
Identification of vortices in flow using
Graphics Processing Unit (GPU)

Jakub Š́ıstek
joint work with

Václav Kolá̌r and Pavel Moses

Institute of Mathematics of the AS CR, Praha
Institute of Hydrodynamics of the AS CR, Praha

Czech Technical University in Prague

Seminar Current Problems in Numerical Analysis
Praha, November 26, 2010

IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic

Outline

Overview of GPU computing

Identification of vortices in flow fields

Numerical results

Conclusion

Outline

Overview of GPU computing

Identification of vortices in flow fields

Numerical results

Conclusion

Raise of GPU computing

I Graphics Processing Units (GPU) has evolved under pressure
of computer games into very powerful though highly
specialized chips with many cores used for fast rendering of
images – pixels independent, single precision, specific
datatypes

I early General-purpose computing on Graphics Processing
Units (GPGPU) – difficult and marginal – but attract some
attention on its performance – people realized, that they have
(a certain type of) multicore chips already in their computers
at the same time when CPU vendors anounced transition to
two or four cores

I June 2007 – milestone – NVIDIA released Compute Unified
Device Architecture (CUDA) version 1.0 – a ‘human-friendly’
interface that presents an extension to C++

Raise of GPU computing

I December 2008 – OpenCL 1.0 released – standardization of
GPU-type computing (Apple, NVIDIA, AMD, IBM, Intel, and
others)

I March 2010 – release of Fermi type chips by NVIDIA

I November 2010 – in Top 500 list of most powerful computers
(www.top500.org), Chinese computers Tianhe-1A and
Nebulae ranked 1st and 3rd, respectively – both based on
NVIDIA Tesla 2050/2070 cards for acceleration

CUDA

I Compute Unified Device Architecture

I NVIDIA’s attempt to enter high performance computing
(HPC)

I currently version 2.1

I extension to C++

I collection of driver, compiler, debugger, visual profiler and
sample codes to provide basic tools for quick development of
new applications

Fermi GPU chip

I 512 stream processors 700 MHz
I 1,536 MB RAM (GeForce 480), 15 streming multiprocessors
I GeForce (general use), Tesla (HPC), Quadro (CAD)
I 1,345 Gflops (CPU AMD Athlon X4 around 0.5 Gflops)

Memory hierarchy on GPU

NVIDIA GeForce GTX 480:

I device memory (1,536 MB) – bandwidth 177 GB/s

I shared memory (64 kB per multiprocessor) – bandwidth 1.344
TB/s

I texture memory

I registers

Efficient usage of memory levels is the key to exploit the GPU
power.

Program execution on a GPU

I basic program unit is a thread

I 32 threads make a warp that is assigned to a multiprocessor –
can synchronize, use shared memory to communicate data

I when executed, several warps are assigned to each
multiprocessor and served by a sophisticated runtime system

I in CUDA code, threads are grouped into two dimensional
blocks – for optimal performance, size of block is a multiple of
size of the multiprocessor

I data divided into blocks which are executed by
multiprocessors – single thread corresponds to single data unit
(e.g. array element)

I blocks are organised into two dimensional grid

Program execution on a GPU

1. serial code running at CPU allocates space in memory of GPU
and copies data to it (device memory)

2. parallel execution of kernel function

3. after completion, data are stored in memory of GPU and
copied back to RAM, control is given back to CPU

Kernel function

I written for a single thread

I preferably accessing private memory location

I executed by runtime system

Sample kernel function

Function that copies integer 2D array x to y

__global__ void kernel_copy(int ldim, int *x, int *y)

{

// where am I, from 0

unsigned int i = blockIdx.x*blockDim.x+threadIdx.x;

unsigned int j = blockIdx.y*blockDim.y+threadIdx.y;

// copy my array

y[i+ldim*j] = x[i+ldim*j];

}

The kernel is invoked by calling:

kernel_copy <<<dimGrid,dimBlock>>>(1, d_a, d_b);

Here d a and d b are pointers to device memory.

Problems suitable for GPU computing

I arithmetic intensity – memory transfers slow, data should
reside in device memory as long as possible with large
operations/transfers ratio – It is usually not straightforward
to use GPU by a set of library functions!

