Primal methods of iterative substructuring

Jakub Šístek

Institute of Mathematics of the AS CR, Prague

Programs and Algorithms of Numerical Mathematics 16
June 5th, 2012
Co-workers

Presentation based on collaboration with

- **J. Mandel** (University of Colorado Denver) and **B. Sousedík** (University of Southern California) – adaptive BDDC, multilevel BDDC
- **P. Burda**, **M. Čertíková** and **J. Novotný** (Czech Technical University in Prague) – MPI implementations, selection of corners, engineering problems, flow simulation
- **F. Cirak** (University of Cambridge) – engineering applications to flow problems, BDDC for non-symmetric problems
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
 Algorithm of standard (two-level) BDDC method
 Algorithm of Multilevel BDDC
 Parallel implementation of Multilevel BDDC
 Adaptive selection of constraints
 Parallel implementation of Adaptive BDDC
 Numerical results

Conclusions
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
 Algorithm of standard (two-level) BDDC method
 Algorithm of Multilevel BDDC
 Parallel implementation of Multilevel BDDC
 Adaptive selection of constraints
 Parallel implementation of Adaptive BDDC
 Numerical results

Conclusions
Using **Finite Element Method (FEM)** for problems described by partial differential equations (PDEs) results in solving very large sparse systems of algebraic equations – difficulties with solution by conventional numerical methods

- **direct methods** slow due to the problem size – complexity $O(1/h^3)$ in 2D, $O(1/h^6)$ in 3D, h – mesh size, state-of-the-art: **multifrontal method**
- **iterative methods** have attractive complexity $O(1/h^n)$, n – space dimension, but become slow due to large condition number – suitable **preconditioner** needed! state-of-the-art: **Krylov subspace methods (PCG, BICGSTAB, GMRES)**
- **combination of these approaches** – synergy in **domain decomposition (DD) methods**

- way to parallelize FEM – naturally distribute both work and memory requirements
- multigrid (MG) solvers are efficient, but difficult to parallelize and balance load
Some motivation for domain decomposition (DD)

- Using **Finite Element Method (FEM)** for problems described by partial differential equations (PDEs) results in solving very large sparse systems of algebraic equations – difficulties with solution by conventional numerical methods
 - **direct methods** slow due to the problem size – complexity $O(1/h^3)$ in 2D, $O(1/h^6)$ in 3D, h – mesh size,
 - state-of-the-art: **multifrontal method**
 - **iterative methods** have attractive complexity $O(1/h^n)$, n – space dimension, but become slow due to large condition number – suitable **preconditioner** needed!
 - state-of-the-art: Krylov subspace methods (PCG, BICGSTAB, GMRES)
 - **combination of these approaches** – synergy in **domain decomposition (DD) methods**

- way to parallelize FEM – naturally distribute both work and memory requirements
 - multigrid (MG) solvers are efficient, but difficult to parallelize and balance load
Some motivation for domain decomposition (DD)

- Using **Finite Element Method (FEM)** for problems described by partial differential equations (PDEs) results in solving very large sparse systems of algebraic equations – difficulties with solution by conventional numerical methods
 - **direct methods** slow due to the problem size – complexity $O(1/h^3)$ in 2D, $O(1/h^6)$ in 3D, h – mesh size,
 state-of-the-art: **multifrontal method**
 - **iterative methods** have attractive complexity $O(1/h^n)$, n – space dimension, but become slow due to large condition number – suitable **preconditioner** needed!
 state-of-the-art: Krylov subspace methods (PCG, BICGSTAB, GMRES)
 - **combination of these approaches** – synergy in domain decomposition (DD) methods
- way to parallelize FEM – naturally distribute both work and memory requirements
- multigrid (MG) solvers are efficient, but difficult to parallelize and balance load
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
 Algorithm of standard (two-level) BDDC method
 Algorithm of Multilevel BDDC
 Parallel implementation of Multilevel BDDC
 Adaptive selection of constraints
 Parallel implementation of Adaptive BDDC
 Numerical results

Conclusions
Variational setting

\[u \in U : a(u, v) = \langle f, v \rangle \quad \forall v \in U \]

- \(a(\cdot, \cdot) \) symmetric positive definite form on \(U \)
- \(\langle \cdot, \cdot \rangle \) is inner product on \(U \)
- \(U \) is finite dimensional space (typically finite element functions)

Matrix form

\[u \in U : Au = f \]

- \(A \) symmetric positive definite matrix on \(U \)
- \(A \) large, sparse, condition number
 \[\kappa(A) = \frac{\lambda_{\max}}{\lambda_{\min}} = \mathcal{O}(1/h^2) \]

Linked together

\[\langle Au, v \rangle = a(u, v) \quad \forall u, v \in U \]
The abstract problem

Variational setting

\[u \in U : a(u, v) = \langle f, v \rangle \quad \forall v \in U \]

- \(a(\cdot, \cdot) \) symmetric positive definite form on \(U \)
- \(\langle \cdot, \cdot \rangle \) is inner product on \(U \)
- \(U \) is finite dimensional space (typically finite element functions)

Matrix form

\[u \in U : Au = f \]

- \(A \) symmetric positive definite matrix on \(U \)
- \(A \) large, sparse, condition number \(\kappa(A) = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} = O(1/h^2) \)

Linked together

\[\langle Au, v \rangle = a(u, v) \quad \forall u, v \in U \]
Families of domain decomposition methods

How subdomains are formed?

- overlapping methods – subdomains not disjoint – overlap
- nonoverlapping methods (a.k.a. substructuring) – subdomains disjoint

How method is used?

- self-standing iterative methods – simple iteration
- one step of the method used as preconditioner for another iterative method (PCG, BICGSTAB, GMRES,...)
Families of domain decomposition methods

How subdomains are formed?

- overlapping methods – subdomains not disjoint – overlap
- nonoverlapping methods (a.k.a. substructuring) – subdomains disjoint

How method is used?

- self-standing iterative methods – simple iteration
- one step of the method used as preconditioner for another iterative method (PCG, BICGSTAB, GMRES, ...)

Families of domain decomposition methods

How subdomain solutions are organised?

- one-by-one – multiplicative methods (better efficiency, worse parallelization)
- simultaneously – additive methods (worse efficiency, simpler parallelization)

How many levels are involved?

- one–level methods – simple, poor performance for large number of subdomains \(N \)
- two–level methods – involve coarse level (good efficiency, worse parallelization) – dominant today
- multi–level methods – when coarse problem becomes ‘too large’ (not the same as multigrid)
Families of domain decomposition methods

How subdomain solutions are organised?

- **one-by-one – multiplicative methods** (better efficiency, worse parallelization)
- **simultaneously – additive methods** (worse efficiency, simpler parallelization)

How many levels are involved?

