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Problems

Problem (k-PiecewiseTestability)

Input: an automaton (min. DFA or NFA) A

Output: YES if and only if L (A ) is k-PT
Quest.: complexity

Problem (Bounds on automata of k-PT languages)

Input: Σ = {a1,a2, . . . ,an}, n≥ 1, and k ≥ 1

Quest.: length of a longest word, w, such that
1. subk(w) := {u ∈ Σ∗ | u4 v, |u| ≤ k}1= Σ≤k,
2. prefixes w1 6= w2 of w, subk(w1) 6= subk(w2)

1abc4 bacabbabca
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Piecewise testable languages (PT)

Definition
A regular language is piecewise testable if it is a finite boolean
combination of languages of the form

Σ
∗a1Σ

∗a2Σ
∗ · · ·Σ∗anΣ

∗

where n≥ 0 and ai ∈ Σ.

It is k-piecewise testable (k-PT) if n≤ k.

Example (PT language)

⋃
a1a2···an∈L

Σ
∗a1Σ

∗a2Σ
∗ · · ·Σ∗anΣ

∗
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PT recognition

Bool
(
Σ
∗a1Σ

∗a2Σ
∗ · · ·Σ∗anΣ

∗)
Theorem (min. DFA characterization2)

1. Partially ordered – acyclic, but with self-loops

2. Confluent – ∀q ∈ Q,∀a,b ∈ Σ, ∃w ∈ {a,b}∗ s.t. (qa)w = (qb)w

p

q

c

a,b c a

b

2Version by Klíma + Polák 2013
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What do we know about PT languages?

I Simon 1975
piecewise testable = J -trivial

I Stern 1985
piecewise testability for DFAs is in PTIME, O(n5)

I Trahtman 2001
piecewise testability for DFAs in quadratic time

I Klíma, Polák 2013
another quadratic-time algorithm for DFAs

I Cho and Huynh 1991
piecewise testability for DFAs is NL-complete

I Holub, M., Thomazo 2014+

piecewise testability for NFAs is PSPACE-complete

I Bojańczyk, Segoufin, Straubing 2012
PT tree languages
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k-PiecewiseTestability

Bool
(
Σ
∗a1Σ

∗a2Σ
∗ · · ·Σ∗anΣ

∗) with n≤ k

Problem (k-PiecewiseTestability)

Input: An automaton (min. DFA or NFA) A

Output: YES if and only if L (A ) is k-PT

Trivially decidable – finite number of k-PTL over ΣA
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DFAs
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Complexity of k-Piecewise Testability for DFAs

Theorem
The following problem

NAME: K-PIECEWISETESTABILITY

INPUT: a minimal DFA A
OUTPUT: YES if and only if L (A ) is k-PT

belongs to co-NP.
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0-Piecewise Testability DFAs

L(A ) is 0-PT iff L(A ) =

{
Σ∗

/0

Complexity O(1)
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1-Piecewise Testability

Theorem
To decide whether a min. DFA recognizes a 1-PT language is
in LOGSPACE.

L(A ) 1-PT iff the two patterns hold in every state and letter(s)

a

a b a

a b

Syntactic monoids of 1-PTL defined by equations x = x2 and xy = yx.3

3Simon, Blanchet-Sadri
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2-Piecewise Testability

Theorem
To decide whether a min. DFA recognizes a 2-PT language is
NL-complete.

A min. acyclic and confluent DFA (checked in NL); L(A ) 2-PT iff
∀a ∈ Σ,∀s ∈ Q s.t. q0w = s for a w ∈ Σ∗ with |w|a ≥ 1, sba = saba ∀b ∈ Σ∪{ε}.

q0 sa y b a

a

b

a

Synt. monoids of 2-PT defined by xyzx = xyxzx and (xy)2 = (yx)2 (Blanchet-Sadri)

q0 sx y z x

x

z

x
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3-Piecewise Testability

Theorem
To decide whether a min. DFA recognizes a 3-PT language is
NL-complete.

