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1 Introduction

We consider some algebraic models used in circuit complexity theory and in the study of
the complexity of the propositional calculus. This direction of research have been getting
attention recently with the hope that the connection to well-developed fields of mathematics
like algebra can be helpful in proving lower bounds.

Span programs as a model of computation were introduced in [12]. A span program is a
device for defining boolean functions, where the function is defined to be 1 iff a fixed vector
can be expressed as a linear combination of vectors chosen by the input. Span programs
polynomially simulate branching programs (for finite fields they are equivalent to counting
branching programs), thus an exponential lower bound on the size of span programs comput-
ing a concrete boolean function would solve a major open problem. An important subclass
of span programs are monotone span programs; they simulate both monotone formulas and
monotone contact switching networks. Recently a superpolynomial lower bound was proved
for this model [1] (based on a combinatorial condition of [3]).

One direction of study of propositional proof systems is to prove lower bounds on the
length of proofs in certain restricted proof systems. Exponential lower bounds were obtained
for such systems as resolution [11], bounded depth Frege systems [14, 16], cutting planes [5,
17], and Nullstellensatz refutations [2, 7]. In this paper we are interested in systems that
use uses polynomials instead of boolean formulas. From the previous list this includes the
Nullstellensatz refutations. Recently a stronger system using polynomials was proposed, the
polynomial calculus, also called the Groebner calculus [8]; for this system no lower bounds
are known except for the case of the field of characteristic 0.
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The proof systems form a similar hierarchy as the complexity classes or classes of circuits
in the computational complexity, but there is no direct relation between the two hierar-
chies. Recently a new method was found which makes it possible to prove lower bounds
on the length of proofs for some propositional proof systems using lower bounds on circuit
complexity. This method is based on proving computationally efficient versions of Craig’s
interpolation theorem for the proof system in question [13, 17]. For appropriate tautologies
the interpolation theorem may lead to a monotone model of computation, which makes it
possible to use available lower bounds for monotone models of computation to prove lower
bounds for proof systems. Such interpolation theorem yields a simple proof of exponential
lower bounds for resolution using known lower bounds for monotone boolean circuits [17].
It was also applied to yield an exponential lower bound for unrestricted cutting planes [17],
in which case the proof is based on the new bounds for monotone real circuit [10, 17].

The main result of this paper is an interpolation theorem for Nullstellensatz refutations.
We prove that the interpolants can be computed by the span programs, and the interpolants
are monotone span programs for suitable tautologies. Moreover, this characterization of
interpolants is tight, namely every span program is a unique interpolant for some tautology
provable by the Nullstellensatz system. In principle, this interpolation theorem can be used
for proving lower bounds on Nullstellensatz proofs using lower bounds on monotone span
program complexity, but due to the difficulty of proving lower bounds for monotone span
programs known direct proofs are simpler and yield better bounds.

For the polynomial calculus a lower bound is known only for the fields of characteristic
zero, which does not include the most interesting case of finite fields. Thus it would be very
interesting to extend the above lower bound technique to this calculus. For this purpose we
introduce a new computational model, polynomial programs, which bounds the complexity
of the interpolants in polynomial calculus in a similar way as span programs do in case of
the Nullstellensatz system. The general version of polynomial programs over finite fields
is equivalent to boolean circuits, the monotone version simulates both monotone boolean
circuits and monotone span programs, thus it is a very strong monotone computational
model. Unfortunately the lower bound technique for monotone span programs does not
extend to monotone polynomial programs.

We introduce yet another model of computation, dependency programs. These programs
are similar to span programs but only linear dependence of chosen vectors is tested, instead
of testing whether their span contains some vector. A communication complexity version
of this model was studied in [18] as the projective dimension of graphs (a concept also
related to the affine dimension of graphs of [19]). We prove an exponential lower bound for
monotone dependency programs, using a simplification of the methods used for monotone
span programs in [1, 3]. In the non-monotone case over finite fields the dependency programs
turn out to be equivalent to span programs. However, they may be useful to consider in
lower bound proofs, as they are in some sense simpler (as demonstrated by the monotone
lower bound, which is much simpler than the analogous bound for span programs).

Finally, we investigate the closure properties and relations among the algebraic models of
computation. We give simple constructions for some closure properties which in some cases
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generalize the known results; for example we show that span programs are closed under
NC1-reductions for arbitrary fields. One interesting open question is the relative strength of
these models of computation when the underlying field is changed. We note that the most
straightforward attempt to convert a span program over R into a span program over Q fails,
since there exist matroids representable over R but not over Q.

We start by the definitions in Section 2 and the properties of the computational models in
Section 3. The main results on interpolation are proved in Section 4. The result on matroids
is given in Section 5.

2 Definitions

We assume that a field K is fixed. Most often we consider the finite fields GF (p) with p
elements for p prime, or rational numbers Q or reals R.

As usual, for a matrix A, aij denotes its entry in ith row and jth column. The column
vectors are denoted by ~u = (u1, . . . , uk)>, etc. The dot product of vectors ~u and ~v is ~u>~v.
Some special vectors are denoted by ~0 = (0, . . . , 0)>, ~1 = (1, . . . , 1)>, and ~e = (1, 0, . . . , 0)>.
The unit matrix is denoted by I and the matrix with all entries zero is 0. The length of
these vectors and the dimensions of the matrices will always be clear from the context.