- **one–level methods** – simple, poor performance for large number of subdomains N
- **two–level methods** – involve **coarse level** (good efficiency, worse parallelization) – dominant today
- **multi–level methods** – when coarse problem becomes ‘too large’ (not the same as multigrid)
Overlapping DD methods

- Idea goes back to Hermann Schwarz (1870) – for solution of Dirichlet problem on ‘general’ domain – split domain into two simple subdomains with known analytical solution

- Nowadays known as **Alternating Schwarz Method**
- Multiplicative correction by subdomain problems

- $\Omega_1, \Omega_2 \ldots$ subdomains
- $\delta \ldots$ size of overlap
Let us look for a solution of the Poisson's equation given on a domain Ω as

$$
-\Delta u = f, \\
u = 0 \text{ on } \partial \Omega.
$$

1. Given u^k, solve

$$
-\Delta u^{k+1/2} = f \text{ on } \Omega_1, \\
u^{k+1/2} = u^k \text{ on } \Gamma_1.
$$

2. Given $u^{k+1/2}$, solve

$$
-\Delta u^{k+1} = f \text{ on } \Omega_2, \\
u^{k+1} = u^{k+1/2} \text{ on } \Gamma_2.
Let us look for a solution of the Poisson’s equation given on a domain Ω as

$$-\Delta u = f,$$

$$u = 0 \text{ on } \partial \Omega.$$

1. Given u^k, solve

$$-\Delta u^{k+1/2} = f \text{ on } \Omega_1,$$

$$u^{k+1/2} = u^k \text{ on } \Gamma_1.$$

2. Given $u^{k+1/2}$, solve

$$-\Delta u^{k+1} = f \text{ on } \Omega_2,$$

$$u^{k+1} = u^{k+1/2} \text{ on } \Gamma_2.$$
Alternating Schwarz Method

\[\Omega_1 \quad \Gamma_2 \quad \Gamma_1 \quad \Omega_2 \]

\[u^0 \quad u^{1} \quad u^{3/2} \]

Jakub Šístek
Primal methods of iterative substructuring

12 / 69
instead of serial setting, solve problems on both subdomains independently

1. Given u^k, solve

\[-\triangle u_1^{k+1} = f \text{ on } \Omega_1,\]
\[u_1^{k+1} = u^k \text{ on } \Gamma_1,\]

\[-\triangle u_2^{k+1} = f \text{ on } \Omega_2,\]
\[u_2^{k+1} = u^k \text{ on } \Gamma_2.\]

2. Get new solution by addition

\[u^{k+1} = u_1^{k+1} + u_2^{k+1}\]
Additive Schwarz Method (ASM)
Summary of overlapping DD methods

derivatives of Alternating Schwarz Method
- multiplicative correction
- difficult for parallelization
- in general better convergence

derivatives of Additive Schwarz Method (ASM)
- additive correction
- simple for parallelization
- in general worse convergence
- used as **preconditioners** (e.g. PETSc library – PCASM)
- condition number κ depends on size of overlap δ as $O(1/\delta)$, i.e. small overlap – poor preconditioner, large overlap – expensive subdomain solutions
- may involve coarse level
 - e.g. [Blaheta et al. (2009)], [Dohrmann, Widlund (2009)]
derivatives of Alternating Schwarz Method

- multiplicative correction
- difficult for parallelization
- in general better convergence

derivatives of Additive Schwarz Method (ASM)

- additive correction
- simple for parallelization
- in general worse convergence
- used as **preconditioners** (e.g. PETSc library – PCASM)
- condition number κ depends on size of overlap δ as $O(1/\delta)$, i.e.
 - small overlap – poor preconditioner, large overlap – expensive subdomain solutions
- may involve coarse level
 - e.g. [Blaheta et al. (2009)], [Dohrmann, Widlund (2009)]
Nonoverlapping DD methods

- idea goes back to substructuring – a trick used in seventies to fit larger FE problems into memory

\[\Omega_1, \Omega_2 \ldots \text{subdomains (substructures)} \]
\[\Gamma \ldots \text{interface} \]

- unknowns at interface are shared by more subdomains, remaining (interior) unknowns belong to a single subdomain
- the first step is reduction of the problem to the interface \(\Gamma \)
Nonoverlapping DD methods

- idea goes back to substructuring – a trick used in seventies to fit larger FE problems into memory

\[\Omega_1, \Omega_2, \ldots \text{subdomains (substructures)} \]
\[\Gamma \ldots \text{interface} \]

- unknowns at interface are shared by more subdomains, remaining (interior) unknowns belong to a single subdomain

- the first step is reduction of the problem to the interface \(\Gamma \)
Nonoverlapping DD methods

- Idea goes back to **substructuring** – a trick used in seventies to fit larger FE problems into memory

![Diagram](image.png)

- $\Omega_1, \Omega_2 \ldots$ subdomains (substructures)
- $\Gamma \ldots$ interface

- Unknowns at interface are shared by more subdomains, remaining (interior) unknowns belong to a single subdomain
- The first step is reduction of the problem to the **interface** Γ
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
 Algorithm of standard (two-level) BDDC method
 Algorithm of Multilevel BDDC
 Parallel implementation of Multilevel BDDC
 Adaptive selection of constraints
 Parallel implementation of Adaptive BDDC
 Numerical results

Conclusions
Formation of the interface problem

- recall the matrix problem

\[Au = f \]

- reorder unknowns so that those at interior \(u^1_o \) and \(u^2_o \) are first, then interface \(u_\Gamma \)

\[
\begin{bmatrix}
A^1_{oo} & A^1_{o\Gamma} \\
A^2_{oo} & A^2_{o\Gamma}
\end{bmatrix}
\begin{bmatrix}
u^1_o \\
u^2_o
\end{bmatrix}
=
\begin{bmatrix}
f^1_o \\
f^2_o
\end{bmatrix}
\]

- eliminate interior unknowns – subdomain by subdomain = in parallel

\[
\begin{bmatrix}
A^1_{oo} & A^1_{o\Gamma} \\
A^2_{oo} & A^2_{o\Gamma}
\end{bmatrix}
\begin{bmatrix}
u^1_o \\
u^2_o
\end{bmatrix}
=
\begin{bmatrix}
f^1_o \\
g
\end{bmatrix}
\]

\[
S = \sum_{\text{assembly}} A^i_{\Gamma\Gamma} - A^i_{\Gamma o}(A^i_{oo})^{-1} A^i_{o\Gamma} = \sum_{\text{assembly}} S^i
\]

\[
g = \sum_{\text{assembly}} f^i_\Gamma - A^i_{\Gamma o}(A^i_{oo})^{-1} f^i_o = \sum_{\text{assembly}} g^i
\]
Formation of the interface problem

- recall the matrix problem
 \[Au = f \]

- reorder unknowns so that those at interior \(u^1_o \) and \(u^2_o \) are first, then interface \(u_\Gamma \)

\[
\begin{bmatrix}
A^1_{oo} & A^1_{o\Gamma} \\
A^2_{oo} & A^2_{o\Gamma}
\end{bmatrix}
\begin{bmatrix}
u^1_o \\
u^2_o \\
u_\Gamma
\end{bmatrix}
= \begin{bmatrix}
f^1_o \\
f^2_o \\
f_\Gamma
\end{bmatrix}
\]

