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2 � S. Cook and N. ThapenThe language of �rst order arithmeti that we use isf0; 1;+; �; <; jxj; (x)i; [x℄i; x#yg:Here jxj is the length of x in binary notation, (x)i is the ith bit of x, [x℄i is theith element of the sequene oded by x, and x#y is 2jxj�jyj. All our theories inthis language are assumed to inlude a set of axioms BASIC �xing the algebraiproperties of these symbols; see [Buss 1986; Kraj���ek 1995℄ for more detail. (Thesereferenes do not take [x℄i and (x)i as primitive, but these are simple funtionsand we an add them, and axioms for them, without hanging the power of ourtheories.)In the �rst order setting we will look at BB(�b0), or \sharply bounded replae-ment". A sharply bounded or �b0 formula is one in whih every quanti�er is boundedby a term of the form jtj. A �b1 formula is a sharply bounded formula preededby a mixture of bounded existential and sharply bounded universal quanti�ers. Astrit �b1 formula is a sharply bounded formula preeded by a blok of boundedexistential quanti�ers.The strongest theory we look at is S12 [Buss 1986℄, de�ned as BASIC togetherwith \length indution", that is the LIND axiom�(0) ^ 8x< jaj (�(x)! �(x + 1))! �(jaj) (2)for all �b1 formulas �.S12 proves BB(�b1), and hene for every S12 -formula � there is a strit-�b1 formula�0 suh that S12 proves (�$ �0). This fat may have inuened Buss's [Buss 1986℄original deision not to hoose strit �bi as the standard de�nition of �bi . The generalde�nition allows Buss to prove his Thm 2.2 showing that if a theory T+ extends Tby adding �b1-de�ned funtion symbols then �b1 formulas in the extended languageare provably equivalent to �b1 formulas in the original language. This result maynot hold if �b1 is taken to be strit �b1 and T does not prove replaement. Weshow here that ertain weaker theories (likely) do not prove replaement. For thesetheories, strit �b1 is a more appropriate de�nition, and extensions by �b1-de�nedfuntions must be handled with are.The �rst order theory we will use most often is PV [Cook 1975℄ (alled PV1 in[Kraj���ek 1995℄ and QPV in [Cook 1998℄). This is de�ned by expanding our lan-guage to inlude a funtion symbol for every polynomial time algorithm, introduedindutively by Cobham's limited reursion on notation. These are alled PV fun-tions, and quanti�er free formulas in this language are PV formulas. One way toaxiomatize PV is BASIC plus universal axioms de�ning the new funtion symbolsplus the indution sheme IND�(0) ^ 8x<a (�(x)! �(x + 1))! �(a)for open formulas �(x). However it is an important fat that PV is a universaltheory, and an be axiomatized by its universal onsequenes [Buss 1986; Cook1998℄.PV and S12 are losely linked to the omplexity lass P. The provably total �b1(or even strit �b1) funtions in these theories are preisely the polynomial timefuntions. S12 is �b1-onservative over PV [Buss 1986℄, but PV annot prove the �b1-LIND axiom sheme (2) for S12 unless the polynomial hierarhy (provably) ollapsesACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



The strength of replaement in weak arithmeti � 3[Kraj���ek et al. 1991; Buss 1995; Zambella 1996℄.First order theories are unsuitable for dealing with very weak omplexity lassessuh as AC0, in whih we annot even de�ne multipliation of strings. In thissetting it is more natural to work with a two-sorted or \seond order" theory. V 0is the theory desribed in the Notes [Cook 2002℄, page 56. It is based on �p0-omp[Zambella 1996℄ and is essentially the same as I�1;b0 . The two sorts are numbersand strings (�nite sets of numbers). There are number axioms giving the basiproperties of 0; 1;+; �;�, and two axioms de�ning the \length" jX j of a �nite setX to be 1 plus the largest element in X , or 0 if X is empty. Finally there is theomprehension sheme for �B0 formulas. These are formulas whih allow boundednumber quanti�ers but no string quanti�ers, and represent preisely the uniformAC0 relations on their free string variables.If we add to V 0 a funtion X �Y for string multipliation, we get a theory equiv-alent to the �rst order theory �b0 � LIND. The number sort would orrespond tosharply bounded numbers and the string sort to \large" numbers; the �B0 indutionavailable in V 0 would orrespond to �b0 � LIND.With this orrespondene (known as RSUV isomorphism [Takeuti 1993; Razborov1993℄) in mind, we onsider V 0 and the �rst order fragments of S12 as �tting natu-rally into one hierarhy of theories of bounded arithmeti. The only di�erenes be-tween the two approahes will be in the notation for strings and sequenes. (z)i = 1in the �rst order setting orresponds to Z(i) or i 2 Z in the seond order setting;[z℄i orresponds to Z [i℄ (see next paragraph).In seond order bounded arithmeti the replaement sheme (1) beomes8i<n 9X<n�(i;X)! 