
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Representations of Monotone Boolean Functions by Linear Programs

MATEUS DE OLIVEIRA OLIVEIRA, University of Bergen, Norway

PAVEL PUDLÁK, Czech Academy of Sciences, Czech Republic

We introduce the notion of monotone linear programming circuits (MLP circuits), a model of computation for partial Boolean functions.

Using this model, we prove the following results
1
.

(1) MLP circuits are superpolynomially stronger than monotone Boolean circuits.

(2) MLP circuits are exponentially stronger than monotone span programs over the reals.

(3) MLP circuits can be used to provide monotone feasibility interpolation theorems for Lovász-Schrijver proof systems and for

mixed Lovász-Schrijver proof systems.

(4) The Lovász-Schrijver proof system cannot be polynomially simulated by the cutting planes proof system.

Finally, we establish connections between the problem of proving lower bounds for the size of MLP circuits and the field of extension

complexity of polytopes.

CCS Concepts: • Theory of computation → Circuit complexity; Proof complexity.

Additional Key Words and Phrases: Monotone Linear Programming Circuits, Lovász-Schrijver Proof Systems, Feasible Interpolation

ACM Reference Format:
Mateus de Oliveira Oliveira and Pavel Pudlák. 2019. Representations of Monotone Boolean Functions by Linear Programs. 1, 1

(January 2019), 32 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

Superpolynomial lower bounds on the size of Boolean circuits computing explicit Boolean functions have only been

proved for circuits from some specific families of circuits. A prominent role among these families is played by monotone

Boolean circuits. Exponential lower bounds for monotone Boolean circuits were proved already in 1985 by Razborov [30].

In 1995 Krajíček showed that lower bounds on the monotone complexity of particular partial Boolean functions can be

used to prove lower bounds for Resolution, and for some other proof systems such as cutting-planes with bounded

coefficients; these results were published in [21]. A similar idea appeared in the same year in a preprint of Bonet et

al. which was later published as [4].
2
Incidentally, the functions used in Razborov’s lower bound were just of the

form needed for resolution lower bounds. Exponential lower bounds on resolution proofs had been proved before

(coincidentally about at the same time as Razborov’s lower bounds). However, Krajíček came up with a new general

method, the so called feasible interpolation, that potentially could be used for other proof systems. Indeed, soon after his

1
An extended abstract of this work appeared in the proceedings of CCC 2017 [8].

2
Another article of Razborov [31] was instrumental for Krajíček, although it did not deal with propositional proofs.

Authors’ addresses: Mateus de Oliveira Oliveira, University of Bergen, Norway, mateus.oliveira@uib.no; Pavel Pudlák, Czech Academy of Sciences,

Prague, Czech Republic, pudlak@math.cas.cz.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/0000001.0000001

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Mateus de Oliveira Oliveira and Pavel Pudlák

result, this method was used to prove exponential lower bounds on the cutting-planes proof system [17, 25]. That lower

bound is based on a generalization of Razborov’s lower bounds to a more general monotone computational model, the

monotone real circuits. Another monotone computational model for which superpolynomial lower bounds have been

obtained is the monotone span program model [2, 11, 12]. An exponential lower bound on the size of monotone span

programs has been recently obtained in [33]. For a long time the best known lower bound for this model of computation

was of the order of nΩ(logn)
[11]. Superpolynomial lower bounds on the size of monotone span programs can be used

to derive lower bounds on the degree of Nullstellensatz proofs, as shown in [27].
3

The results listed above suggest that proving lower bounds on stronger and stronger models of monotone computation

may be a promising approach towards proving lower bounds on stronger proof systems. Indeed, in his survey article

[32] Razborov presents the problem of understanding feasible interpolation for stronger systems as one of the most

challenging ones in proof complexity theory.

In this work we introduce several computational models based on the notion ofmonotone linear program. In particular,

we introduce the notion of monotone linear programming gate (MLP gate). In its most basic form, an MLP gate is a

partial function ℓ : Rn → R ∪ {∗} of the form ℓ(y) = max{c · x | Ax ≤ b + By, x ≥ 0} where y is a string of n input

real variables, and B is a nonnegative matrix. The complexity of such a gate is defined as the number of rows plus the

number of columns in the matrixA. For each assignment α ∈ Rn of the variables y the value ℓ(α) is the optimal value of

the linear program with objective function c · x , and constraints Ax ≤ b + Bα . The requirement that B ≥ 0 guarantees

monotonicity, i.e., that ℓ(α) ≤ ℓ(α ′) whenever ℓ(α) and ℓ(α ′) are defined and α ≤ α ′. We note that the value ℓ(α) is

considered to be undefined if the associated linear program max{c · x | Ax ≤ b + Bα } has no solution. In this case, we

set ℓ(α) = ∗. Other variants of MLP gates are defined in a similar way by allowing the input variables to occur in the

objective function, and by allowing the corresponding linear programs to be minimizing or maximizing. We say that an

MLP gate is weak if the input variables occur either only in the objective function or only in the constraints. We say

that an MLP gate is strong if the input variables occur both in the objective function and in the constraints.

MLP circuits are the straightforward generalization of unbounded-fan-in monotone Boolean circuits where gates are

MLP gates, instead of Boolean gates. In Theorem 4.3 we show that if all gates of an MLP circuit C are weak, then this

circuit can be simulated by a single weak MLP gate ℓC whose size is polynomial on the size of C . Since the AND and

OR gates can be faithfully simulated by weak MLP gates, we have that monotone Boolean circuits can be polynomially

simulated by weak MLP gates (Theorem 5.1). In contrast, we show that weak MLP gates are superpolynomially stronger

than monotone Boolean circuits. On the one hand, Razborov has shown that any monotone Boolean circuit computing

the bipartite perfect matching function BPMn : {0, 1}n
2

→ {0, 1} must have size at least nΩ(logn)
[29]. On the other

hand, a classical result in linear programming theory [35] can be used to show that the same function can be computed

by weak MLP gates of polynomial size.

In [2, 11], Babai, Gál and Wigderson, and Gál showed that there is a function that can be computed by monotone

span programs of linear size but which require superpolynomial-size monotone Boolean circuits. Recently, Cook et

al. [33] showed that there is a function that can be computed by polynomial-size monotone Boolean circuits, but that

requires exponential-size monotone span programs over the reals. Therefore, monotone span programs (which we

will abbreviate by MSPs) and monotone Boolean circuits are incomparable in the sense that none of these models can

polynomially simulate the other. In Theorem 5.4 we show that a particular type of weak MLP gate can polynomially

simulate monotone span programs over the reals. On the other hand, by combining the results in [33] with Theorem 5.4,

3
We note however that strong degree lower bounds for Nullstellensatz proofs can be proved using more direct methods [1, 3, 7, 14].

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Representations of Monotone Boolean Functions by Linear Programs 3

we have that these weak MLP gates are exponentially stronger than monotone span programs over reals. Therefore,

while monotone Boolean circuits are incomparable with MSPs, weak MLP-gates are strictly stronger than both models

of computation.

Next we turn to the problem of proving a monotone interpolation theorem for Lovász-Schrijver proof systems [23].

Currently, size lower bounds for these systems have been proved only with respect to tree-like proofs [24], and to static

proofs [15, 20]. Therefore, it seems reasonable that a monotone interpolation theorem for this system may be a first

step towards proving size lower bounds for general LS proof systems. Towards this goal we show that MLP circuits

which are constituted by strong MLP gates can be used to provide a monotone feasible interpolation theorem for LS

proof systems. In other words, we reduce the problem of proving superpolynomial lower bounds for the size of LS

proofs, to the problem of proving lower bounds on the size of MLP circuits with strong gates.

It is worth noting that we do not know how to collapse MLP circuits with strong gates into a single strong gate.

Nevertheless, in Theorem 6.2 we show that a single weak MLP gate suffices in a monotone interpolation theorem

for LS proofs of unsatisfiable sets of mixed inequalities of a certain form. Here, a mixed inequality is an inequality

which involves both Boolean variables and real variables. Using this interpolation theorem together with a size lower

bound for monotone real circuits due to Fu [10], we can show that MLP-circuits cannot be polynomially simulated by

monotone real circuits (Corollary 6.11).

We show that the cutting-planes proof system cannot polynomially simulate the LS proof system (Corollary 6.9).

Understanding the mutual relation between the power of the cutting-planes proof system and the LS proof system is

a longstanding open problem in proof complexity theory. Our result solves one direction of this mutual relation by

showing that for some unsatisfiable set of inequalities, LS proofs can be superpolynomially more concise than cutting-

planes proofs. Concerning the other direction, Pitassi and Segerlind have shown that tree-like LS does not polynomially

simulate cutting-planes [24]. The problem whether the LS proof system with DAG-like proofs can polynomially simulate

the cutting-planes proof system remains open.

Monotone linear programs may be regarded as a simultaneous generalization of monotone Boolean circuits and

monotone span programs. Nevertheless, currently there is no lower bound technique that can be used to prove lower

bounds both for the size of monotone Boolean circuits and for the size of monotone span programs. Therefore, proving

lower bounds for the size of MLP circuits will likely require the development of substantially new techniques. A possible

approach is to strengthen lower bound techniques for the size of extended formulations of explicit polytopes. A lower

bound on extended formulations is a lower bound on the number of inequalities needed to define an extension of a

polytope to some higher dimension. Such lower bounds have been proved, in particular, for polytopes spanned by the

0-1 vectors representing minterms of certain monotone Boolean functions [5, 6, 9, 34]. Nevertheless, to prove a lower

bound on the size of weak MLP gates, it will be necessary to prove lower bounds on the size of extended formulations

for all polytopes of a certain form that separate minterms from maxterms. This seems to be a much harder problem than

proving a lower bound for a given polytope, but there are results on extended formulations that go in this direction [5, 6].

However, Theorem 6.10 suggests that this will surely not be easy. It gives an example of a monotone function where

the convex-hull of the set of ones requires exponentially large extended formulation, but where the set of ones can be

separated from a large set of maxterms by a weak MLP representation of polynomial size.

2 PRELIMINARIES

Monotone Partial Boolean Functions: A partial Boolean function is a mapping of the form F : {0, 1}n → {0, 1, ∗}.

Intuitively, the function F should be regarded as being undefined on each point p ∈ {0, 1}n for which F (p) = ∗. The

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Mateus de Oliveira Oliveira and Pavel Pudlák

support of F , which is defined as support(F) = F−1({0, 1}), is the set of all points p ∈ {0, 1}n for which F is defined. If p

and p′ are Boolean strings in {0, 1}n , then we write p ≥ p′ to indicate that pi ≥ p′i for each i ∈ {1, ...,n}. We say that a

partial Boolean function F : {0, 1}n → {0, 1, ∗} is monotone if F (p) = 1 whenever p ≥ p′ and F (p′) = 1.

Let A ∈ Rm×k denote that A is a real matrix withm rows and k columns. For vectors x and y, x ≤ y means that

xi ≤ yi for all coordinates i; the same for matrices and Boolean strings. As an abuse of notation, we write 0 (1) to denote

vectors in which all coordinates are equal to 0 (1). For two vectors x and y, we will denote their scalar product by x · y.

Linear Programs. A linear program is an optimization problem of the form

max{c · x | Ax ≤ b, x ≥ 0}, (1)

where A ∈ Rm×k , b ∈ Rm and c ∈ Rk for somem,k ∈ N. The dual of the linear program of (1) is defined as follows.

min{b · y | ATy ≥ c, y ≥ 0}. (2)

According to linear programming duality,

max c · x = minb · y, (3)

provided that the maximum in (1) and the minimum in (2) exist.

3 MONOTONE LINEAR-PROGRAMMING GATES

In this section we define the notion of monotone linear programming gate, or breifly MLP gate.

Definition 3.1 (MLP Gate). Let A be a matrix in Rm×k , b be a vector in Rm , c be a vector in Rk , and B and

C be matrices in Rm×n with B ≥ 0 and C ≥ 0. An MLP gate is a partial function ℓ : Rn → R ∪ {∗} whose value at

each pointy ∈ Rn is specified by a monotone linear program. More precisely, we consider the following six types of MLP gates.

max-right: ℓ(y) = max{c · x | Ax ≤ b + By, x ≥ 0}

min-right: ℓ(y) = min{c · x | Ax ≥ b + By, x ≥ 0}

max-left: ℓ(y) = max{(c +Cy) · x | Ax ≤ b, x ≥ 0}

min-left: ℓ(y) = min{(c +Cy) · x | Ax ≥ b, x ≥ 0}

max: ℓ(y) = max{(c +Cy) · x | Ax ≤ b + By, x ≥ 0}

min: ℓ(y) = min{(c +Cy) · x | Ax ≥ b + By, x ≥ 0}

Intuitively, the variables y should be regarded as input variables, while the variables x should be regarded as internal

variables. If the linear program specifying a gate ℓ(y) has no solution when setting y to a particular point α ∈ Rn , then

we set ℓ(α) = ∗. In other words, in this case we regard the value ℓ(α) as being undefined. We note that the requirement

that B ≥ 0 and C ≥ 0 guarantees that the gates introduced above are monotone. More precisely, if α ≤ α ′, and both

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Representations of Monotone Boolean Functions by Linear Programs 5

ℓ(α) and ℓ(α ′) are well defined, then ℓ(α) ≤ ℓ(α ′). The size |ℓ | of an MLP gate ℓ is defined as the number of rows plus

the number of columns in the matrix A.

