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ien
e, University of TorontoThe repla
ement (or 
olle
tion or 
hoi
e) axiom s
heme BB(�) asserts bounded quanti�er ex-
hange as follows: 8i < jaj 9x< a�(i; x) ! 9w 8i < jaj�(i; [w℄i), for � in the 
lass � of formulas.The theory S12 proves the s
heme BB(�b1), and thus in S12 every �b1 formula is equivalent to a stri
t�b1 formula (in whi
h all non-sharply-bounded quanti�ers are in front). Here we prove (sometimessubje
t to an assumption) that 
ertain theories weaker than S12 do not prove either BB(�b1) orBB(�b0). We show (un
onditionally) that V 0 does not prove BB(�B0 ), where V 0 (essentially I�1;b0 )is the two-sorted theory asso
iated with the 
omplexity 
lass AC0. We show that PV does notprove BB(�b0), assuming that integer fa
toring is not possible in probabilisti
 polynomial time.Johannsen and Pollett introdu
ed the theory C02 asso
iated with the 
omplexity 
lass TC0, andlater introdu
ed an apparently weaker theory �b1�CR for the same 
lass. We use our methods toshow that �b1 �CR is indeed weaker than C02 , assuming that RSA is se
ure against probabilisti
polynomial time atta
k.Our main tool is the KPT witnessing theorem.Categories and Subje
t Des
riptors: F.4.1 [Mathemati
al Logi
℄: proof theory, model theory;F.2.2 [Nonnumeri
al Algorithms and Problems℄: 
omplexity of proof pro
edures, 
omputa-tions on dis
rete stru
turesGeneral Terms: TheoryAdditional Key Words and Phrases: bounded arithmeti
, 
ryptography, PV1. INTRODUCTIONWe are 
on
erned with the strength of various theories of bounded arithmeti
 as-so
iated with the 
omplexity 
lasses P, TC0, and AC0. Our goal is to show thatsome of these theories 
annot prove repla
ement, whi
h is the axiom s
heme8i< jaj 9x<a�(i; x)! 9w 8i< jaj�(i; [w℄i); (1)where �(i; x) 
an have other free variables (and [w℄i is de�ned below). We useBB(�) to denote repla
ement for all formulas � in a 
lass � (usually �b0 or �b1). Re-pla
ement is also sometimes known as \
olle
tion" (eg. [Kraj���
ek 1995℄) or \
hoi
e"(eg. [Zambella 1996℄). We begin by brie
y des
ribing the main theories of interest.Authors' addresses: Stephen Cook, Department of Computer S
ien
e, University of Toronto,Toronto, Ontario M5S 3G4, Canada, email: sa
ook�
s.toronto.edu. Neil Thapen, (
urrent ad-dress) St Hilda's College, University of Oxford, Cowley Pla
e, Oxford OX4 1DY, UK, email:neil.thapen�st-hildas.ox.a
.uk.Permission to make digital/hard 
opy of all or part of this material without fee for personalor 
lassroom use provided that the 
opies are not made or distributed for pro�t or 
ommer
ialadvantage, the ACM 
opyright/server noti
e, the title of the publi
ation, and its date appear, andnoti
e is given that 
opying is by permission of the ACM, In
. To 
opy otherwise, to republish,to post on servers, or to redistribute to lists requires prior spe
i�
 permission and/or a fee.

 20YY ACM 1529-3785/20YY/0700-0001 $5.00



2 � S. Cook and N. ThapenThe language of �rst order arithmeti
 that we use isf0; 1;+; �; <; jxj; (x)i; [x℄i; x#yg:Here jxj is the length of x in binary notation, (x)i is the ith bit of x, [x℄i is theith element of the sequen
e 
oded by x, and x#y is 2jxj�jyj. All our theories inthis language are assumed to in
lude a set of axioms BASIC �xing the algebrai
properties of these symbols; see [Buss 1986; Kraj���
ek 1995℄ for more detail. (Thesereferen
es do not take [x℄i and (x)i as primitive, but these are simple fun
tionsand we 
an add them, and axioms for them, without 
hanging the power of ourtheories.)In the �rst order setting we will look at BB(�b0), or \sharply bounded repla
e-ment". A sharply bounded or �b0 formula is one in whi
h every quanti�er is boundedby a term of the form jtj. A �b1 formula is a sharply bounded formula pre
ededby a mixture of bounded existential and sharply bounded universal quanti�ers. Astri
t �b1 formula is a sharply bounded formula pre
eded by a blo
k of boundedexistential quanti�ers.The strongest theory we look at is S12 [Buss 1986℄, de�ned as BASIC togetherwith \length indu
tion", that is the LIND axiom�(0) ^ 8x< jaj (�(x)! �(x + 1))! �(jaj) (2)for all �b1 formulas �.S12 proves BB(�b1), and hen
e for every S12 -formula � there is a stri
t-�b1 formula�0 su
h that S12 proves (�$ �0). This fa
t may have in
uen
ed Buss's [Buss 1986℄original de
ision not to 
hoose stri
t �bi as the standard de�nition of �bi . The generalde�nition allows Buss to prove his Thm 2.2 showing that if a theory T+ extends Tby adding �b1-de�ned fun
tion symbols then �b1 formulas in the extended languageare provably equivalent to �b1 formulas in the original language. This result maynot hold if �b1 is taken to be stri
t �b1 and T does not prove repla
ement. Weshow here that 
ertain weaker theories (likely) do not prove repla
ement. For thesetheories, stri
t �b1 is a more appropriate de�nition, and extensions by �b1-de�nedfun
tions must be handled with 
are.The �rst order theory we will use most often is PV [Cook 1975℄ (
alled PV1 in[Kraj���
ek 1995℄ and QPV in [Cook 1998℄). This is de�ned by expanding our lan-guage to in
lude a fun
tion symbol for every polynomial time algorithm, introdu
edindu
tively by Cobham's limited re
ursion on notation. These are 
alled PV fun
-tions, and quanti�er free formulas in this language are PV formulas. One way toaxiomatize PV is BASIC plus universal axioms de�ning the new fun
tion symbolsplus the indu
tion s
heme IND�(0) ^ 8x<a (�(x)! �(x + 1))! �(a)for open formulas �(x). However it is an important fa
t that PV is a universaltheory, and 
an be axiomatized by its universal 
onsequen
es [Buss 1986; Cook1998℄.PV and S12 are 
losely linked to the 
omplexity 
lass P. The provably total �b1(or even stri
t �b1) fun
tions in these theories are pre
isely the polynomial timefun
tions. S12 is �b1-
onservative over PV [Buss 1986℄, but PV 
annot prove the �b1-LIND axiom s
heme (2) for S12 unless the polynomial hierar
hy (provably) 
ollapsesACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