9W 8i<n�(i;W [i℄):Here 9X<n� stands for 9X(jX j < n^ �) and W [i℄(u) is formally W (hi; ui) wherehi; ui is a standard pairing funtion (so W [i℄ is row i in the two-dimensional bitarray W ).Our main results are that V 0 does not prove �B0 replaement (unonditionally)and that, unless integer fatoring is possible in probabilisti polynomial time, PVdoes not prove �b0 replaement. (As mentioned above, S12 does prove �b0 replae-ment.)We summarize our results with a piture of the struture of theories between S12and V0. An arrow on the diagram represents inlusion. To the right of an arrow wegive a suÆient ondition for the two theories to be distint. A bold arrow indiatesthat this ondition is true, and that the theories in fat are distint. To the left ofan arrow we show the onservativity between the two theories.We will begin with the bottom of the diagram. We have already talked about V 0and PV. �b1 � CR was introdued in [Johannsen and Pollett 2000℄ to orrespondto the omplexity lass TC0 of onstant-depth iruits with threshold gates. The�b1 funtions provably total in �b1 � CR are preisely the uniform TC0 funtions.The theory is de�ned as the losure of the BASIC axioms and the LIND axiomsfor open formulas under the normal rules of logial dedution together with the�b1-omprehension rule: if we an prove that a �b1 formula �(x) is equivalent to a�b1 formula  (x), then we are allowed to introdue omprehension for �,9w 8i< jaj ; (w)i = 1$ �(i):ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



4 � S. Cook and N. Thapen
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The strength of replaement in weak arithmeti � 5�b1�CR proves indution for sharply bounded formulas, so we an think of V 0 asa subtheory of it. In fat [Nguyen 2004℄ de�nes an extension VTC0 of V 0 by addingan axiom for the funtion NUMONES(X) (whih ounts the number of 1's in thestring X) and proves VTC0 is RSUV isomorphi to �b1 � CR. But VTC0 provesthe pigeonhole priniple, as represented by a �B0 formula PHP(X;n) [Nguyen 2004℄,and V 0 does not [Cook 2002℄. Hene �b1 � CR is stritly stronger than V 0.The �b1-omprehension rule is a derived rule of PV. This is beause by results in[Buss 1986℄ if a formula � is provably �b1 in PV, then PV proves that the harater-isti funtion of � is omputable in polynomial time, and hene that omprehensionholds for �. Thus PV is an extension of �b1 � CR.PV is separated from �b1 � CR by the iruit value priniple, whih says that\for all iruits C and all inputs �x, there exists a omputation of C on �x". This isprovable in PV, but under the assumption that P does not equal uniform TC0 it isnot provable in �b1 � CR.Turning now to the top of the diagram, [Buss 1986℄ proves the 8� b1-onservativityof S12 over PV. If PV+BB(�b0) proves S12 , then PV ` S12 [Zambella 1996℄ and henethe bounded arithmeti hierarhy ollapses to PV and the polynomial hierarhy PHollapses to �p2 \ �p2 [Zambella 1996; Buss 1995℄.The 89�B0 -onservativity of V 0+BB(�B0 ) over V 0 is from Zambella [1996℄. �b0�LIND+BB(�b0) was introdued by Johannsen and Pollett [1998℄(where they all itC02 ), and proved to be 8�b1 onservative over �b1 � CR in [Johannsen and Pollett2000℄. From these onservativity results it follows that V 0+BB(�B0 ) does not provethe pigeonhole priniple and �b1 � CR + BB(�b0) does not prove the iruit valuepriniple (unless P equals uniform TC0), whih gives us the separations betweenthe three theories with replaement.In the body of the paper we show the separations between the theories with andwithout various kinds of replaement, using a similar argument in all ases.In setion 2 we desribe how our general argument goes. In setion 3 we use ittogether with the fat that parity is not omputable in nonuniform AC0 to separateV 0 from V 0 +BB(�b0).In setion 4 we show that if PV proves �b0-replaement, then fatoring is possiblein probabilisti polynomial time. (This strengthens a result in [Thapen 2002℄ wherethe weaker onlusion \RSA is inseure" was proved.) We observe that this is trueeven if we look at weak versions of �b0-replaement, where we ode very shortsequenes of witnesses; for example BB(�b0; jjxjj) in the diagram is the sheme ofreplaement for sequenes of double-log length:8i< jjajj 9y<a�(i; y)! 9w 8i< jjajj�(i; [w℄i):The dotted line in the diagram represents the fat that if fatoring is hard, thenall the theories BB(�b0; jxj), BB(�b0; jjxjj), BB(�b0; jjjxjjj), : : : are distint (in fatwe show something slightly stronger than this). By a similar argument, all thesetheories are distint over V 0 (in plae of PV), without any assumptions, but forthe sake of tidiness we have not put this on the diagram.The theory of strong �b1 omprehension is like �b1�CR, exept that rather thanhaving a rule that if a formula is provably �b1 then omprehension holds for it, weACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