The gates of type max-right, max-left, min-right and min-left are called weak gates. Note that in these gates, the

input variables y occur either only in the objective function, or only in the constraints. The gates of type max and min

are called strong gates. The input variables in strong gates occur both in the constraints and in the objective function.

Definition 3.2 (MLP-Gate Representation). We say that an MLP gate ℓ : Rn → R∪{∗} represents a partial Boolean

function F : {0, 1}n → {0, 1, ∗} if the following holds true for each a ∈ {0, 1}n .

(1) ℓ(a) > 0 if F (a) = 1,

(2) ℓ(a) ≤ 0 if F (a) = 0.

3.1 Sign Representations

We say that an MLP gate ℓ sign-represents a partial Boolean function F : {0, 1}n → {0, 1, ∗} if the following conditions

can be verified for each a ∈ {0, 1}n .

(1) ℓ(a) > 0 if F (a) = 1.

(2) ℓ(a) < 0 if F (a) = 0.

Proposition 3.3. Let F : {0, 1}n → {0, 1, ∗} be a partial Boolean function and assume that F can be represented by an

MLP gate of type τ and size s . Then F can be sign-represented by an MLP gate of type τ and size O(s).

We leave the proof to the reader as an easy exercise.

3.2 Weak vs Strong Gates

Recall that weak MLP gates are gates where input variables occur either only in the objective function, or only in the

constraints. On the other hand, strong MLP gates are gates where input variables are allowed to occur both in the

objective function and in the constraints.

The distinction between weak and strong gates is motivated by the fact that while weak gates are only able to

compute piecewise-linear monotone real functions, strong gates may compute quadratic monotone real functions.

Proposition 3.4. Let ℓ : Rm → R ∪ {∗} be a weak MLP gate. Then the graph

{(y, ℓ(y)) | y ∈ Rm, ℓ(y) ∈ R}

is piecewise linear.

Proof. We show that the proposition is valid for max-right MLP gates. The proof that it is valid for other types

of weak gates is analogous. Let ℓ(y) = max{c · x | Ax ≤ b + By, x ≥ 0} be a max-right MLP gate. This gate can be

alternatively represented as ℓ(y) = max{x0 | Ax ≤ b + By, x ≥ 0, x0 ≤ c · x} where x0 is a new variable. Let P be the

polyhedron on variables x ,y and x0 defined by the inequalitiesAx ≤ b+By, x ≥ 0 and x0 ≤ c ·x . Let P ′ be the polyhedron

obtained by projecting P into the variables y and x0. Then the graph of ℓ is the set S = {(y, x0) | ∀x
′
0
such that (y, x ′

0
) ∈

P ′, x ′
0
≤ x0}. Since S is a union of faces of P ′, S is piecewise linear. �

On the other hand, the graph of strong gates may not be piecewise linear even for gates with a unique input variable.

Observation 3.5. Strong MLP gates may compute functions whose graph is not piecewise linear.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Mateus de Oliveira Oliveira and Pavel Pudlák

Proof. Consider the following max MLP gate ℓ and min MLP gate ℓ′.

ℓ(y) = max{y · x |x ≤ y, x ≥ 0 } ℓ′(y) = min{y · x |x ≥ y, x ≥ 0 }. (4)

Then we have that for each y ≥ R+, ℓ(y) = y2 = ℓ′(y). This shows that the graphs of ℓ and ℓ′ are not piecewise

linear. �

Proposition 3.4 and Observation 3.5 show that strong MLP gates are a strictly stronger model than weak gates

when it comes to defining monotone real functions. Therefore proving lower bounds for the size of strong MLP gates

computing some specific monotone Boolean function F : {0, 1}n → {0, 1, ∗} may be harder than proving such lower

bounds for the size of weak MLP gates computing F . We note however that it is still conceivable that every partial

monotone Boolean function F : {0, 1}n → {0, 1, ∗} that can be represented by strong MLP gates of size s , can be also

represented by weak MLP gates of size sO (1).

3.3 Boolean Duality vs Linear-Programming Duality

In this section we clarify some relationships between linear-programming duality and MLP representations. Towards

this goal, it will be convenient to define the notions of a dual of a given type of gate. More precisely, we say that the

type max is dual to min, that max-right is dual to min-left, and that max-left is dual to min-right. If τ is a type of

gate we let τd denote its dual type. The following observation states that MLP gates of type τ can be simulated by MLP

gates of type τd of similar complexity.

Observation 3.6. If a partial real monotone function f : Rn → R ∪ {∗} can be represented by an MLP gate of type τ

and size s , then f can be also represented by an MLP gate of type τd and size s .

Proof. We prove the proposition with respect to max-right MLP gates. The proof for other types of gates is

analogous. Let ℓ(y) = max{c ·x | Ax ≤ b +By, x ≥ 0} be a max-right MLP gate such that f (y) = ℓ(y) for every y ∈ Rn .

Consider the following min-left MLP gate: ℓ(y) = min{(b + By) · x | AT x ≥ c, x ≥ 0}. Then by linear programming

duality, for each α ∈ Rn , ℓ(α) is defined if and only if ℓ′(α) is defined and ℓ′(α) = ℓ(α). �

We say that the types max-right and min-right are semi-dual to each other. Analogously, the types max-left and

min-left are semi-dual to each other. If τ is a type of gate, we let τ sd be its semi-dual type. It is not clear whether

functions that can be represented by weak gates of a given type τ may be also represented by gates of type τ sd without

a superpolynomial increase in complexity. However, we will see next that if F is a partial Boolean function which can

be represented by an MLP gate of type τ and size s , then the Boolean-dual of F can be represented by an MLP gate of

type τ sd and size O(s).

We say that a partial monotone Boolean function F : {0, 1}n → {0, 1, ∗} is dualizable if F (¬p1, . . . ,¬pn) is well

defined whenever F (p1, . . . ,pn) is well defined. If F is dualizable, then the Boolean dual of F is the partial Boolean

function Fd : {0, 1}n → {0, 1, ∗} which is obtained by setting Fd (p) = ∗ for each point p < support(F), and by setting

Fd (p1, . . . ,pn) := ¬F (¬p1, . . . ,¬pn) for each p ∈ support(F).

Proposition 3.7. Let F : {0, 1}n → {0, 1, ∗} be a dualizable partial Boolean function. If F can be represented by an

MLP gate of type τ and size s , then Fd can be represented by an MLP gate of type τ sd and size O(s).

Proof. We will show that if a function F can be represented by max-right MLP gate of size s , then Fd can be

represented by a max-left MLP gate of size O(s). The proof for other types of gates follows an analogous reasoning.

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Representations of Monotone Boolean Functions by Linear Programs 7

Assume that F can be represented by a max-right MLP gate ℓ. Then by Proposition 3.3, F can be represented by a

max-right gate ℓ′ such that for each p ∈ {0, 1}n , ℓ′(p) > 0 whenever F (p) = 1 and ℓ′(p) < 0 whenever F (p) = 0. In

other words, ℓ′(p) sign-represents F . Let

ℓ′(p) = max{c · x | Ax ≤ b + Bp, x ≥ 0}

be such gate. Then, clearly, the function Fd can be represented by the following min-right MLP gate, where 1̄ denotes

the all-ones vector.

ℓ′′(p) = −ℓ′(1̄ − p)

= min{−c · x | Ax ≤ b + B(1̄ − p), x ≥ 0}

= min{−c · x | −Ax ≥ −b − B1̄ + Bp, x ≥ 0}

�

4 MONOTONE LINEAR PROGRAMMING CIRCUITS

Monotone linear programming circuits (MLP circuits) may be defined as the straightforward generalization of unbounded

fan-in monotone Boolean circuits where monotone linear programming gates are used instead of Boolean gates. Formally,

it will be convenient for us to define MLP circuits using the notation of straight-line programs, i.e., as a sequence of

instructions of a suitable form.

Definition 4.1 (MLP Circuit). An MLP circuit is a sequence of instructions C = (I1, I2, ..., Ir) where each instruction

Ii has one of the following forms:

(1) Ii ≡ Input(yi), where yi is a variable.

(2) Ii ≡ yi ← ci , where yi is a variable and ci ∈ R.

(3) Ii ≡ yi ← ℓi (yi1 , ...,yini) where yi is a variable and ℓi (yi1 , ...,yini) is an MLP gate with input variables yi1 , ...,yini
such that i j < i for each j ∈ [ni].

We say that instructions of the third form are MLP instructions. We assume that the last instruction, Ir , is an MLP

instruction. We say that the variable yr , which occurs in the left-hand side of Ir is the output variable of C . For each i

such that Ii ≡ Input(yi), we say that yi is an input variable.

Let y = (yj1 ,yj2 , ...,yjn) be the input variables of C , and let a ∈ Rn be an assignment of the variables in y, where
yjl = al for each l ∈ {1, ...,n}. For each i ∈ {1, ..., r }, the value induced by a on variable yi , which is denoted by vala (yi),

is inductively defined as follows.

(1) If i = jl for some l ∈ [n], then yi is an input variable (Ii ≡ Input(yi)). In this case we set vala (yi) = al .

(2) If Ii ≡ yi ← ci , then vala (yi) = ci .

(3) If Ii ≡ yi ← ℓi (yi1 , ...,yini), and vala (yi j) ∈ R for each j ∈ {1, ..., r }, then vala (yi) = ℓi (val(yi1), ..., val(yini)).

Otherwise, vala (yi) = ∗.

For each assignment a ∈ Rn of the variables input variables ofC , we letC(a) = vala (yr) be the value induced by a on

the output variable of C . Intuitively, the values of the variables yi are computed instruction after instruction. If at step i ,

the value of the variable yi is set to ∗ (vala (y) = ∗), meaning that the linear program associated with the instruction Ii

has no solution, then the value ∗ is propagated until the last instruction, and the circuit will output ∗.

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Mateus de Oliveira Oliveira and Pavel Pudlák

Definition 4.2 (MLP-Circuit Representation). We say that an MLP-circuit C represents a partial Boolean function

F : {0, 1}n → {0, 1, ∗} if the following conditions are satisfied for each a ∈ {0, 1}n .

(1) C(a) > 0 if F (a) = 1.

(2) C(a) ≤ 0 if F (a) = 0.

We say that an MLP-circuit C sharply represents F : {0, 1}m → {0, 1, ∗} if C(a) = 1 whenever F (a) = 1 and C(a) = 0

whenever F (a) = 0. We define the size of an MLP circuit C as the sum of the sizes of MLP gates occurring in C . The

next theorem states that if all gates in an MLP circuit C are weak MLP gates with the same type τ , then this circuit can

be polynomially simulated by a singleMLP gate ℓ of type τ .

Theorem 4.3 (From Circuits to Gates). Let C = (I1, ..., Ir) be an MLP circuit where all gates in C are weak MLP

gates of type τ . Then there is an MLP gate ℓC of type τ and size O(s) such that for each a ∈ Rn for which C(a) is defined,

ℓC (a) = C(a).

Proof. First, we will prove the theorem with respect to max-right MLP gates. Let C = (I1, I2, ..., Ir) be an MLP

circuit in which all gates are max-right MLP gates. For each i ∈ {1, ..., r } if Ii is an MLP instruction, then we let

Ii ≡ yi ← ℓi (y
i) = max{ci · x i | Aix i ≤ bi + Biyi },

where yi = (yi1 , ...,yini) are the input variables of ℓi and x i = (x i
1
, ..., x iki

) are the internal variables of ℓi . We let

M = {i | Ii is an MLP instruction} be the set of all i’s such that Ii is an MLP instruction. We let y = (yj1 , ...,yjn) be
the input variables of C , and x = x i1x i2 ...x i |M | with i j ∈ M and i1 < i2 < ... < i |M | be a tuple containing all internal

variables of MLP gates occurring in C . For each i ∈ M , let Aix ≤ bi + Biy be the system of inequalities obtained

from Aix i ≤ bi + Biyi by replacing each variable yi j ∈ y
i
which is not an input variable of C , with the value ci j if

Ii j ≡ yi j ← ci j , and with the expression ci j · x i j if Ii j is an MLP instruction. Now, for i ∈ M , consider the following

max-right MLP gate.

ℓi (y) = max{ci · x i | Ajx ≤ bj + Bjy, j ∈ M, j ≤ i} (5)

In other words, the objective function of ℓi (y) is the same as the objective function of the gate ℓi , but the constraints

of ℓi (y) are formed by all inequalities Ajx ≤ bj + Bjy corresponding to constraints of gates ℓj for j < i . If u is an

assignment of the tuple of variables x, then for each j ∈ M , we let u j ∈ Rkj be the assignment induced by u on the

internal variables x j = (x j1 , ..., x jki) of gate ℓj . Let a be an assignment of the input variables y, and u be an assignment

of the internal variables x. Then we say that the pair (a,u) is consistent with ℓi if (a,u) satisfies all constraints of ℓi .

The following claim implies that for each a ∈ Rn such that C(a) is defined, the value C(a) is equal to the value ℓr (a).

Claim 4.4. Let a ∈ Rn . If C(a) is defined then the following conditions are satisfied for each i ∈ M .

(1) There exists an assignment u of the variables x, such that (a,u) is consistent with ℓi and for each j ∈ M with j ≤ i ,

c j · u j = vala (yj).

(2) For each assignment u of the variables x, such that (a,u) is consistent with ℓi , and each j ∈ M with j ≤ i ,

c j · u j ≤ vala (yj).

(3) ℓi (a) = vala (yi).

