewise testable = ¢ -trivial

6/24

What do we know about PT languages?

» Simon 1975
piecewise testable = ¢ -trivial

» Stern 1985
piecewise testability for DFAs is in PTIME, O(n°)

6/24

What do we know about PT languages?

» Simon 1975
piecewise testable = ¢ -trivial

» Stern 1985
piecewise testability for DFAs is in PTIME, O(n°)

» Trahtman 2001
piecewise testability for DFAs in quadratic time

6/24

What do we know about PT languages?

» Simon 1975
piecewise testable = ¢ -trivial

» Stern 1985
piecewise testability for DFAs is in PTIME, O(n°)

» Trahtman 2001
piecewise testability for DFAs in quadratic time

» Klima, Polak 2013
another quadratic-time algorithm for DFAs

6/24

What do we know about PT languages?

» Simon 1975
piecewise testable = ¢ -trivial

» Stern 1985
piecewise testability for DFAs is in PTIME, O(n°)

» Trahtman 2001
piecewise testability for DFAs in quadratic time

» Klima, Polak 2013
another quadratic-time algorithm for DFAs

» Cho and Huynh 1991
piecewise testability for DFAs is NL-complete

6/24

What do we know about PT languages?

» Simon 1975
piecewise testable = ¢ -trivial

» Stern 1985
piecewise testability for DFAs is in PTIME, O(n°)

» Trahtman 2001
piecewise testability for DFAs in quadratic time

» Klima, Polak 2013
another quadratic-time algorithm for DFAs

» Cho and Huynh 1991
piecewise testability for DFAs is NL-complete

» Holub, M., Thomazo 2014+
piecewise testability for NFAs is PSPACE-complete

6/24

What do we know about PT languages?

» Simon 1975
piecewise testable = ¢ -trivial

» Stern 1985
piecewise testability for DFAs is in PTIME, O(n°)

» Trahtman 2001
piecewise testability for DFAs in quadratic time

» Klima, Polak 2013
another quadratic-time algorithm for DFAs

» Cho and Huynh 1991
piecewise testability for DFAs is NL-complete

» Holub, M., Thomazo 2014+
piecewise testability for NFAs is PSPACE-complete

» Bojanczyk, Segoufin, Straubing 2012
PT tree languages

6/24

Problem 1

k-Piecewise Testability

Bool(Ta 1 Z'a X - T¥a,X*) withn <k
Problem (k-PiecewiseTestability)
Input: An automaton (min. DFA or NFA) </

Output: YES ifand only if £ (<) is k-PT

Trivially decidable — finite number of k-PTL over X,

8/24

DFAs

Complexity of k-Piecewise Testability for DFAs

Theorem
The following problem

NAME: K-PIECEWISETESTABILITY
INPUT: a minimal DFA </
OuTPuT: YES ifand only if £ (<) is k-PT

belongs to co-NP.

10/24

0-Piecewise Testability DFAs

Z*

L(/) is O-PT iff L(e/) = { .

Complexity O(1)

11/24

1-Piecewise Testability

Theorem
To decide whether a min. DFA recognizes a 1-PT language is
in LOGSPACE.

L(«7) 1-PT iff the two patterns hold in every state and letter(s)
a b Q‘
o8 < QVO

Syntactic monoids of 1-PTL defined by equations x = x? and xy = yx.3

3Simon, Blanchet-Sadri
12/24

2-Piecewise Testability

Theorem
To decide whether a min. DFA recognizes a 2-PT language is
NL-complete.

13/24

2-Piecewise Testability

Theorem
To decide whether a min. DFA recognizes a 2-PT language is
NL-complete.

&/ min. acyclic and confluent DFA (checked in NL); L(.«/) 2-PT iff
Va € L,Vs € Qs.t gow=sforaw e L* with |w|, > 1, sba = saba Vb € LU {e}.

»@w»@%%@i»oﬁo
Ot

13/24

2-Piecewise Testability

Theorem
To decide whether a min. DFA recognizes a 2-PT language is
NL-complete.

&/ min. acyclic and confluent DFA (checked in NL); L(.«/) 2-PT iff
Va € L,Vs € Qs.t gow=sforaw e L* with |w|, > 1, sba = saba Vb € LU {e}.

»@w»@%%@i»oﬁo
Ot

Synt. monoids of 2-PT defined by xyzx = xyxzx and (xy)? = (yx)? (Blanchet-Sadr)
*)Cj C X C Y C XZ C X XO
OV\:”“’

13/24

3-Piecewise Testability

Theorem
To decide whether a min. DFA recognizes a 3-PT language is
NL-complete.

Blachet-Sadri: Equations (xy)3 = (yx)3, xzyxvxwy = xzxyxvxwy and
YWXVXYZX = YWXVXYXZX

14/24

k-Piecewise Testability

Theorem

NAME: K-PIECEWISETESTABILITY
INPUT: a minimal DFA <f
OuTpruUT: YES ifand only if £ (<) is k-PT
Complexity: in co-NP
» O(1) fork=0,
» LOGSPACE fork=1,
» NL-complete fork = 2,3,

15/24

k-Piecewise Testability

Theorem

NAME: K-PIECEWISETESTABILITY
INPUT: a minimal DFA <f
OuTpruUT: YES ifand only if £ (<) is k-PT
Complexity: in co-NP
» O(1) fork=0,
» LOGSPACE fork=1,
» NL-complete fork = 2,3,

Recently, a co-NP upper bound in terms of separability
Hofman, Martens, “Separability by Short Subsequences and Subwords”, ICDT 2015

15/24

k-Piecewise Testability

Theorem

NAME: K-PIECEWISETESTABILITY
INPUT: a minimal DFA <f
OuTPuUT: YES ifand only if £ (<) is k-PT
Complexity: in co-NP
O(1) fork =0,
LOGSPACE fork=1,
NL-complete for k = 2,3,
co-NP-complete fork > 4.

v

v

v

v

Recently, a co-NP upper bound in terms of separability
Hofman, Martens, “Separability by Short Subsequences and Subwords”, ICDT 2015

Even more recently, co-NP-completeness for k > 4

Klima, Kunc, Polék, “Deciding k-piecewise testability”, submitted, unaccessible @
Thanks to an anonymous reviewer and the authors

15/24

NFASs

Complexity of k-PT for NFAs

Theorem
The following problem

NAME: K-PIECEWISETESTABILITYNFA

INPUT: an NFA o/

OuTPuUT: YES ifand only if £ (<) is k-PT
is PSPACE-complete.