6 � S. Cook and N. Thapenhave the \�b1 omprehension axiom sheme"8x (�(x) $ : (x)) ! 9w 8i< jaj (�(i)$ (w)i = 1) (3)where �;  2 �b1 (and may ontain other parameters); so omprehension holds for� in a struture, if � is �b1 in that struture. The question is raised in [Johannsenand Pollett 2000℄, whether this theory is stritly stronger than �b1 �CR. We showthat it is, under a ryptographi assumption. We onsider a priniple not shownon the diagram, whih we all \unique replaement". We show that if RSA isseure against probabilisti polynomial time attak then PV does not prove uniquereplaement, and that it follows that PV, and hene �b1 � CR, does not prove the�b1 omprehension axiom sheme.We have not looked for a separation between this last theory and �b0 � LIND +BB(�b0).A preliminary version of this paper appears in [Cook and Thapen 2004℄.2. WITNESSING WITH AN INTERACTIVE COMPUTATIONFirst we reall a standard lemma.Lemma 2.1. Over BASIC, �b0-replaement is equivalent to strit �b1-replaement.Hene over PV, �b0-replaement is equivalent to replaement for PV formulas, sinePV proves that every PV formula is equivalent to a strit �b1 formula.Similarly over V 0, �B0 -replaement is equivalent to �B1 -replaement, where a �B1formula is a �B0 formula preeded by a blok of bounded existential string quanti-�ers. �Our main tool in this paper is the KPT witnessing theorem. We state it here forPV and polynomial time, although it holds in a muh more general form.Theorem 2.2. [Kraj���ek et al. 1991℄ Let � be a PV formula and suppose PV `8x 9y 8z �(x; y; z). Then there exists a �nite sequene f1; : : : ; fk of PV funtionsymbols suh thatPV ` 8x8�z; �(x; f1(x); z1) _ �(x; f2(x; z1); z2)_ : : : _ �(x; fk(x; z1; : : : ; zk�1); zk):Proof. Let b; 1; 2; ::: be a list of new onstants, and let t1; t2; ::: be an enu-meration of all terms built from symbols of PV together with b; 1; 2; :::, where theonly new onstants in tk are among fb; 1; :::; k�1g. It suÆes to show thatPV [ f:�(b; t1; 1);:�(b; t2; 2); : : : ;:�(b; tk ; k)gis unsatis�able for some k.Suppose otherwise. Then by ompatnessPV [ f:�(b; t1; 1);:�(b; t2; 2); :::g (4)has a model M . Sine PV is universal, the substruture M 0 onsisting of thedenotations of the terms t1; t2; ::: is also a model for (4). It is easy to see thatM 0 j= PV + 8y9z:�(b; y; z)and hene PV 6` 8x9y8z�(x; y; z).ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



The strength of replaement in weak arithmeti � 7Now hoose a funtion f whih an be omputed in polynomial time but whihis hard to invert (in a more general setting, we would hoose a funtion whih isin the omplexity lass orresponding to the theory we are looking at, but whoseinverse probably is not). Suppose PV proves the following instane of replaement(whih has a and y as parameters, and m = jaj):8i<m 9u<a f(u) = [y℄i ! 9w 8j<mf([w℄j) = [y℄j :We an rewrite this as9i<m 9w 8u<a ; f(u) = [y℄i ! 8j<mf([w℄j) = [y℄j :Applying our witnessing theorem, we get k 2 N and funtions g1; : : : ; gk andh1; : : : hk (whih have a as a suppressed argument), suh thatPV ` 8�z<a ; (f(z1) = [y℄g1(y) ! 8j<mf([h1(y)℄j) = [y℄j)_ (f(z2) = [y℄g2(y;z1) ! 8j<mf([h2(y; z1)℄j) = [y℄j)_ : : :_ (f(zk) = [y℄gk(y;z1;:::;zk�1) !8j<mf([hk(y; z1; : : : ; zk�1)℄j) = [y℄j)This allows us to write down an algorithm whih, given an input y (onsidered as asequene [y℄0; : : : ; [y℄m�1), will ask for a pre-image of f on at most k elements of y.With this information it will output a number w oding a sequene of pre-imagesof all m elements of y.The algorithm is as follows. Let w = h1(y). If 8j<mf([w℄j) = [y℄j then outputw and halt. Otherwise alulate g1(y) and ask for a pre-image of [y℄g1(y); store theanswer as z1. Then let w = h2(y; z1). If 8j <mf([w℄j) = [y℄j then output w andhalt. Otherwise alulate g2(y; z1) and ask for a pre-image of [y℄g2(y;z1); store theanswer as z2, and so on. By our assumption the algorithm will run for at most ksteps of this form before it outputs a suitable w.Now �x a suh that jaj = m > k, and hoose a sequene [x℄0; : : : ; [x℄m�1 ofnumbers less than a. Let y enode the pointwise image of x under f . Run thealgorithm above, and reply to queries with elements of x. We will end up withw enoding a sequene of pre-images of y, whih will lash in some way with ourassumption that f is hard to invert. If f is an injetion, w will be the same as x;we use this in setion 3. If f is not an injetion and x was hosen at random, thenw is probably di�erent from x; we use this in setions 4 and 5. 11In this paper we only onsider worst-ast omplexity. Russell Impaglizzo has pointed out thatif we onsider average-ase omplexity, we an use our algorithm to show that no one-way per-mutations exist (under our assumption about replaement). Suppose f is a polynomial timepermutation that maps m-bit strings to m-bit strings. We will show that f is not one-way, byshowing that it is not hard to invert in the average ase. Let v be a random string, whih we wantto �nd a pre-image of. Choose strings u1; : : : ; um at random and let v1; : : : ; vm be their imagesunder f . Insert v into this sequene of images at a random plae to get a sequene of m + 1strings uniformly distributed amongst all suh sequenes (sine f is a permutation), and give thissequene to our algorithm. It will ask for k pre-images and with high probability we will be ableto give orret answers, using the uis. Then the algorithm will output pre-images for every stringACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