We note that if |M | = 1 then the circuit has a unique MLP gate and the claim is trivial. Therefore, we assume that

|M | ≥ 2. Let a ∈ Rn be an assignment of the input variables y such that C(a) is defined. The proof of Claim 4.4 is by

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Representations of Monotone Boolean Functions by Linear Programs 9

induction on i . In the base case, let i be the smallest number inM . In this case,yi ← ℓi (y
i) is the first MLP gate occurring

in C , and therefore the gate ℓi (y) has precisely the same objective function and constraints as ℓi (y
i). This implies that

the value ℓi (a) is equal to the value induced by a on yi . Therefore, the claim is valid in the base case. Now, let l be

an arbitrary number in M and let i be the greatest number in M which smaller than l . Let Il ≡ yl ← ℓl (y
l), where

yl = (yl1 , ...,ylnl
). Then the objective function of ℓl (y) is cl · x l , and the constraints of ℓl (y) contain all constraints of

ℓi (y) together with the constraintsAlx ≤ bl +Blywhich are obtained fromAlx l ≤ bl +Blyl by making the substitution

ylj ← clj · x lj for each j ∈ {1, ...,nl }. By the induction hypothesis, Conditions 1, 2 and 3 are satisfied with respect to

ℓi . Therefore by Condition 1, there is an assignment u of x such that clj · ulj = vala (y
lj) for each j ∈ {1, ...,nl }. Now,

since the internal variables x l of gate ℓl do not occur with non-zero coefficient in the constraints of ℓi , we may assume

that when restricted to these variables, the assignment ul is the one that maximizes the objective function cl · x l of

the linear program which defines ℓl (y
l1 , ...,ylnl) when each variable ylj is set to clj · ulj = vala (y

lj). When assigning

this particular u to the variables x, we have that cl · x l = vala (y
l). This implies that Condition 1 is also satisfied with

respect to ℓl . Additionally, we have that ℓl (a) is at least vala (y
l). Now, by Condition 2, clj · ulj ≤ vala (ylj) for each

j ∈ {1, ...,nl }. Therefore, since ℓl is monotone, we also have that cl · x l ≤ vala (y
l). This implies that Condition 2 is

also satisfied with respect to ℓl . Additionally, this shows that ℓl (a) is at most vala (y
l). By combining the two bounds

obtained for ℓl (a), we have that ℓl (a) = vala (y
l). This shows that Condition 3 is also satisfied with respect to ℓl .

The proof that the theorem holds for circuits consisting of min-right MLP gates is analogous to the proof for the

case of max-right MLP gates established above. If C is a circuit containing only min-left MLP gates, then we first

transform this circuit into a circuit C ′ consisting only of max-right gates using linear program duality. In other words,

we replace each min-left MLP gate in C with an equivalent max-right MLP gate. Then applying the proof described

above, we construct a max-right MLP gate ℓC ′(y). Once this is done, we apply linear-programming duality one more

time to convert ℓC ′(y) into an equivalent min-left gate. Analogously, if C is a circuit with max-left MLP gates, then

we first convert it into an equivalent circuit consisting of min-right gates, then transform it into a single min-right

MLP gate in analogy with the proof described above, and finally, convert this gate back to an equivalent max-left MLP

gate. �

While weak MLP gates define piecewise linear functions, strong MLP gates define piecewise quadratic functions.

The composition of piecewise quadratic functions is not piecewise quadratic in general. Therefore a similar theorem

does not hold true for strong gates.

5 WEAK MLP GATES VS MONOTONE BOOLEAN CIRCUITS

We say that an MLP gate ℓ sharply represents a partial Boolean function F : {0, 1}n → {0, 1, ∗} if ℓ(a) = 1 whenever

F (a) = 1, and ℓ(a) = 0 whenever F (a) = 0. In this section we show that partial Boolean functions that can be represented

by monotone Boolean circuits of size s may also be sharply represented by weak MLP gates of size O(s). On the other

hand, we exhibit a partial function that can be represented by polynomial-size max-right MLP gates, but which require

monotone Boolean circuits of superpolynomial size.

Theorem 5.1. Let F : {0, 1}n → {0, 1, ∗} be a partial Boolean function, and let C be a monotone Boolean circuit of size

s representing F . Then for any type τ , F can be sharply represented by an MLP gate of type τ and size O(s).

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Mateus de Oliveira Oliveira and Pavel Pudlák

Proof. Clearly, it is enough to prove the theorem with respect to weak gates, since strong gates are at least as

powerful as weak gates. The ∧ gate can be sharply represented by the following max-right and min-right MLP gates

respectively.

(1) ℓ
max−r iдht
∧ (p1,p2) = max{x | x ≤ p1, x ≤ p2, x ≥ 0}.

(2) ℓ
min−r iдht
∧ (p1,p2) = min{x | x ≥ p1 + p2 − 1, x ≥ 0}.

Therefore, by linear-programming duality, the ∧ gate can be sharply represented by constant size min-left and

max-left MLP gates ℓ
min−lef t
∧ and ℓ

max−lef t
∧ respectively.

Analogously, the ∨ gate can be sharply represented by the following max-right and min-right MLP gates respec-

tively.

(1) ℓ
max−r iдht
∨ (p1,p2) = max{x1 + x2 | x1 ≤ p1, x2 ≤ p2, x1 + x2 ≤ 1}.

(2) ℓ
min−r iдht
∨ (p1,p2) = min{x | x ≥ p1, x ≥ p2, x ≥ 0}.

Again, by linear-programming duality, the ∨ gate can also be sharply represented by suitable min-left and max-left

MLP gates ℓ
min−lef t
∨ and ℓ

max−lef t
∨ of constant size.

Now let C be a Boolean circuit representing F . Then for each type τ we can construct an MLP circuit Cτ which

sharply represents F as follows. Replace each ∧ gate of C by the corresponding MLP gate ℓτ∧ of type τ , and each ∨ gate

by the corresponding MLP gate ℓτ∨. Then C
τ
has size O(s), and that Cτ sharply simulates F . Since all gates in Cτ have

type τ , by Theorem 4.3, there is an MLP gate ℓτ of type τ and size O(s) that sharply represents F . �

Let BPMn : {0, 1}n
2

→ {0, 1} be the Boolean function that evaluates to 1 on an input p ∈ {0, 1}n
2

if and only if p

represents a bipartite graph with a perfect matching. The next theorem, whose proof is based on a classical result in linear

programming theory (Theorem 18.1 of [35]) states that the function BPMn has small max-right MLP representations.

Theorem 5.2. The Boolean function BPMn : {0, 1}n
2

→ {0, 1} can be represented by a max-right MLP gate of size

nO (1).

Proof. Let [n] = {1, ...,n}, and E ⊆ [n] × [n] be a bipartite graph. We represent a subgraph of E as a 0/1 vector

with n2
coordinates, which has a 1 at positionMi j if and only if (i, j) is an edge of E. The bipartite perfect matching

polytope associated with E, which is denoted by P(E), is the convex-hull of all vectorsM ∈ {0, 1}n
2

which correspond

to a perfect matching in E. Note that if E has no perfect matching then P(E) is simply empty. It can be shown (Schrijver

[35], Theorem 18.1) that the polytope P(E) is determined by the following system of inequalities.

System 1:

(1) x ≥ 0.

(2)

∑
(i , j)∈E xi j = 1, for each i ∈ [n].

(3)

∑
(i , j)∈E xi j = 1, for each j ∈ [n].

In other words, if u ∈ Rn
2

is a 0/1 vector representing a perfect matching in E, then all inequalities of System 1

are satisfied if we set x = u. Conversely, each vector u ∈ Rn
2

that satisfies all inequalities in System 1 is a convex

combination of 0/1 vectors corresponding to perfect matchings in E.

Now, consider the following system of inequalities.

System 2:

(1) x ≥ 0.

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Representations of Monotone Boolean Functions by Linear Programs 11

(2)

∑
j xi j = 1, for each i ∈ [n].

(3)

∑
i xi j = 1, for each j ∈ [n].

(4) x ≤ p.

If a 0/1 vectorw ∈ Rn
2

represents a graph E ⊆ [n] × [n] containing a perfect matching, then some u ≤ w represents

a perfect matching in E. Therefore, by setting p = w and x = u, all inequalities of System 2 are satisfied.

Now letw ∈ Rn
2

be a 0/1 vector such that for some u ∈ Rn
2

, the assignment p = w and x = u satisfies all inequalities

of System 2. Then the graph represented byw has a perfect matching according to the theorem cited above. �

In a celebrated result, Razborov proved a lower bound of nΩ(logn)
for the size of monotone Boolean circuits computing

the function BPMn . By combining this result with Theorem 5.2, we have the following corollary.

Corollary 5.3. max-right MLP gates cannot be polynomially simulated by monotone Boolean circuits.

We note that the gap between the complexity of max-right MLP gates and the complexity of Boolean formulas

computing the BPMn function is even exponential, since Raz and Wigderson have shown a linear lower-bound on the

depth of monotone Boolean circuits computing BPMn [28]; see also Corollary 6.11 for a stronger result.

5.1 Monotone Span Programs

Monotone span programs (MSP) were introduced by Karchmer and Wigderson [19]. Such a program, which is defined

over an arbitrary field F, is specified by a vector c ∈ Fk and a labeled matrix Aρ = (A, ρ) where A is a matrix in Fm×k ,

and ρ : {1, ...,m} → {p1, ...,pn, ∗} labels rows in A with variables in pi or with the symbol ∗ (meaning that the row is

unlabeled). For an assignment p := w , letA
ρ
⟨w ⟩ be the matrix obtained fromA by deleting all rows labeled with variables

which are set to 0. A span program (Aρ , c) represents a partial Boolean function F : {0, 1}n → {0, 1, ∗} if the following

conditions are satisfied for eachw ∈ {0, 1}n .

F (w) =
 1 ⇒ ∃y, yTA

ρ
⟨w ⟩ = c

T

0 ⇒ ¬∃y, yTA
ρ
⟨w ⟩ = c

T (6)

That is, if F (w) = 1 then c is a linear combination of the rows of A
ρ
⟨w ⟩ , while if F (w) = 0, then c cannot be cast as such

linear combination. We define the size of a span program (Aρ , c) as the number of rows plus the number of columns in

the matrix A. The next theorem, which will be proved in Subsection 5.2, states that functions that can be represented by

small MSPs over the reals can also be represented by small min-right MLP gates.

Theorem 5.4. Let F : {0, 1}n → {0, 1} be a Boolean function. If F can be represented by an MSP of size s over the reals,

then F can be represented by a min-right MLP gate of size O(s).

It has been recently shown that there is a family of functions GENn : {0, 1}n → {0, 1} which can be computed

by polynomial-size monotone Boolean circuits but which require monotone span programs over the reals of size

exp(nΩ(1)) [33]. On the other hand, since by Theorem 5.1, monotone Boolean circuits can be polynomially simulated

by weak MLP gates of any type, we have that weak MLP gates of size polynomial in n can represent the function

GENn : {0, 1}n → {0, 1}. Therefore, we have the following corollary.

Corollary 5.5. Weak MLP gates cannot be polynomially simulated by monotone span programs over the reals.

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Mateus de Oliveira Oliveira and Pavel Pudlák

5.2 Proof of Theorem 5.4

In this section we prove Theorem 5.4. As an intermediate step we define the notion of nonnegative monotone span

program (nonnegative-MSP). Such a nonnegative-MSP is specified by a pair (Aρ , c)+ consisting of a labeled matrix

Aρ = (A, ρ), and a vector c , just as in the case of monotone span programs. The only difference is in the way in which

such programs are used to represent functions. We say that a nonnegative-MSP (Aρ , c)+ represents a partial Boolean

function F : {0, 1}n → {0, 1, ∗} if the following conditions are satisfied for eachw ∈ {0, 1}n .

F (w) =
 1 ⇒ ∃y ≥ 0, yTA

ρ
⟨w ⟩ = c

T

0 ⇒ ¬∃y ≥ 0, yTA
ρ
⟨w ⟩ = c

T (7)

Note that while MSP representations are defined in terms of linear combinations of rows of Aρ
, nonnegative-MSP

representations are defined in terms of nonnegative linear combinations of rows of Aρ
.

Proposition 5.6. Let F : {0, 1}n → {0, 1} be a Boolean function. If F can be represented by an MSP of size s over the

reals, then F can be represented by a nonnegative-MSP of size O(s) over the reals.

Proof. Let Aρ = (A, ρ) be a labeled matrix over R, and let (Aρ , c) be a span program over R. Let B =

[
A

−A

]
. In

other words, for each row ai of A, the matrix B has a row ai , and a row −ai . Now let ρ ′ be the function that labels the

rows of B in such a way that the rows corresponding to ai and −ai in B are labeled with the same label as row i of A.