The strength of repla
ement in weak arithmeti
 � 3[Kraj���
ek et al. 1991; Buss 1995; Zambella 1996℄.First order theories are unsuitable for dealing with very weak 
omplexity 
lassessu
h as AC0, in whi
h we 
annot even de�ne multipli
ation of strings. In thissetting it is more natural to work with a two-sorted or \se
ond order" theory. V 0is the theory des
ribed in the Notes [Cook 2002℄, page 56. It is based on �p0-
omp[Zambella 1996℄ and is essentially the same as I�1;b0 . The two sorts are numbersand strings (�nite sets of numbers). There are number axioms giving the basi
properties of 0; 1;+; �;�, and two axioms de�ning the \length" jX j of a �nite setX to be 1 plus the largest element in X , or 0 if X is empty. Finally there is the
omprehension s
heme for �B0 formulas. These are formulas whi
h allow boundednumber quanti�ers but no string quanti�ers, and represent pre
isely the uniformAC0 relations on their free string variables.If we add to V 0 a fun
tion X �Y for string multipli
ation, we get a theory equiv-alent to the �rst order theory �b0 � LIND. The number sort would 
orrespond tosharply bounded numbers and the string sort to \large" numbers; the �B0 indu
tionavailable in V 0 would 
orrespond to �b0 � LIND.With this 
orresponden
e (known as RSUV isomorphism [Takeuti 1993; Razborov1993℄) in mind, we 
onsider V 0 and the �rst order fragments of S12 as �tting natu-rally into one hierar
hy of theories of bounded arithmeti
. The only di�eren
es be-tween the two approa
hes will be in the notation for strings and sequen
es. (z)i = 1in the �rst order setting 
orresponds to Z(i) or i 2 Z in the se
ond order setting;[z℄i 
orresponds to Z [i℄ (see next paragraph).In se
ond order bounded arithmeti
 the repla
ement s
heme (1) be
omes8i<n 9X<n�(i;X)! 9W 8i<n�(i;W [i℄):Here 9X<n� stands for 9X(jX j < n^ �) and W [i℄(u) is formally W (hi; ui) wherehi; ui is a standard pairing fun
tion (so W [i℄ is row i in the two-dimensional bitarray W ).Our main results are that V 0 does not prove �B0 repla
ement (un
onditionally)and that, unless integer fa
toring is possible in probabilisti
 polynomial time, PVdoes not prove �b0 repla
ement. (As mentioned above, S12 does prove �b0 repla
e-ment.)We summarize our results with a pi
ture of the stru
ture of theories between S12and V0. An arrow on the diagram represents in
lusion. To the right of an arrow wegive a suÆ
ient 
ondition for the two theories to be distin
t. A bold arrow indi
atesthat this 
ondition is true, and that the theories in fa
t are distin
t. To the left ofan arrow we show the 
onservativity between the two theories.We will begin with the bottom of the diagram. We have already talked about V 0and PV. �b1 � CR was introdu
ed in [Johannsen and Pollett 2000℄ to 
orrespondto the 
omplexity 
lass TC0 of 
onstant-depth 
ir
uits with threshold gates. The�b1 fun
tions provably total in �b1 � CR are pre
isely the uniform TC0 fun
tions.The theory is de�ned as the 
losure of the BASIC axioms and the LIND axiomsfor open formulas under the normal rules of logi
al dedu
tion together with the�b1-
omprehension rule: if we 
an prove that a �b1 formula �(x) is equivalent to a�b1 formula  (x), then we are allowed to introdu
e 
omprehension for �,9w 8i< jaj ; (w)i = 1$ �(i):ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



4 � S. Cook and N. Thapen

PV
V0

�b1-CR
�b0-LIND +�b1 
omprehension axiom

PH 6� �p2 \ �p2

fa
toring is hard
�b0-LIND + BB(�b0)

V0+ BB(�B0 ) V0 6` PHP

V0 6` PHP

8�b1
8�b1

8�b189�B0

8�b1

8�b1 PV + BB(jjxjj;�b0)