2.1 Algebraic proof systems

A Nullstellensatz refutation (shortly NS refutation) of a set of polynomial equations p1 = 0,
. . . , pm = 0 is given by a system of polynomials q1, . . . , qm such that

∑
qipi = 1. The degree

of such a refutation is d = maxi deg(qipi).
This refutation system is complete if we look for solutions in an algebraically closed field

(by the Hilbert Nullstellensatz). Here we are interested only in 0-1 solutions. To get the
completeness for such solutions, we shall assume that for each used variable xk the equation
x2
k − xk = 0 is present among p1 = 0, . . . , pm = 0.

A polynomial refutation of a set of polynomial equations p1 = 0, . . . , pm = 0 is sequence
of polynomials q1, . . . , qk such that qk is the constant 1 and each qi is either some pj, or a
linear combination of the polynomials q1, . . . , qi−1, or xtqj for some j < i and some variable
xt. The degree of the refutation is d = maxi deg(qi).

2.2 Algebraic models of computation

For our purposes literals are denoted by xi or 1−xi, the latter corresponding to the negation
of a variable. A labelled matrix is a matrix such that each row is labelled by some literal.
Given a labelled matrix A and a truth assignment ~u, we define A(~u) to be the matrix
consisting only of those rows of A labelled by literals that are true in the assignment ~u (i.e.,
either the row is labelled by xi and ui = 1, or the row is labelled by 1− xi and ui = 0 in the
assignment).
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A dependency program is given by a labelled matrix A. Its value on the assignment ~u is
defined to be 1 if the rows of A(~u) are linearly dependent, and 0 otherwise. The size of a
dependency program is the number of columns of the matrix.

A span program is given by a labelled matrix A. Its value on the assignment ~u is defined
to be 1 if the vector ~e> = (1, 0, . . . , 0) is a linear combination of the rows of A(~u), and 0
otherwise. The size of a span program is the number of columns of the matrix. Note that
nothing changes if we choose any non-zero vector instead of (1, 0, . . . , 0), as we can transform
the basis of the vector space.

A polynomial program of degree d is given by a set of polynomials in K[y1, . . . , ym] (y1, . . . ,
ym are new formal variables), where each polynomial is labelled by a literal (xi or 1−xi). Its
value on an assignment ~u is defined to be 1 if there exists a polynomial refutation of degree
d from all those vectors that are labelled by literals that are true in the assignment ~u. The
size of a polynomial program is the number of monomials of K[y1, . . . , ym] of degree at most

d, which is equal to
∑d

i=0

(
m
d

)
. In particular, if d is a constant, the size is polynomial in the

number of variables m.
A dependency, span, or polynomial program is monotone, if all the labels (of the vectors or

polynomials) are positive literals. Clearly, the monotone programs compute only monotone
functions. Using these definitions it would be impossible to compute the constant 1 function
in any of the monotone models. For that reason we augment our definitions so that the empty
program is defined to compute the constant 1 in any of the models, and it is considered to
be monotone.

The minimal size of a dependency, span, or polynomial program computing a function f
is denoted DPK(f), SPK(f), or PPd,K(f). The monotone variants are denoted mDPK(f),
etc. The index K is omitted if the field is clear from the context; also for finite fields we
write SPp(f) if the field is GF (p).

If the arithmetic operation in the given field can be implemented efficiently (which is
true of all finite fields), the dependency and span programs are efficient procedures, as
their value can be found using the Gaussian elimination. An efficient decision procedure for
polynomial programs follows from [8]; it uses the Groebner basis algorithm which generalizes
the Gaussian elimination appropriately.

The relations among these models and some other variants will be studied in Section 3.2.
It is easy to see that the models are increasingly more powerful. In the non-monotone
case the polynomial programs over any finite field are polynomially equivalent to boolean
circuits, and the dependency programs are polynomially equivalent to the span programs
over the same field GF (p). However, monotone span programs are exponentially stronger
than monotone dependency programs.
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3 Relations among the algebraic models of computa-

tion

3.1 An exponential lower bound for monotone dependency pro-
grams

This bound is based on the ideas of the papers [1, 3], which prove superpolynomial lower
bounds for monotone span programs. Using their methods, we are able to prove an exponen-
tial lower bound on the size of monotone dependency programs for a very simple function.

Theorem 3.1 Let f = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ . . . ∧ (x2n−1 ∨ x2n). Then mDP (f) ≥ 2n/n,
for an arbitrary field.

We start by a lemma about minterms of any function computed by a monotone depen-
dency program. A minterm of a function as is an assignment ~u such that f(~u) = 1 and for
any ~v ≤ ~u, f(~v) = 0 or ~v = ~u.

Lemma 3.2 Suppose that a boolean function f is computed by a monotone dependency
program A with the number of rows smaller than the number of minterms of f . Then there
exists a set of minterms U , |U | ≥ 2, such that for any non-trivial partition U = V ∪W ,
V,W 6= ∅, V ∩W = ∅, there exists a minterm ~u of f such that for every i, ui = 1 implies
that both (∃~v ∈ V )vi = 1 and (∃~w ∈ W )wi = 1.