Then for eachw ∈ {0, 1}n , c is equal to a linear combination of rows of A
ρ
⟨w ⟩ if and only if c is equal to a nonnegative

linear combination of rows of B
ρ′

⟨w ⟩ . Therefore, (B
ρ′, c)+ is a nonnegative-MSP of size O(s) representing F . �

Therefore, it is enough to show that any partial Boolean function that can be represented by nonnegative-MSPs of

size s can also be represented by min-right MLP gates of size O(s). Consider the condition

∃y ≥ 0, yTA
ρ
⟨w ⟩ = c

T . (8)

In other words, the formula in Equation (8) is satisfied if and only if the row vector cT is a nonnegative linear

combination of the rows of A
ρ
⟨w ⟩ . Let y ≥ 0 be a nonnegative vector such that yTA

ρ
⟨w ⟩ = cT . Then we have that for

each x ∈ Rk (where k is the number of columns in A), the fact that A
ρ
⟨w ⟩x ≥ 0 implies that c · x = (yTA

ρ
⟨w ⟩)x =

yT (A
ρ
⟨w ⟩x) ≥ 0. In particular c · x ≥ 0 whenever x ≥ 0 and A

ρ
⟨w ⟩x ≥ 0. Conversely, assume that for some x ≥ 0

and for some b ≥ 0, we have that Ax
ρ
⟨w ⟩ = b and c · x ≥ 0. Then by linear programming duality, we have that

min{yTb |yTA
ρ
⟨w ⟩ = cT , y ≥ 0} ≥ c · x ≥ 0. This implies that there exists some y ≥ 0 such that yTA

ρ
⟨w ⟩ = cT . In

summary, we have argued about the validity of the following equivalence.

∃y ≥ 0, yTA
ρ
⟨w ⟩ = c

T ⇔ min{c · x | A
ρ
⟨w ⟩x ≥ 0, x ≥ 0} ≥ 0. (9)

Now let {p1, ...,pn, ∗} be the codomain of the row labeling function ρ, p = (p1, ...,pn), and let A′x ≥ Bp be the

system of inequalities obtained from the labeled matrix Aρ
as follows. For each i , let ai be the i-th row of A. If this row

is unlabeled (meaning that ρ(i) = ∗), the system A′x ≥ Bp has the inequality aix ≥ 0. On the other hand, if this row is

labeled with variable pj (meaning that ρ(i) = pj), then A′x ≥ Bp has the inequality aix ≥ α(pj − 1) where α ∈ R+ is a

positive number that is large enough to make the inequality irrelevant when pj is set to 0. Then for each assignment

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Representations of Monotone Boolean Functions by Linear Programs 13

w ∈ {0, 1}n of the variables p,

min{c · x | A′x ≥ Bw, x ≥ 0} = min{c · x | A
ρ
⟨w ⟩x ≥ 0, x ≥ 0}. (10)

Now, consider the min-right MLP gate ℓ(p) = min{c · x | A′x ≥ Bp, x ≥ 0}. Then for eachw ∈ {0, 1}n , we have that

F (w) =

{
1 ⇒ ℓ(w) ≥ 0

0 ⇒ ℓ(w) < 0.
(11)

Finally, let ε = minw ∈{0,1}n {|ℓ(w)| | ℓ(w) < 0} be the minimum absolute value of ℓ(w) where the minimum is taken

over all inputsw ∈ {0, 1}n which evaluate to a number strictly less than zero, and let

ℓ′(w) = min{c · x + x ′ | x ′ = ε/2, A′x ≥ Bw, x ≥ 0}.

Then ℓ′(w) = ℓ(w) + ε/2 and therefore, for eachw ∈ {0, 1}n , we have that

F (w) =

{
1 ⇒ ℓ′(w) ≥ ε/2 > 0

0 ⇒ ℓ′(w) < −ε/2 < 0.
(12)

In other words, ℓ′ is a min-right MLP representation of F .

6 LOVÁSZ-SCHRIJVER AND CUTTING-PLANES PROOF SYSTEMS

6.1 The Lovász-Schrijver Proof System

The Lovász-Schrijver proof system is a refutation system based on the Lovász-Schrijver method for solving integer

linear programs [23]. During the past two decades several variants (probably nonequivalent) of this system have been

introduced. In this work we will be only concerned with the basic system LS. In Lovász-Schrijver systems the domain of

variables is restricted to {0, 1}, i.e., they are Boolean variables. Given an unfeasible set of inequalities Φ over variables

p1, . . . ,pn , the goal is to use the axioms and rules of inference defined below to show that the inequality 0 ≥ 1 is implied

by Φ.

• Axioms:

(1) 0 ≤ pj ≤ 1

(2) p2

i − pi = 0 (integrality).

• Rules:

(1) Positive linear combinations of inequalities.

(2) Multiplication: given a linear inequality

∑
i cipi − d ≥ 0, and a variable pj , derive

pj (
∑
i
cipi − d) ≥ 0 and (1 − pj)(

∑
i
cipi − d) ≥ 0.

(3) Weakening rule:

from

∑
i cipi − d ≥ 0, derive

∑
i cipi − d

′ ≥ 0 for any d ′ < d .

In these inequalities, pi are variables representing Boolean values, and ci ,d,d
′
are real constants.

We note that positive linear combinations may involve both linear and quadratic inequalities, but the multiplication

rule can only be applied to linear inequalities. Hence, all inequalities occurring in a proof are at most quadratic. Axiom

(2) corresponds to two inequalities, but it suffices to use p2

i − pi ≥ 0, since the other inequality p2

i − pi ≤ 0 follows from

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Mateus de Oliveira Oliveira and Pavel Pudlák

Axiom (1) and Rule (2). We also observe that the inequality 1 ≥ 0 can be derived from the axioms pi ≥ 0 and 1 − pi ≥ 0.

Therefore the weakening rule can be simulated by an application of these axioms together with linear combinations.

The LS proof system is implicationally complete. This means that if an inequality

∑
i cipi − d ≥ 0 is semantically

implied by an initial set of inequalities Φ, then
∑
i cipi − d ≥ 0 can be derived from Φ by the application of a sequence

of LS-rules [23].

Superpolynomial lower bounds on the size of LS proofs have been obtained only in the restricted case of tree-like

proofs [24]. The problem of obtaining superpolynomial lower bounds for the size of DAG-like LS proofs remains a

tantalizing open problem in proof complexity theory.

The LS proof system is stronger than Resolution. It can be shown that resolution proofs can be simulated by LS

proofs with just a linear blow up in size. Additionally, the Pigeonhole principle has LS proofs of polynomial size,

while this principle requires exponentially long resolution proofs [16]. On the other hand, the relationship between

the power of the LS proof system and other well studied proof system is still elusive. For instance, previous to this

work, nothing was known about how the LS proof system relates to the cutting-planes proof system with respect

to polynomial-time simulations. In Subsection 6.5 we will show that there is a family of sets of inequalities which

have polynomial-size DAG-like LS refutations, but which require superpolynomial-size cutting-planes refutations.

This shows that the cutting-planes proof system cannot polynomially simulate the LS proof system. The converse

problem, of determining whether the LS proof system polynomially simulates the cutting-planes proof system, remains

open. A partial result in this direction was obtained by Pitassi and Segerlind, who showed that tree-like LS does not

polynomially simulate cutting-planes [24].

In this paper we will consider general (i.e., DAG-like) proofs. Thus, a sequence of inequalities Π is a derivation of an

inequality

∑
i cipi − d ≥ 0 from a set of inequalities Φ if every inequality in Π is either an element of Φ or is derived

from previous ones using some LS rule. We say that Π is a refutation of the set of inequalities Φ, if the last inequality is

−d ≥ 0 for some d > 0.

6.2 Feasible Interpolation

Feasible interpolation is a method that can sometimes be used to translate circuit lower bounds into lower bounds for

the size of refutations of Boolean formulas and linear inequalities. Let Ψ(p,q, r) be an unsatisfiable Boolean formula

which is a conjunction of formulas Φ(p,q) and Γ(p, r) where q and r are disjoint sets of variables. Since Ψ(p,q, r) is

unsatisfiable, it must be the case that for each assignment a of the variables p, either Φ(a,q) or Γ(a, r) is unsatisfiable,

or both. Given a proof Π of unsatisfiability for Ψ(p,q, r), an interpolant is a Boolean circuit C(p) such that for every

assignment a to the variables p,

(1) if C(a) = 1, then Φ(a,q) is unsatisfiable,

(2) if C(a) = 0, then Γ(a, r) is unsatisfiable.

If both formulas are unsatisfiable, thenC(a) can be either of the two values. Krajíček has shown that given a resolution

refutation Π of a CNF formula, one can construct an interpolant C(p) whose size is polynomial in the size of Π [21].

Krajíček’s interpolation theorem has been generalized, by himself and some other authors, to other proof systems such

as the cutting-planes proof system and the Lovász-Schrijver proof system [25, 26].

In principle, such feasible interpolation theorems could be used to prove lower bounds on the size of proofs if we could

prove lower bounds on circuits computing some particular functions. But since we are not able to prove essentially

any lower bounds on general Boolean circuits, feasible interpolation gives us only conditional lower bounds. For

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Representations of Monotone Boolean Functions by Linear Programs 15

instance, the assumption that P , NP ∩ coNP, an apparently weaker assumption than NP , coNP, implies that certain

tautologies require superpolynomial-size proofs on systems that admit feasible interpolation.

However, in some cases, one can show that there exist monotone interpolating circuits (of some kind) of polynomial

size (in the size of the proof) provided that all variables p appear negatively in Φ(p,q), (or positively in Γ(p, r)). In

the case of resolution proofs, the interpolating circuits are simply monotone Boolean circuits [21, 22]. In the case of

cutting-planes proofs, the interpolants are monotone real circuits [25]. Monotone real circuits are circuits with Boolean

inputs and outputs, but whose gates are allowed to be arbitrary 2-input functions over the reals. Razborov’s lower

bound on the clique function has been generalized to monotone real circuits [17, 25]. Another proof system for which

one can prove lower bounds (although only on the degree of refutations) using monotone feasible interpolation is the

Nullstellensatz Proof System [27]. In this proof system, the monotone interpolants are given in terms of monotone span

programs
4
[27].

The results mentioned above suggest that if a proof system has the feasible interpolation property, then it may also

have monotone feasible interpolation property for a suitable kind of monotone computation. We will show that the

Lovász-Schrijver proof system has the monotone feasible interpolation property with the interpolants computed by

MLP circuits with strong gates.

6.3 Feasible Interpolation for the Lovász-Schrijver System

Let F1(q) − c1 ≥ 0, F2(q) − c2 ≥ 0, ..., Fm (q) − cm ≥ 0 be a sequence of linear inequalities over a set of variables q. We

say that a linear inequality F (q) − c ≥ 0 is obtained from this sequence in one lift-and-project step, or simply lap-step

for short, if

F (q) − c =
∑
i j αi jqi (Fj (q) − c j) +∑
i j βi j (1 − qi)(Fj (q) − c j) +∑
i γi (qi − q

2

i)

(13)

for some αi j , βi j ,γj ≥ 0. A refutation in the LS proof system for an unsatisfiable set of inequalities Φ(q) can naturally

be regarded as a sequence L1 ≥ 0, . . . , Lm ≥ 0 of linear inequalities where for each i ∈ {1, ...,m}, the inequality Li ≥ 0

is either in Φ(q), or is obtained from L1 ≥ 0, ..., Li−1 ≥ 0 by the application of one lap-step. Intuitively, inequalities

involving quadratic terms, obtained as instances of the integrality axiom or by the application of the multiplication rule,

are regarded as intermediate steps towards the derivation of new linear inequalities.
5

Let p, q and r be tuples of Boolean variables. We say that an unsatisfiable set of inequalities Φ(p,q) ∪ Γ(p, r) is

monotonically separable if all p-variables occurring in inequalities of Φ(p,q) have negative coefficients. The next theorem

states that LS-proofs for monotonically separable unsatisfiable sets of inequalities can be interpolated using MLP circuits

constituted of max MLP gates.

Theorem 6.1. Let Φ(p,q) ∪ Γ(p, r) be a monotonically separable unsatisfiable set of inequalities, and let p = (p1, ...,pn).

Let Π be an LS refutation of Φ(p,q) ∪ Γ(p, r). Then one can construct in polynomial time an MLP circuit C containing only

max MLP gates which represents a Boolean function F : {0, 1}n → {0, 1} such that for each a ∈ {0, 1}n ,

4
In the context of polynomial calculus, alternative methods (e.g. [1, 18]) yield stronger lower bounds than the monotone interpolation technique.

5
Note that pure linear combinations can be easily simulated by a lap-step with αi j = βi j and γi = 0.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Mateus de Oliveira Oliveira and Pavel Pudlák

(1) if F (a) = 1, then Φ(a,q) is unsatisfiable,

(2) if F (a) = 0, then Γ(a, r) is unsatisfiable.

In particular, the size of the circuit C is polynomial in the size of Π.

Proof. The proof is divided into three parts. We start by recalling the idea of feasible interpolation for LS in the

non-monotone case as presented in [26]. Then we explain what is needed to obtain monotone gates. Finally we define

explicitly the gate simulating one lap step of the given Lovász-Schrijver proof.

(1) For the sake of simplicity, we will assume that the inequalities 0 ≤ qi ≤ 1 and 0 ≤ ri ≤ 1 are included in Φ and Γ.

Let

E1(p) + F1(q) +G1(r) − e1 ≥ 0, . . . , Em (p) + Fm (q) +Gm (r) − em ≥ 0 (14)

be the linear inequalities of an LS refutation of Φ(p,q) ∪ Γ(p, r). Since the last inequality is a contradiction, the linear

forms Em, Fm,Gm are zeros and em > 0. Let a ∈ {0, 1}n be an assignment to variables p. Substituting a for p into the

proof we get a refutation

F1(q) +G1(r) + E1(a) − e1 ≥ 0, . . . , Fm (q) +Gm (r) + Em (a) − em ≥ 0 (15)

of Φ(a,q) ∪ Γ(a, r) (note that the last inequality is −em ≥ 0 as in the proof above). Our aim now is to split the restricted

proof into two proofs

F1(q) − c1 ≥ 0, . . . , Fm (q) − cm ≥ 0 and G1(r) − d1 ≥ 0, . . . ,Gm (r) − dm ≥ 0 (16)

in such a way that the first sequence of inequalities is a potential refutation of Φ(a,q), the second sequence of inequalities

is a potential refutation of Γ(a, r), and

c j + dj ≥ ej − Ej (a) for j ∈ {1, . . . ,m}. (17)

Since (15) is a refutation of Φ(a,q) ∪ Γ(a, r), we have that em −Em (a) > 0. Therefore, (17) implies that cm > 0 or dm > 0.