S12

PARITY =2 AC0 RSA is hard

TC0 6= P

TC0 6= P

fa
toring is hardPV + BB(�b0)
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The strength of repla
ement in weak arithmeti
 � 5�b1�CR proves indu
tion for sharply bounded formulas, so we 
an think of V 0 asa subtheory of it. In fa
t [Nguyen 2004℄ de�nes an extension VTC0 of V 0 by addingan axiom for the fun
tion NUMONES(X) (whi
h 
ounts the number of 1's in thestring X) and proves VTC0 is RSUV isomorphi
 to �b1 � CR. But VTC0 provesthe pigeonhole prin
iple, as represented by a �B0 formula PHP(X;n) [Nguyen 2004℄,and V 0 does not [Cook 2002℄. Hen
e �b1 � CR is stri
tly stronger than V 0.The �b1-
omprehension rule is a derived rule of PV. This is be
ause by results in[Buss 1986℄ if a formula � is provably �b1 in PV, then PV proves that the 
hara
ter-isti
 fun
tion of � is 
omputable in polynomial time, and hen
e that 
omprehensionholds for �. Thus PV is an extension of �b1 � CR.PV is separated from �b1 � CR by the 
ir
uit value prin
iple, whi
h says that\for all 
ir
uits C and all inputs �x, there exists a 
omputation of C on �x". This isprovable in PV, but under the assumption that P does not equal uniform TC0 it isnot provable in �b1 � CR.Turning now to the top of the diagram, [Buss 1986℄ proves the 8� b1-
onservativityof S12 over PV. If PV+BB(�b0) proves S12 , then PV ` S12 [Zambella 1996℄ and hen
ethe bounded arithmeti
 hierar
hy 
ollapses to PV and the polynomial hierar
hy PH
ollapses to �p2 \ �p2 [Zambella 1996; Buss 1995℄.The 89�B0 -
onservativity of V 0+BB(�B0 ) over V 0 is from Zambella [1996℄. �b0�LIND+BB(�b0) was introdu
ed by Johannsen and Pollett [1998℄(where they 
all itC02 ), and proved to be 8�b1 
onservative over �b1 � CR in [Johannsen and Pollett2000℄. From these 
onservativity results it follows that V 0+BB(�B0 ) does not provethe pigeonhole prin
iple and �b1 � CR + BB(�b0) does not prove the 
ir
uit valueprin
iple (unless P equals uniform TC0), whi
h gives us the separations betweenthe three theories with repla
ement.In the body of the paper we show the separations between the theories with andwithout various kinds of repla
ement, using a similar argument in all 
ases.In se
tion 2 we des
ribe how our general argument goes. In se
tion 3 we use ittogether with the fa
t that parity is not 
omputable in nonuniform AC0 to separateV 0 from V 0 +BB(�b0).In se
tion 4 we show that if PV proves �b0-repla
ement, then fa
toring is possiblein probabilisti
 polynomial time. (This strengthens a result in [Thapen 2002℄ wherethe weaker 
on
lusion \RSA is inse
ure" was proved.) We observe that this is trueeven if we look at weak versions of �b0-repla
ement, where we 
ode very shortsequen
es of witnesses; for example BB(�b0; jjxjj) in the diagram is the s
heme ofrepla
ement for sequen
es of double-log length:8i< jjajj 9y<a�(i; y)! 9w 8i< jjajj�(i; [w℄i):The dotted line in the diagram represents the fa
t that if fa
toring is hard, thenall the theories BB(�b0; jxj), BB(�b0; jjxjj), BB(�b0; jjjxjjj), : : : are distin
t (in fa
twe show something slightly stronger than this). By a similar argument, all thesetheories are distin
t over V 0 (in pla
e of PV), without any assumptions, but forthe sake of tidiness we have not put this on the diagram.The theory of strong �b1 
omprehension is like �b1�CR, ex
ept that rather thanhaving a rule that if a formula is provably �b1 then 
omprehension holds for it, weACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



6 � S. Cook and N. Thapenhave the \�b1 
omprehension axiom s
heme"8x (�(x) $ : (x)) ! 9w 8i< jaj (�(i)$ (w)i = 1) (3)where �;  2 �b1 (and may 
ontain other parameters); so 
omprehension holds for� in a stru
ture, if � is �b1 in that stru
ture. The question is raised in [Johannsenand Pollett 2000℄, whether this theory is stri
tly stronger than �b1 �CR. We showthat it is, under a 
ryptographi
 assumption. We 
onsider a prin
iple not shownon the diagram, whi
h we 
all \unique repla
ement". We show that if RSA isse
ure against probabilisti
 polynomial time atta
k then PV does not prove uniquerepla
ement, and that it follows that PV, and hen
e �b1 � CR, does not prove the�b1 
omprehension axiom s
heme.We have not looked for a separation between this last theory and �b0 � LIND +BB(�b0).A preliminary version of this paper appears in [Cook and Thapen 2004℄.2. WITNESSING WITH AN INTERACTIVE COMPUTATIONFirst we re
all a standard lemma.Lemma 2.1. Over BASIC, �b0-repla
ement is equivalent to stri
t �b1-repla
ement.Hen
e over PV, �b0-repla
ement is equivalent to repla
ement for PV formulas, sin
ePV proves that every PV formula is equivalent to a stri
t �b1 formula.Similarly over V 0, �B0 -repla
ement is equivalent to �B1 -repla
ement, where a �B1formula is a �B0 formula pre
eded by a blo
k of bounded existential string quanti-�ers. �Our main tool in this paper is the KPT witnessing theorem. We state it here forPV and polynomial time, although it holds in a mu
h more general form.Theorem 2.2. [Kraj���
ek et al. 1991℄ Let � be a PV formula and suppose PV `8x 9y 8z �(x; y; z). Then there exists a �nite sequen
e f1; : : : ; fk of PV fun
tionsymbols su
h thatPV ` 8x8�z; �(x; f1(x); z1) _ �(x; f2(x; z1); z2)_ : : : _ �(x; fk(x; z1; : : : ; zk�1); zk):Proof. Let b; 
1; 
2; ::: be a list of new 
onstants, and let t1; t2; ::: be an enu-meration of all terms built from symbols of PV together with b; 
1; 
2; :::, where theonly new 
onstants in tk are among fb; 
1; :::; 
k�1g. It suÆ
es to show thatPV [ f:�(b; t1; 
1);:�(b; t2; 
2); : : : ;:�(b; tk ; 
k)gis unsatis�able for some k.Suppose otherwise. Then by 
ompa
tnessPV [ f:�(b; t1; 
1);:�(b; t2; 
2); :::g (4)has a model M . Sin
e PV is universal, the substru
ture M 0 
onsisting of thedenotations of the terms t1; t2; ::: is also a model for (4). It is easy to see thatM 0 j= PV + 8y9z:�(b; y; z)and hen
e PV 6` 8x9y8z�(x; y; z).ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