- eliminate interior unknowns – subdomain by subdomain = in parallel

\[
\begin{bmatrix}
A^1_{oo} & A^1_{o\Gamma} \\
A^2_{oo} & A^2_{o\Gamma}
\end{bmatrix}
\begin{bmatrix}
u^1_o \\
u^2_o \\
u_\Gamma
\end{bmatrix}
= \begin{bmatrix}
f^1_o \\
f^2_o \\
g
\end{bmatrix}
\]

\[S = \sum_{assembly} A^i_{\Gamma\Gamma} - A^i_{\Gamma o}(A^i_{oo})^{-1} A^i_{o\Gamma} = \sum_{assembly} S^i \]

\[g = \sum_{assembly} f^i_\Gamma - A^i_{\Gamma o}(A^i_{oo})^{-1} f^i_o = \sum_{assembly} g^i \]
Formation of the interface problem

- recall the matrix problem
\[Au = f \]

- reorder unknowns so that those at interior \(u_1^0 \) and \(u_2^0 \) are first, then interface \(u_\Gamma \)
\[
\begin{bmatrix}
A_{oo}^1 & A_{o\Gamma}^1 \\
A_{o\Gamma}^1 & A_{\Gamma\Gamma}
\end{bmatrix}
\begin{bmatrix}
u_1^0 \\
u_2^0 \\
u_\Gamma
\end{bmatrix}
= \begin{bmatrix}
f_1^0 \\
f_2^0 \\
f_\Gamma
\end{bmatrix}
\]

- eliminate interior unknowns – subdomain by subdomain = in parallel
\[
\begin{bmatrix}
A_{oo}^1 & A_{o\Gamma}^1 \\
A_{o\Gamma}^1 & A_{\Gamma\Gamma}
\end{bmatrix}
\begin{bmatrix}
u_1^0 \\
u_2^0 \\
u_\Gamma
\end{bmatrix}
= \begin{bmatrix}
f_1^0 \\
f_2^0 \\
g
\end{bmatrix}
\]

\[S = \sum_{assembly} A_{\Gamma\Gamma}^i - A_{\Gamma o}^i (A_{oo}^i)^{-1} A_{o\Gamma}^i = \sum_{assembly} S^i \]

\[g = \sum_{assembly} f_\Gamma^i - A_{\Gamma o}^i (A_{oo}^i)^{-1} f_o^i = \sum_{assembly} g^i \]
Substructuring

Reduced (Schur complement) problem

\[Su_\Gamma = g \]

- \(S \) ... *Schur complement with respect to interface*
- \(g \) ... *reduced right hand side*
- the process is also known as ‘static condensation’

Algorithm of substructuring

1. Form local Schur complements \(S_i \) for each subdomain and build the global Schur complement \(S \) and right-hand side \(g \) (parallel)
2. Solve problem for interface unknowns \(Su_\Gamma = g \)
3. Resolve (in parallel) interior unknowns by back-substitution in

\[A_{oo} u_o = f_o - A_{o\Gamma} u_\Gamma \]
Substructuring

Reduced (Schur complement) problem

\[Su_\Gamma = g \]

- S \ldots \textit{Schur complement with respect to interface}
- g \ldots \textit{reduced right hand side}
- the process is also known as ‘static condensation’

Algorithm of substructuring

1. Form local Schur complements \(S_i \) for each subdomain and build the global Schur complement \(S \) and right-hand side \(g \) (parallel)
2. Solve problem for interface unknowns \(Su_\Gamma = g \)
3. Resolve (in parallel) interior unknowns by back-substitution in

\[
A_{oo} u_o = f_o - A_{o\Gamma} u_\Gamma
\]
Iterative substructuring

- If global matrix S is formed explicitly and problem $Su_G = g$ solved by a direct method in an efficient (tree-based) way – very much the idea of multifrontal method (an MPI version in MUMPS library)

- But the interface problem can be solved by an iterative method (PCG, BICGSTAB, GMRES, . . .) – iterative substructuring

Appealing consequences of iterative substructuring

- Problem $Su_G = g$ is usually much better conditioned than the original problem $Au = f$ – for SPD problems $\kappa(S) = O(1/Hh)$ ($H \gg h$ is the subdomain size) compared to $\kappa(A) = O(1/h^2)$ – lower number of iterations

- Iterative methods for $Su_G = g$ are simpler for parallelization

- Krylov subspace methods require only actions of S on a vector p – explicit construction of S may be avoided – large savings of both time and memory – how?
Iterative substructuring

- if global matrix S is formed explicitly and problem $Su_f = g$ solved by a direct method in an efficient (tree–based) way – very much the idea of multifrontal method (an MPI version in MUMPS library)
- but the interface problem can be solved by an iterative method (PCG, BICGSTAB, GMRES, ...) – iterative substructuring

Appealing consequences of iterative substructuring

- problem $Su_f = g$ is usually much better conditioned than the original problem $Au = f$ – for SPD problems $\kappa(S) = O(1/Hh)$ ($H >> h$ is the subdomain size) compared to $\kappa(A) = O(1/h^2)$ – lower number of iterations
- iterative methods for $Su_f = g$ are simpler for parallelization
- Krylov subspace methods require only actions of S on a vector p – explicit construction of S may be avoided – large savings of both time and memory – how?
Iterative substructuring

- if global matrix S is formed explicitly and problem $Su_\Gamma = g$ solved by a direct method in an efficient (tree–based) way – very much the idea of multifrontal method (an MPI version in MUMPS library)
- but the interface problem can be solved by an iterative method (PCG, BICGSTAB, GMRES, ...) – iterative substructuring

Appealing consequences of iterative substructuring

- problem $Su_\Gamma = g$ is usually much better conditioned than the original problem $Au = f$ – for SPD problems $\kappa(S) = O(1/Hh)$ ($H >> h$ is the subdomain size) compared to $\kappa(A) = O(1/h^2)$ – lower number of iterations
- iterative methods for $Su_\Gamma = g$ are simpler for parallelization
- Krylov subspace methods require only actions of S on a vector p – explicit construction of S may be avoided – large savings of both time and memory – how?
A practical algorithm of iterative substructuring

- **In setup:**
 1. Factorize matrix A_{oo} (block diagonal = in parallel)
 2. Form condensed right hand side by solving $A_{oo}h = f_0$,
 and inserting $g = f_\Gamma - A_{\Gamma o}h$.

- **In each iteration,** for given p construct Sp as

 $$
 \begin{bmatrix}
 A_{oo} & A_{o\Gamma} \\
 A_{\Gamma o} & A_{\Gamma\Gamma}
 \end{bmatrix}
 \begin{bmatrix}
 w \\
 p
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 \\
 Sp
 \end{bmatrix}
 $$

 1. Solve (in parallel) discrete Dirichlet problem
 $A_{oo}w = -A_{o\Gamma}p$
 2. Get Sp (in parallel) as
 $Sp = A_{\Gamma o}w + A_{\Gamma\Gamma}p$

- **After iterations,** for given u_Γ, resolve (in parallel) interior unknowns by back-substitution in

 $A_{oo}u_o = f_0 - A_{o\Gamma}u_\Gamma$
A practical algorithm of iterative substructuring

- **In setup:**
 1. Factorize matrix A_{oo} (block diagonal = in parallel)
 2. Form condensed right hand side by solving
 \[A_{oo} h = f_o, \]
 and inserting $g = f_\Gamma - A_{o\Gamma} h$.