Hence, in (16), either the left sequence is a refutation of Φ(a,q), or the right sequence is a refutation of of Γ(a, r), or

both sequences are refutations of their respective sets of inequalities.

We now describe how such a splitting can be constructed. First, suppose Ej (p)+ Fj (q)+G j (r)−ej ≥ 0 is an inequality

in Φ(p,q). Then G j (r) = 0, and we split Ej (a) + Fj (q) +G j (r) − ej ≥ 0 into

Fj (q) + Ej (a) − ej ≥ 0 and 0 ≥ 0. (18)

It is important to note that since Φ(p,q) ∪ Γ(r ,q) is monotonically separable, all p-variables occurring in the linear

form Ej (p) have negative coefficients. Therefore, the function ej − Ej (p) is monotone in p. Additionally, this function

can be computed using a single max MLP gate (or even by a max-left MLP gate).

Now, if Ej (p) + Fj (q) +G j (r) ≥ ej is an inequality in Γ(p, r), we split the inequality into

0 ≥ 0 and G j (r) + Ej (a) − ej ≥ 0. (19)

We note that in this case, the function ej − Ej (p) is not necessarily monotone in p, since some coefficients in the

linear form Ej (p) may be positive. Nevertheless, this is not important, because the monotone interpolant circuit we

want to construct will only take into consideration inequalities concerning the q part part of the splitting.

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Representations of Monotone Boolean Functions by Linear Programs 17

Now suppose that Et (p) + Ft (q) +Gt (r) ≥ et follows from previous inequalities and suppose we have already split

the previous part of the proof. Substituting a for p in the t-th lap-step we obtain an equality of the following form.

Ft (q) +Gt (r) + Et (a) − et =

∑
i j αi jai (Fj (q) +G j (r) + Ej (a) − ej) +

∑
i j βi j (1 − ai)(Fj (q) +G j (r) + Ej (a) − ej)+

∑
i j α
′
i jqi (Fj (q) +G j (r) + Ej (a) − ej) +

∑
i j β
′
i j (1 − qi)(Fj (q) +G j (r) + Ej (a) − ej)+

∑
i j α
′′
i jri (Fj (q) +G j (r) + Ej (a) − ej) +

∑
i j β
′′
i j (1 − ri)(Fj (q) +G j (r) + Ej (a) − ej)+

∑
i γi (ai − a

2

i)+∑
i γ
′
i (qi − q

2

i) +
∑
i γ
′′
i (ri − r

2

i)

(20)

In the sums, we have j < t and the indices i range over the sets of indices of the corresponding variables p,q, r . All

these linear combinations are nonnegative, i.e., the coefficients αi j , α
′
i j , α

′′
i j , βi j , β

′
i j , β

′′
i j , γi ,γ

′
i , and γ

′′
i are nonnegative.

Note that the term

∑
i γi (ai −a

2

i) is always zero, since by assumption ai ∈ {0, 1}. By setting δj =
∑
i (αi jai + βi j (1−aj)),

for each j, and by noting that δj is nonnegative, (20) can be simplified as follows.

Ft (q) +Gt (r) + Et (a) − et =

∑
i j α
′
i jqi (Fj (q) +G j (r) + Ej (a) − ej) +

∑
i j β
′
i j (1 − qi)(Fj (q) +G j (r) + Ej (a) − ej)+

∑
i j α
′′
i jri (Fj (q) +G j (r) + Ej (a) − ej) +

∑
i j β
′′
i j (1 − ri)(Fj (q) +G j (r) + Ej (a) − ej)+

∑
i γ
′
i (qi − q

2

i) +
∑
i γ
′′
i (ri − r

2

i)+∑
j δj (Fj (q) +G j (r) + Ej (a) − ej).

(21)

By substituting −c j − dj for Ej (a) − ej in (21) and rearranging terms, we get the following inequality.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Mateus de Oliveira Oliveira and Pavel Pudlák

Ft (q) +Gt (r) + Et (a) − et ≥

∑
i j α
′
i jqi (Fj (q) − c j) +

∑
i j α
′′
i jri (G j (r) − dj) +

∑
i j β
′
i j (1 − qi)(Fj (q) − c j) +

∑
i j β
′′
i j (1 − ri)(G j (r) − dj) +

∑
i γ
′
i (qi − q

2

i) +
∑
i γ
′′
i (ri − r

2

i) +∑
j δj (Fj (q) − c j) +

∑
j δj (G j (r) − dj) +

∑
i j α
′
i jqi (G j (r) − dj) +

∑
i j β
′
i j (1 − qi)(G j (r) − dj) +

∑
i j α
′′
i jri (Fj (q) − c j) +

∑
i j β
′′
i j (1 − ri)(Fj (q) − c j).

(22)

It is important to realize what is going on here. We want to modify the proof so that it can be split into two parts and

right-hand side of (22) should be a step towards this goal. Therefore we need two conditions to be satisfied:

(1) the inequality “right-hand side of (22) ≥ 0” is derivable in the Lovász-Schrijver system by a single lap step from

inequalities Fj (q) − c j ≥ 0, G j (r) − dj ≥ 0, and

(2) it is at least as strong as Ft (q) +Gt (r) + Et (a) − et ≥ 0.

First we observe that the substitution does not change the coefficients at quadratic terms of the right-hand side of (21).

Hence quadratic terms cancel each other also in (22). Thus the expression has the form of a lap step, which verifies the

first condition. For the second, we have to check that the coefficients at variables in Ft (q)+Gt (r)+ Et (a) − et ≥ 0 are at

least as large as in the right-hand side of (22) and so is the constant term. This can also be easily verified by inspecting

the terms.

To sum up, we should view the formal inequality (22) as a system of inequalities, one for each variable and one for

the constant terms.

Next we note that each line in the right-hand side of (22), except for the last two, splits into expressions involving

only q variables and another one involving only r variables. Let

P(q, r) =
∑
i j α
′
i jqi (G j (r) − dj) +

∑
i j β
′
i j (1 − qi)(G j (r) − dj) +

∑
i j α
′′
i jri (Fj (q) − c j) +

∑
i j β
′′
i j (1 − ri)(Fj (q) − c j)

(23)

be the polynomial corresponding to the two last lines of (22). The key observation is that, since the inequality Ft (q) +

Gt (r) + Et (a) − et ≥ 0 is linear, all quadratic terms qir j in the polynomial P(q, r) must cancel. Hence P(q, r) is a linear

polynomial. Clearly P(q, r) ≥ 0 whenever qi ≥ 0, G j (r) − dj ≥ 0, 1 − qi ≥ 0, ri ≥ 0, Fj (q) − c j ≥ 0, 1 − ri ≥ 0 and

Fj (q) − c j ≥ 0 for all i and all j < t . Hence, by Farkas’ Lemma, P(q, r) is a positive linear combination of these linear

polynomials. Since the inequalities qi ≥ 0, 1 − qi ≥ 0, ri ≥ 0, 1 − ri ≥ 0 are included among the initial inequalities, we

have

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Representations of Monotone Boolean Functions by Linear Programs 19

P(q, r) =
∑
j<t

ξ j (Fj (q) − c j) +
∑
j<t

ξ ′j (G j (r) − dj), (24)

for some ξ j , ξ
′
j ≥ 0. Thus, (22) can be rewritten as follows.

Ft (q) +Gt (r) + Et (a) − et ≥

∑
i j α
′
i jqi (Fj (q) − c j) +

∑
i j α
′′
i jri (G j (r) − dj) +

∑
i j β
′
i j (1 − qi)(Fj (q) − c j) +

∑
i j β
′′
i j (1 − ri)(G j (r) − dj) +

∑
i γ
′
i (qi − q

2

i) +
∑
i γ
′′
i (ri − r

2

i) +∑
j δj (Fj (q) − c j) +

∑
j δj (G j (r) − dj) +

∑
j ξ j (Fj (q) − c j) +

∑
j ξ
′
j (G j (r) − dj)

(25)

Now, based on the assumption that the inequalities Fj (q) +G j (r) + Ej (a) − ej ≥ 0, for j < t , have been split into

inequalities Fj (q) − c j ≥ 0 and G j (r) − dj ≥ 0, our goal is to split the inequality Ft (q) +Gt (r) + Et (a) − et ≥ 0 into

inequalities Ft (q) − ct ≥ 0 andGt (r) −dt ≥ 0. To accomplish this goal, it is enough to find constants ct and dt such that

ct + dt ≥ et − Et (a), (26)

and such that the following inequalities are satisfied.

Ft (q) − ct ≥ Gt (r) − dt ≥

∑
i j α
′
i jqi (Fj (q) − c j) +

∑
i j α
′′
i jri (G j (r) − dj) +

(a)
∑
i j β
′
i j (1 − qi)(Fj (q) − c j) + (b)

∑
i j β
′′
i j (1 − ri)(G j (r) − dj) +

∑
i γ
′
i (qi − q

2

i) +
∑
i γ
′′
i (ri − r

2

i) +∑
j δj (Fj (q) − c j) +

∑
j δj (G j (r) − dj) +

∑
j ξ j (Fj (q) − c j)

∑
j ξ
′
j (G j (r) − dj).

(27)

The meaning of these inequalities is as explained after inequality (22). The only unknown coefficients are ξ j and ξ
′
j ;

all other coefficients are fixed by the proof. The constant terms c j and dj are given from previous computations. To

compute suitable ct and dt , it is enough to find the maximum ct that satisfies inequality (27).(a), and the maximum dt

that satisfies inequality (27).(b). It turns out that computing ct reduces to the problem of solving a linear program whose

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Mateus de Oliveira Oliveira and Pavel Pudlák

constraints can be extracted from inequality (27).(a). Analogously, computing dt reduces to the problem of solving a

linear program whose constraints are extracted from inequality (27).(b).

In this way we can split a proof of contradiction −em ≥ 0 from Φ(a,q) ∪ Γ(a, r) into two proofs: one is a proof of

−cm ≥ 0 from Φ(a,q) and the other is a proof of −dm ≥ 0 from Γ(a, r). Since cm + dm ≥ em − Em (a) = em > 0 we thus

get a proof a contradiction from Φ(a,q) or from Γ(a, r).

(2) Now we would like to show that not only we can split the proof into a q part and an r part, but we also can decide

which of the two sets Φ(a,q) or Γ(a, r) is contradictory using a circuit built from max MLP gates. As it will be argued in

the final steps of the proof, this decision process will actually only depend on the computation of the quantities cm . The

fact that the original set of inequalities Φ(p,q) ∪ Γ(p, r) is monotonically separable guarantees that we can compute the

numbers c1, c2, . . . gradually using only max MLP gates.

We have sketched how to construct a linear program with the goal of computing ct in terms of c j (for j < t). However,

if we only use (27).(a), the linear program may be not monotone. This is because, from the first two sums, we get terms

of the form

qi
∑
j
(−α ′i j + β

′
i j)c j .

In this sum, −α ′i j + β
′
i j may be positive, negative, or zero; we do not know. Hence, in order to obtain an interpolant

circuit constituted only of monotone gates, we will consider the process of maximizing a constant ct satisfying the

following relaxed version of inequality (27).(a).

Ft (q) − ct ≥
∑
i j α
′
i jqi (Fj (q) − ηi j) +∑

i j β
′
i j (1 − qi)(Fj (q) − η

′
i j) +∑

i γ
′
i (qi − q

2

i) +∑
j δj (Fj (q) − c j) +∑
j ξ j (Fj (q) − c j),

(28)

where the new variables ηi j ,η
′
i j will be constrained by ηi j ≤ c j and η

′
i j ≤ c j for each i and each j < t . We note that if

ηi j ≤ c j and η
′
i j ≤ c j , then we can obtain inequalities Fj (q) −ηi j ≥ 0 and Fj (q) −η

′
i j ≥ 0 from inequalities Fj (q) −c j ≥ 0

by applying the weakening rule. Additionally, in the same way that inequality (27).(a) is obtained from inequalities

Fj (q) − c j ≥ 0 (for j < t) in one lap-step, we have that inequality (28) is obtained from inequalities Fj (q) − ηi j ≥ 0,

Fj (q) − η
′
i j ≥ 0 and Fj (q) − c j ≥ 0 (for j < t) in one lap-step.

We also note that the maximum value that ct can attain under the constraints (28) is at least as large as the maximum

value that ct can attain under the constraints (27).(a), since we can always set ηi j = η
′
i j = c j for each j < t .

Note that again the substitution of ηs has no effect on quadratic terms, so they cancel each other and we do not have

to worry about them.

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Representations of Monotone Boolean Functions by Linear Programs 21

(3) We shall now write down the monotone linear program explicitly. For each j ≤ t , let Fj (q) =
∑
k fk jqk . The

constraints of the program are:

ηi j ≤ c j η′i j ≤ c j

fkt ≥
∑
i j β
′
i j fk j +

∑
j δj fk j + γ

′
k+∑

j −α
′
k jηk j +

∑
j β
′
k jη
′
k j +

∑
j fk jξ j .