The strength of repla
ement in weak arithmeti
 � 7Now 
hoose a fun
tion f whi
h 
an be 
omputed in polynomial time but whi
his hard to invert (in a more general setting, we would 
hoose a fun
tion whi
h isin the 
omplexity 
lass 
orresponding to the theory we are looking at, but whoseinverse probably is not). Suppose PV proves the following instan
e of repla
ement(whi
h has a and y as parameters, and m = jaj):8i<m 9u<a f(u) = [y℄i ! 9w 8j<mf([w℄j) = [y℄j :We 
an rewrite this as9i<m 9w 8u<a ; f(u) = [y℄i ! 8j<mf([w℄j) = [y℄j :Applying our witnessing theorem, we get k 2 N and fun
tions g1; : : : ; gk andh1; : : : hk (whi
h have a as a suppressed argument), su
h thatPV ` 8�z<a ; (f(z1) = [y℄g1(y) ! 8j<mf([h1(y)℄j) = [y℄j)_ (f(z2) = [y℄g2(y;z1) ! 8j<mf([h2(y; z1)℄j) = [y℄j)_ : : :_ (f(zk) = [y℄gk(y;z1;:::;zk�1) !8j<mf([hk(y; z1; : : : ; zk�1)℄j) = [y℄j)This allows us to write down an algorithm whi
h, given an input y (
onsidered as asequen
e [y℄0; : : : ; [y℄m�1), will ask for a pre-image of f on at most k elements of y.With this information it will output a number w 
oding a sequen
e of pre-imagesof all m elements of y.The algorithm is as follows. Let w = h1(y). If 8j<mf([w℄j) = [y℄j then outputw and halt. Otherwise 
al
ulate g1(y) and ask for a pre-image of [y℄g1(y); store theanswer as z1. Then let w = h2(y; z1). If 8j <mf([w℄j) = [y℄j then output w andhalt. Otherwise 
al
ulate g2(y; z1) and ask for a pre-image of [y℄g2(y;z1); store theanswer as z2, and so on. By our assumption the algorithm will run for at most ksteps of this form before it outputs a suitable w.Now �x a su
h that jaj = m > k, and 
hoose a sequen
e [x℄0; : : : ; [x℄m�1 ofnumbers less than a. Let y en
ode the pointwise image of x under f . Run thealgorithm above, and reply to queries with elements of x. We will end up withw en
oding a sequen
e of pre-images of y, whi
h will 
lash in some way with ourassumption that f is hard to invert. If f is an inje
tion, w will be the same as x;we use this in se
tion 3. If f is not an inje
tion and x was 
hosen at random, thenw is probably di�erent from x; we use this in se
tions 4 and 5. 11In this paper we only 
onsider worst-
ast 
omplexity. Russell Impaglizzo has pointed out thatif we 
onsider average-
ase 
omplexity, we 
an use our algorithm to show that no one-way per-mutations exist (under our assumption about repla
ement). Suppose f is a polynomial timepermutation that maps m-bit strings to m-bit strings. We will show that f is not one-way, byshowing that it is not hard to invert in the average 
ase. Let v be a random string, whi
h we wantto �nd a pre-image of. Choose strings u1; : : : ; um at random and let v1; : : : ; vm be their imagesunder f . Insert v into this sequen
e of images at a random pla
e to get a sequen
e of m + 1strings uniformly distributed amongst all su
h sequen
es (sin
e f is a permutation), and give thissequen
e to our algorithm. It will ask for k pre-images and with high probability we will be ableto give 
orre
t answers, using the uis. Then the algorithm will output pre-images for every stringACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