8 � S. Cook and N. ThapenThe important properties of PV used in the argument above are that it is univer-sal and an de�ne funtions by ases (needed for the KPT witnessing theorem) andthat it an manipulate sequenes. We show now how to make V 0 into a universaltheory in whih we an arry out the same argument.We start by referring to [Cook 2002℄, pp 66{73. A relation R(�x; �Y ) is in (uniform)AC0 i� it is de�ned by some �B0 formula A(�x; �Y ). A number funtion f : Nk �(f0; 1g�)` �! N is an AC0 funtion i� there is an AC0 relation R and a polynomialp suh that f(�x; �Y ) = min z < p(�x; j �Y j) R(z; �x; �Y ) (5)A string funtion F (�x; �Y ) is an AC0 funtion i� jF (�x; �Y )j � p(�x; j �Y j) for somepolynomial p, and the bit graphBF (i; �x; �Y ) � F (�x; �Y )(i)is an AC0 relation.We denote by V 0(FAC0) a onservative extension of V 0 obtained by adding aset FAC0 of funtion symbols with universal de�ning axioms for all AC0 funtions,based on the above haraterizations. FAC0 is essentially R � def in [Zambella1996℄.) This an be done in suh a way that V 0(FAC0) is a universal theory. Inpartiular, the �B0 omprehension axioms follow sine for every �B0 formula � thereis a FAC0 string funtion whose range is the set of strings asserted to exist by thethe omprehension axiom for �. Further, from (5) it is lear that for every �B0formula � there is a quanti�er-free formula �0 in the language of V 0(FAC0) suhthat V 0(FAC0) ` (�$ �0)From these remarks, it is lear that the usual proof of the KPT witnessing theo-rem an be adapted to show the following:Theorem 2.3. Let �(X;Y; Z) be a �B0 formula suh that 8X9Y 8Z�(X;Y; Z) isprovable in V 0. Then there are FAC0 funtions F1; :::; Fk suh thatV 0(FAC0) ` 8X8 �Z; �(X;F1(X); Z1) _ �(X;F2(X;Z1); Z2)_ : : : _ �(X;Fk(X;Z1; :::; Zk�1); Zk):Using this we an show that if V 0 proves �B0 -replaement, then for any AC0funtion F there exists k 2 N and a uniform AC0 algorithm that will �nd a pre-image under F of any sequene Y [0℄; : : : ; Y [m�1℄ of strings by asking at most kqueries of the form \what is a pre-image of Y [i℄?"3. REPLACEMENT IN V0 AND PARITYLet PARITY be the set of all strings over f0; 1g with an odd number of 1s. By a(nonuniform) AC0 iruit family we mean a polynomial size bounded depth familyhCn : n 2 Ni of Boolean iruits over ^;_;: suh that Cn has n inputs and oneoutput. Ajtai's theorem [Ajtai 1983; Furst et al. 1984℄ states that no suh iruitfamily aepts PARITY .in the sequene, inluding v.ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



The strength of replaement in weak arithmeti � 9We show that if V 0 proves the �B0 replaement sheme, then (using KPT wit-nessing) there exists a (uniform) randomized AC0 algorithm for PARITY . Thisalgorithm shows the existene of a (uniform) AC0 iruit family suh that eahiruit has a vetor �r of random input bits in addition to the standard input bits,and with probability p > 2=3 the iruit orretly determines whether the standardinput is in PARITY and with probability 1�p the iruit produes an output indi-ating failure. From this a standard argument shows the existene of a nonuniformAC0 iruit family for parity, violating the above theorem.Let PAR be the funtion that maps a binary string of length m to its parityvetor. That is, PAR(m;Y ) = X if jX j < m and, for eah i < m, X(i) is theparity of the string Y (0) : : : Y (i). In what follows we take m to be a parameter,assume Y is an m-bit string, and suppress the argument m from PAR(m;Y ).Plainly PAR(Y ) annot be omputed in AC0. However its inverse, whih we willall UNPAR, is in uniform AC0: the ith bit of UNPAR(X) is given by the �B0formula (i = 0^X(i))_ (i > 0^X(i� 1)�X(i)). Here UNPAR has an argumentm, whih we suppress.Notie also that for all m-bit strings A;B;C, writing � for bitwise XOR, ifA = B � C then PAR(A) = PAR(B)� PAR(C).Theorem 3.1. V 0 does not prove BB(�B0 ).Proof. Suppose V 0 ` BB(�B0 ). Then applying the argument of setion 2 to thefuntion UNPAR, for some �xed k there is a uniform AC0 algorithm whih, forany sequene Y [0℄; : : : ; Y [m�1℄ of binary strings of length m makes k queries of theform \what is PAR(Y [i℄)?" and outputs the sequene of parity vetors of Y .We will show how to use this algorithm to ompute the parity of a single string inuniform randomized AC0. Suppose m � 3k and let I be the input string of lengthm whih we want to ompute the parity of.Choose m strings U0; : : : ; Um�1 in f0; 1gm at random, and for eah i