(29)

The inequalities with fkt express that the homogeneous part of the right-hand side of inequality (28) is less than or

equal to Ft (q). Under these constraints, we want to maximize the following linear function.

ct = max

∑
i j

β ′i jc j +
∑
j
δjc j +

∑
j
ξ jc j . (30)

In this linear program the variables are ηk j ,η
′
k j , ξ j and the maximized variable is ct .

6
The indices k run over the indices

of variables q and j = 1, . . . , t − 1. We interpret this program as a max MLP gate with input variables c j for j < t , and

internal variables ξ j ,ηi j ,η
′
i j . Note that the program is monotone in the input variables c j , j < t , and that the input

variables occur both in the constraints and in the objective function.

We now construct an interpolant circuit C . For each t ∈ {1, ...,m}, if Et (p) + Ft (q) +Gt (r) − et ≥ 0 is an inequality

in Φ(p,q), then we create a max MLP gate ℓt with inputs p and output ct . For an assignment a ∈ {0, 1}n of the

variables p, the gate ℓt computes the value et − Et (a) as already discussed in the paragraph following inequality (18). If

Et (p)+ Ft (q)+Gt (r) − et ≥ 0 is an inequality in Γ(p,q), then we set ct := 0. If Et (p)+ Ft (q)+Gt (r) − et ≥ 0 is obtained

from previous inequalities by the application of one lap-step, then we create a max MLP gate ℓt with inputs p and

c1, ..., ct−1 and output ct . The value of ct is computed according to the linear program described above.
7
One can easily

check that the coefficients of the variables in this linear program can be computed in polynomial time from the given

LS refutation of Φ(p,q) ∪ Γ(p, r).

It remains to check that C interpolates Φ(p,q) ∪ Γ(p, r). Let an assignment a ∈ {0, 1}n to the variables p be given. In

the process of constructing circuit C , we have also constructed a Lovász-Schrijver proof of −cm ≥ 0 from Φ(a,q). If

C(a) > 0, then cm > 0, since cm is the value of the output gate. Hence we have a proof of contradiction, which means

that Φ(a,q) is unsatisfiable. Otherwise, if C(a) ≤ 0, then cm ≤ 0 and therefore dm > 0, (recall that cm + dm ≥ em > 0).

Since we can also construct a proof of −dm ≥ 0 from Γ(a, r), this implies that Γ(a, r) is unsatisfiable. �

6.4 Lovász-Schrijver Refutations of Mixed LP Problems

While proof systems for integer linear programming have been widely studied, very little is known about proof systems

for mixed linear programming. In mixed linear programming part of variables range over integers and part of them

range over reals. The Lovász-Schrijver system can naturally be adapted for mixed linear programming by disallowing

the use of axioms and the multiplication rule for variables ranging over reals. One can easily prove that this system

is complete with respect to refutations (i.e., a family of inequalities is unsatisfiable if and only if a contradiction is

derivable).

6
The objective function does not have the usual form, but it can be put to this form by introducing new variables x j and adding equalities x j =
ξ j + δj +

∑
i β ′i j .

7
The internal variables x j , ξ j , ηi j and η′i j are distinct for each two distinct gates.

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Mateus de Oliveira Oliveira and Pavel Pudlák

We say that an unsatisfiable set of mixed inequalities Φ(p,q) ∪ Γ(p, r) is strongly monotonically separable if p and

r are tuples of Boolean variables, q is a tuple of real variables, and variables in p occur in Φ(p,q) only with negative

coefficients. Although this may seem as a very special set up, we will give later a natural example of a mixed LS

refutation of such a set of inequalities.

Next, we will show that LS proofs for strongly monotonically separable unsatisfiable sets of mixed inequalities can

be interpolated in terms of a single max-left MLP gate (or, using linear-programming duality, by a single min-right

MLP gate). The advantage of this interpolation theorem compared with Theorem 6.1 is that while proving lower bounds

on the size of strong MLP circuits may be beyond the reach of current methods, proving a lower bound on the size

of a single weak MPL gate seems to be feasible, because this problem is closely related to lower bounds on extended

formulations (see Section 7).

Theorem 6.2. Let Φ(p,q) ∪ Γ(p, r) be a strongly monotonically separable unsatisfiable set of mixed inequalities, and let

p = (p1, ...,pn). Let Π be an LS refutation of Φ(p,q) ∪ Γ(p, r). Then there exists a max-left MLP gate ℓ that represents a

Boolean function F : {0, 1}n → {0, 1} such that for every a ∈ {0, 1}n ,

(1) if F (a) = 1, then Φ(a,q) is unsatisfiable, and

(2) if F (a) = 0, then Γ(a, r) is unsatisfiable.

Additionally, the size of the MLP gate ℓ is polynomial in the size of Π.

Proof. It is enough to construct a circuitC consisting of max-left gates representing a function F : {0, 1}n → {0, 1}

such that for each a ∈ {0, 1}n , Φ(a,q) is unsatisfiable whenever F (a) = 1, and Γ(a, r) is unsatisfiable whenever F (a) = 0.

By Theorem 4.3, from the circuitC , one can construct a single max-left MLP gate representing F whose size is linear in

the size of C .

The construction of C is done in a similar way to the construction of the circuit with max MLP gates constructed in

Theorem 6.1. The difference is that, by assuming that the LS refutation Π is mixed, the gates used in the circuit can

be restricted to max-left MLP gates, instead of max MLP gates. It is enough to observe that, since the multiplication

rule and integrality axioms cannot be used with respect to the real variables q, inequality (28) can be simplified to the

following inequality.

Ft (q) − ct ≥
∑
j
δj (Fj (q) − c j) +

∑
j
ξ j (Fj (q) − c j). (31)

From inequality (31), one can extract the following constraints, where as in inequality (29), fk j denotes the coefficient

of qk in the linear form Fj (q).

fkt =
∑
j
δj fk j +

∑
j
ξ j fk j . (32)

Finally, the objective function given in inequality (30) is simplified to

ct = max

∑
j
δjc j +

∑
j
ξ jc j . (33)

Equivalently, by creating a variable x j for each j < t and by setting

x j = δj + ξ j , (34)

the maximization in Equation (33) is equivalent to the following maximization.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Representations of Monotone Boolean Functions by Linear Programs 23

ct = max

∑
j
c jx j . (35)

Together, Equation (32), Equation (34) and Equation (35) define an MLP gate with input variables c j for j < t , and

internal variables x j , ξ j . Note that the input variables c j only appear in the objective function, and not in the constraints.

Therefore, this gate is a max-left MLP gate.

The rest of the construction of the circuit C is completely analogous to the construction in the proof of Theorem

6.1. �

In the next subsection we will give a natural example of a set of inequalities of the form used in the theorem. We

will show that this set of inequalities has polynomial-size mixed LS refutations, but it requires superpolynomial-size

cutting-plane refutations.

6.5 Cutting-Planes vs. Lovász-Schrijver Refutations and Monotone Real Circuits vs MLP Gates

In this subsection we will define an unsatisfiable set of inequalities Φn (p,q) ∪ Γn (p, r), which has polynomial-size

LS refutations, but which requires superpolynomial size refutations in the cutting-planes proof system. Additionally,

we define a function дn : {0, 1}n → {0, 1, ∗} that has polynomial-size MLP representations, but which require

superpolynomial size monotone real circuits.

We recall that the cutting-planes proof systems is defined by the following axioms and rules.

• Axioms:

0 ≤ pj ≤ 1.

• Rules:

(1) Positive linear combinations;

(2) Rounding rule: Suppose that all ci are integers. Then

from

∑
i cipi ≥ d , derive

∑
i cipi ≥ ⌈d⌉.

A monotone real circuit is a circuit C whose gates are monotone real functions of at most two variables. The size of

C is the number of gates in C . The following theorem can be used to translate superpolynomial lower bounds on the

size of monotone real circuits computing certain partial Boolean functions into superpolynomial lower bounds for the

size of cutting-planes proofs.

Theorem 6.3 (Monotone Interpolation for the cutting-planes Proof System [25]). Let Φ(p,q) ∪ Γ(p, r) be a

monotonically separable unsatisfiable set of inequalities, and let p = (p1, ...,pn). Let Π be a cutting-planes refutation for

Φ(p,q) ∪ Γ(p, r). Then one can construct a monotone real circuit C such that for every a ∈ {0, 1}n ,

(1) if C(a) = 1 then Φ(p,q) is unsatisfiable, and

(2) if C(a) = 0 then Γ(p, r) is unsatisfiable.

Additionally the size of the circuit C is at most a constant times the size of the refutation Π.

Let Kn = {{i, j} | 1 ≤ i < j ≤ n} be the complete undirected graph with vertex set [n] = {1, ...,n}. We say that a

subgraph X ⊆ Kn is a perfect matching if the edges in X are vertex-disjoint and each vertex i ∈ [n] belongs to some

edge of X . We say that a subgraph B ⊆ Kn is an unbalanced complete bipartite graph if there exist sets V ,U ⊆ [n] with

V ∩U = ∅, |V | > |U |, and B = {{i, j} | i ∈ V , j ∈ U }. LetW ⊆ Kn be a graph. We letV(W) = {i | ∃j ∈ [n], {i, j} ∈W }

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Mateus de Oliveira Oliveira and Pavel Pudlák

be the vertex set ofW . For each vertex i ∈ V(W), we let N(i) = {j | {i, j} ∈W } be the set of neighbours of i inW .

For a subset V ⊆ V(W), we let N(V) =
⋃
v ∈V N(v) be the set of neighbours of vertices in N(V). We say thatW is

unbalanced if there exists V ,U ⊆ V(W) such that N(V) ⊆ U and |V | > |U |. Note that such an unbalanced graphW

cannot contain a perfect matching X , since the existence of such a perfect matching would imply the existence of an

injective mapping from V toU . We also note that unbalanced complete bipartite graphs are by definition a special case

of unbalanced graphs.

Razborov proved that any monotone Boolean circuit which decides whether a graph has a perfect matching must

have size at least nΩ(logn)
[29]. This lower bound was generalized by Fu to the context of monotone real circuits

[10]. More precisely, Fu proved that any monotone real circuit distinguishing graphs with a perfect matching from

unbalanced complete bipartite graphs must have size at least nΩ(logn)
.

Theorem 6.4 ([10]). Let F : {0, 1}(
n
2
) → {0, 1, ∗} be a partial Boolean function such that for eachw ∈ {0, 1}(

n
2
)
,

• F (w) = 1 ifw encodes a graph with a perfect matching.

• F (w) = 0 ifw encodes an unbalanced complete bipartite graph.

Then any monotone real circuit computing F must have size at least nΩ(logn)
.

Since unbalanced complete bipartite graphs are a special case of unbalanced graphs, monotone real circuits distin-

guishing graphs with a perfect matching from unbalanced graphs must have size at least nΩ(logn)
gates.

Corollary 6.5. Let д : {0, 1}(
n
2
) → {0, 1, ∗} be a partial Boolean function such that for eachw ∈ {0, 1}(

n
2
)
,

• д(w) = 1 ifw has a perfect matching.

• д(w) = 0 ifw is unbalanced.

Then any monotone real circuit computing д must have size at least nΩ(logn)
.

Below we will define a set Ψn of unsatisfiable inequalities on variables

p = {wi j | 1 ≤ i < j ≤ n} q = {ui ,vi | i ∈ [n]} r = {xi j | 1 ≤ i < j ≤ n}.

Intuitively, each assignment of the variables in p defines a graphW ⊆ Kn such that {i, j} ∈W if and only ifwi j = 1.

Each assignment to the variables in q defines subsetsU ,V ⊆ [n] where i ∈ U if and only if ui = 1, and i ∈ V if and only

if vi = 1. Finally, each assignment to the variables in r defines a subset of edges X in such a way that {i, j} ∈ X if and

only if xi j = 1. The set of inequalities Ψn would be satisfiable by an assignment α of the variables in p,q and r if and

only if α defined a graphW ⊆ Kn which contained, at the same time, a perfect matching X and a pair of subsets of

vertices V ,U ⊆ V(W) certifying thatW is unbalanced. Since no such graph exists, the set Ψn is unsatisfiable.

Definition 6.6 (Unbalanced Graphs vs Perfect Matching Ineqalities). Let Φn (p,q) ∪ Γn (p, r) be a set of

inequalities on variables p = {wi j }, q = {ui ,vi } and r = {xi j } defined as follows.

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Representations of Monotone Boolean Functions by Linear Programs 25

Inequalities in Φn (p,q): W is unbalanced.

1. uj −vi −wi j + 1 ≥ 0 N(V) ⊆ U . If i ∈ V ∧ {i, j} ∈W ⇒ j ∈ U .

2.

∑
j vj −

∑
i ui − 1 ≥ 0 |V | > |U |.

Inequalities in Γn (p, r): Existence of a perfect matching.

3. wi j − xi j ≥ 0 X is a subset of edges ofW .

4.

∑
i ,i,j xi j − 1 = 0 X defines a perfect matching.

Note that for each j, the equalities in 4. consist of two inequalities. Note also that the variables inwi j ∈ p, which

occur both in Φn (p,q) and in Γn (p, r), only occur negatively in Φn (p,q). Therefore, Φn (p,q) ∪ Γn (p, r) is monotonically

separable.

A combination of Fu’s size lower-bound for monotone real circuits (Theorem 6.4) with the monotone interpolation

theorem for cutting-planes (Theorem 6.3) was used in [10] to show that a suitable unsatisfiable set of inequalities Ψ′n

requires cutting-planes refutations of size nΩ(logn)
. The next theorem states that a similar lower bound can be proved

with respect to the inequalities introduced in Definition 6.6.