8 � S. Cook and N. ThapenThe important properties of PV used in the argument above are that it is univer-sal and 
an de�ne fun
tions by 
ases (needed for the KPT witnessing theorem) andthat it 
an manipulate sequen
es. We show now how to make V 0 into a universaltheory in whi
h we 
an 
arry out the same argument.We start by referring to [Cook 2002℄, pp 66{73. A relation R(�x; �Y ) is in (uniform)AC0 i� it is de�ned by some �B0 formula A(�x; �Y ). A number fun
tion f : Nk �(f0; 1g�)` �! N is an AC0 fun
tion i� there is an AC0 relation R and a polynomialp su
h that f(�x; �Y ) = min z < p(�x; j �Y j) R(z; �x; �Y ) (5)A string fun
tion F (�x; �Y ) is an AC0 fun
tion i� jF (�x; �Y )j � p(�x; j �Y j) for somepolynomial p, and the bit graphBF (i; �x; �Y ) � F (�x; �Y )(i)is an AC0 relation.We denote by V 0(FAC0) a 
onservative extension of V 0 obtained by adding aset FAC0 of fun
tion symbols with universal de�ning axioms for all AC0 fun
tions,based on the above 
hara
terizations. FAC0 is essentially R � def in [Zambella1996℄.) This 
an be done in su
h a way that V 0(FAC0) is a universal theory. Inparti
ular, the �B0 
omprehension axioms follow sin
e for every �B0 formula � thereis a FAC0 string fun
tion whose range is the set of strings asserted to exist by thethe 
omprehension axiom for �. Further, from (5) it is 
lear that for every �B0formula � there is a quanti�er-free formula �0 in the language of V 0(FAC0) su
hthat V 0(FAC0) ` (�$ �0)From these remarks, it is 
lear that the usual proof of the KPT witnessing theo-rem 
an be adapted to show the following:Theorem 2.3. Let �(X;Y; Z) be a �B0 formula su
h that 8X9Y 8Z�(X;Y; Z) isprovable in V 0. Then there are FAC0 fun
tions F1; :::; Fk su
h thatV 0(FAC0) ` 8X8 �Z; �(X;F1(X); Z1) _ �(X;F2(X;Z1); Z2)_ : : : _ �(X;Fk(X;Z1; :::; Zk�1); Zk):Using this we 
an show that if V 0 proves �B0 -repla
ement, then for any AC0fun
tion F there exists k 2 N and a uniform AC0 algorithm that will �nd a pre-image under F of any sequen
e Y [0℄; : : : ; Y [m�1℄ of strings by asking at most kqueries of the form \what is a pre-image of Y [i℄?"3. REPLACEMENT IN V0 AND PARITYLet PARITY be the set of all strings over f0; 1g with an odd number of 1s. By a(nonuniform) AC0 
ir
uit family we mean a polynomial size bounded depth familyhCn : n 2 Ni of Boolean 
ir
uits over ^;_;: su
h that Cn has n inputs and oneoutput. Ajtai's theorem [Ajtai 1983; Furst et al. 1984℄ states that no su
h 
ir
uitfamily a

epts PARITY .in the sequen
e, in
luding v.ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



The strength of repla
ement in weak arithmeti
 � 9We show that if V 0 proves the �B0 repla
ement s
heme, then (using KPT wit-nessing) there exists a (uniform) randomized AC0 algorithm for PARITY . Thisalgorithm shows the existen
e of a (uniform) AC0 
ir
uit family su
h that ea
h
ir
uit has a ve
tor �r of random input bits in addition to the standard input bits,and with probability p > 2=3 the 
ir
uit 
orre
tly determines whether the standardinput is in PARITY and with probability 1�p the 
ir
uit produ
es an output indi-
ating failure. From this a standard argument shows the existen
e of a nonuniformAC0 
ir
uit family for parity, violating the above theorem.Let PAR be the fun
tion that maps a binary string of length m to its parityve
tor. That is, PAR(m;Y ) = X if jX j < m and, for ea
h i < m, X(i) is theparity of the string Y (0) : : : Y (i). In what follows we take m to be a parameter,assume Y is an m-bit string, and suppress the argument m from PAR(m;Y ).Plainly PAR(Y ) 
annot be 
omputed in AC0. However its inverse, whi
h we will
all UNPAR, is in uniform AC0: the ith bit of UNPAR(X) is given by the �B0formula (i = 0^X(i))_ (i > 0^X(i� 1)�X(i)). Here UNPAR has an argumentm, whi
h we suppress.Noti
e also that for all m-bit strings A;B;C, writing � for bitwise XOR, ifA = B � C then PAR(A) = PAR(B)� PAR(C).Theorem 3.1. V 0 does not prove BB(�B0 ).Proof. Suppose V 0 ` BB(�B0 ). Then applying the argument of se
tion 2 to thefun
tion UNPAR, for some �xed k there is a uniform AC0 algorithm whi
h, forany sequen
e Y [0℄; : : : ; Y [m�1℄ of binary strings of length m makes k queries of theform \what is PAR(Y [i℄)?" and outputs the sequen
e of parity ve
tors of Y .We will show how to use this algorithm to 
ompute the parity of a single string inuniform randomized AC0. Suppose m � 3k and let I be the input string of lengthm whi
h we want to 
ompute the parity of.Choose m strings U0; : : : ; Um�1 in f0; 1gm at random, and for ea
h i 
omputeVi = UNPAR(Ui). Choose a number r, 0 � r < m, uniformly at random. De�nethe string Y (thought of as an m�m binary matrix) by the 
onditionY [i℄ = � Vi if i 6= rI � Vr if i = r.Sin
e for ea
h m the fun
tion UNPAR de�nes a bije
tion from the set f0; 1gm toitself, and sin
e for ea
h I with jI j < m the map X 7! I�X also de�nes a bije
tionfrom that set to itself, it follows that the string Y de�ned above, interpreted as anm�m bit matrix, is uniformly distributed over all su
h matri
es.Now run our intera
tive AC0 algorithm on Y . If the algorithm queries \what isPAR(Y [i℄)?" for i 6= r, reply with Ui (whi
h is the 
orre
t answer). If the algorithmqueries \what is PAR(Y [r℄)?", then abort the 
omputation.Sin
e at most k di�erent values of i are 
ompared to r and sin
e for ea
h input Iea
h pair (Y; r) is equally likely to have been 
hosen, it follows that the 
omputationwill be aborted with probability at most k=m � 1=3.Hen
e with probability at least 2/3 the algorithm is not aborted, we are able toanswer all the queries 
orre
tly, and we obtain W su
h that W [r℄ = PAR(Y [r℄) =ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