Proof. For every minterm ~u of f chose some linear dependence ~c~u of the rows of A consistent
with the labels of A, i.e., ~c~u is a vector such that (~c~u)>A = 0, and if c~uj 6= 0 and the jth row

of A is labelled by xi then ui = 1. Such ~c~u exists since ~u is accepted by A.
The vectors ~c~u are linearly dependent, as their length is the number of rows which is

smaller than the number of minterms u. Let U be a minimal set of minterms such that
{~c~u | ~u ∈ U} is linearly dependent. Thus

∑
~u∈U α~u~c

~u = ~0 for some α~u 6= 0. Now for any
nontrivial partition ~c =

∑
~u∈V α~u~c

~u = −∑~u∈W α~u~c
~u 6= ~0. Define u′i = 1 if there exist j such

that cj 6= 0 and jth row of A is labeled by xi; let ~u be any minterm smaller than or equal to
~u′ (i.e., ui ≤ u′i for all i). This ~u satisfies the conditions in the statement of the lemma. 2

Proof of Theorem 3.1. An assignment ~u is a minterm of f from the statement of the
theorem iff u2i−1 + u2i = 1 for all i = 1, . . . , n; there are 2n minterms.

Suppose that f is computed by a monotone dependency program of size less than 2n/n.
Then it is computed also by a monotone dependency program with less than 2n rows (since
all the rows labelled by the same xi are either independent, or can be replaced by a single
vector ~0, cf. Section 3.2).

Let U be the set of minterms guaranteed by the lemma. Pick i and ~v, ~w ∈ U such that
v2i−1 = 0 and w2i = 0; these exists because |U | ≥ 2 and because of the particular structure
of the minterms. Now set V = {~v ∈ U | v2i−1 = 0} and W = {~w ∈ U | w2i = 0}. Let
~u be a minterm guaranteed by the lemma. By the definition of V and W it follows that
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u2i−1 = u2i = 0, which is impossible for a minterm, a contradiction. Hence f has no small
monotone dependency programs. 2

3.2 Closure properties and some variants of the definitions

First we prove that our models are closed under restrictions. For span programs over GF (2)
this was noticed already in [12]; our proof is more direct and works for an arbitrary field.

Lemma 3.3 If g is a restriction of a function f , then mDP (g) ≤ mDP (f) for an arbitrary
field K; similarly for span and polynomial programs and also for the non-monotone versions.

Proof. Suppose that xi is assigned a constant, hence some rows (or polynomials for polyno-
mial programs) are now labelled by 0 or 1 instead of a literal. We remove all rows labelled
by 0.

For span and polynomial programs we replace each row labelled by 1 by multiple copies
labelled by all the possible literals, using only monotone literals in the monotone case. The
new program computes the restriction except for the case when it is the constant 1 function,
which is by definition computed by the empty program. Monotonicity of the program is
preserved and the size does not increase.

For dependency programs for each row labelled by 1 we change the basis so that it is
the first basis vector and remove the first column of the program. This does not change the
computed function, as the row can be used on any input and hence anything in the first
column can be cancelled. If the row is ~0, we cannot perform the previous transformation;
however, the computed function is the constant 1 function, which is by definition computed
by the empty program. Monotonicity of the program is preserved and the size does not
increase. 2

There are several variations in the definitions we can make. First, we can allow a row to
be labelled by 1 instead of a literal, with the meaning that it can be used for any input. This
is essentially the same as taking a restriction, hence by previous lemma it does not change
the size of the program. We will use this generalization in our constructions.

Second, we can measure the number of rows instead of the number of columns. For a
minimal program, the number of rows is larger than the number of columns by at most a
factor of 2n, as we can take all the rows labelled by the same literal linearly independent.
For the dependency or span programs even the number of rows does not increase if we take
a restriction of the function; for the dependency programs it follows from the argument in
the lemma, and for span programs it is possible to use a similar argument, too. By the
same argument the factor between the number of rows and columns can be tightened from
2n to n. Also, for dependency and span programs the number of rows is always at least the
number of columns, as we can work in the span of all the rows.

Third, it is possible to consider a more general variant of span programs where we have
not one target vector but a vector subspace. If the target vectors are the first k basis
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vectors and the generalized span program is given by (~a1 · · · ~ak A) (the first k columns of
the matrix written separately), then it computes the same function as the disjunction of the
k span programs (~a1 A), . . . , (~ak A). In the next lemma we will prove that span programs
are closed under disjunctions, hence the size of the usual span program is at most the square
of the size of the generalized one.

Now we prove that span programs are closed under NC1-reductions and monotone
span programs are closed under monotone NC1-reductions. This was known only for non-
monotone span programs over GF (p), due to their equivalence to counting branching pro-
grams [6, 12], see also Section 3.3. Again, our proof is direct and works for an arbitrary
field.

We say that a function f is NC1-reducible to a function g if there exists a family of
circuits of depth O(log n) computing f with gates for NOT, OR and AND of fan-in two,
and gates for g; the gates for g of fan-in k count as depth log k. The reduction is monotone
if there are no NOT gates in the circuits. We consider non-uniform reductions, since we
consider non-uniform models of computation, unlike e.g. [6, 9].

Theorem 3.4 For arbitrary field K and all boolean functions f , g, g1, . . . , gk,

• mSP (f ∨ g) ≤ mSP (f) +mSP (g)− 1, SP (f ∨ g) ≤ SP (f) + SP (g)− 1,

• mSP (f ∧ g) ≤ mSP (f) +mSP (g), SP (f ∧ g) ≤ SP (f) + SP (g),

• SP (¬f) ≤ n · SP (¬f), where n is the arity of f ,

• mSP (f(g1, . . . , gk)) ≤ mSP (f)(mSP (g1) + · · ·+mSP (gk)).

Consequently, if f is (monotone) NC1-reducible to g and g has a (monotone) span program
of polynomial size, f has a (monotone) span program of polynomial size.