- **In each iteration,** for given p construct Sp as
 \[
 \begin{bmatrix}
 A_{oo} & A_{o\Gamma} \\
 A_{\Gamma o} & A_{\Gamma\Gamma}
 \end{bmatrix}
 \begin{bmatrix}
 w \\
 p
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 \\
 Sp
 \end{bmatrix}
 \]

 1. Solve (in parallel) **discrete Dirichlet problem**
 \[A_{oo} w = -A_{o\Gamma} p \]
 2. Get Sp (in parallel) as
 \[Sp = A_{\Gamma o} w + A_{\Gamma\Gamma} p \]

- **After iterations,** for given u_Γ, resolve (in parallel) interior unknowns by back-substitution in
 \[A_{oo} u_o = f_o - A_{o\Gamma} u_\Gamma \]
A practical algorithm of iterative substructuring

- **In setup:**
 1. factorize matrix A_{oo} (block diagonal = in parallel)
 2. form condensed right hand side by solving

 $$A_{oo}h = f_o,$$

 and inserting $g = f_\Gamma - A_{o}\Gamma h$.

- **In each iteration**, for given p construct Sp as

 $$\begin{bmatrix} A_{oo} & A_{o}\Gamma \\ A_{\Gamma o} & A_{\Gamma\Gamma} \end{bmatrix} \begin{bmatrix} w \\ p \end{bmatrix} = \begin{bmatrix} 0 \\ Sp \end{bmatrix}$$

1. Solve (in parallel) *discrete Dirichlet problem*

 $$A_{oo}w = -A_{o}\Gamma p$$

2. Get Sp (in parallel) as

 $$Sp = A_{\Gamma o}w + A_{\Gamma\Gamma}p$$

- **After iterations**, for given u_Γ, resolve (in parallel) interior unknowns by back-substitution in

 $$A_{oo}u_o = f_o - A_{o}\Gamma u_\Gamma$$
A note on dual methods

- DD methods based on Schur complement with respect to interface are called **primal DD methods** – they formulate the interface problem in *primal* unknowns.

- But another approach exists: disconnect the subdomains completely and enforce continuity at interface weakly by *Lagrange multipliers* λ

 ![Diagram showing the interface with Lagrange multipliers]

 This represents adding constraints of the type

 $$u_k^1 = u_k^2 \quad \text{or} \quad u_k^1 - u_k^2 = 0$$

 where u_k represents an unknown at the interface.
A note on dual methods

Lead to the saddle point problem with matrix of constraints B

$$
\begin{bmatrix}
\bar{A} & B^T \\
B & 0
\end{bmatrix}
\begin{bmatrix}
\bar{u} \\
\lambda
\end{bmatrix} =
\begin{bmatrix}
\bar{f} \\
0
\end{bmatrix}
$$

- we can eliminate all primal unknowns (parallel) and get

$$B\bar{A}^{-1}B^T\lambda = B\bar{A}^{-1}\bar{f}$$

- another interface problem – now for dual unknowns – dual DD methods (FETI/TFETI, FETI-DP, ...)

- almost the same size as the Schur complement

- solved by an iterative method for λ (same tricks as before)

- when solved for λ, primal unknowns are recovered (in parallel) from $\bar{A}\bar{u} = \bar{f} - B^T\lambda$

- may involve factorization of singular subdomain matrices – \bar{A}^{-1} replaced by \bar{A}^+ [Brzobohatý et al. 2011]
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
 Algorithm of standard (two-level) BDDC method
 Algorithm of Multilevel BDDC
 Parallel implementation of Multilevel BDDC
 Adaptive selection of constraints
 Parallel implementation of Adaptive BDDC
 Numerical results

Conclusions
Recall the reduced problem

\[Su_Γ = g \]

that is solved by a Krylov subspace method.

- While \(\kappa(S) = O(1/Hh) \) is quite nice conditioning, it is not sufficient for large problems – a **preconditioner** \(M \approx S^{-1} \) needed – the best we can do these days is

\[\kappa(MS) \leq C(1 + \log(H/h))^2 \]

- Convergence independent of number of subdomains and size of the problem, depends only on ratio of subdomain size \(H \) and element size \(h \)

- \(M \) is realized in parallel by a domain decomposition method
Matrix S can be obtained by subdomain contributions S^i as

$$S = \sum_{i=1}^{N} R^i S^i R^{iT}$$

- R^i ... mapping of subdomain interface unknowns into global interface unknowns
- similar to assembly of global matrix from element matrices

First idea:

$$S^{-1} \approx \sum_{i=1}^{N} R^i (S^i)^{-1} R^{iT}$$

- it is still behind the methods but some technical details need to be added
Matrix S can be obtained by subdomain contributions S^i as

$$S = \sum_{i=1}^{N} R^i S^i R^{iT}$$

- R^i ... mapping of subdomain interface unknowns into global interface unknowns
- similar to assembly of global matrix from element matrices

First idea:

$$S^{-1} \approx \sum_{i=1}^{N} R^i (S^i)^{-1} R^{iT}$$

- it is still behind the methods but some technical details need to be added
still neither \((S^i)^{-1}\) nor \(S^i\) are formed explicitly – instead,
\[z^i_\Gamma = (S^i)^{-1} r^i_\Gamma \] is found by solving discrete Neumann problem

\[
\begin{bmatrix}
 A^{i}_{oo} & A^{i}_{o\Gamma} \\
 A^{i}_{\Gamma o} & A^{i}_{\Gamma\Gamma}
\end{bmatrix}
\begin{bmatrix}
 z^i_o \\
 z^i_\Gamma
\end{bmatrix}
=
\begin{bmatrix}
 0 \\
 r^i_\Gamma
\end{bmatrix}
\]

for floating subdomains, matrix \(A^i\) is singular – inverse \((A^i)^{-1}\) has to be replaced by generalized inverse \((A^i)^+\)

we obtain different solutions for the same interface unknowns from adjacent subdomains – some averaging needed to get value of \(z^i_\Gamma\)
still neither \((S^i)^{-1}\) nor \(S^i\) are formed explicitly – instead,
\[z^i_\Gamma = (S^i)^{-1} r^i_\Gamma \] is found by solving discrete Neumann problem

\[
\begin{bmatrix}
A^i_{oo} & A^i_{o\Gamma} \\
A^i_{\Gamma o} & A^i_{\Gamma\Gamma}
\end{bmatrix}
\begin{bmatrix}
z^i_o \\
z^i_\Gamma
\end{bmatrix}
=
\begin{bmatrix}
0 \\
r^i_\Gamma
\end{bmatrix}
\]

for floating subdomains, matrix \(A^i\) is singular – inverse \((A^i)^{-1}\) has to be replaced by generalized inverse \((A^i)^{+}\)

we obtain different solutions for the same interface unknowns from adjacent subdomains – some averaging needed to get value of \(z^i_\Gamma\)
still neither $(S^i)^{-1}$ nor S^i are formed explicitly – instead,
$z^i_\Gamma = (S^i)^{-1}r^i_\Gamma$ is found by solving discrete Neumann problem

$$
\begin{bmatrix}
A^i_{oo} & A^i_{o\Gamma} \\
A^i_{\Gamma o} & A^i_{\Gamma\Gamma}
\end{bmatrix}
\begin{bmatrix}
z^i_o \\
z^i_\Gamma
\end{bmatrix}
=
\begin{bmatrix}
0 \\
r^i_\Gamma
\end{bmatrix}
$$

for floating subdomains, matrix A^i is singular – inverse $(A^i)^{-1}$ has to be replaced by generalized inverse $(A^i)^+$

we obtain different solutions for the same interface unknowns from adjacent subdomains – some averaging needed to get value of z_Γ
Neumann–Neumann method

\[S^{-1} \approx \sum_{i=1}^{N} R^i D^i (S^i)^+ D^i R^{i^T} \]