10 � S. Cook and N. ThapenPAR(I � Vr). But I = Vr � (I � Vr) and hen
ePAR(I) = PAR(Vr)� PAR(I � Vr)= Ur �W [r℄We use this to 
ompute PAR(I) and use bit m�1 of PAR(I) to determine whetherI 2 PARITY .For ea
h input I the algorithm su

eeds with probability at least 2/3, where theprobability is taken over its random input bits.Sin
e no su
h AC0 algorithm exists, it follows that V 0 does not prove the �B0repla
ement s
heme.4. REPLACEMENT IN PV AND FACTORINGWe adapt the proof [Rabin 1979℄ that 
ra
king Rabin's 
ryptosystem based onsquaring modulo n is as hard as fa
toring.Let n be the produ
t of distin
t odd primes p and q. Suppose 0 < x1 < n andg
d(x1; n) = 1. Let 
 = x21. Then 
 has pre
isely four square roots x1; x2; x3; x4modulo n. This 
an be seen as follows: let xp = (x1 mod p) and xq = (x1 modq). By the Chinese remainder theorem there are uniquely determined numbersx1; x2; x3; x4 with 0 < xi < n su
h thatx1 � xp (mod p) x1 � xq (mod q)x2 � xp (mod p) x2 � �xq (mod q)x3 � �xp (mod p) x3 � xq (mod q)x4 � �xp (mod p) x4 � �xq (mod q)Now x1�x2 � 0 (mod p) and x1�x2 � 2xq 6� 0 (mod q), so g
d(x1�x2; n) = p.So from x1 and x2 we 
an re
over p, and similarly from x1 and x3 we 
an re
overq. Hen
e if we have one square root of 
, and are then given a square root at random,we 
an fa
tor n with probability 12 .Theorem 4.1. If PV proves repla
ement for sharply bounded formulas, thenfa
toring (of produ
ts of two odd primes) is possible in probabilisti
 polynomialtime.Proof. We will use our standard argument, taking squaring modulo n as ourfun
tion f (so f has n as a parameter).If PV proves BB(�b0) then there is polynomial time algorithm whi
h, for some�xed k 2 N, given any sequen
e y0; : : : ; ym�1 of squares (modulo n), makes at mostk queries of the form \what is the square root of yi?" and, if these are answered
orre
tly, outputs square roots of all the yis.Now suppose n is large enough that m = jnj > k. Choose numbers x0; : : : ; xm�1uniformly at random with 0 < xi < n. We may assume that g
d(xi; n) = 1 for alli, sin
e otherwise we 
an immediately �nd a fa
tor of n.For ea
h i let yi = (x2i mod n). Let y 
ode the sequen
e y0; : : : ym�1, so [y℄i = yi.Noti
e that ea
h xi is distributed uniformly amongst the four square roots of [y℄i.Run our algorithm, and to ea
h query \what is the square root of [y℄i?", answerwith xi. We will get as output w 
oding a sequen
e [w℄0; : : : ; [w℄m�1 of square rootsof [y℄0; : : : ; [y℄m�1.ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



The strength of repla
ement in weak arithmeti
 � 11If we think of n as �xed, the value of w depends only on the inputs given to thealgorithm, namely y and the k many numbers xi that we gave as replies. Let i besome index for whi
h xi was not used. Then xi is distributed at random among thesquare roots of [y℄i, and [w℄i is a square root of [y℄i that was 
hosen without usingany information about whi
h square root xi is. Hen
e g
d(xi � [w℄i; n) is a fa
torof n with probability 12 .Noti
e that the only property of the fun
tion j j we used was that we 
ould �ndsome n with jnj > k. So any nonde
reasing, not eventually 
onstant fun
tion woulddo in the pla
e of j j. Hen
e if PV only proves repla
ement for very short sequen
es,that is still enough to give us fa
toring.In fa
t under the assumption that fa
toring is hard we 
an show that theserepla
ement s
hemes form a hierar
hy. For any � with one argument, let BB(�;PV)be the axiom s
heme:8i<�(b) 9y<b�(i; y)! 9w 8i<�(b)�(i; [w℄i)for all PV formulas �. We will assume that our base theory proves that �(x) < jxjand that � is in
reasing.We need a generalization of a result of Zambella, lemma 3.3 of [Zambella 1996℄.The lemma there is presented for a two-sorted system similar to V 0 and with jxjrather than �(x).An 9bPV formula is a PV formula pre
eded by a bounded existential quanti�er;modulo PV this is the same as a stri
t �b1 formula.Lemma 4.2. Any model N j= PV has an 9bPV-elementary extension to a modelM j= PV+BB(�;PV) su
h that every element of M is of the form f(a;�b) for somef 2 PV, a 2 N and �b � �(M), where �(M) = fx 2 M : x < �(y); some y 2 Mg.Informally, M is formed from N by only adding new \�-small" elements and 
losingunder PV fun
tions.Proof. Let L be the language of PV with the addition of a name for everyelement of N , and let T be the universal theory of N in this language, so everymodel of T will be an 9-elementary, and hen
e 9bPV-elementary, extension of N .Enumerate as (t1; �1(x; y)); (t2; �2(x; y)); : : : all pairs 
onsisting of 
losed terms inL and binary PV formulas with parameters from L. We will use this to 
onstru
ta 
hain T = T0 � T1 � T2 � : : : of theories.Suppose that Ti has been 
onstru
ted and is a 
onsistent, universal theory. IfTi ` 8x < �(ti+1) 9y �i+1(x; y) then put Ti+1 = Ti. Otherwise introdu
e a new
onstant symbol 
 and putTi+1 = Ti [ f
 < �(ti+1)g [ f8y:�i+1(
; y)g:Note that Ti+1 is 
onsistent and universal.Let T � be the union of this 
hain of theories, and let L� be L together with allthe new 
onstant symbols that were added in the 
onstru
tion of T �. Enumerate allpairs of 
losed terms and binary formulas in L�, and repeat the above 
onstru
tionto get a theory T �� and a language L��. Repeat this step ! times, and let T+ bethe union of the theories and L+ its language.T+ is 
onsistent and universal, so there is a model M � T+ ea
h element ofwhi
h is named by some 
losed L+-term. M � T , so M is an 9bPV-elementaryACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