Proof. Suppose that we have two span programs (~aA) and (~bB) (~a and ~b are their first
columns). Then the span program (

~a A 0
~b 0 B

)

with the same labels computes their disjunction. The span program(
~a ~0 A 0
~0 ~b 0 B

)

with the same labels computes their conjunction, if the target vector is (1, 1, 0, . . . , 0) instead
of (1, 0, . . . , 0); the target vector can be changed by a linear transformation of the matrix.

Now we construct a span program which computes ¬f given a span program A for f .
Let ~u be an input for A. Consider the matrix

A(~u) =
(
~e A(~u)>

)
7



By the linear programming duality, A does not accept ~u iff (1, 0, . . . , 0) is in the span of the
rows of A(~u). It remains to construct a span program B such that B(~u) behaves similarly
as A(~u). Consider

B =

(
~0 I
~e A>

)
(1)

where the jth row is labelled by the negation of the label of jth row in A, the remaining
rows (corresponding to the rows of A>) are labelled by 1. If the jth row in A is labelled
by a literal which is assigned 0, the jthe row of B is labelled by a literal which is assigned
1, and hence this basis vector can be used to cancel any number appearing in this column,
which has the same effect as deleting this column in A(~u). Thus B(~u) behaves equivalently
to A(~u) and B computes the negation of the function computed by A. The size of B is at
most 1 larger than the number of rows of A, which can be bounded by n times the size of
A.

Suppose that f , g1. . . gk are computed by monotone span programs A, B1. . . Bk, and
suppose that jth row of A is labelled by xij . Then we claim that f(g1, . . . , gk) is computed
by the span program 

A I1 I2 · · ·
0 Bi1 0
0 0 Bi2
...

. . .


where the rows corresponding to A are labelled all by 1 and the other rows are labelled as in
the corresponding Bi; Ij is the matrix which has a single 1 in the jth row and 1st column,
all other entries are 0. If this span program accepts, it means that (1, 0, . . . , 0) is in a span
of some rows of A; moreover if jth row is used, the vector (1, 0, . . . , 0) from Ij must cancel
with some other rows, which is possible only if Bij accepts. The other implication is easy as
well.

To conclude that polynomial-size span programs are closed under NC1-reducibility, note
that in the circuits giving the reduction we can assume that NOT gates are either at the
leaves or at the output of a gate for g; in that case we can substitute the span program for
¬g. 2

As we shall see in Section 3.3, over finite fields GF (p), dependency and span programs
are equivalent, and hence have the same closure properties. For monotone dependency
programs and dependency programs over general field we can only prove that they are
closed under disjunction. We know that monotone dependency programs are not closed
under conjunction, due to Theorem 3.1, where we proved an exponential lower bound for a
function which is a conjunction of polynomially many functions with constant size monotone
dependency programs.

Lemma 3.5 For arbitrary field K and all boolean functions f and g, g1, . . . , gm,

• mDP (f ∨ g) ≤ mDP (f) +mDP (g), and
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• DP (f ∨ g) ≤ DP (f) +DP (g).

Proof. Suppose we have two dependency programs A and B. Then the dependency program(
A 0
0 B

)
,

with the rows labelled as in A and B, computes their disjunction. This reduction preserves
monotonicity. 2

3.3 Dependency programs vs. span programs

In this section we compare the power of dependency and span programs. An easy reduction
shows that span programs are at least as strong as dependency programs. In the monotone
case, by Theorem 3.1 it follows that there is an exponential gap, as the function for which
we proved an exponential lower bound for monotone dependency programs has linear-size
span programs by Theorem 3.4. On the other hand, we prove that over finite fields GF (p),
non-monotone dependency programs are as strong as span programs.

Lemma 3.6 For an arbitrary field K and an arbitrary boolean function f , mSP (f) ≤
mDP (f) + 1 and SP (f) ≤ DP (f) + 1.

Proof. Let A be a dependency program. Then the same function is computed by the span
program (

~0 A
~1 A

)
with all rows labelled as in A. Monotonicity is preserved. 2

Theorem 3.7 For any prime p and boolean function f , DPp(f) ≤ (SPp(f))O(1).

Proof. In [12] it is observed that the size of a span program over GF (p) for f is polynomially
related to the size of a branching program counting modulo p computing f . (This equivalence
is based on the results of [6] which proves that counting branching programs can perform
rank computations, based on the results of [4, 15].)

Branching program is a directed acyclic graph with the edges labelled by literals or 1.
A counting branching program accepts on a given assignment, if the number of accepting
paths from the source to the sink is divisible by p; a path is accepting if all its edges are
labelled by a true literal or 1.

We need to show that any function computed by a counting branching program can
be computed by a dependency program only with only polynomially larger size. We can
represent a branching program by an adjacency matrix A with entries 1, xi, and 1 − xi,
according to the labelling of the edges. The matrix is upper triangular, assuming that
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the vertices are ordered topologically from source to sink. Let B be the adjacency matrix
modified in the following way: put 1 in all diagonal entries and remove the first column and
the last row. In [6] it is shown that the number of accepting paths is equal to the determinant
of B, up to a possible sign change. Hence it is sufficient to construct a dependency program
that decides if the rows of B are linearly dependent (it will compute the negation of the
function, but this does not matter since span programs are closed under negation).