Blachet-Sadri: Equations (xy)3 = (yx)3, xzyxvxwy = xzxyxvxwy and
ywxvxyzx = ywxvxyxzx
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k-Piecewise Testability

Theorem

NAME: K-PIECEWISETESTABILITY

INPUT: a minimal DFA A
OUTPUT: YES if and only if L (A ) is k-PT

Complexity: in co-NP
I O(1) for k = 0,
I LOGSPACE for k = 1,
I NL-complete for k = 2,3,

I co-NP-complete for k ≥ 4.

Recently, a co-NP upper bound in terms of separability
Hofman, Martens, “Separability by Short Subsequences and Subwords”, ICDT 2015

Even more recently, co-NP-completeness for k ≥ 4
Klíma, Kunc, Polák, “Deciding k-piecewise testability”, submitted, unaccessible
Thanks to an anonymous reviewer and the authors
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NFAs
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Complexity of k-PT for NFAs

Theorem
The following problem

NAME: K-PIECEWISETESTABILITYNFA
INPUT: an NFA A

OUTPUT: YES if and only if L (A ) is k-PT
is PSPACE-complete.
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Problem 2
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Bounds on min. DFAs of k-PT languages

Problem (Bounds on automata of k-PT languages)

Input: Σ = {a1,a2, . . . ,an}, n≥ 1, and k ≥ 1

Quest.: length of a longest word, w, s.t.
1. subk(w) := {u ∈ Σ∗ | u4 v, |u| ≤ k}4

= Σ≤k,
2. prefixes w1 6= w2 of w, subk(w1) 6= subk(w2)

Solution

|w|=
(

k+n
k

)
−1

4abc4 bacabbabca
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Consequences

Theorem (Klíma + Polák 2013)
Given a min. DFA recognizing a PT language. If the depth is k,
then the language is k-PT.

Opposite does not hold.
Ex.: (4`−1)-PTL with the min. DFA of depth 4`2, for ` > 1.

Corollary (of Problem 2)
Depth5 of min. DFA for a k-PTL over an n-letter alphabet is at
most

(k+n
k

)
−1. The bound is tight.

= depth of the ∼k-canonical DFA6

Number of equiv. classes of ∼k investigated by Karandikar, Kufleitner, Schnoebelen, “On the index of Simon’s
congruence for piecewise testability”, IPL 2015

5depth = # states on longest simple path−1; simple path = all states pairwise different
6states are ∼k classes: u∼k v iff subk(u) = subk(v)
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Stirling Numbers

For positive integers k and n,(
k+n

k

)
−1 =

1
k!

k

∑
i=1

[
k+1
i+1

]
ni ,

where
[k

n

]
denotes the Stirling cyclic numbers.
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k-PT, NFAs and DFAs

Theorem
For every k ≥ 2, there exists a language L such that
I L is k-PT
I L is not (k−1)-PT
I L is recognized by an NFA of depth k−1, and
I L is recognized by the min. DFA of depth 2k−1.

Note
NFA has k states there are NFAs s.t. 2k states of their min.
DFAs form a simple path
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Are NFAs better?

Are NFAs more convenient for upper bounds on k?

No

Even for 1-PT, the depth of NFA depends on the alphabet.

The language
L =

⋂
a∈Σ

Σ
∗aΣ

∗

is 1-PT and any NFA requires at least 2|Σ| states and depth |Σ|.
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Thank you!

Summary of main results
I k-PT of DFAs is in co-NP

k = 0 k = 1 k = 2,3 k ≥ 4
Comp. O(1) LOGSPACE NL-complete co-NP-complete7

I k-PT for NFAs is PSPACE-complete

I k,n≥ 1, the depth of min. DFA of any k-PTL over n letters ≤
(k+n

k
)
−1

I For every k ≥ 2, there exists L s.t. L is k-PT and not (k−1)-PT,
L is recognized by an NFA with k states and depth k−1, and
the min. DFA for L has depth 2k−1.

7Klíma, Kunc, Polák
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