12 � S. Cook and N. Thapenextension of N . Also, ea
h time a new 
onstant 
 was introdu
ed to L+, 
 < �(t)was introdu
ed to T+ for some term t. So M is the 
losure of elements of N andnew \�-small" elements, as required.To show that M is a model of BB(�;PV), suppose that a is an element of Mand �(x; y) is a PV formula with parameters from M , andM � 8x<�(a) 9y �(x; y):Then by the 
onstru
tion of M , we may assume that a is named by some 
losedL+ term t and that �(x; y) is a parameter-free L+ formula; and by the 
onstru
tionof T+ we must have that T+ ` 8x<�(t) 9y �(x; y), sin
e T+ either proves this orits negation. But T+ is a universal theory, so by using Herbrand's theorem and theproperties of PV we 
an �nd a PV fun
tion symbol f (with parameters) su
h thatT+ ` 8x<�(t)�(x; f(x)). Now by the 
omprehension available in PV, we 
an �ndsome w 2M su
h that M � 8x<�(t)�(x; [w℄x), as required.We 
an now adapt the proof of the KPT witnessing theorem to get the following:Theorem 4.3. SupposePV +BB(�;PV) ` 8x 9y 8z �(x; y; z)for an 9bPV formula �. Then there exist k 2 N, a term s(x; �z) and fun
tionsf1; : : : ; fk su
h thatPV ` 8x8�z; 9i<�(s)k �(x; [f1(x)℄i; [z1℄i)_ 9i<�(s)k �(x; [f2(x; z1)℄i; [z2℄i)_ : : : _ 9i<�(s)k �(x; [fk(x; z1; : : : ; zk�1)℄i; [zk℄i)(we in
lude the exponent k here be
ause the range of � might not be 
losed undermultipli
ation).Proof. Enumerate all pairs of PV fun
tions as (s1; f1); (s2; f2); : : : with in�niterepetitions in su
h a way that for ea
h k both sk and fk take k or fewer arguments.Assume that the 
on
lusion of the theorem is false, and let T be the theoryPV+f8i<�(s1(b; 
1))1 :�(b; [f1(b)℄i; [
1℄i);8i<�(s2(b; 
1; 
2))2 :�(b; [f2(b; 
1)℄i; [
2℄i); : : :gwhere b and 
1; 
2; : : : are new 
onstant symbols. Then T is �nitely satis�able (we
an take the term s in the statement of the theorem as the sum of our �nite set ofterms s1; : : : ; sk).Let N be a model of T , and let N 0 � N be the substru
ture 
onsisting of all theelements named by terms. Sin
e T is universal, N 0 j= T . Let M be the extensionof N given by lemma 4.2 to a model of BB(�;PV). By 9bPV elementariness, M isalso a model of T .Now let a be any element of M . By the 
onstru
tion of M , for some �d � �(M),some e 2 N 0 and some PV fun
tion g we have a = g( �d; e). Furthermore by the
onstru
tion of N 0 we know that �d < �(h1(b; 
1; : : : ; 
k)) and e = h2(b; 
1; : : : ; 
k)for some k and some PV fun
tions h1 and h2.In this paragraph we identify a number i < �(h1(b; �
))k with the sequen
e�i = i1 : : : ik of numbers less than �(h1(b; �
)) that it 
odes. We 
an �nd l >ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.
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ement in weak arithmeti
 � 13k su
h that fl is the PV fun
tion symbol that takes as input b; 
1; : : : ; 
l andoutputs (as a single number) the sequen
e w1 : : : w�(h1(b;
1;:::;
k))k where wi =g(�i; h2(b; 
1; : : : ; 
k)). Then a = [fl(b; 
1; : : : ; 
l)℄d and sin
e M j= T we haveM j= :�(b; a; [
l+1℄d). Here a was 
hosen arbitrarily, so we have shown thatM j= PV +BB(�;PV) + :8x 9y 8z �(x; y; z).Corollary 4.4. Suppose that fa
toring is not possible in probabilisti
 polyno-mial time. Then BB(�;PV) is not provable in PV + BB(
;PV), for terms �; 
where �(x); 
(x) < jxj and � grows faster than any polynomial in 
.Proof. Our standard argument is that if repla
ement is provable in PV, thenthere is a polynomial time intera
tive algorithm that queries k square roots andoutputs jnj square roots, for some �xed k 2 N.By theorem 4.3 we 
an show, by a similar argument, that if PV + BB(
;PV) `BB(�;PV) then we have a polynomial time intera
tive algorithm that queriesk
(n)k square roots modulo n and outputs �(n) square roots, for some �xed k 2 N.So if n is suÆ
iently large that �(n) > k
(n)k, we 
an use the argument oftheorem 4.1 to fa
tor n.This gives a hierar
hy of theoriesPV + BB(jxj;PV) � PV +BB(jjxjj;PV) � : : :The same argument goes through in V 0. One way to see this is to noti
e thatthe important di�eren
e between PV and V 0 is that the PV fun
tions are 
losedunder polynomial time iteration, and no su
h iteration is used in the proof here.So we have the un
onditional separation resultTheorem 4.5. BB(�;�B0 ) is not provable in V 0 + BB(
;�B0 ), for terms �; 
where �(n); 
(n) < n and � grows faster than any polynomial in 
.Proof. If the theorem is false, then there is k 2 N and an intera
tive algorithmthat, given �(n) many ve
tors v1; : : : ; v�(n), ea
h of length n, will make k
(n)kqueries of the form \what is the parity ve
tor of vi?" and then output the parityve
tors of all the vis. So if �(n) � 3k
(n)k, then by adapting the argument ofse
tion 3 we get a probabilisti
 uniform AC0 algorithm whi
h 
omputes parity.5. UNIQUE REPLACEMENT IN PV AND RSAWe de�ne \unique repla
ement" to be the s
heme8i< jaj 9!x<b�(i; x)! 9w 8i< jaj�(i; [w℄i):Theorem 5.1. If PV proves unique repla
ement for sharply bounded formulas,then the inje
tive WPHP for PV formulas 
an be witnessed in probabilisti
 polyno-mial time (and hen
e in parti
ular we 
an 
ra
k RSA [Kraj���
ek and Pudl�ak 1998℄).Proof. (Simpli�ed from the model-theoreti
 proof in [Thapen 2002℄.) Firstnoti
e that it is suÆ
ient to show that PV does not prove unique repla
ement forsome PV formula �. For suppose that � is de
ided by the polynomial time ma
hinewith 
ode e, and that for some �xed i there is a unique x su
h that �(i; x). Thenthere is a unique pair (z; x) su
h that z is an a