omputeVi = UNPAR(Ui). Choose a number r, 0 � r < m, uniformly at random. De�nethe string Y (thought of as an m�m binary matrix) by the onditionY [i℄ = � Vi if i 6= rI � Vr if i = r.Sine for eah m the funtion UNPAR de�nes a bijetion from the set f0; 1gm toitself, and sine for eah I with jI j < m the map X 7! I�X also de�nes a bijetionfrom that set to itself, it follows that the string Y de�ned above, interpreted as anm�m bit matrix, is uniformly distributed over all suh matries.Now run our interative AC0 algorithm on Y . If the algorithm queries \what isPAR(Y [i℄)?" for i 6= r, reply with Ui (whih is the orret answer). If the algorithmqueries \what is PAR(Y [r℄)?", then abort the omputation.Sine at most k di�erent values of i are ompared to r and sine for eah input Ieah pair (Y; r) is equally likely to have been hosen, it follows that the omputationwill be aborted with probability at most k=m � 1=3.Hene with probability at least 2/3 the algorithm is not aborted, we are able toanswer all the queries orretly, and we obtain W suh that W [r℄ = PAR(Y [r℄) =ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



10 � S. Cook and N. ThapenPAR(I � Vr). But I = Vr � (I � Vr) and henePAR(I) = PAR(Vr)� PAR(I � Vr)= Ur �W [r℄We use this to ompute PAR(I) and use bit m�1 of PAR(I) to determine whetherI 2 PARITY .For eah input I the algorithm sueeds with probability at least 2/3, where theprobability is taken over its random input bits.Sine no suh AC0 algorithm exists, it follows that V 0 does not prove the �B0replaement sheme.4. REPLACEMENT IN PV AND FACTORINGWe adapt the proof [Rabin 1979℄ that raking Rabin's ryptosystem based onsquaring modulo n is as hard as fatoring.Let n be the produt of distint odd primes p and q. Suppose 0 < x1 < n andgd(x1; n) = 1. Let  = x21. Then  has preisely four square roots x1; x2; x3; x4modulo n. This an be seen as follows: let xp = (x1 mod p) and xq = (x1 modq). By the Chinese remainder theorem there are uniquely determined numbersx1; x2; x3; x4 with 0 < xi < n suh thatx1 � xp (mod p) x1 � xq (mod q)x2 � xp (mod p) x2 � �xq (mod q)x3 � �xp (mod p) x3 � xq (mod q)x4 � �xp (mod p) x4 � �xq (mod q)Now x1�x2 � 0 (mod p) and x1�x2 � 2xq 6� 0 (mod q), so gd(x1�x2; n) = p.So from x1 and x2 we an reover p, and similarly from x1 and x3 we an reoverq. Hene if we have one square root of , and are then given a square root at random,we an fator n with probability 12 .Theorem 4.1. If PV proves replaement for sharply bounded formulas, thenfatoring (of produts of two odd primes) is possible in probabilisti polynomialtime.Proof. We will use our standard argument, taking squaring modulo n as ourfuntion f (so f has n as a parameter).If PV proves BB(�b0) then there is polynomial time algorithm whih, for some�xed k 2 N, given any sequene y0; : : : ; ym�1 of squares (modulo n), makes at mostk queries of the form \what is the square root of yi?" and, if these are answeredorretly, outputs square roots of all the yis.Now suppose n is large enough that m = jnj > k. Choose numbers x0; : : : ; xm�1uniformly at random with 0 < xi < n. We may assume that gd(xi; n) = 1 for alli, sine otherwise we an immediately �nd a fator of n.For eah i let yi = (x2i mod n). Let y ode the sequene y0; : : : ym�1, so [y℄i = yi.Notie that eah xi is distributed uniformly amongst the four square roots of [y℄i.Run our algorithm, and to eah query \what is the square root of [y℄i?", answerwith xi. We will get as output w oding a sequene [w℄0; : : : ; [w℄m�1 of square rootsof [y℄0; : : : ; [y℄m�1.ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



The strength of replaement in weak arithmeti � 11If we think of n as �xed, the value of w depends only on the inputs given to thealgorithm, namely y and the k many numbers xi that we gave as replies. Let i besome index for whih xi was not used. Then xi is distributed at random among thesquare roots of [y℄i, and [w℄i is a square root of [y℄i that was hosen without usingany information about whih square root xi is. Hene gd(xi � [w℄i; n) is a fatorof n with probability 12 .Notie that the only property of the funtion j j we used was that we ould �ndsome n with jnj > k. So any nondereasing, not eventually onstant funtion woulddo in the plae of j j. Hene if PV only proves replaement for very short sequenes,that is still enough to give us fatoring.In fat under the assumption that fatoring is hard we an show that thesereplaement shemes form a hierarhy. For any � with one argument, let BB(�;PV)be the axiom sheme:8i<�(b) 9y<b�(i; y)! 