Theorem 6.7. Let Φn (p,q) ∪ Γn (p, r) be the set of inequalities of Definition 6.6. Then any cutting-planes refutation of

Φn (p,q) ∪ Γn (p, r) must have size at least nΩ(logn)
.

Proof. If a ∈ {0, 1}n represents a graph containing a perfect matching, then Γn (a, r) is satisfiable, and consequently

Φn (a,q) is unsatisfiable. Analogously, if a represents an unbalanced graph, then Φn (a,q) is satisfiable and consequently,

Γn (a, r) is unsatisfiable. Let Π be a refutation of Φn (p,q) ∪ Γn (p, r). Then, by the interpolation theorem for monotone

real circuits (Theorem 6.3), there is a monotone real circuitC of size polynomial in the size of Π such thatC(a) = 1 if the

graph represented by a has a perfect matching, and such that C(a) = 0 if the graph represented by a is an unbalanced

graph. But by Corollary 6.5, any such circuit must have size at least nΩ(logn)
. Therefore, the proof Π must also have

size at least nΩ(logn)
. �

On the other hand, the following theorem states that the set inequalities Φn (p,q) ∪ Γn (p, r) has LS refutations of size

polynomial in n. In fact, in these refutations, the integrality axiom and multiplication rules are never used with respect

to the variables q.

Theorem 6.8. Let Φn (p,q) ∪ Γn (p, r) be the set of inequalities of Definition 6.6, Then Φn (p,q) ∪ Γn (p, r) has an LS

refutation of size polynomial in n.

Proof. Consider the following polynomial-size LS refutation of Φn (p,q) ∪ Γn (p, r).

5. uj −vi − xi j + 1 ≥ 0 From 3. and 1. (Definition 6.6).

6. xi juj − xi jvi − x
2

i j + xi j ≥ 0 Multiplying 5. by xi j

7. xi juj − xi jvi ≥ 0 Applying x2

i j − xi j = 0 to 6.

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Mateus de Oliveira Oliveira and Pavel Pudlák

8.

∑
i j xi juj −

∑
i j xi jvi ≥ 0 Sum of 7. over every i, j with i , j

9.

∑
j uj

∑
i ;i,j xi j −

∑
i vi

∑
j ;i,j xi j ≥ 0 Rewriting 8.

10.

∑
j uj −

∑
i vj ≥ 0 From 9. and 4. (Definition 6.6).

11. −1 ≥ 0 From 2. (Definition 6.6) and 10.

�

By combining Theorem 6.7 with Theorem 6.8 we have the following corollary separating cutting-planes from LS

proof systems.

Corollary 6.9. The cutting-planes proof system does not polynomially simulate the Lovász-Schrijver proof system.

Previous to our work, the problem of determining whether the cutting-planes proof system can polynomially simulate

the LS-proof system had been open for almost two decades. We note that to the best of our knowledge, the converse

problem, of determining whether the LS-proof system can polynomially simulate the cutting-planes proof system

remains open.

We observe that in the LS refutation of Φn (p,q) ∪ Γn (p, r) described in the proof of Theorem 6.8, the use of integrality

axioms and multiplication rules is restricted to variables in r . Therefore, if we regard the variables in q as being real-

valued variables, then Φn (p,q) ∪ Γn (p, r) may be regarded as strongly separable unsatisfiable set of mixed inequalities.

Therefore, by combining Theorem 6.8 with Theorem 6.2, we have the following theorem.

Theorem 6.10. Let дn : {0, 1}(
n
2
) → {0, 1, ∗} be the partial Boolean function of Corollary 6.5. Then дn can be represented

by a single max-left MLP gate of size polynomial in n.

Proof. Let Φn (p,q) ∪ Γn (p, r) be the set of inequalities of Definition 6.6. If we regard the variables q as ranging over

the reals, then Φn (p,q) ∪ Γn (p, r) is a strongly monotonically separable set of mixed inequalities, and the refutation

in Theorem 6.8 may be regarded as a mixed LS refutation of Φn (p,q) ∪ Γn (p, r). By Theorem 6.2, there is a max-left

MLP gate ℓn of size nO (1) such that for each a ∈ {0, 1}(
n
2
)
, ℓn (a) > 0 implies that Φn (p,a) is unsatisfiable, and ℓn (a) ≤ 0

implies that Γ(p,a) is unsatisfiable. Therefore, the MLP gate ℓn represents the partial function дn . �

Theorem 6.10 in conjunction with Corollary 6.5 imply that max-left MLP gates can separate graphs with a perfect

matching from unbalanced graphs superpolynomially faster than monotone real circuits. Therefore, we have the

following corollary.

Corollary 6.11. max-left MLP gates cannot be polynomially simulated by monotone real circuits.

We leave open the question of whether MLP gates (of any type) can polynomially simulate monotone real circuits.

7 MONOTONE LINEAR PROGRAMS AND EXTENDED FORMULATIONS

In this section we establish connections between monotone linear programs and the theory of extended formulations

for polytopes. In particular, we define the notion of monotone extension complexity of a polytope and show that this

complexity measure can be used to characterize the size of weak monotone representations of monotone Boolean

functions. Since such representations can be used to interpolate mixed Lovász-Schrijver proofs, we may regard the task

of proving superpolynomial lower bounds on the monotone extension complexity of polytopes as a first step towards

proving lower bounds for the size of mixed Lovász-Schrijver proofs.

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Representations of Monotone Boolean Functions by Linear Programs 27

A polytope is the convex hull of a nonempty finite set of vectors in Rn ; in particular, a polytope is nonempty and

bounded. If a polytope P ⊆ Rn is given by a polynomial number of inequalities
8
, then we can easily decide whether a

vector v ∈ Rn belongs to P . An important observation is that even if P requires an exponential number of inequalities

to be defined, we may still be able to test whether v ∈ P efficiently if we can find a polytope P ′ ⊆ Rn+m in a higher

dimension with m = nO (1) such that P is a projection of P ′ and P ′ can be described by a polynomial number of

inequalities
8
. More precisely, let P ⊆ Rn be a polytope, and let P ′ ⊆ Rn+m be a polytope defined by a system of

inequalities
9 A(v,y) ≤ b. Then we say that the system A(v,y) ≤ b is an extended formulation of P if for each v ∈ Rn ,

v ∈ P ⇔ ∃y ∈ Rm,A(v,y) ≤ b. We define the size of such extended formulation as the number of rows plus the

number of columns in A. For instance, it can be shown that the permutahedron polytope Pn ⊆ R
n
, which is defined as

the convex-hull of all permutations of the set [n] = {1, ...,n}, requires exponentially many inequalities to be defined.

Nevertheless, Pn has extended formulations of size O(n logn) [13]. On the other hand, it has been shown that for some

polytopes, such as the cut polytope, the TSP polytope, etc., even extended formulations require exponentially many

inequalities [9, 34].

7.1 Existential MLP Representations

The notion of existential MLP representations defined below will be used as a bridge between weak MLP gates and

extended formulations for polytopes.

Definition 7.1 (Existential MLP Representations). Let A be a matrix in Rm×k , b be a vector in Rm , and B be a

matrix in Rm×n with B ≥ 0. Let F : {0, 1}n → {0, 1, ∗} be a partial Boolean function. We say that the triple (A,B,b) is a

max-existential MLP representation of F if the following conditions are satisfied for each p ∈ {0, 1}n .

F (p) =

{
1 ⇒ ∃x ≥ 0, Ax ≤ b + Bp,

0 ⇒ ¬∃x ≥ 0, Ax ≤ b + Bp.
(36)

We say that (A,B,b) is a min-existential representation of F if the following conditions are satisfied for each p ∈ {0, 1}n .

F (p) =

{
1 ⇒ ¬∃x ≥ 0, Ax ≥ b + Bp,

0 ⇒ ∃x ≥ 0, Ax ≥ b + Bp.
(37)

As in the case of MLP gates, the size of existential representations is measured as the number of rows plus the number

of columns in the matrix A. We note that there are two differences between max-existential and min-existential

MLP representations. First, while the former is defined in terms of inequalitiesAx ≤ b +Bp, the latter is defined in terms

of inequalities Ax ≥ b + Bp. It is not obvious how to transform a system of inequalities in the first form into a system of

inequalities in the second form because of the requirement that B ≥ 0. Second, when considering max-existential

representations, F (p) = 1 implies the existence of a solution x to the corresponding system of inequalities. On the other

hand, when considering min-existential representations, F (p) = 1 implies that no solution for the corresponding

system of inequalities exists. The min and max prefixes in existential MLP representations come from the following

lemma.

Lemma 7.2. Let F : {0, 1}n → {0, 1, ∗} be a partial Boolean function. Then F has a max-existential (resp. min-

existential) MLP representation of size O(s) if and only if F can be represented by a max-right (resp. min-right) MLP

gate of size O(s).

8
With coefficients specified by nO (1) bits.

9
For column vectors v ∈ Rn and y ∈ Rm , (v , y) denotes the column vector (v1, ..., vn , y1, ..., ym).

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Mateus de Oliveira Oliveira and Pavel Pudlák

We leave out the proof since it uses the same ideas as similar simulation considered before.

7.2 Monotone Extension Complexity

The process of defining partial Boolean functions by linear programs is closely related, but not equivalent, to the process

of defining polytopes by extended formulations. For a partial Boolean function F , let Ones(F), and Zeros(F) denote the

set of all inputs a ∈ {0, 1}n such that F (a) = 1, and F (a) = 0 respectively. Let P1

F denote the convex hull of Ones(F) and

P0

F denote the convex hull of Zeros(F). Defining F by a linear program is equivalent to finding an extended formulation

of some polyhedron Q1
that contains P1

F and is disjoint from Zeros(F), or an extended formulation of some polyhedron

Q0
that contains P0

F and is disjoint from Ones(F). Finding such an extended formulation for such a polyhedron Q1

(resp. Q0
) with a small number of inequalities is a simpler task than finding a small extended formulation for the

polyhedron P1

F (resp. P0

F) itself. For instance, if F is the matching function for general graphs, then F is computable by a

polynomial-size Boolean circuit (containing negation gates), and hence this function can be defined by (not necessarily

monotone) linear programs of polynomial size
10
. Nevertheless, the corresponding polytope P1

F requires extended

formulations of exponential size [34].

Let us now turn tomonotone linear programs. From the discussion in the last paragraph, in order to have some chance

of proving lower bounds for MLP representations, we need to use the fact that these representations are monotone. We

define the following complexity measures for monotone functions.

Definition 7.3 (Monotone Extension Complexity). Let F : {0, 1}n → {0, 1, ∗} be a partial monotone Boolean

function. Below we define two notions of monotone extension complexity (mxc) for F .

(1) We let mxc1(F) denote the minimum size of an extended formulation for a polytope Q1
such that

(P1

F + R
n
+) ⊆ Q1, and Q1 ∩ Zeros(F) = ∅. (38)

(2) We let mxc0(F) denote the minimum size of an extended formulation for a polytope Q0
such that

P0

F ⊆ Q0, and Q0 ∩ (Ones(F) + Rn+) = ∅. (39)

The following theorem establishes an equivalence between the monotone extension complexities mxc1(F) and

mxc0(F) of a function F and the minimum size of max-existential and min-existential representations for F

respectively.

Theorem 7.4. Let F : {0, 1}n → {0, 1, ∗} be a partial monotone Boolean function.

(1) mxc1(F) is up to a constant factor equal to the minimum size of a max-existential MLP computing F .

(2) mxc0(F) is up to a constant factor equal to the minimum size of a min-existential MLP computing F .

Proof.

(1) Let (A,B,b) be a max-existential MLP representation for F . Then for each p ∈ {0, 1}n such that F (p) = 1, there

exists an y ≥ 0 such that all inequalities in the system Ay ≤ b +Bp are satisfied. Additionally, if F (p) = 0, then no

such y ≥ 0 exists. Therefore, the system of inequalities Ay ≤ b + Bx is an extended formulation for a polytope

Q1
such that (P1

F + R
n
+) ⊆ Q1

and Q1 ∩ Zeros(F) = ∅.

10
Note that any function in P can be defined by polynomial-size non-monotone LP programs, due to the fact that linear programming is P-complete.

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Representations of Monotone Boolean Functions by Linear Programs 29

For the converse, assume that the system of inequalities A(x,y) ≤ b defines an extended formulation for a

polytope Q1
such that (P1

F + R
n
+) ⊆ Q1

and Q1 ∩ zeros(F) = ∅. Then the inequalities A(x,y) ≤ b, x ≤ p define a

max-existential MLP representation for F .

(2) Now, let (A,B,b) be a min-existential MLP representation for F . Then for each p ∈ {0, 1}n such that F (p) = 0,

there exists an y ≥ 0 such that all inequalities in the system Ay ≥ b + Bp are satisfied. Additionally, if F (p) = 1,

then no such y ≥ 0 exists. Therefore, the system of inequalities Ay ≥ b + Bx is an extended formulation for a

polytope Q0
such that P0

F ⊆ Q0
and Q0 ∩ (Ones(F) + Rn+) = ∅.

For the converse, assume that the system of inequalities A(x,y) ≥ b defines an extended formulation for a

polytope Q0
such that P0

F ⊆ Q0
and Q0 ∩ (Ones(F) + Rn+) = ∅. Then the inequalities A(x,y) ≥ b, x ≥ p define a

min-existential MLP representation for F .