epting 
omputation of the ma
hineACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



14 � S. Cook and N. Thapene on input (i; x), and the property of being an a

epting 
omputation is sharplybounded.In the rest of this proof x and y will 
ode sequen
es of jnj numbers ea
h of size< njnj and with elements [x℄i; [y℄i, and z will 
ode a sequen
e of jnj numbers ea
hof size < n and with elements hzii.Suppose that h is a PV fun
tion from njnj to n. Note that from any PV fun
tiong : 2n ! n we 
an derive su
h a fun
tion h with the property that a witness toWPHP for h yields in polynomial time a witness to WPHP for g ([Paris et al. 1988℄,or see [Thapen 2002℄ for an expli
it polynomial time 
onstru
tion).Choose x < njnj2 at random and let z < njnj be su
h that hzi0 = h([x℄0); . . . ,hzijnj�1 = h([x℄jnj�1).Assume that PV proves the following instan
e of unique repla
ement:9i< jnj 8u<njnj h(u) 6= hzii_ 9i< jnj 9u1<u2<njnj h(u1) = h(u2)_ 9y<njnj2 8i< jnjh([y℄i) = hzii:Then by our witnessing theorem, for some k (independent of n) there is a deter-ministi
 intera
tive 
omputation whi
h takes n and z as its initial input. Then for ksteps it gives us an index i < jnj and expe
ts an input y < njnj; if we 
an guaranteethat for ea
h su
h step we have h(y) = hzii, then the 
omputation outputs eitheru1 and u2 mapping to the same thing, in whi
h 
ase we are done (and this 
aseis the only one that is di�erent from normal repla
ement), or y < njnj2 satisfying8i< jnjh([y℄i) = hzii.Run the 
omputation, and to ea
h index i queried respond with [x℄i. The 
ompu-tation must output some y satisfying 8i< jnjh([y℄i) = hzii. Now the 
omputationis deterministi
, and if we think of n as �xed, there were njnj(k+1) possible di�erentinputs to the ma
hine: namely njnj di�erent possibilities for z and (njnj)k di�erentpossibilities for the k responses [x℄i. Hen
e there are at most njnj(k+1) possibleoutputs y. However x was originally 
hosen at random from njnj2 possibilities. Soif k < n� 1 then with high probability x is not a possible output of the ma
hine,so x 6= y and for some i < jnj we have [x℄i 6= [y℄i but h([x℄i) = hzii = h([y℄i).Noti
e that part of this argument 
an be formalized in PV, to show that ifPV proves unique repla
ement, then PV proves that the surje
tive WPHP forPV fun
tions implies the inje
tive WPHP for PV fun
tions. In the proof aboverandomness was used to �nd some x outside the range of a given polynomial timealgorithm; in the formal PV proof we would use the surje
tive WPHP to providesu
h an x.Corollary 5.2. Suppose PV proves the �b1 
omprehension axiom s
heme (3).Then PV proves unique repla
ement for PV formulas and by theorem 5.1 we 
an
ra
k RSA.Proof. Let �(i; x) be any PV formula (with parameters) and suppose that thehypothesis of the theorem holds. Let M j= PV, a; b 2 M and suppose M j= 8i<ACM Transa
tions on Computational Logi
, Vol. V, No. N, Month 20YY.



The strength of repla
ement in weak arithmeti
 � 15jbj 9!x<a�(i; x). ThenM j= 8i< jbj 8j< jaj;9x<a (�(i; x) ^ xj = 1)$ 8x<a (�(i; x)! xj = 1):Over PV, � is equivalent to both a �b1 and a �b1 formula, so we 
an apply
omprehension and get some w su
h thatM j= 8i< jbj 8j< jaj; ([w℄i)j = 1$ 9x<a (�(i; x) ^ xj = 1):Here we assume without loss of generality that a is a power of 2, so that we 
answit
h easily between thinking of w as a binary sequen
e of length jbjjaj and as asequen
e of jbj many binary numbers [w℄1 : : : [w℄jbj; ea
h of length jaj. We also usethe fa
t that in PV the formula �(i; x) 
an be written in both a stri
t �b1 and astri
t �b1 way, whi
h we need to apply 
omprehension.Now pi
k any i < jbj. There is some unique x 2M su
h that �(i; x); and by the
onstru
tion of w, for ea
h j < jaj we know ([w℄i)j = 1 if and only if xj = 1. Hen
e[w℄i = x.So M j= 8i< jbj�(i; [w℄i).REFERENCESAjtai, M. 1983. �11-formulae on �nite stru
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