Suppose that B has size k×k. We construct a dependency program with k(k+1) columns
computing 1 iff the rows of B are dependent. Consider a row (bj1, . . . , bjk); note that all the
entries are literals, or constants 0 or 1. We replace this row by the matrix I 0 · · · 0 I 0 · · · 0

0 0 · · · 0 I 0 · · · 0
~0> ~0> · · · ~0> ~1> ~0> · · · ~0>


where I is k×k identity matrix, and the vector ~1> is in the (j+ 1)st block of the matrix, i.e.
in a unique position for each row of B. The last row is labelled by 1, for j ≤ k the jth row
is labelled by cj and the (j + k)th row is labelled by 1− cj. Thus all rows are labelled by a
literal or 0 or 1 (naturally, in the final stage we remove all rows labelled by constants, as in
the proof that the dependency programs are closed under restrictions). Since the position of
the vector ~1> is unique for each row of B, in any linear dependence the ones in these columns
must cancel within the rows corresponding to the same row of B. It is easy to verify that the
only vectors that can be obtained as a linear combination of the rows corresponding to the
same rows of B and have zeroes in these positions necessarily have in the first block some
multiple of the row of B (bj1, . . . , bjk). It follows that the dependency program computes 1
iff the rows of B are linearly dependent (over the same field GF (p)). 2

3.4 Polynomial programs

Polynomial programs can also be represented by a matrix, where each row is a vector of the
coefficients of a polynomial at all the monomials of degree at most d. In this representation
their size exactly corresponds to the size of span programs. It follows that each polynomial
program of degree 1 is a span program, as in the degree 1 polynomial refutation only a
constant polynomial can be multiplied, and this is clearly irrelevant.

Lemma 3.8 For an arbitrary field K and an arbitrary boolean function f , mSP (f) =
mPP1(f) and SP (f) = PP1(f).

We prove that polynomial programs over arbitrary finite field of any degree d ≥ 2 are
equivalent to boolean circuits, and hence are probably significantly stronger than span pro-
grams. Monotone polynomial programs of degree 2 simulate both monotone span programs
and monotone boolean circuits. In [1] it has been shown that there are functions which can
be computed by polynomial size monotone span programs, but need at least nlogn size mono-
tone circuits. No polynomial simulation of monotone circuits by monotone span programs is
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known and it is very unlikely that there is one. Thus monotone polynomial programs seem
to be stronger than both previously considered models of monotone computations.

Theorem 3.9 Polynomial programs over an arbitrary finite field of an arbitrary constant
degree d ≥ 2 and boolean circuits mutually simulate each other. Monotone polynomial pro-
grams over any finite field simulate monotone circuits.

Proof. The simulation of polynomial programs by boolean circuits follows from the results
of [8] which give a polynomial time procedure for deciding whether there exists a degree d
refutation of given polynomials in polynomial calculus.

Let a circuit C be given; suppose C uses only ∨,∧ and literals. We construct a polynomial
program of degree 2 which simulates C. Choose one variable for each vertex of the circuit.
In particular we take some variable yi for the input node xi and zi for the input node ¬xi.
Let g be a gate (i.e. non-input node) which is the conjunction, resp. disjunction, of the
gates h and k; let u, v, w be the variables corresponding to g, h, k. Then we assign to g the
polynomial u+ vw− v−w, resp. u− vw. Let v0 be the variable assigned to the output gate.
The polynomial program consists of all polynomials assigned to the gates labelled by 1, the
polynomial 1 − v0 labelled by 1, the polynomials yi labelled by xi, and the polynomials zi
labelled by 1− xi.

It is easy to prove by induction that, for a given input, one can derive by a polynomial
calculus derivation of degree 2 all polynomials v where v is a variable corresponding to a
gate which computes 1 in the circuit. Hence, if circuits outputs 1, v0 is derivable and thus
also 1 is derivable.

Now suppose that C outputs 0 for a given input. We shall show that there is a satisfying
assignment to all equations chosen by the input, hence the constant polynomial 1 is not
derivable. The assignment is given simply by putting v = 0, if the circuit computes 1 on the
corresponding gate and v = 1 otherwise.

It is clear that the above simulation gives a monotone polynomial program, if the circuit
is monotone. 2

For general field we can still replace a polynomial program of degree d by a polynomial
program of degree 2 with only a small increase in the size, using the same technique.

4 Interpolation

4.1 Interpolation for Nullstellensatz and polynomial calculus

Clegg, Edmonds and Impagliazzo [8] showed that over a finite field it is possible to decide
in polynomial time if a given set of polynomials has a polynomial refutation of a constant
degree d. As a corollary they derive the following interpolation theorem.
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Theorem 4.1 ([8]) Let a finite field be fixed. Suppose a set of polynomial equations of the
form pi(~x, ~y) = 0, qj(~x, ~z) = 0 with ~y and ~z disjoint sets of variables, has a polynomial refu-
tation of a constant degree. Then there exists a polynomial size circuit C with the following
property. For a given input ~u ∈ {0, 1}n, if C outputs 1 then pi(~u, ~y) = 0 are not satisfiable,
and if C outputs 0 then qj(~u, ~z) = 0 are not satisfiable.

Proof. For a given input ~u test, using the polynomial time algorithm from [8] whether
there exists a refutation of the given degree d of pi(~u, ~y) = 0; output 1 if there is such a
refutation and 0 otherwise. If there is no such refutation then qj(~u, ~z) = 0 is not satisfiable,
since otherwise we could get a refutation of pi(~u, ~y) = 0 from the refutation of pi(~x, ~y) =
0, qj(~x, ~z) = 0 by substituting ~u. 2

The same theorem obviously holds also for NS refutations, since it is a weaker system
than polynomial refutations. We prove some refinements of this corollary which may be used
for proving lower bounds on NS and possibly also polynomial refutations.