9w 8i<�(b)�(i; [w℄i)for all PV formulas �. We will assume that our base theory proves that �(x) < jxjand that � is inreasing.We need a generalization of a result of Zambella, lemma 3.3 of [Zambella 1996℄.The lemma there is presented for a two-sorted system similar to V 0 and with jxjrather than �(x).An 9bPV formula is a PV formula preeded by a bounded existential quanti�er;modulo PV this is the same as a strit �b1 formula.Lemma 4.2. Any model N j= PV has an 9bPV-elementary extension to a modelM j= PV+BB(�;PV) suh that every element of M is of the form f(a;�b) for somef 2 PV, a 2 N and �b � �(M), where �(M) = fx 2 M : x < �(y); some y 2 Mg.Informally, M is formed from N by only adding new \�-small" elements and losingunder PV funtions.Proof. Let L be the language of PV with the addition of a name for everyelement of N , and let T be the universal theory of N in this language, so everymodel of T will be an 9-elementary, and hene 9bPV-elementary, extension of N .Enumerate as (t1; �1(x; y)); (t2; �2(x; y)); : : : all pairs onsisting of losed terms inL and binary PV formulas with parameters from L. We will use this to onstruta hain T = T0 � T1 � T2 � : : : of theories.Suppose that Ti has been onstruted and is a onsistent, universal theory. IfTi ` 8x < �(ti+1) 9y �i+1(x; y) then put Ti+1 = Ti. Otherwise introdue a newonstant symbol  and putTi+1 = Ti [ f < �(ti+1)g [ f8y:�i+1(; y)g:Note that Ti+1 is onsistent and universal.Let T � be the union of this hain of theories, and let L� be L together with allthe new onstant symbols that were added in the onstrution of T �. Enumerate allpairs of losed terms and binary formulas in L�, and repeat the above onstrutionto get a theory T �� and a language L��. Repeat this step ! times, and let T+ bethe union of the theories and L+ its language.T+ is onsistent and universal, so there is a model M � T+ eah element ofwhih is named by some losed L+-term. M � T , so M is an 9bPV-elementaryACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



12 � S. Cook and N. Thapenextension of N . Also, eah time a new onstant  was introdued to L+,  < �(t)was introdued to T+ for some term t. So M is the losure of elements of N andnew \�-small" elements, as required.To show that M is a model of BB(�;PV), suppose that a is an element of Mand �(x; y) is a PV formula with parameters from M , andM � 8x<�(a) 9y �(x; y):Then by the onstrution of M , we may assume that a is named by some losedL+ term t and that �(x; y) is a parameter-free L+ formula; and by the onstrutionof T+ we must have that T+ ` 8x<�(t) 9y �(x; y), sine T+ either proves this orits negation. But T+ is a universal theory, so by using Herbrand's theorem and theproperties of PV we an �nd a PV funtion symbol f (with parameters) suh thatT+ ` 8x<�(t)�(x; f(x)). Now by the omprehension available in PV, we an �ndsome w 2M suh that M � 8x<�(t)�(x; [w℄x), as required.We an now adapt the proof of the KPT witnessing theorem to get the following:Theorem 4.3. SupposePV +BB(�;PV) ` 8x 9y 8z �(x; y; z)for an 9bPV formula �. Then there exist k 2 N, a term s(x; �z) and funtionsf1; : : : ; fk suh thatPV ` 8x8�z; 9i<�(s)k �(x; [f1(x)℄i; [z1℄i)_ 9i<�(s)k �(x; [f2(x; z1)℄i; [z2℄i)_ : : : _ 9i<�(s)k �(x; [fk(x; z1; : : : ; zk�1)℄i; [zk℄i)(we inlude the exponent k here beause the range of � might not be losed undermultipliation).Proof. Enumerate all pairs of PV funtions as (s1; f1); (s2; f2); : : : with in�niterepetitions in suh a way that for eah k both sk and fk take k or fewer arguments.Assume that the onlusion of the theorem is false, and let T be the theoryPV+f8i<�(s1(b; 1))1 :�(b; [f1(b)℄i; [1℄i);8i<�(s2(b; 1; 2))2 :�(b; [f2(b; 1)℄i; [2℄i); : : :gwhere b and 1; 2; : : : are new onstant symbols. Then T is �nitely satis�able (wean take the term s in the statement of the theorem as the sum of our �nite set ofterms s1; : : : ; sk).Let N be a model of T , and let N 0 � N be the substruture onsisting of all theelements named by terms. Sine T is universal, N 0 j= T . Let M be the extensionof N given by lemma 4.2 to a model of BB(�;PV). By 9bPV elementariness, M isalso a model of T .Now let a be any element of M . By the onstrution of M , for some �d � �(M),some e 2 N 0 and some PV funtion g we have a = g( �d; e). Furthermore by theonstrution of N 0 we know that �d < �(h1(b; 1; : : : ; k)) and e = h2(b; 1; : : : ; k)for some k and some PV funtions h1 and h2.In this paragraph we identify a number i < �(h1(b; �))k with the sequene�i = i1 : : : ik of numbers less than �(h1(b; �)) that it odes. We an �nd l >ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