17 /24

Problem 2

Bounds on min. DFAs of k-PT languages

Problem (Bounds on automata of k-PT languages)

Input: £ ={ay,as,...,a,},n>1,andk > 1
Quest.: length ofa longest word, w, S.t.
. subp(w) = {ue X |uxv, |ul <k}'=1xk,
2. preflxes wi #£ wy Of w, subk(wl) # Suby(ws)

4abe =< bacabbabca

19/24

Bounds on min. DFAs of k-PT languages

Problem (Bounds on automata of k-PT languages)

Input: £={ay,az,...,a,},n>1,andk > 1
Quest.: length ofa longest word, w, S.t.
. suby(w) :={uc T |lu=v,ul <k}'=x,
2. preflxes wi #£ wy Of w, subk(wl) # Suby(ws)

Solution

4abe =< bacabbabca

19/24

Consequences

Theorem (Klima + Polak 2013)

Given a min. DFA recognizing a PT language. If the depth is k,
then the language is k-PT.

Sdepth = # states on longest simple path—1; simple path = all states pairwise different
Sstates are ~; classes: u ~ v iff suby (u) = suby (v)
20/24

Consequences

Theorem (Klima + Polak 2013)
Given a min. DFA recognizing a PT language. If the depth is k,
then the language is k-PT.

Opposite does not hold.
Ex.: (4¢—1)-PTL with the min. DFA of depth 4¢2, for £ > 1.

Sdepth = # states on longest simple path—1; simple path = all states pairwise different
Sstates are ~; classes: u ~ v iff suby (u) = suby (v)

20/24

Consequences

Theorem (Klima + Polak 2013)

Given a min. DFA recognizing a PT language. If the depth is k,
then the language is k-PT.

Opposite does not hold.
Ex.: (4¢—1)-PTL with the min. DFA of depth 4¢2, for £ > 1.

Corollary (of Problem 2)

Depth’ of min. DFA for a k-PTL over an n-letter alphabet is at
most (*t") — 1. The bound is tight.

Sdepth = # states on longest simple path—1; simple path = all states pairwise different
Sstates are ~; classes: u ~ v iff suby (u) = suby (v)

20/24

Consequences

Theorem (Klima + Polak 2013)
Given a min. DFA recognizing a PT language. If the depth is k,
then the language is k-PT.

Opposite does not hold.
Ex.: (4¢—1)-PTL with the min. DFA of depth 4¢2, for £ > 1.

Corollary (of Problem 2)

Depth’ of min. DFA for a k-PTL over an n-letter alphabet is at
most (*t") — 1. The bound is tight.

. 6
= depth of the ~-canonical DFA
Number of equiv. classes of ~; investigated by Karandikar, Kufleitner, Schnoebelen, “On the index of Simon’s
congruence for piecewise testability”, IPL 2015

Sdepth = # states on longest simple path—1; simple path = all states pairwise different
Sstates are ~; classes: u ~ v iff suby (u) = suby (v)
20/24

Stirling Numbers
For positive integers k and n,

k+n 1 & [e+17
(V) =wxli)

where [¥] denotes the Stirling cyclic numbers.

21/24

k-PT, NFAs and DFAs

Theorem
For every k > 2, there exists a language L such that

L isk-PT

L is not (k—1)-PT

L is recognized by an NFA of depth k— 1, and
L is recognized by the min. DFA of depth 2% — 1.

v

v

v

v

22/24

k-PT, NFAs and DFAs

Theorem
For every k > 2, there exists a language L such that

L isk-PT

L is not (k—1)-PT

L is recognized by an NFA of depth k— 1, and
L is recognized by the min. DFA of depth 2% — 1.

v

v

v

v

Note
NFA has k states ~~ there are NFAs s.t. 2X states of their min.
DFAs form a simple path

22/24

Are NFAs better?

Are NFAs more convenient for upper bounds on k?

23/24

Are NFAs better?

Are NFAs more convenient for upper bounds on k?

No

23/24

Are NFAs better?

Are NFAs more convenient for upper bounds on k?

No

Even for 1-PT, the depth of NFA depends on the alphabet.
The language

L= (X'’

acy

is 1-PT and any NFA requires at least 2*! states and depth |Z|.

23/24

Thank you!

Summary of main results
» k-PT of DFAs is in co-NP

k=0 k=1 k=23 k>4
Comp. | O(1) | LOGSPACE | NL-complete | co-NP-complete”

» k-PT for NFAs is PSPACE-complete
> k,n> 1, the depth of min. DFA of any k-PTL over n letters < ("Z”) -1
» For every k > 2, there exists L s.t. L is k-PT and not (k—1)-PT,

L is recognized by an NFA with k states and depth k— 1, and
the min. DFA for L has depth 2% — 1.

7Klima, Kunc, Polak
24 /24

	Motivation
	Complexity of k-PT for DFAs
	Complexity of k-Piecewise Testability for NFAs
	Piecewise Testability and the Depth of NFAs