- [De Roeck, Le Tallec (1991)]
- \(D^i \) ... weights; \(\sum_{i=1}^{N} R^i D^i R^{i^T} = I \)
- one-level method
- convergence deteriorates for growing number of subdomains \(N \) – the approximation of the original problem by preconditioner worsens
- lack of mechanism for propagation of boundary conditions from the physical boundary to subdomains inside
- such mechanism of global correction needed for optimal preconditioning! – **coarse problem**
Some history of DD preconditioners

BDD
- Balancing Domain Decomposition, [Mandel (1993)]
- adds coarse problem to the Neumann–Neumann method
- two-level method, multiplicative coarse correction
- optimal preconditioning $\kappa(M_{BDD}S) \leq C(1 + \log(H/h))^2$
- solve consistent singular systems for each subdomain
- coarse problem built upon nullspaces of subdomain matrices

FETI/TFETI
- Finite Element Tearing and Interconnecting
- [Farhat, Roux (1990)], [Dostál, Horák, Kučera (2006)]
- dual methods
- implicit coarse problem
Some history of DD preconditioners

BDD
- Balancing Domain Decomposition, [Mandel (1993)]
- adds coarse problem to the Neumann–Neumann method
- two-level method, multiplicative coarse correction
- optimal preconditioning $\kappa(M_{BDD} S) \leq C(1 + \log(H/h))^2$
- solve consistent singular systems for each subdomain
- coarse problem built upon nullspaces of subdomain matrices

FETI/TFTETI
- Finite Element Tearing and Interconnecting
- [Farhat, Roux (1990)], [Dostál, Horák, Kučera (2006)]
- dual methods
- implicit coarse problem
DD preconditioners with constraints

FETI-DP

- Finite Element Tearing and Interconnecting - **Dual Primal**
- [Farhat et al. (2000)]
- Functions in FETI and BDD have spikes at corners of subdomains – make these unknowns **primal** and add them to the coarse problem – solved as continuous
- Important advantage: no floating subdomains – no singular subdomain matrices – can use robust existing sparse direct solvers!
DD preconditioners with constraints

standard (two-level) BDDC

- Balancing Domain Decomposition based on Constraints
- introduced in [Dohrmann (2003)], convergence theory in [Mandel, Dohrmann (2003)]
- non-overlapping additive DD preconditioner in PCG
- two-level method, additive global coarse correction
- for many subdomains, exact solution of the global coarse problem may become expensive

extension to multiple levels

- Multispace and multilevel BDDC [Mandel, Sousedík, Dohrmann (2008)] - extension to arbitrary number of levels
standard (two-level) BDDC

- Balancing Domain Decomposition based on Constraints
- introduced in [Dohrmann (2003)], convergence theory in [Mandel, Dohrmann (2003)]
- non-overlapping additive DD preconditioner in PCG
- two-level method, additive global coarse correction
- for many subdomains, exact solution of the global coarse problem may become expensive

extension to multiple levels

- **Three-level BDDC** [Tu (2007) – 2D, 3D] – basic theory
- **Multispace and multilevel BDDC** [Mandel, Sousedík, Dohrmann (2008)] - extension to arbitrary number of levels
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
 Algorithm of standard (two-level) BDDC method
 Algorithm of Multilevel BDDC
 Parallel implementation of Multilevel BDDC
 Adaptive selection of constraints
 Parallel implementation of Adaptive BDDC
 Numerical results

Conclusions
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
 Algorithm of standard (two-level) BDDC method
 Algorithm of Multilevel BDDC
 Parallel implementation of Multilevel BDDC
 Adaptive selection of constraints
 Parallel implementation of Adaptive BDDC
 Numerical results

Conclusions
Function spaces in BDDC

- $U \subset \tilde{W} \subset W$
 - continuous at all nodes
 - continuous at selected corners
 - no continuity at interface

- enough constraints to fix floating subdomains, i.e. rigid body modes eliminated from the space
- continuity at corners, and of averages (arithmetic or weighted) over edges or faces considered
- $a(\cdot, \cdot)$ symmetric positive definite form on \tilde{W}
- corresponding matrix \tilde{A} symmetric positive definite, almost block diagonal structure, larger dimension than A
Virtual mesh

original mesh of the problem

corresponds to space U

mesh disconnected at interface

corresponds to space \tilde{W}
The abstract BDDC preconditioner

Variational form

\[M_{\text{BDDC}} : r \mapsto u = Ew, \quad w \in \tilde{W} \]

\[a(w, z) = \langle r, Ez \rangle, \quad \forall z \in \tilde{W} \]

Matrix form

\[\tilde{A} w = E^T r \]

\[M_{\text{BDDC}} r = Ew \]

Condition number bound [Mandel, Dohrmann (2003)]

\[\kappa = \frac{\lambda_{\text{max}}(M_{\text{BDDC}} S)}{\lambda_{\text{min}}(M_{\text{BDDC}} S)} \leq \omega = \sup_{w \in \tilde{W}} \frac{\|(I - E)w\|^2}{\|w\|^2_a}. \]
The abstract BDDC preconditioner

Variational form

\[M_{\text{BDDC}} : r \mapsto u = Ew, \quad w \in \tilde{W} \]

\[a(w, z) = \langle r, Ez \rangle, \quad \forall z \in \tilde{W} \]

Matrix form

\[\tilde{A}w = E^T r \]

\[M_{\text{BDDC}} r = Ew \]

Condition number bound [Mandel, Dohrmann (2003)]

\[\kappa = \frac{\lambda_{\text{max}}(M_{\text{BDDC}} S)}{\lambda_{\text{min}}(M_{\text{BDDC}} S)} \leq \omega = \sup_{w \in \tilde{W}} \frac{\|(I - E)w\|^2_a}{\|w\|^2_a}. \]
The abstract BDDC preconditioner

Variational form

$$M_{BDDC} : r \mapsto u = Ew, \quad w \in \tilde{W}$$

$$a(w, z) = \langle r, Ez \rangle, \quad \forall z \in \tilde{W}$$

Matrix form

$$\tilde{A}w = E^T r$$

$$M_{BDDC} r = Ew$$

Condition number bound [Mandel, Dohrmann (2003)]

$$\kappa = \frac{\lambda_{\max}(M_{BDDC} S)}{\lambda_{\min}(M_{BDDC} S)} \leq \omega = \sup_{w \in \tilde{W}} \frac{\| (I - E) w \|_a^2}{\| w \|_a^2}.$$
The coarse space in BDDC