I low memory requirements for each thread

I low or no amount of communication among threads – access
to non-local memory can slow down the computation

I no need for global synchronization of threads during kernel
execution

I first GPU libraries are emerging – e.g. MAGMA project –
linear algebra for GPU (group of Prof. Dongarra) –
collaboration of CPU and GPU

Outline

Overview of GPU computing

Identification of vortices in flow fields

Numerical results

Conclusion

Motivation

Interaction of Burgers vortices, DNS data by Prof. Rist (IAG Stuttgart)

I visualization of vortical structures in a flow is important in
numerous areas of fluid mechanics, mainly in modelling of
turbulence

I a generally accepted definition of a vortex and its
identification in flow field is still missing

I existing methods for vortex identification are not general
enough to cover all types of vortical flows

Basics of vortex identification
I current vortex identification methods are mostly based on

double decomposition of velocity gradient matrix

∇u = S + Ω,

where
I u = (u, v ,w) . . . flow velocity
I S . . . strain rate tensor, S = 1

2 (∇u + (∇u)T)
I Ω . . . vorticity tensor, Ω = 1

2 (∇u− (∇u)T)

This can be also written as

Ω =
1

2

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ,

where

ωx =
∂w

∂y
− ∂v

∂z
, ωy =

∂u

∂z
− ∂w

∂x
, ωz =

∂v

∂x
− ∂u

∂y

are components of vorticity vector ω = ∇× u.

Brief overview of existing methods

I popular methods are based on a definition of a scalar function
that would locally discriminate vortex and non-vortex regions

chosen component of vorticity vector

I the simplest method

I plot ωx , ωy or ωz according to known flow properties

I applicable only for known flow fields with vortical structures
aligned with an axis

magnitude of vorticity vector

I defined as |ω|
I invariant under rotation

I able to quantify the swirling motion

I influenced by shear

Brief overview of existing methods

Q-criterion [Hunt et al. (1988)]

I positive second invariant of ∇u

I region where vorticity magnitude dominates over strain-rate
magnitude

Q =
1

2

(
‖Ω‖2 − ‖S‖2

)
> 0

Here we use the norm ‖A‖2 = tr(AAT).

Brief overview of existing methods

∆-criterion [Dallmann (1983), Vollmers et al. (1983),
Chong et al. (1990)]

I define vortex as the region where ∇u has a pair of complex
eigenvalues – this corresponds to spiral or closed streamlines

I for incompressible flows, this correspond to

∆ =

(
Q

3

)3

+

(
R

2

)2

> 0,

where Q (see above) and R = Det(∇u) are invariants of ∇u.

Brief overview of existing methods

λ2-criterion [Jeong and Hussain (1995)]

I dynamic considerations – search for a pressure minimum
across the vortex – assumes that it corresponds with vortices

I define the vortex as a connected region, where the pressure
Hessian, approximated by S2 + Ω2, has two negative
eigenvalues

I S2 + Ω2 is symmetric – it has real eigenvalues λ1 ≤ λ2 ≤ λ3
I the final criterion is thus defined as region where

λ2 < 0

I valid for incompressible fluids only

I but the pressure minimum is neither sufficient nor necessary
condition for existence of a vortex

I paper On The Identification of a Vortex has been cited about
a thousand times (as for November 2010)

Triple Decomposition Method

I conventional double decomposition of motion near a point
into symmetric and skew-symmetric parts corresponding to
straining motion and rigid rotation has long history
(Cauchy-Stokes decomposition theorem, 1845)

I both components are in general partially induced by shear

I Triple Decomposition Method (TDM) [Kolá̌r (2007)] presents
a novel approach to decompose relative motion near a point
into three rather than two elementary components
introducing shear besides residual strain and residual rigid
rotation

I in TDM, velocity gradient tensor ∇u is decomposed as

∇u = SRES + ΩRES +∇uSH

where
I SRES . . . residual strain tensor
I ΩRES . . . residual vorticity tensor
I ∇uSH . . . shear component

Principles of Triple Decomposition Method
The pure shearing motion is described by the pure shear tensor
which appears in a suitable reference frame (i.e. under certain
orthogonal transformations) as an asymmetric matrix A

ai ,j = 0 or aj ,i = 0, i , j = 1, 2, 3.

I SRES + ΩRES form residual tensor,

∇u =

(
residual
tensor

)
+

(
shear
tensor

)
I the residual tensor consists of diagonal terms and symmetric

or antisymmetric parts of the off-diagonal terms of ∇u, the
‘leftovers’ are moved to shear tensor(

res.
ten.