Let us call a polynomial p(~x, ~y) monotone in ~x if it can be represented in the form
p′(~x)p′′(~y) where p′(~x) is a monomial.

Theorem 4.2 Suppose a set of polynomial equations of the form ps(~x, ~y) = 0, qt(~x, ~z) = 0
has a NS refutation of a constant degree d. Then there exists a span program C with the
property that if C accepts ~u ∈ {0, 1}n then ps(~x, ~y) = 0 are not satisfiable, and if C does
not accept, then qt(~x, ~z) = 0 is not satisfiable. The size of C is polynomial in the number of
variables ~x, ~y. Moreover, if all ps(~x, ~y) are monotone in ~x, then C is monotone.

Proof. (I) First we consider a special case where all polynomials ps(~x, ~y) can be written in
the form xip

′(~y) + p′′(~y) with xi a single variable or just contain only variables ~y. (In fact
this is the usual form in applications, so the general case is considered here just for sake
of having a nicer theorem.) We assume that the equations u2 − u = 0 for all variables are
present, so we have also polynomials of the form x2

i − xi = 0. We can think of them as
belonging to qt(~x, ~z) = 0.

Suppose that
xip
′
i,j(~y) + p′′i,j(~y), j = 1, . . . , ki,

are all the polynomials containing xi.
The columns of the span program C will correspond to all monomials in ~y of degree ≤ d,

hence its size is polynomial in the number of variables, as d is constant.
The rows of C will be polynomials, or more precisely, the vectors of their coefficients, of

the following three types. First, all polynomials of degree at most d can be put in the form

r(~y)(p′i,j(~y) + p′′i,j(~y)), j = 1, . . . , ki;

labelled by xi. Second, we include and all polynomials of degree ≤ d which can be put in
the form

r(~y)p′′i,j(~y), j = 1, . . . , ki
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labelled by 1− xi. Third, we include all polynomials of degree at most d of the form

r(~y)p(~y)

where p(~y) is an initial polynomial which depends only on ~y, and label them by 1.
It is easy to see that this span program tests whether for a given input ~u, there is a NS

refutation of ps(~u, ~y) = 0 of degree d.
If we have moreover the condition that the polynomials ps(~x, ~y) = 0 are monotone in

variables ~x, then the polynomials p′′i,k(~y) are 0. Hence all the polynomials labelled by 1− xi
are 0, which means that the span program is monotone.

(II) Now we shall reduce a more general case to the case considered in (I). In the general
case we modify the initial polynomials in the following way. For each variable xi in it
introduce a new variable wi. Then replace all polynomials ps(~x, ~y) by ps(~w, ~y) and add the
polynomials xi−wi for all variables xi. The new set of equation is satisfiable iff the original
set of equations is, and the new polynomials have the required form. Also the original
equations are derivable from the new ones.

Now consider the monotone case, i.e., suppose ps(~x, ~y) has the form xj1 . . . xjkkp(~y). If
k ≥ 2, we replace this polynomial by k polynomials

x1(p(~y) + w2 + . . .+ wk), x2w2, . . . , xkwk,

where w2, . . . , wk are new variables. It is easily seen that the old system of equations in
variables ~x, ~y is derivable from the new using a degree at most one larger than the degree
of the original polynomials. It is also clear that the new set of equation is satisfiable iff the
original set of equations is. 2

The same considerations as above can be used to derive a version of Theorem 4.2 for
polynomial refutations and polynomial programs. (The construction is even simpler, as we
do not need to add all the multiples of the polynomials.) We obtain the following theorem.
Note that for the finite fields the non-monotone part is equivalent to Theorem 4.1, because
polynomial programs are equivalent to boolean circuits by Theorem 3.9.

Theorem 4.3 Suppose a set of polynomial equations of the form ps(~x, ~y) = 0, qt(~x, ~z) = 0
has a polynomial refutation of a constant degree d. Then there exists a polynomial program
C with the property that if C accepts ~u ∈ {0, 1}n then ps(~x, ~y) = 0 are not satisfiable, and
if C does not accept, then qt(~x, ~z) = 0 is not satisfiable. The size of C is polynomial in the
number of variables ~x, ~y. Moreover, if all ps(~x, ~y) are monotone in ~x, then C is monotone.
2

4.2 A characterization of NS interpolants

Here we prove a converse to Theorem 4.2, which shows that we cannot reduce the class of
interpolating functions any further.
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Theorem 4.4 Let A be a span program of size m for inputs of size n. Then there are equa-
tions ps(~x, ~y) = 0, qt(~x, ~z) = 0 of degree 2 with O(nm) variables which have a NS refutation
proof degree 3 and whose unique interpolant is the boolean function computed by A.

Proof. Let A be a matrix with m columns and M rows. By Section 3.2 we may assume than
M ≤ nm. Let lj be the label of the jth row of A, i.e. xi or 1−xi. Recall that by Lemma 3.5
equation (1) the negation of the function computed by A is computed by

B =

(
~0 I
~e A>

)
(2)

with the jth row labelled by 1− lj, for 1 ≤ j ≤ m, and the remaining rows labelled by one.
We shall write down equations ps(~x, ~y) = 0 which describe A and qt(~x, ~z) = 0 which

describe B. This means that ps(~u, ~y), resp. qt(~u, ~z) will not be satisfiable iff A resp. B
accepts the input ~u. Since, for every ~u, either A or B accepts ~u, the equations together will
not be satisfiable. We shall show that in fact they have degree three NS refutation. It is also
clear that the unique interpolant of such equations is the boolean function computed by A.