The strength of replaement in weak arithmeti � 13k suh that fl is the PV funtion symbol that takes as input b; 1; : : : ; l andoutputs (as a single number) the sequene w1 : : : w�(h1(b;1;:::;k))k where wi =g(�i; h2(b; 1; : : : ; k)). Then a = [fl(b; 1; : : : ; l)℄d and sine M j= T we haveM j= :�(b; a; [l+1℄d). Here a was hosen arbitrarily, so we have shown thatM j= PV +BB(�;PV) + :8x 9y 8z �(x; y; z).Corollary 4.4. Suppose that fatoring is not possible in probabilisti polyno-mial time. Then BB(�;PV) is not provable in PV + BB(;PV), for terms �; where �(x); (x) < jxj and � grows faster than any polynomial in .Proof. Our standard argument is that if replaement is provable in PV, thenthere is a polynomial time interative algorithm that queries k square roots andoutputs jnj square roots, for some �xed k 2 N.By theorem 4.3 we an show, by a similar argument, that if PV + BB(;PV) `BB(�;PV) then we have a polynomial time interative algorithm that queriesk(n)k square roots modulo n and outputs �(n) square roots, for some �xed k 2 N.So if n is suÆiently large that �(n) > k(n)k, we an use the argument oftheorem 4.1 to fator n.This gives a hierarhy of theoriesPV + BB(jxj;PV) � PV +BB(jjxjj;PV) � : : :The same argument goes through in V 0. One way to see this is to notie thatthe important di�erene between PV and V 0 is that the PV funtions are losedunder polynomial time iteration, and no suh iteration is used in the proof here.So we have the unonditional separation resultTheorem 4.5. BB(�;�B0 ) is not provable in V 0 + BB(;�B0 ), for terms �; where �(n); (n) < n and � grows faster than any polynomial in .Proof. If the theorem is false, then there is k 2 N and an interative algorithmthat, given �(n) many vetors v1; : : : ; v�(n), eah of length n, will make k(n)kqueries of the form \what is the parity vetor of vi?" and then output the parityvetors of all the vis. So if �(n) � 3k(n)k, then by adapting the argument ofsetion 3 we get a probabilisti uniform AC0 algorithm whih omputes parity.5. UNIQUE REPLACEMENT IN PV AND RSAWe de�ne \unique replaement" to be the sheme8i< jaj 9!x<b�(i; x)! 9w 8i< jaj�(i; [w℄i):Theorem 5.1. If PV proves unique replaement for sharply bounded formulas,then the injetive WPHP for PV formulas an be witnessed in probabilisti polyno-mial time (and hene in partiular we an rak RSA [Kraj���ek and Pudl�ak 1998℄).Proof. (Simpli�ed from the model-theoreti proof in [Thapen 2002℄.) Firstnotie that it is suÆient to show that PV does not prove unique replaement forsome PV formula �. For suppose that � is deided by the polynomial time mahinewith ode e, and that for some �xed i there is a unique x suh that �(i; x). Thenthere is a unique pair (z; x) suh that z is an aepting omputation of the mahineACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



14 � S. Cook and N. Thapene on input (i; x), and the property of being an aepting omputation is sharplybounded.In the rest of this proof x and y will ode sequenes of jnj numbers eah of size< njnj and with elements [x℄i; [y℄i, and z will ode a sequene of jnj numbers eahof size < n and with elements hzii.Suppose that h is a PV funtion from njnj to n. Note that from any PV funtiong : 2n ! n we an derive suh a funtion h with the property that a witness toWPHP for h yields in polynomial time a witness to WPHP for g ([Paris et al. 1988℄,or see [Thapen 2002℄ for an expliit polynomial time onstrution).Choose x < njnj2 at random and let z < njnj be suh that hzi0 = h([x℄0); . . . ,hzijnj�1 = h([x℄jnj�1).Assume that PV proves the following instane of unique replaement:9i< jnj 8u<njnj h(u) 6= hzii_ 9i< jnj 9u1<u2<njnj h(u1) = h(u2)_ 9y<njnj2 8i< jnjh([y℄i) = hzii:Then by our witnessing theorem, for some k (independent of n) there is a deter-ministi interative omputation whih takes n and z as its initial input. Then for ksteps it gives us an index i < jnj and expets an input y < njnj; if we an guaranteethat for eah suh step we have h(y) = hzii, then the omputation outputs eitheru1 and u2 mapping to the same thing, in whih ase we are done (and this aseis the only one that is di�erent from normal replaement), or y < njnj2 satisfying8i< jnjh([y℄i) = hzii.Run the omputation, and to eah index i queried respond with [x℄i. The ompu-tation must output some y satisfying 8i< jnjh([y℄i) = hzii. Now the omputationis deterministi, and if we think of n as �xed, there were njnj(k+1) possible di�erentinputs to the mahine: namely njnj di�erent possibilities for z and (njnj)k di�erentpossibilities for the k responses [x℄i. Hene there are at most njnj(k+1) possibleoutputs y. However x was originally hosen at random from njnj2 possibilities. Soif k < n� 1 then with high probability x is not a possible output of the mahine,so x 6= y and for some i < jnj we have [x℄i 6= [y℄i but h([x℄i) = hzii = h([y℄i).Notie that part of this argument an be formalized in PV, to show that ifPV proves unique replaement, then PV proves that the surjetive WPHP forPV funtions implies the injetive WPHP for PV funtions. In the proof aboverandomness was used to �nd some x outside the range of a given polynomial timealgorithm; in the formal PV proof we would use the surjetive WPHP to providesuh an x.Corollary 5.2. Suppose PV proves the �b1 omprehension axiom sheme (3).Then PV proves unique replaement for PV formulas and by theorem 5.1 we anrak RSA.Proof. Let �(i; x) be any PV formula (with parameters) and suppose that thehypothesis of the theorem holds. Let M j= PV, a; b 2 M and suppose M j= 8i<ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.