)
=

 ux sgn(uy) min(|uy |, |vx |) ·
sgn(vx) min(|uy |, |vx |) vy ·

· · wz

I maximum of effective shear is extracted when norm of the

residual tensor attains minimum

Example decomposition [Kolá̌r (2007)]

 −1 15 17
3 8 −14
−26 −14 −5

︸ ︷︷ ︸

∇u

=

 −1 3 17
3 8 −14
−17 −14 −5

︸ ︷︷ ︸

residual tensor

+

 0 12 0
0 0 0
−9 0 0

︸ ︷︷ ︸

∇uSH

Triple Decomposition Method

I using standard strain-rate and vorticity tensors S and Ω, the
following expression holds [Kolá̌r (2007)]

||∇u||2 =

∣∣∣∣∣∣∣∣(residual
tensor

)∣∣∣∣∣∣∣∣2+4(|S12Ω12|+|S23Ω23|+|S31Ω31|).

I minimum of the residual tensor norm corresponds to the
reference frame where maximum of the term

|S12Ω12|+ |S23Ω23|+ |S31Ω31|

is attained.

Basic Reference Frame (BRF)

I the previously defined frame is called basic reference frame
(BRF) and its determination can be stated as the problem:
Find orthogonal matrix QBRF such that

max
Q

(|S12Ω12|+ |S23Ω23|+ |S31Ω31|) (1)

is attained, where

A = Q(∇u)QT ,

S =
1

2

(
A + AT

)
,

Ω =
1

2

(
A− AT

)
.

I in this optimization problem, Q is constructed from three
angles of rotating frame along axes, Q = f (α, β, γ),
0 ≤ α < π, 0 ≤ β < π, 0 ≤ γ ≤ π/2

Basic Reference Frame (BRF)

I BRF is in general different and independent for each point of
the flow field – whole range of angles must be taken into
account at every position when looking for it

I to find BRF numerically, ranges of angles are uniformly
discretized with reasonable (angle) step size and the
expression (1) is evaluated for combinations of αi , βj and γk

I while finer step size allows better localization of the BRF, it
results in increase of required objective function evaluations
since there is 1/∆α3 dependence on the step size ∆α (e.g.
2,981,251 evaluations for step size 1 deg)

TDM for vortex identification
Once approximation to QBRF is known, we determine the residual
vorticity by

1. transform the velocity gradient into BRF by

A = QBRF (∇u)QT
BRF ,

2. get residual tensor ARES from A

3. perform double decomposition to obtain residual strain-rate
tensor SRES and residual vorticity tensor ΩRES

SRES =
1

2

(
ARES + AT

RES

)
,

ΩRES =
1

2

(
ARES − AT

RES

)
.

4. a vortex is defined as a connected region where ‖ΩRES‖ > 0

I TDM eliminates the effect of shear on vorticity
I capable of describing a vortex in incompressible as well as

compressible fluids

TDM in 2D

In 2D – vortex axis is always peripendicular to flow plane – the
method simplifies due to one axis of BRF set perpendicular to the
plane to the following formulas:

ωRES =

{
0 for |s| ≥ |ω|
sgn(ω)(|ω| − |s|) for |s| ≤ |ω| ,

where e.g. for incompressible flow

|s| =

√4

(
∂u

∂x

)2

+

(
∂u

∂y
+
∂v

∂x

)2
 /2,

ω =

(
∂v

∂x
− ∂u

∂y

)
/2.

Outline

Overview of GPU computing

Identification of vortices in flow fields

Numerical results

Conclusion

Numerical example in 2D

Vorticity defined by ‘standard’ two-dimensional vorticity tensor
component ω (top) and by residual vorticity (bottom) in flow past

NACA 0012 airfoil, α = 34◦, Re = 100

FEM data by Dr. Jaroslav Novotný

Numerical example in 2D

Details of vorticity defined by ‘standard’ two-dimensional vorticity
tensor component ω (top) and by residual vorticity (bottom) in

flow past NACA 0012 airfoil, α = 34◦, Re = 100

Numerical example in 3D

I in 2D, TDM is very competitive, in 3D it poses a practical
issue of computational costs due to the neccessity of finding
the BRF, experiments have shown that in general cases the
choice of step of angles may have a large impact on the
quality of the identification and thus the step size of 1-10
degrees is recommended

I BRF is specific for each data point – 2,981,251 possibilities
for step size 1 deg

I BRF for each point is independent – presents an
embarassingly parallel computation – specific properties of
GPU can be exploited to speed-up calculations

I flow data for 3D DNS simulations are due to kindness of the
team of Prof. Rist from IAG Stuttgart

Numerical example in 3D

Ω-vortex in boundary layer, comparison of λ2-method at 4.6%
treshold (left) and residual vorticity at 13% treshold, BRF search

step 90 deg (right)