In order to describe A by polynomial equations we index the columns of A by the
constant 1 and variables y2, . . . , ym. The row vectors correspond to linear polynomials
in ~y, in particular the target vector corresponds to the constant polynomial 1. As the
considered polynomials are linear, the polynomial 1 can be expressed from them iff it is a
linear combination (with coefficients from the field) of them. So the system ps(~x, ~y) contains
polynomials

(ak,1 +
m∑
k=2

ak,jyj)lk, k = 1, . . . ,M (3)

For B we index columns of B by 1, z1, . . . , zM . The system qt(~x, ~z) consists of polynomials

zj(1− lj), j = 1, . . . ,M, (4)

1 +
M∑
k=1

ak,1zk,
M∑
k=1

ak,jzk, j = 2, . . . ,m. (5)

Now we describe a NS refutation of degree 3. First multiply polynomials (3) by zk, so
that we get

(ak,1 +
m∑
j=2

ak,jyj)lkzk, k = 1, . . . ,M (6)

The equation zk(1− lk) = 0 can be rewritten as zk = lkzk. Hence by adding the appropriate
multiples of polynomials (4) to the polynomials (6) we get

(ak,1 +
m∑
j=2

ak,jyj)zk, k = 1, . . . ,M (7)
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We sum all these equations to get

M∑
k=1

ak,1zk +
m∑
j=2

M∑
k=1

ak,jyjzk. (8)

Finally, we subtract the polynomials (5) and (5) multiplied respectively by 1, y1, . . . , ym and
get 1. 2

4.3 An application

We shall show an application of Theorem 4.2 based on recent result [1]. In [1] they proved an
nΩ(logn/ log logn) lower bound on the size of monotone span programs computing an explicitly
defined boolean function. The form of the result allows us to deduce an Ω(log n/ log log n)
lower bound on the degree of a NS refutation of an explicit set of polynomials of constant
degree. This corollary is not interesting per se, since the system of equations is quite com-
plicated and the lower bound is small compared to lower bounds from [7]. The importance
of it is in showing that there is another context in which an interpolation theorem can be
used to prove a lower bound. This gives us some hope to prove lower bounds in this way
for other systems, in particular for systems like polynomial calculus where we lack any lower
bounds.

We shall start with the description of the result of [1]. Let Γ ⊆ V1 × V2 be a bipartite
graph, |V1| = |V2| = n, let s ≤ n. We define two sets of subsets of vertices:

A = {X ⊆ V1 ∪ V2 | ∃A ⊆ V1, |A| = s, A ∪ Γ(A) ⊆ X)},

B = {X ⊆ V1 ∪ V2 | ∃T ⊆ V1, |T | ≤ s, X ⊆
⋃

B⊆V1, |B|=s, B∩T 6=∅
(B \ T ) ∪ Γ(B)}.

Here we denote by Γ(C) the vertices which are connected by an edge to all vertices in C.
While A is clearly an NP definition, it is not so obvious for B. However, we can describe it
as follows:

B = {X ⊆ V1 ∪ V2 | ∃T ⊆ V1, |T | ≤ s, X ∩ T = ∅ and

∀j ∈ X ∩ V2 ∃Bj ⊆ V1, |Bj| = s, Bj ∩ T 6= ∅, j ∈ Γ(Bj)}.

In [1] graphs Γ have been constructed such that for a suitable s (s = Θ(log n/ log log n)) the
sets A and B are disjoint and any monotone span program which accepts (the characteristic
vectors of) sets of A and rejects sets of B has size Ω(log n/ log log n).

In order to be able to apply Theorem 4.2 we have to define these sets using polynomials
of small degree and such that the polynomials defining B are monotone in variables ~x – the
common variables of the two sets of polynomials which code the subsets X. The first thing
can be done easily for any NP sets. By Cook’s theorem we can express such predicates using
3-CNF’s. Then each disjunction can be easily stated as an equation of degree ≤ 3. To prove
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the second condition first rewrite the definition of B using the predicate j ∈ X, instead of
set operations and the inclusion relation. In the 3-CNF representation a variable xj will
represent the truth of j ∈ X. As the relation j ∈ X occurs in the definition only negatively,
so will the variables xj in the 3-CNF. Thus the polynomials representing the disjunctions
will be monotone in ~x.

5 Different fields

Very little is known about the relative power of the algebraic models of computation if we
change the underlying field. It is easy to see that a span or dependency program over a
field with pl elements can be written as a program over GF (p) larger by a factor of l; this is
implicit in [12]. Nothing is known if we change the characteristic of the field.

For characteristic 0, the natural question is whether a span program over reals can be
converted into a span program over the rationals, and whether the length of numbers in a
span program over rationals can be polynomially bounded. If both of these problems are
resolved positively, it would show that functions computed by span programs over R can be
computed in polynomial time.

The most natural approach is to replace the current coefficients of all vectors by (small)
rational ones, so that all the linear dependencies are exactly preserved (for example by
“moving” all the irrational points to rational ones carefully, so that the dependencies are
preserved). In such a case the matroid represented by the matrix would not change. We
show that this approach cannot work, as there exist matroids that are representable over
R but not over Q, and also matroids that are representable over Q, but only with doubly
exponential coefficients. This result is based on the technique used to prove that the matroid
of all vectors in the space K3 has sufficient information to recover the whole field, see e.g. [21].