The strength of replaement in weak arithmeti � 15jbj 9!x<a�(i; x). ThenM j= 8i< jbj 8j< jaj;9x<a (�(i; x) ^ xj = 1)$ 8x<a (�(i; x)! xj = 1):Over PV, � is equivalent to both a �b1 and a �b1 formula, so we an applyomprehension and get some w suh thatM j= 8i< jbj 8j< jaj; ([w℄i)j = 1$ 9x<a (�(i; x) ^ xj = 1):Here we assume without loss of generality that a is a power of 2, so that we answith easily between thinking of w as a binary sequene of length jbjjaj and as asequene of jbj many binary numbers [w℄1 : : : [w℄jbj; eah of length jaj. We also usethe fat that in PV the formula �(i; x) an be written in both a strit �b1 and astrit �b1 way, whih we need to apply omprehension.Now pik any i < jbj. There is some unique x 2M suh that �(i; x); and by theonstrution of w, for eah j < jaj we know ([w℄i)j = 1 if and only if xj = 1. Hene[w℄i = x.So M j= 8i< jbj�(i; [w℄i).REFERENCESAjtai, M. 1983. �11-formulae on �nite strutures. Annals of Pure and Applied Logi 24, 1{48.Buss, S. 1986. Bounded Arithmeti. Bibliopolis.Buss, S. 1995. Relating the bounded arithmeti and polynomial time hierarhies. Annals of Pureand Applied Logi 75, 1{2, 67{77.Cook, S. 1975. Feasibly onstrutive proofs and the propositional alulus. Proeedings of the7th Annual ACM Symposium on Theory of omputing , 83{97.Cook, S. 1998. Relating the provable ollapse of P to NC1 and the power of logial theories.DIMACS Series in Disrete Mathematis and Theoretial Computer Siene 39, 73{91.Cook, S. 2002. CSC 2429 ourse notes: Proof Complexity and Bounded Arithmeti. Availablefrom the web at www.s.toronto.edu/~saook/s2429h/.Cook, S. and Thapen, N. 2004. The strength of replaement in weak arithmeti. Proeedings ofthe Nineteenth Annual IEEE Symposium on Logi in Computer Siene.Furst, M., Saxe, J. B., and Sipser, M. 1984. Parity, iruits and the polynomial-time hierarhy.Math. Systems Theory 17, 13{27.Johannsen, J. and Pollett, C. 1998. On proofs about threshold iruits and ounting hierarhies(extended abstrat). In Pro. 13th IEEE Symposium on Logi in Computer Siene. 444{452.Johannsen, J. and Pollett, C. 2000. On the �b1-bit-omprehension rule. In Logi Colloquium98, S. Buss, P. H�ajek, and P. Pudl�ak, Eds. ASL Leture Notes in Logi. 262{279.Kraj���ek, J. 1995. Bounded Arithmeti, Propositional Logi and Computational Complexity.Cambridge University Press.Kraj���ek, J. and Pudl�ak, P. 1998. Some onsequenes of ryptographial onjetures for S12and EF . Information and Computation 140, 1, 82{89.Kraj���ek, J., Pudl�ak, P., and Takeuti, G. 1991. Bounded arithmeti and the polynomialhierarhy. Annals of Pure and Applied Logi 52, 143{153.Nguyen, P. 2004. VTC0: A Seond-Order Theory for TC0. MS Thesis, Department of ComputerSiene, University of Toronto.Paris, J., Wilkie, A., and Woods, A. 1988. Provability of the pigeonhole priniple and theexistene of in�nitely many primes. Journal of Symboli Logi 53, 4, 1235{1244.Rabin, M. 1979. Digitalized signatures and publi-key funtions as intratable as fatorization.Teh. Rep. MIT/LCS/TR-212, MIT Laboratory for Computer Siene.ACM Transations on Computational Logi, Vol. V, No. N, Month 20YY.
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