�

A possible approach for proving size lower bounds for weak MLP representations is suggested by a combination of

Theorem 7.4 with Lemma 7.2. More precisely, a possible approach to prove superpolynomial lower bounds on the size of

max-right MLPs is to come up with a hard monotone function F such that any polytope Q1
separating P1

F + R
n
+ from

zeros(F) is close to P1

F + R
n
+. If such a function exists, one could try to apply techniques from the theory of approximate

extended formulations to show that any polytope sufficiently close to P1

F + R
n
+ must have superpolynomial extended

formulations. Analogously, in order to prove superpolynomial lower bounds on the size of min-right MLPs, one could

first try to come up with a function F such that that any polytope Q0
separating P0

F from ones(F) + R+ is close to P0

F .

We note however that lifting lower bound techniques from the theory of extended formulations to the setting of MLP

representations will not be an easy task. For instance, the polytope obtained as the convex-hull of points corresponding

to graphs with a perfect-matching can only be described by extended formulations of exponential size. Nevertheless,

Theorem 6.10 (together with Observation 3.6) shows that min-right MLP gates of polynomial size can be used to

separate points corresponding to perfect matchings from points corresponding to unbalanced graphs.

7.3 Some Refinements

Let F : {0, 1}n → {0, 1, ∗} be a partial monotone Boolean function. A minterm of F is a vector v ∈ {0, 1}n such that

F (v) = 1 and such that F (v ′) , 1 for each v ′ ≤ v . Intuitively, a minterm is a minimal vector which causes F to evaluate

to 1. We let MinTerms(F) be the set of minterms of F , and P̂1

F be the convex-hull of minterms of F . Analogously, a

maxterm is a vector v ∈ {0, 1}n such that F (v) = 0 and F (v ′) , 0 for each v ′ ≥ v . Intuitively, a maxterm is a maximal

vector that causes F to evaluate to 0. We let MaxTerms(F) be the set of maxterms of F .

All monotone Boolean functions for which lower bounds have been proved have the property that maxterms have

essentially larger weight
11

than minterms. Additionally for these functions it is often the case that all minterms have

the same weight, and therefore, lie in a hyperplane. For instance, let F be the partial monotone Boolean function where

minterms are k-cliques in a graph on n vertices and maxterms are complete (k − 1)-partite graphs. Suppose k = nα for

some 0 < α < 1. Then all minterms of F have weight

(k
2

)
≈ 1

2
n2α

, while maxterms have weight at least (1
2
− o(1))n2

.

We note that, we can always replace P1

F in (38) by the convex hull P̂1

F of the minterms of F . Additionally, if F is a

total function, then we can replace Zeros(F) by MaxTerms(F).

If P̂1

F lays on a hyperplane, we may reduce the task of separating PF + R
n
from Zeros(F) to the task of separating P̂1

F
from some other polytopes. Let H be a hyperplane such that P̂1

F ⊆ H . We project the zeros of F to H by applying the

11
The weight of a vector v ∈ {0, 1}n is the number of times that 1 occurs in v .

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Mateus de Oliveira Oliveira and Pavel Pudlák

following map for each v such that F (v) = 0:

v 7→ Sv := H ∩ {u | u ≤ v}. (40)

If the weights of maxterms are bigger than the weights of minterms, then each Sv is an (n − 1)-dimensional simplex

(because {u | u ≤ v} is a cone spaned by n lines). The task is now to separate P̂1

F from

⋃
v Sv where the union is over

the maxterms of F . Therefore, in this case we have the following proposition.

Proposition 7.5. Let F : {0, 1}n → {0, 1} be a total Boolean function such that the set of minterms lie on a hyperplane.

Then mxc1(F) is up to a constant factor equal to the minimum size of an extended formulation of a polytope Q1
such that

P̂1

F ⊆ Q1, and Q1 ∩
⋃

v ∈MaxTerms(F)

Sv = ∅ (41)

8 CONCLUSION

In this work we have introduced several models of computation based on the notion of monotone linear programs. In

particular, we introduced the notions of weak and strong MLP gates. We reduced the problem of proving lower bounds

for the size of LS proofs to the problem of proving lower bounds for the size of MLP circuits with strong gates, and the

problem of proving lower bounds on the size of mixed LS proofs to the problem of proving lower bounds on the size of

single weak MLP gates.

When it comes to comparing MLP gates with other models of computation, we have shown that weak MLP gates are

strictly more powerful than monotone Boolean circuits and monotone span programs. Additionally, these gates cannot

be polynomially simulated by monotone real circuits. Finally, by combining some results mentioned above, we proved

that the cutting-planes proof system is not powerful enough to polynomially simulate the LS proof system. This is the

first result showing a separation between the power of these two systems.

The results mentioned above indicate that the study of monotonemodels of computation based on linear programming

has the potential to shed new light on deep questions in circuit complexity and in proof complexity. We note however,

that when proposing a new model of monotone computation, there is always a danger that the model is too strong. So

strong that proving size lower bounds on this model for explicit Boolean functions would imply a major breakthrough in

computational complexity. For instance, a nondeterministic monotone circuit for a Boolean function F (p) is a monotone

circuit C(p,q, r), where q and r are strings of variables of equal length such that

F (p) = 1 ⇔ ∃q C(p,q,¬q) = 1.

Note that this is a fully syntactic definition—the form of the circuit ensures that the function it computes is monotone.

Yet this kind of circuits are equivalent to general nondeterministic circuits.

Nevertheless, we conjecture that the models we have introduced in this work do not suffer from this excess of

computational power.

We conclude this work by stating some open problems whose solution could lead to the development of more

powerful techniques for proving explicit size lower bounds for monotone models of computation and proof systems.

(1) Prove superpolynomial lower bounds for the size of weak MLP gates representing an explicit partial function F .

(2) Since proving superpolynomial lower bounds on the size of MLP circuits seems extremely difficult, the tantalizing

question is: Is it possible to interpolate Lovász-Schrijver refutations by a single monotone LP gate (similarly as it

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Representations of Monotone Boolean Functions by Linear Programs 31

is in Theorem 6.2 for a set of mixed inequalities)? We believe that it should be possible to improve Theorem 6.1,

because, for instance, our proof does not use the property that quadratic terms with variables p must cancel.

(3) Is it possible to bound the coefficients occurring in MLP gates without increasing too much the size of represen-

tations? More specifically, given an MLP gate ℓ of polynomial size representing a function F , can one modify it

in such a way that all coefficients in the inequalities and objective function defining ℓ are integers of polynomial

magnitude? Note that a similar question is open in the context of monotone span programs.

Acknowledgments. We would like to thank Anna Gál, Mika Göös, Pavel Hrubeš and Massimo Lauria for valuable

suggestions. This project was supported by the ERC Advanced Grant 339691 (FEALORA). Mateus de Oliveira Oliveira

also acknowledges support from the Bergen Research Foundation.

REFERENCES
[1] M. Alekhnovich and A. A. Razborov. Satisfiability, branch-width and tseitin tautologies. In Proc. of the 43rd Symposium on Foundations of Computer

Science, pages 593–603, 2002.

[2] L. Babai, A. Gál, and A. Wigderson. Superpolynomial lower bounds for monotone span programs. Combinatorica, 19(3):301–319, 1999.

[3] P. Beame, R. Impagliazzo, J. Krajíček, T. Pitassi, and P. Pudlák. Lower bounds on hilbert’s nullstellensatz and propositional proofs. Proceedings of the

London Mathematical Society, 3(1):1–26, 1996.

[4] M. L. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs with small coefficients. Journal of Symbolic Logic, 62(3):708–728, 1997.

[5] G. Braun, S. Fiorini, S. Pokutta, and D. Steurer. Approximation limits of linear programs (beyond hierarchies). Mathematics of Operations Research,

40(3):756–772, 2015.

[6] M. Braverman and A. Moitra. An information complexity approach to extended formulations. In Proceedings of the forty-fifth annual ACM symposium

on Theory of computing, pages 161–170. ACM, 2013.

[7] S. R. Buss and T. Pitassi. Good degree bounds on nullstellensatz refutations of the induction principle. Journal of computer and system sciences,

57(2):162–171, 1998.

[8] M. de Oliveira Oliveira and P. Pudlák. Representations of monotone boolean functions by linear programs. In Proceedings of the 32nd Computational

Complexity Conference (CCC 2017), volume 79 of LIPIcs, pages 3:1–3:14, 2017.

[9] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. D. Wolf. Exponential lower bounds for polytopes in combinatorial optimization. Journal of the

ACM (JACM), 62(2):17, 2015.

[10] X. Fu. Lower bounds on sizes of cutting planes proofs for modular coloring principles. Proof Complexity and Feasible Arithmetics, pages 135–148,

1998.

[11] A. Gál. A characterization of span program size and improved lower bounds for monotone span programs. Computational Complexity, 10(4):277–296,

2001. Preliminary version in STOC 1998.

[12] A. Gál and P. Pudlák. A note on monotone complexity and the rank of matrices. Information Processing Letters, 87(6):321–326, 2003.

[13] M. X. Goemans. Smallest compact formulation for the permutahedron. Mathematical Programming, 153(1):5–11, 2015.

[14] D. Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the parity. Theoretical Computer Science, 259(1):613–622, 2001.

[15] D. Grigoriev, E. A. Hirsch, and D. V. Pasechnik. Complexity of semi-algebraic proofs. In Annual Symposium on Theoretical Aspects of Computer

Science, pages 419–430. Springer, 2002.

[16] A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308, 1985.

[17] A. Haken and S. A. Cook. An exponential lower bound for the size of monotone real circuits. Journal of Computer and System Sciences, 58(2):326–335,

1999.

[18] R. Impagliazzo, P. Pudlák, and J. Sgall. Lower bounds for the polynomial calculus and the gröbner basis algorithm. Computational Complexity,

8(2):127–144, 1999.

[19] M. Karchmer and A. Wigderson. On span programs. In Proceedings of the Eighth Annual Structure in Complexity Theory Conference (San Diego, CA,

1993), pages 102–111. IEEE Comput. Soc. Press, Los Alamitos, CA, 1993.

[20] A. Kojevnikov and D. Itsykson. Lower bounds of static lovász-schrijver calculus proofs for tseitin tautologies. In International Colloquium on

Automata, Languages, and Programming, pages 323–334. Springer, 2006.

[21] J. Krajíček. Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. The Journal of Symbolic

Logic, 62(02):457–486, 1997.

[22] J. Krajíček. Interpolation and approximate semantic derivations. Mathematical Logic Quarterly, 48(4):602–606, 2002.

[23] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization, 1(2):166–190, 1991.

[24] T. Pitassi and N. Segerlind. Exponential lower bounds and integrality gaps for tree-like lovasz-schrijver procedures. SIAM Journal on Computing,

41(1):128–159, 2012.

Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Mateus de Oliveira Oliveira and Pavel Pudlák

[25] P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. The Journal of Symbolic Logic, 62(03):981–998, 1997.

[26] P. Pudlák. On the complexity of the propositional calculus. London Mathematical Society Lecture Note Series, pages 197–218, 1999.

[27] P. Pudlák and J. Sgall. Algebraic models of computation and interpolation for algebraic proof systems. In Proceedings of Feasible Arithmetic and Proof

Complexity, DIMACS Series in Discrete Math. and Theoretical Comp. Sci., volume 39, pages 279–295, 1998.

[28] R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. Journal of the ACM (JACM), 39(3):736–744, 1992.

[29] A. A. Razborov. Lower bounds on monotone complexity of the logical permanent. Mathematical Notes, 37(6):485–493, 1985.

[30] A. A. Razborov. Lower bounds for monotone complexity of boolean functions. American Mathematical Society Translations, 147:75–84, 1990.

[31] A. A. Razborov. Unprovability of circuit size lower bounds in certain fragments of bounded arithmetic. Izvestia of the RAN, 59(1):201–224, 1995.

[32] A. A. Razborov. Proof complexity and beyond. ACM SIGACT News, 47(2):66–86, 2016.

[33] R. Robere, T. Pitassi, B. Rossman, and S. A. Cook. Exponential lower bounds for monotone span programs. In Foundations of Computer Science

(FOCS), 2016 IEEE 57th Annual Symposium on, pages 406–415. IEEE, 2016.

[34] T. Rothvoß. The matching polytope has exponential extension complexity. In Proceedings of the 46th Annual ACM Symposium on Theory of

Computing, pages 263–272. ACM, 2014.

[35] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer, 2003.

Received Month 2099; revised Month 2099; accepted Month 2099

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Preliminaries
	3 Monotone Linear-Programming Gates
	3.1 Sign Representations
	3.2 Weak vs Strong Gates
	3.3 Boolean Duality vs Linear-Programming Duality

	4 Monotone Linear Programming Circuits
	5 Weak MLP Gates vs Monotone Boolean Circuits
	5.1 Monotone Span Programs
	5.2 Proof of Theorem 5.4

	6 Lovász-Schrijver and Cutting-Planes Proof Systems
	6.1 The Lovász-Schrijver Proof System
	6.2 Feasible Interpolation
	6.3 Feasible Interpolation for the Lovász-Schrijver System
	6.4 Lovász-Schrijver Refutations of Mixed LP Problems
	6.5 Cutting-Planes vs. Lovász-Schrijver Refutations and Monotone Real Circuits vs MLP Gates

	7 Monotone Linear Programs and Extended Formulations
	7.1 Existential MLP Representations
	7.2 Monotone Extension Complexity
	7.3 Some Refinements

	8 Conclusion
	References