Lemma 5.1 Suppose that we are given real numbers x1 = 1, x2, . . . , xn and polynomials
p1, . . . , pm of n unknowns with integral coefficients such that the equations pj(~x) = 0 are all
satisfied. Then there exists a matroid M of elements u1, . . . , un, . . . , uN such that for any
representation of M over R the numbers x̃i = αi/α1, where αi = (u>i uN−1)/(u>i uN), satisfy
the equations x̃1 = 1 and pj(x̃1, . . . , x̃n) for all j ≤ m.

Proof. The idea is to use the usual geometric construction of sums and products in R2,
namely the facts that xi + xj = xk iff the lines (1, 0), (0, xi) and (1, xj), (0, xk) are parallel,
and xixj = xk iff the lines (1, 0), (0, xi) and (xj, 0), (0, xk) are parallel. To be able to speak
about parallel lines in terms of linear dependencies, we use the projective plane represented
by the vectors in R3. The point (a, b) is represented by (a, b, 1), up to scalar multiplication,
and the lines are parallel if they both contain the same vector (c, d, 0) (corresponding to their
point in the infinity). If we take the matroid of all the auxiliary points, any representation
has to preserve the identities.

Due to the integrality of the coefficients we may assume that all the equations have
form either xi + xj = xk or xixj = xk (we may have to add some numbers representing the
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intermediate values; also we have to use the fact that x1 = 1). Now consider the matroid M in
R3 consisting of all the vectors ui = (0, xi, 1), vi = (xi, 0, 1), wi = (1, xi, 1), zi = (−1, xi, 0),
and the three basis vectors. We claim that the matroid M satisfies the condition in the
lemma.

Suppose that the matroid M is represented in some vector space over the reals. The basis
vectors have to be represented by three linearly independent vectors, and all other vectors
have to be represented by vectors linearly dependent on them. Hence we may assume that
the vector space is R3, moreover, we may change the basis so that the basis vectors are
represented by basis vectors. We may assume that any vector with non-zero last coordinate
is represented with 1 in that coordinate: Multiplying a vector by a non-zero scalar does not
change the linear dependencies; moreover, the values of αi and hence x̃i are not affected by
this change, since the last two vectors are already fixed to be the last two basis vectors.

After these transformations, the vectors ui are represented by (0, αi, 1). In M , all the
triples ui, vi, z1 are linearly dependent. It follows that there exists a non-zero scalar β such
that all vectors vi are represented by (βαi, 0, 1). Also, since both triples (1, 0, 0), ui, wi and
(0, 1, 0), v1, wi are linearly dependent, wi must be represented by (βα1, αi, 1).

Now we prove that the numbers x̃i satisfy all the equations. First suppose that the
equation xi + xj = xk is present. Then both triples v1, ui, zi and wj, uk, zi are linearly
dependent. It follows that αi = αk − αj and hence x̃i + x̃j = x̃k. Now suppose that the
equation xixj = xk is present. Then the triples v1, ui, zi and vj, uk, zi are both linearly
dependent. It follows that αi/α1 = αk/αj and hence x̃ix̃j = x̃k. 2

Theorem 5.2 There exists a matroid represented over R but not representable over Q.

Proof. Use Lemma 5.1 for x2 =
√

2 and the equation x2
2 = 2x1. It follows that if the matroid

is represented over Q, the equation has a solution in Q, which is a contradiction. (We use
the fact that any vectors with rational coefficients are linearly dependent over R are also
linearly dependent over Q.) 2

Theorem 5.3 There exists a matroid of O(n) points which can be represented over Q only
so that the ratio of some coordinates is at least 22n.

Proof. Use Lemma 5.1 for xi+1 = 22i and equations equations x2 = 2x1, xi+1 = x2
i for

2 ≤ i < n. 2

6 Open problems

Lower bounds for monotone polynomial programs and for polynomial calculus.
The main open problem suggested by this paper is to prove lower bounds for monotone poly-
nomial programs over finite fields. If such a bound is proved for a suitable function, a lower
bound for polynomial calculus would follow by the interpolation theorem (Theorem 4.3),
which would be a significant progress.
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Lower bounds for non-monotone span programs. Proving a superpolynomial lower
bound on non-monotone span programs would provide a lower bound on branching programs,
and hence it would be a major achievement. Our results show that it could be beneficial to
consider dependency programs instead of span programs, as their structure is simpler.

Better lower bounds for monotone span programs. The best lower bound for mono-
tone span programs is nΩ(logn/ log logn) [1]; no exponential bound is known. Furthermore, even
though we have this superpolynomial lower bound for monotone span programs, it would be
interesting to have such a bound for a function computable by non-monotone span programs
of polynomial size, to separate these two models.

Separation of programs over different fields. All lower bounds for the monotone
dependency or span programs known to us work for an arbitrary field. It would be interesting
to have some technique which would distinguish the fields, similarly as in the results for
bounded depth circuits with MODm gates [20]. Thus we ask to prove separation between
mDPp(f) and mDPq(f) (or mSPp(f) and mSPq(f)) for some explicit function f .

Power of span programs over the reals. It is still open whether functions computed
by polynomial size branching programs over R, or even Q, can be computed by polynomial
size circuits.
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