In implementation, space \tilde{W} is decomposed into \tilde{W}_Δ of independent subdomain spaces and energy-orthogonal coarse space \tilde{W}_Π

$$\tilde{W} = \tilde{W}_\Delta \oplus \tilde{W}_\Pi.$$

Local energy minimization problems

On each subdomain – coarse degrees of freedom – basis functions ψ^i – prescribed values of coarse degrees of freedom, minimal energy elsewhere,

$$\begin{bmatrix}
A^i & C^{iT} \\
C^i & 0
\end{bmatrix}
\begin{bmatrix}
\psi^i \\
\Lambda^i
\end{bmatrix} = \begin{bmatrix}
0 \\
I
\end{bmatrix}.$$

- A^i ... local subdomain stiffness matrix
- C^i ... matrix of constraints – selects unknowns into coarse degrees of freedom

Matrix of coarse problem A_C assembled from local matrices $A_{Ci} = \psi^{iT} A^i \psi^i = -\Lambda^i$.
The coarse space in BDDC

subdomain problems (independent)

coarse problem (global)
One step of BDDC

Get residual at interface nodes \(r^{(k)}_{\Gamma} = g - Su^{(k)}_{\Gamma} \) and produce \textbf{preconditioned residual} \(z^{(k)}_{\Gamma} = M_{BDDC} r^{(k)}_{\Gamma} \) by

1. Distribution of residual

subdomain problems

for \(i = 1, \ldots, N \)

\[
 r^i = E^i r^{(k)}_{\Gamma}
\]

(global) coarse problem

\[
 r_C = \sum_{i=1}^{N} R^i_C \psi_i^T E^i r^{(k)}_{\Gamma}
\]

2. Correction of solution

\[
 \begin{bmatrix}
 A^i & C^i^T \\
 C^i & 0
 \end{bmatrix}
 \begin{bmatrix}
 z^i \\
 \mu^i
 \end{bmatrix}
 =
 \begin{bmatrix}
 r^i \\
 0
 \end{bmatrix}
\]

\(A_C u_C = r_C \)

3. Combination of subdomain and coarse corrections

\[
 z^{(k)}_{\Gamma} = \sum_{i=1}^{N} E^i (\psi_i R^i_C u_C + z^i)
\]

\textbf{brown formulae} – operations in parallel
One step of BDDC

Get residual at interface nodes \(r^{(k)}_{\Gamma} = g - Su^{(k)}_{\Gamma} \) and produce

preconditioned residual \(z^{(k)}_{\Gamma} = M_{BDDC} r^{(k)}_{\Gamma} \) by

1. Distribution of residual
 subdomain problems
 for \(i = 1, \ldots, N \)
 \[
 r^i = E^iT r^{(k)}_{\Gamma}
 \]

 (global) coarse problem
 \[
 r_C = \sum_{i=1}^{N} R^iT \psi^iT E^iT r^{(k)}_{\Gamma}
 \]

2. Correction of solution

 \[
 \begin{bmatrix}
 A^i & C^iT \\
 C^i & 0
 \end{bmatrix}
 \begin{bmatrix}
 z^i \\
 \mu^i
 \end{bmatrix}
 =
 \begin{bmatrix}
 r^i \\
 0
 \end{bmatrix}
 \]

 \[
 A_C u_C = r_C
 \]

3. Combination of subdomain and coarse corrections

 \[
 z^{(k)}_{\Gamma} = \sum_{i=1}^{N} E^i (\psi^i R^i_C u_C + z^i)
 \]

brown formulae – operations in parallel
One step of BDDC

Get residual at interface nodes $r^{(k)}_{\Gamma} = g - Su^{(k)}_{\Gamma}$ and produce

preconditioned residual $z^{(k)}_{\Gamma} = M_{BDDC} r^{(k)}_{\Gamma}$ by

1. Distribution of residual subdomain problems for $i = 1, \ldots, N$

$$r^i = E^i r^{(k)}_{\Gamma}$$

(global) coarse problem

$$r_C = \sum_{i=1}^{N} R^i_C \psi^i E^i r^{(k)}_{\Gamma}$$

2. Correction of solution

$$\begin{bmatrix} A^i & C^i \end{bmatrix} \begin{bmatrix} z^i \\ \mu^i \end{bmatrix} = \begin{bmatrix} r^i \\ 0 \end{bmatrix}$$

$$A_C u_C = r_C$$

3. Combination of subdomain and coarse corrections

$$z^{(k)}_{\Gamma} = \sum_{i=1}^{N} E^i (\psi^i R^i_C u_C + z^i)$$

brown formulae – operations in parallel
One step of BDDC

Get residual at interface nodes $r_{\Gamma}^{(k)} = g - Su_{\Gamma}^{(k)}$ and produce preconditioned residual $z_{\Gamma}^{(k)} = M_{BDDC} r_{\Gamma}^{(k)}$ by

1. Distribution of residual subdomain problems for $i = 1, \ldots, N$

\[r^i = E_i^T r_{\Gamma}^{(k)} \]

(global) coarse problem

\[r_C = \sum_{i=1}^{N} R_i^T \Psi_i^T E_i^T r_{\Gamma}^{(k)} \]

2. Correction of solution

\[
\begin{bmatrix}
A^i & C_i^T \\
C^i & 0
\end{bmatrix}
\begin{bmatrix}
z^i \\
\mu^i
\end{bmatrix}
= \begin{bmatrix}
r^i \\
0
\end{bmatrix}
\]

\[A_C u_C = r_C \]

3. Combination of subdomain and coarse corrections

\[z_{\Gamma}^{(k)} = \sum_{i=1}^{N} E^i (\Psi^i R_C^i u_C + z^i) \]

brown formulae – operations in parallel
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
 Algorithm of standard (two-level) BDDC method
 Algorithm of Multilevel BDDC
 Parallel implementation of Multilevel BDDC
 Adaptive selection of constraints
 Parallel implementation of Adaptive BDDC
 Numerical results

Conclusions
Multilevel extension

- Global coarse problem eventually becomes a bottleneck of parallel processing for very large problems – solve only *approximately* e.g. by
 - several multigrid cycles – [Klawonn, Rheinbach (2010)] (hybrid FETI-DP)
 - by one iteration of BDDC – *Three-level BDDC*
 - recursive application of BDDC – *Multilevel BDDC*

- BDDC is especially suitable for multilevel extension because the coarse problem has the same structure as the original FE problem (unlike in most other DD methods)

- Apply BDDC with subdomains playing the role of elements

A basis function from \widetilde{W}_Π is energy minimal subject to given values of coarse degrees of freedom on the substructure. The function is discontinuous across the interfaces between the substructures but the values of coarse degrees of freedom on the different substructures coincide.
Multilevel BDDC

Local problems and the coarse problem actually solved are in colour.
mathematical efficiency worsens with each additional level

Theorem [Mandel, Sousedík, Dohrmann (2008)]

The condition number bound $\kappa(M_{BDDC}S) \leq \omega$ of Multilevel BDDC is given by

$$\kappa(M_{BDDC}S) \leq \omega = \prod_{\ell=1}^{L-1} \omega_{\ell}, \quad \omega_{\ell} = \sup_{w_{\ell} \in \tilde{W}_{\ell}} \frac{\|(I - E_{\ell})w_{\ell}\|_a^2}{\|w_{\ell}\|_a^2}.$$
Multilevel BDDC