Numerical example in 3D

Ω-vortex in boundary layer, comparison of λ2-method at 4.6%
treshold (left) and residual vorticity at 13% treshold, BRF search

step 30 deg (right)

Numerical example in 3D

Ω-vortex in boundary layer, comparison of λ2-method at 4.6%
treshold (left) and residual vorticity at 13% treshold, BRF search

step 1 deg (right)

Numerical example in 3D

Ω-vortex in boundary layer, comparison of λ2-method at 0.03%
treshold (left) and residual vorticity at 0.2% treshold, BRF search

step 1 deg (right)

Numerical example in 3D

Ω-vortex in boundary layer, comparison of λ2-method at 0.76%
treshold (left) and residual vorticity at 2.2% treshold, BRF search

step 1 deg (right)

Numerical example in 3D

Ω-vortex in boundary layer, comparison of λ2-method at 4.6%
treshold (left) and residual vorticity at 13% treshold, BRF search

step 1 deg (right)

Numerical example in 3D

Ω-vortex in boundary layer, comparison of λ2-method at 7.6%
treshold (left) and residual vorticity at 19.4% treshold, BRF search

step 1 deg (right)

Computational times

step import (s) BRF (s) ‖Ω‖RES λ2 (s)

GF 9650M GT GTX 480

90 15.6 0.4 0.05 1.4 4.9
45 2.0 0.13
30 6.7 0.34
10 172.8 8.0

5 1,373.1 63.9
2 4,093.7 997.8
1 n/a 2,220.6

I GF 9650M GT . . . NVIDIA GeForce 9650M GT (my laptop)

I GTX 480 . . . NVIDIA GeForce GTX 480 (recently acquired by
Institute of Mathematics)

I computational times on Tesla T10 GPU (UC Denver)
comparable to GTX 480

Computational times

Serial computation of BRF on laptop CPU (Intel Core Duo 2.53
GHz):

I for step size 2 deg, one point takes 142 ms

I the problem presented consists of 175×101×129 = 2,280,075
points

I the serial computation would take about 90 hours on CPU of
my laptop

I it would take about 28 days with step size 1 deg

Numerical example in 3D

Burgers vortex, Ma = 0.3, comparison of λ2-method at 3.9%
treshold (left) and residual vorticity at 16% treshold, BRF search

step 1 deg (right)

Outline

Overview of GPU computing

Identification of vortices in flow fields

Numerical results

Conclusion

Conclusion

I Triple Decomposition Method (TDM) appears to be
competitive with standard vortex identification methods in
terms of quality of vortex identification

I TDM may be costly procedure for fine resolution

I it offers a good intuitive insight into the process of vortex
identification

I the method is subject to ongoing research and some related
methods are being developed [Kolá̌r, Moses, Š́ıstek (2010)]

I determination of basic reference frame is a ‘dream problem’ to
be addressed by GPU computing

I achieved speed-up 80 (within a laptop) or 340 (on the new
generation GPU chip) made from the TDM method
a candidate for fine analysis of vortical structures in a complex
flow field

I code Vortex Analyzer available to public at my website
http://www.math.cas.cz/∼sistek

Acknowledgements

I authors are very grateful to Prof. Ulrich Rist and Dr. Kudret
Baysal, IAG Stuttgart for providing the DNS data sets used in
the present paper

I research has been supported by Grant Agency of Czech
Academy of Sciences under grant IAA200600801

References

[1] Jeong, J., Hussain, F.: On the identification of a vortex. J.
Fluid Mech. 285, 69-94 (1995)

[2] Kolá̌r, V.: Vortex identification: new requirements and
limitations. Int. J. Heat Fluid Flow 28(4), 638 - 652 (2007)

[3] Kolá̌r, V., Moses, P., Š́ıstek, J.: Local corotation of line
segments and vortex identification. In: Mallinson, G. and Cater, J.
(eds.) Proceedings of the 17th Australasian Fluid Mechanics
Conference, Auckland, New Zealand, 2010.

[4] Kolá̌r, V., Moses, P., Š́ıstek, J.: Triple Decomposition Method
for Vortex Identification in Two-Dimensional and
Three-Dimensional Flows, To appear in Computational Fluid
Dynamics 2010, Proceedings of The 6th ICCFD Conference, St.
Petersburg, Russia, July 12–16, 2010.

	Overview of GPU computing
	Identification of vortices in flow fields
	Numerical results
	Conclusion