1st level

2nd level

3rd level

subdomain problems (independent)

coarse problem (global)
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
 Algorithm of standard (two-level) BDDC method
 Algorithm of Multilevel BDDC
 Parallel implementation of Multilevel BDDC
 Adaptive selection of constraints
 Parallel implementation of Adaptive BDDC
 Numerical results

Conclusions
Parallel implementation

BDDCML solver library

- current version 1.3
- library in Fortran 95 + MPI library
- built on top of MUMPS direct solver (both serial and parallel)
- parallel PCG and BICGSTAB (for overlapping vectors)
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
- Algorithm of standard (two-level) BDDC method
- Algorithm of Multilevel BDDC
- Parallel implementation of Multilevel BDDC
 - Adaptive selection of constraints
 - Parallel implementation of Adaptive BDDC
 - Numerical results

Conclusions
Theorem (Mandel, Dohrmann, Tezaur '05)

The abstract BDDC preconditioner satisfies

\[\kappa = \frac{\lambda_{\max}(M_{BDDC}S)}{\lambda_{\min}(M_{BDDC}S)} \leq \omega = \sup_{w \in \tilde{W}} \frac{\| (I - E)w \|_a^2}{\| w \|_a^2}. \]

- \(\| \cdot \|_a^2 = a(\cdot, \cdot) = \langle S \cdot, \cdot \rangle \) ... energy norm on space \(\tilde{W} \)
- \(S \) – Schur complement with respect to interface
- \(E \) is the operator of projection

\[E : \tilde{W} \rightarrow U, \quad \text{Range}(E) = U \]
Generalized eigenvalue problem

The operator norm ω corresponds to the largest eigenvalue of

$$(I - E)^T S (I - E) w = \lambda S w.$$

Select k largest eigenvalues and corresponding eigenvectors $\lambda_i, w_i, i = 1, \ldots, k$ and define a row of a matrix D for each of them as

$$d_i = w_i^T (I - E)^T S (I - E),$$

$$D = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_k \end{bmatrix}.$$
Redefine space

\[\tilde{W} = \left\{ w \in \tilde{W}^{\text{init}} : \; Dw = 0 \right\}. \]

Functions from \(\tilde{W} \) are \(\left\{(I - E)^T S (I - E)\right\} \)-orthogonal to \(k \) eigenvectors that spoil the condition number the most.

Theorem (Mandel, Sousedík, Šístek (online in 2011))

The abstract BDDC preconditioner based on \(\tilde{W} \) satisfies

\[\kappa = \frac{\lambda_{\text{max}}(M_{\text{BDDC}}S)}{\lambda_{\text{min}}(M_{\text{BDDC}}S)} \leq \omega_D = \lambda_{k+1}. \]

Localization of the generalized eigenproblem

Because the solution of the global generalized eigenvalue problem would be prohibitively expensive, solve a number of small eigenproblems localized to pairs of adjacent subdomains.

Subdomains Ω_i and Ω_j are called *adjacent*, if they share a face. They form a *pair* denoted by ij and \mathcal{A} denotes the set of all such pairs.

Local eigenproblem for ij-pair

$$(I - E_{ij})^T S_{ij} (I - E_{ij}) w_{ij} = \lambda_{ij} S_{ij} w_{ij}$$

Definition

Heuristic *indicator of the condition number* $\tilde{\omega}$ is defined as

$$\tilde{\omega} = \max_{ij \in \mathcal{A}} \lambda_{ij}^{max}.$$

Positive side effect – recognizes troublesome faces \Rightarrow do not add constraints where they are not necessary, i.e. ‘adaptivity’.
Adaptive selection of constraints

Algorithm

To generate constraints that will guarantee that the condition number indicator \(\tilde{\omega} \leq \tau \) for a given target value \(\tau \):

Consider arithmetic averages on all edges as initial constraints.

For all faces \(\mathcal{F}_{ij} \)

1. **Compute the largest local eigenvalues and corresponding eigenvectors, until the first \(m_{ij} \) is found such that \(\lambda_{m_{ij}} \leq \tau \), put \(k = 1, \ldots, m_{ij} - 1 \).**

2. **Compute the constraint weights** \(d_{ij} = \begin{bmatrix} d_i^j & d_j^i \end{bmatrix} \) as

\[
 d_{ij}^k = w_{ij}^k (I - E_{ij})^T S_{ij} (I - E_{ij}) .
\]

3. **Take one block, e.g., \(d_i^j \) and keep nonzero weights for the face \(\mathcal{F}_{ij} \).**

4. **Add this row to local matrices of constraints \(C_i \) and \(C_j \).**
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
 Algorithm of standard (two-level) BDDC method
 Algorithm of Multilevel BDDC
 Parallel implementation of Multilevel BDDC
 Adaptive selection of constraints
 Parallel implementation of Adaptive BDDC
 Numerical results

Conclusions
Parallel layout – the main issue

- independent distribution of subdomains and their pairs may lead to difficult communication pattern
- solve eigenproblems in rounds with size of number of processes
- within each round, first determine communication pattern, then perform LOBPCG iterations

![Diagram showing parallel layout of local eigenproblems with communication pattern marked for two of them.]

An example of a possible parallel layout of local eigenproblems with communication pattern marked for two of them.
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
 Algorithm of standard (two-level) BDDC method
 Algorithm of Multilevel BDDC
 Parallel implementation of Multilevel BDDC
 Adaptive selection of constraints
 Parallel implementation of Adaptive BDDC

Numerical results

Conclusions
Numerical results

IBM SP6

Location: CINECA, Italy
Architecture: IBM P6-575 Infiniband Cluster
Processor Type: IBM Power6, 4.7 GHz
Computing Cores: 5376
Computing Nodes: 168
RAM: 21 TB (128 GB/node)
access gained through the *HPC Europa 2* project

[Image: graphics from CINECA website]
Elasticity analysis of geocomposite

- problem of geocomposite provided by Prof. Blaheta and Dr. Starý (Institute of Geonics of AS CR)
- cubic sample, edge 75 mm
- 11.8M linear tetrahedral elements, 6.1M unknowns
- arithmetic averages on edges and faces
- required precision . . . relative residual $= \frac{\|\text{res}\|}{\|g\|} < 10^{-6}$

material distribution displacement
Strong scaling for geocomposite problem

<table>
<thead>
<tr>
<th>number of procs</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 levels (1024/1), 46 PCG its, cond. \sim50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set-up phase (sec)</td>
<td>61.0</td>
<td>37.7</td>
<td>25.7</td>
<td>23.2</td>
<td>39.5</td>
</tr>
<tr>
<td>iterations (sec)</td>
<td>22.3</td>
<td>19.9</td>
<td>27.8</td>
<td>44.9</td>
<td>97.5</td>
</tr>
<tr>
<td>3 levels (1024/128/1), 56 PCG its, cond. \sim79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set-up phase (sec)</td>
<td>49.5</td>
<td>29.0</td>
<td>18.4</td>
<td>12.6</td>
<td>11.0</td>
</tr>
<tr>
<td>iterations (sec)</td>
<td>28.5</td>
<td>22.6</td>
<td>16.7</td>
<td>14.7</td>
<td>13.2</td>
</tr>
<tr>
<td>4 levels (1024/128/16/1), 131 PCG its, cond. \sim568</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set-up phase (sec)</td>
<td>49.4</td>
<td>28.6</td>
<td>17.8</td>
<td>12.3</td>
<td>9.1</td>
</tr>
<tr>
<td>iterations (sec)</td>
<td>60.6</td>
<td>33.2</td>
<td>21.2</td>
<td>15.4</td>
<td>11.8</td>
</tr>
</tbody>
</table>
Numerical results

Darwin

| Location: University of Cambridge, UK |
| Architecture: Dell PowerEdge 1950 1U Cluster |
| Processor Type: Intel Xeon 5100 (Woodcrest), 2 cores, 3.0 GHz |
| Computing Cores: 2048 |
| Computing Nodes: 512 (2 CPUs each) |
| RAM: 4096 GB (2 GB/core) |

graphics from website of High Performance Computing Services of University of Cambridge
Weak scaling for Stokes flow in 3D cavity

- full Taylor–Hood finite elements
- comparison of PETSc (built-in ASM + BiCGstab) and BDDCML (BDDC + BiCGstab)
- partitions by METIS
- size of subdomain problems $\sim 50k$

<table>
<thead>
<tr>
<th></th>
<th>elms</th>
<th>size</th>
<th>cores</th>
<th>its</th>
<th>time</th>
<th>its</th>
<th>time</th>
<th>subs/lev</th>
<th>its.</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>40^3</td>
<td></td>
<td>1.7M</td>
<td>32</td>
<td>282</td>
<td>533s</td>
<td>18</td>
<td>122s</td>
<td>32/4/1</td>
<td>22</td>
<td>126s</td>
</tr>
<tr>
<td>50^3</td>
<td></td>
<td>3.2M</td>
<td>64</td>
<td>396</td>
<td>805s</td>
<td>19</td>
<td>132s</td>
<td>64/8/1</td>
<td>25</td>
<td>205s</td>
</tr>
<tr>
<td>64^3</td>
<td></td>
<td>6.7M</td>
<td>128</td>
<td>384</td>
<td>536s</td>
<td>21</td>
<td>186s</td>
<td>128/16/1</td>
<td>30</td>
<td>194s</td>
</tr>
<tr>
<td>80^3</td>
<td></td>
<td>13.1M</td>
<td>256</td>
<td>n/a</td>
<td>n/a</td>
<td>21</td>
<td>178s</td>
<td>256/32/1</td>
<td>36</td>
<td>201s</td>
</tr>
<tr>
<td>100^3</td>
<td></td>
<td>25.4M</td>
<td>512</td>
<td>n/a</td>
<td>n/a</td>
<td>20</td>
<td>205s</td>
<td>512/64/1</td>
<td>35</td>
<td>211s</td>
</tr>
</tbody>
</table>
Adaptive BDDC

Fox

Location: CTU Supercomputing Centre, Prague
Architecture: SGI Altix UV
Processor Type: Intel Xeon 2.67GHz
Computing Cores: 72
Computing Nodes: 12
RAM: 576 GB (8 GB/core)

Image courtesy of SGI
Elasticity analysis of cube with stiff rods

- nonlinear elasticity with St. Venant–Kirchhoff constitutive law
- domain of unit cube with nine stiff rods with Young modulus E_2, remaining material of variable E_1, with E_2/E_1 called contrast
- loaded by own weight
- 32^3, 64^3, and 128^3 tri-linear cubic elements, 2^3 and 4^3 subdomains, four tested cases:
 1. 8 subdomains, $H/h = 16$,
 2. 8 subdomains, $H/h = 32$,
 3. 64 subdomains, $H/h = 16$,
 4. 64 subdomains, $H/h = 32$.
- required precision . . . relative residual $= \frac{\|\text{res}\|}{\|g\|} < 10^{-6}$
- number of computed eigenpairs set to 10 or 15
- maximum number of LOBPCG iterations limited by 15
- tolerance on residual in LOBPCG set to 10^{-9}
- LOBPCG preconditioned by local BDDC [Sousedík 2010]
Elasticity analysis of cube with stiff rods

Example of division.

Deformed shape (magnified) coloured by magnitude of displacement.
32^3 \text{ elems, } H/h = 16 \text{ (top left), } 64^3 \text{ elems, } H/h = 16 \text{ (top right), } 64^3 \text{ elems, } H/h = 32 \text{ (bot. left), } 128^3 \text{ elems, } H/h = 32 \text{ (bot. right)
Number of iterations vs. contrast

- adaptive av., 10 eigv.
- adaptive av., 15 eigv.
- arithmetic av.

32³ elems, $H/h = 16$ (top left), 64³ elems, $H/h = 16$ (top right),
64³ elems, $H/h = 32$ (bot. left), 128³ elems, $H/h = 32$ (bot. right)
323 elems, $H/h = 16$ (top left), 643 elems, $H/h = 16$ (top right),
643 elems, $H/h = 32$ (bot. left), 1283 elems, $H/h = 32$ (bot. right)
Outline

Some motivation for domain decomposition

Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners

Balancing Domain Decomposition by Constraints (BDDC)
 Algorithm of standard (two-level) BDDC method
 Algorithm of Multilevel BDDC
 Parallel implementation of Multilevel BDDC
 Adaptive selection of constraints
 Parallel implementation of Adaptive BDDC
 Numerical results

Conclusions
Conclusions

Implementation of Multilevel BDDC

- powerful combination of Krylov subspace methods with preconditioners by combination of iterative substructuring and domain decomposition
- multilevel extension useful for maintaining scalability on large number of subdomains despite the worse mathematical efficiency
- adaptive BDDC able to solve problems not solvable by standard BDDC, but expensive for simple problems

Future work

- parallel implementation of Adaptive Multilevel BDDC – may keep the efficiency for multilevel BDDC (Matlab tests in [Sousedík (2010)])
- apply and optimize BDDCML for flow problems – CPU hours provided by PRACE-DECI project HIFLY (11/2011 – 10/2012)
Conclusions

Implementation of Multilevel BDDC

- powerful combination of Krylov subspace methods with preconditioners by combination of iterative substructuring and domain decomposition
- multilevel extension useful for maintaining scalability on large number of subdomains despite the worse mathematical efficiency
- adaptive BDDC able to solve problems not solvable by standard BDDC, but expensive for simple problems

Future work

- parallel implementation of **Adaptive Multilevel BDDC** – may keep the efficiency for multilevel BDDC (Matlab tests in [Sousedík (2010)])
- apply and optimize BDDCML for flow problems – CPU hours provided by PRACE-DECI project HIFLY (11/2011 – 10/2012)
Smith, B. F., Bjørstad, P. E., and Gropp, W. D.
Domain decomposition.

Quarteroni, A., and Valli, A.
Domain decomposition methods for partial differential equations.

Toselli, A., and Widlund, O.
Domain decomposition methods—algorithms and theory.

Kruijs, J.
Domain decomposition methods for distributed computing.

And chapters on DD are present in many other FEM as well as LA books.